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Abstract1

Neural activity in the nucleus accumbens (NAc) is thought to track fundamentally value-centric quantities2

such as current or future expected reward, reward prediction errors, the value of work, opportunity cost, and3

approach vigor. However, the NAc also contributes to flexible behavior in ways that are difficult to explain4

based on value signals alone, raising the question of if and how non-value signals are encoded in NAc. We5

recorded NAc neural ensembles while head-fixed mice performed a biconditional discrimination task, and6

extracted single-unit and population-level correlates of task features. We found coding for context-setting7

cues that modulate the stimulus-outcome association of subsequently presented reward-predictive cues. This8

context signal occupied a subspace orthogonal to classic value representations, suggesting that it does not9

interfere with value-related NAc output. Finally, we show that the context signal is predictive of subsequent10

value coding, supporting a circuit-level gating model for how the NAc contributes to behavioral flexibility11

and providing a novel population-level perspective from which to view NAc computations.12

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.24.449720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449720
http://creativecommons.org/licenses/by/4.0/


Introduction13

The nucleus accumbens (NAc) is an important contributor to the motivational control of behavior, acting di-14

rectly through output pathways involving brainstem motor nuclei (“limbic-motor interface”, Graybiel 1975;15

Gruber & McDonald 2012; Mogenson et al. 1980) and indirectly through return projections within cortico-16

striatal loops (Haber & Behrens, 2014; Rusu & Pennartz, 2020). Accordingly, leading theories of NAc17

function, and the mesolimbic dopamine (DA) system it is tightly interconnected with, tend to focus on the18

processing of reward (and punishment) and its dual role in energizing/directing ongoing actions as well as in19

learning from feedback (Floresco, 2015; Gruber & McDonald, 2012; Koob & Volkow, 2016; Nicola, 2010;20

Salamone & Correa, 2012). These proposals attribute to the NAc a role in motivational and reward-related21

quantities such as incentive salience, value of work, expected future reward, economic value, risk and re-22

ward prediction error. In more formal reinforcement learning models, the NAc-dopamine system is typically23

cast as an “evaluator” or “critic”, tracking state values that are useful to set the value of work as well as a24

source of a teaching signal in the form of reward prediction errors (Averbeck & Costa, 2017; Joel et al., 2002;25

Khamassi & Humphries, 2012; Stoianov et al., 2018; van der Meer & Redish, 2011a). Although the specifics26

are the subject of vigorous debate, these prominent theories all share a fundamentally value-centric focus:27

notwithstanding substantial heterogeneity in NAc cell types and circuitry (Cox & Witten, 2019; Floresco,28

2015; Humphries & Prescott, 2010) this brain structure as a whole is typically cast as tracking a relatively29

low-dimensional quantity: a value signal that at its simplest just a single number, reflecting how good or bad30

the current situation is.31

These value-centric accounts are supported by a vast literature that includes the bidirectional control of mo-32

tivated behaviors such as conditioned responding to reward-predictive cues, and the regulation of how much33

effort/vigor to exert, with NAc manipulations (Ciano et al., 2001; Corbit & Balleine, 2011; Ghods-Sharifi &34

Floresco, 2010; Nicola, 2010; Parkinson et al., 2000; Salamone et al., 1994) as well as the demonstration that35

electrical or optogenetic stimulation of the NAc itself, or dopaminergic terminals in the NAc, is sufficient36

for inducing behavioral preferences (Cole et al., 2018; Cox & Witten, 2019; Crow, 1972; Mogenson et al.,37
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1979; Phillips et al., 1975; Prado-Alcalá & Wise, 1984; Tsai et al., 2009). Similarly, unit recording studies in38

rodents and fMRI work in humans consistently report widespread, sizable value signals in NAc single units,39

populations, and the NAc blood-oxygen-level-dependent (BOLD) signal (Bissonette et al., 2013; Delgado40

et al., 2000; FitzGerald et al., 2014; Goldstein et al., 2012; Hollerman et al., 1998; McGinty et al., 2013;41

Nicola, 2004; Roesch et al., 2009; Roitman et al., 2005; Schultz et al., 1992; Setlow et al., 2003). Thus, there42

seems to be widespread agreement that the major dimension (principal component) of NAc activity is some43

form of value signal.44

However, in complex, dynamic behavioral tasks, lesions or inactivations of the NAc lead to deficits that are45

not straightforward to explain from a purely value-centric perspective (Floresco, 2015; Mannella et al., 2013),46

such as the implementation of conditional rules (Floresco et al., 2018), or switching to a novel behavioral47

strategy (Floresco et al., 2006). In addition, prominent inputs from brain regions such as orbitofrontal cortex48

(OFC), medial prefrontal cortex (mPFC), and hippocampus (Gulli et al., 2020; Saez et al., 2015; Zhou et al.,49

2019) suggest that the NAc has access to non-value signals that would be expected to not only inform its50

function but help shape its neural activity. Indeed, a study in primates suggests that elements of task structure51

which are orthogonal to value, but nonetheless crucial for successful behavior on the task, are represented in52

NAc (Sleezer et al., 2016). In rodents, there have been hints of task structure too, but this has been hard to53

show conclusively due to the difficulty in cleanly dissociating task structure from value (Atallah et al. 2014;54

Gmaz et al. 2018; see also related work on dopamine neuron and OFC activity representing task structure,55

Sadacca et al. 2016; Zhou et al. 2019). Thus, it is currently unknown if, and how, task structure is encoded56

in rodent NAc, and if found, how such a signal relates to classical value correlates.57

To address this issue, we trained mice to perform a biconditional discrimination task using odor cues, in58

which two different “context” cues determine whether a subsequent “target” cue will be rewarded (Figure59

1A). Thus, in context O1, O3 but not O4 is rewarded, whereas in context O2, O4 but not O3 is rewarded.60

We recorded ensembles of NAc neurons and tested whether there is coding of the (reward-independent)61

context cues at the single cell and population level. Next, we sought to determine the relationship between62
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this context signal and classical value coding, using contemporary population analysis tools to test if context63

coding can be used to inform subsequent value-related processing of target cues.64

Results65

Mice learn to perform a biconditional discrimination task using odor cues66

We sought to test whether NAc encodes information about task structure that is independent of reward. To do67

this, we used a biconditional discrimination task in which the identity of a “context” cue determines whether68

a subsequent “target” cue is rewarded or not (Gu & Li, 2019; Han et al., 2018; Zhang et al., 2019). We use69

the term “context” here to mean a cue that modifies the subsequent outcome value of the target cue (see70

Discussion). Briefly, a trial initiated with presentation of one of the two context cues for 1 s, followed by a71

2 s delay, followed presentation of one of the two target cues for 1 s, followed by an additional 1 s response72

period (Figure 1). Animals had to make a licking response either during presentation of the target cue or the73

subsequent response period to get a sucrose reward for rewarded cue pairings. For example, given context74

cue O1, target cue O3 but not O4 is rewarded, but following context cue O2, O4 but not O3 is rewarded.75

Thus, rewarded trial types O1-O3 and O2-O4 both had the same outcome value at the time of target cue76

presentation, while unrewarded trial types O2-O3 and O1-O4 also had the same value. Importantly, a 2 s77

delay separated the two odor cues in a trial such that mice had to maintain a representation of the context cue78

while waiting for the target cue.79

Mice (n = 4) completed a total of 7 to 28 training sessions to reach criterion before recording sessions80

began (See Figure 1C for an example learning curve; Figure 1D for number of training sessions for each81

mouse). During recording sessions, mice licked for a significantly larger proportion of rewarded trials than82

unrewarded trials (Figure 1E; Proportion of rewarded trials with a lick response: 0.82 +/- 0.08 SD; proportion83
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Figure 1: Schematic of the behavioral task and results. A: Mice were trained in a head-fixed biconditional discrimination task where
they learned to discriminate between different pairings of context and target cues. Mice were first presented with the context cue (1
s), followed by a delay (2 s), followed by target cue presentation (1 s), and an additional response period (1 s). Whether a target cue
was rewarded depended upon the identity of the preceding context cue. For instance, licking in response to O3 was rewarded when
preceded by O1, but not O2, while for O4 was rewarded when preceded by O2, but not O1. Note, this means that by design, each
context cue was rewarded on half of the trials it was presented on. B: Learned trial structure of the task. Purple arrows indicate trials
with context cue 1 (O1), orange arrows indicate trials with context cue 2 (O2). Dark arrows after context cue presentation indicate
rewarded trials, light arrows indicate unrewarded trials. This color scheme is used throughout the text. C: Example learning curve
showing proportion of trials with a lick over the course of full-task training. Data is shown for each trial type, in 20 trial blocks, with gaps
separating individual training sessions. This learning curve shows that by day 6 (trial ∼400), there was a clear difference in responding
to rewarded versus unrewarded trials. D: Number of training sessions before each mouse reached the criterion of 3 consecutive
sessions with >80% correct responding, after which recordings began. E: Behavioral performance during recording sessions showing
the average proportion of trials with a licking response for each trial type for each mouse, demonstrating that mice discriminated
between rewarded and unrewarded trial types. Asterisks above plot denotes a significant difference.
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of unrewarded trials with a lick response: 0.26 +/- 0.08 SD; z-score across mice and sessions: 11.05; p <84

0.001), but licked similarly for both rewarded target cues (O1-O3: 0.83 +/- 0.11 SD; O2-O4: 0.81 +/-85

0.06 SD) and both unrewarded target cues (O1-O4: 0.27 +/- 0.08 SD; O2-O3: 0.25 +/- 0.09 SD; z-score86

across mice and sessions: 0.51; p = 0.61). Furthermore, individual mice showed a similar level of correct87

responding to the target cues during recording sessions (M040: 70% +/- 9% SD; M111: 78% +/- 4% SD;88

M142: 80% +/- 5% SD; M146: 83% +/- 8% SD). Therefore, mice learned the appropriate context-target cue89

associations in the task.90

NAc single units signal context91

We set out to determine if context is encoded by the NAc, particularly whether the NAc can discriminate92

between separate context cues that have equal outcome-predictive value, and whether this discrimination per-93

sists during the delay period after cue offset. We recorded a total of 320 units with > 200 spikes (out of 38694

total) in the NAc from 4 mice over 41 sessions (range: 8 - 12 sessions per mouse) during performance on the95

task. Initial inspection of the data revealed a diversity of single-unit responses, including units that showed96

transient responses to all odor cues regardless of their significance in the task, units that that discriminated97

the various cue identities and their associations, and of particular relevance, units that showed a sustained98

discrimination between the context cues during the delay period (see Figure 2 for examples). The main cue99

features of interest in this task were context cue coding, context coding during the delay period after context100

cue offset, target cue coding, and value coding after target cue onset. To determine whether a given single101

unit encoded each feature, we focused on comparing the trial-averaged firing rate differences during periods102

surrounding context and target cue presentations (Figure 3). To determine general coding for odor cues, we103

compared the 1 s preceding and following cue presentation for all trial types. To investigate coding of cue104

features we compared the 1 s of cue presentation for context and target cue coding, and the 1 s preceding105

target cue presentation for context delay coding. Out of all units included in the analysis, 80 (Figure 3B;106

26%) discriminated between the two context cues when analyzed during cue presentation, and 49 (Figure107
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3C; 15%) discriminated between the two contexts when analyzed during the following delay period, showing108

that individual units within the NAc code for context. Importantly, as there were no differences in behavioral109

performance for the two context cues (Figure 1), this context coding can not be explained by differences in110

the perceived value of the cues. Apart from context coding, 216 units (Figure 3A; 68%; 153 increasing, 63111

decreasing) showed a change in firing activity in response to any context cue relative to a pre-cue baseline,112

199 units (Figure 3D; 62%; 149 increasing, 50 decreasing) showed a change in firing activity in response to113

any target cue relative to a pre-cue baseline, 87 units (Figure 3E; 27%) discriminated between the two target114

cues, and 97 units (Figure 3F; 30%; 77 increasing, 20 decreasing) discriminated between rewarded and un-115

rewarded trials during target cue presentation. Finally, to assess the overall relationship in firing rate during116

progression of a trial, we correlated the trial-averaged firing rate for each unit against itself across all time-117

points, and found a general correlation between activity during context and target cue presentation, reflecting118

the large proportion of units that respond non-discriminately to any cue (Figure 3H). Together, these results119

suggest that the NAc is coding for the various motivationally-relevant features of the task, with particular120

interest being NAc units that discriminated between the context cues during the delay period, suggesting that121

the NAc maintains information about which context the animal is in after offset of the cue itself.122
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Figure 2: Example single-unit responses for units with value (top) and context (bottom) correlates. Top of each plot shows spike rasters
for the four trial types (purple: trials with context cue O1; orange: trials with context cue O2; dark colors: rewarded trials; light colors:
unrewarded trials). Bottom half of each panel shows trial-averaged firing rates for each trial type aligned to context cue onset. Context
cue presentation (0-1 s) is bordered by red lines, and target cue presentation (3-4 s) is bordered by black lines. A: Example unit that
shows a general response to cue presentation (blue arrow), as well as a subsequent discrimination between rewarded and unrewarded
trials after target cue onset (red arrow). B: Example unit showing a dip in firing after context cue onset (blue arrow), followed by a
ramping of activity leading up to target cue onset, and a subsequent dip in firing after presentation of the rewarded target cue (red
arrow). C: Example unit that predominantly responds during presentation of the rewarded target cue (blue arrow). D: Example unit that
shows transient responses to the cues, showing a discrimination to both context (blue arrow) and target (red arrow) cues. E: Example
unit that discriminates between context cues, including throughout the delay period (blue arrow). F: Example unit that discriminates
context cues only during the delay period following offset of the context cue (blue arrow), as well as discriminating the subsequent
target cues (red arrow).
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Figure 3: Characterization of single-unit responses to the task. Top of each plot is a heat plot showing either max normalized firing
rates or firing rate differences for trial-averaged data for all eligible units, with unit identity sorted according to the peak value for the
comparison of interest. Red lines border context cue presentation, and black lines border target cue presentation. Bottom of each plot
shows a distribution of units with significant tuning for each task parameter, relative to a shuffled distribution. Red dotted lines signify
z-scores of +/- 2.58. A: Firing rate profiles for units at 1 s pre- and post-context cue onset, sorted according to maximum value after
context cue onset. B: Firing rate differences for units across context cues, sorted according to maximum difference during context cue
presentation. C: Firing rate differences for units across context cues during the delay period, sorted according to maximum difference
during the 1 s period preceding target cue presentation. D: Firing rate profiles for units at 1 s pre- and post-target cue onset, sorted
according to maximum value after target cue onset. E: Firing rate differences for units across target cues, sorted according to maximum
difference during target cue presentation. F: Firing rate differences for units for rewarded and unrewarded trial types during target cue
presentation, sorted according to maximum difference during target cue presentation. G: Proportion of significant units for each task
component. Each mouse is indicated by a symbol, and the average across mice is indicated by the red line. Note the higher context
coding for M040 and M142, relative to M111 and M146. Also, note the stronger value coding in M111. General cue, gating, and state
value categories represent units that were modulated by a combination of different task components, see methods for classification
details. H: Correlation of firing rates across time on trial-averaged data across all units. Note that high correlations for periods of time
when a cue is present, and the anticorrelations of these cue periods with pre-cue periods. Red lines border context cue presentation,
and black lines border target cue presentation.
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Across mice, there appeared to be a qualitative relationship between the time spent in training and the123

strength of context cue coding, with mice that spent more time to acquire the task showing stronger con-124

text coding than mice that had a shorter learning curve (Figure 3-supplement 1). For instance, M040 (28125

training sessions; 27% context-coding units) and M142 (18 training sessions; 35% context-coding units)126

showing more context-sensitive units than M111 (9 training sessions; 5% context-coding units) and M146127

(7 training sessions; 21% context-coding units). Additionally, M111 which had the least amount of context-128

coding units, also had the most caudal recording coordinates across mice (Figure 9). Furthermore, this129

variability across animals was not related to behavioral performance during recording sessions, and a similar130

relationship was also not seen for target or value coding. Together, this suggests that variability in context131

coding across mice might be due to differences in training duration or precise recording location.132

Multiple signals coexist within the context and delay period133

How might value coding be integrated with representations related to the contextual modulation of behavior134

in the NAc? A common theory of ventral striatal function is that it acts as a switchboard, with corticolimbic135

inputs gating the efficacy of other inputs (Gruber et al., 2009; Murer & O’Donnell, 2016). For example,136

studies utilizing in vivo intracellular recordings have found that hippocampal stimulation facilitates subse-137

quent NAc responses to prefrontal cortex (PFC) input, whereas PFC stimulation suppresses the effect of138

subsequent hippocampal input (Calhoon & O’Donnell, 2013; O’Donnell & Grace, 1995). A possibility is139

that context-dependent neural activity implements a routing mechanism in the NAc. For instance, depending140

on the context, which is realized as a distinct network activity pattern in the NAc, a given reward-predictive141

cue would be associated with a different expected value. Thus, each context-associated network state would142

gate the flow of subsequent reward-predictive stimuli to generate dynamic value representations, through143

some previous dopamine-dependent learning mechanism that trains the synaptic weights (Figure 4A).144

An alternative possibility for how context may be represented in the NAc is through the framework of rein-145

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.24.449720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449720
http://creativecommons.org/licenses/by/4.0/


Con
tex

t 1

Context 2

Cue 1

Cue 2

Cue 1

Cue 2

GO

GO

NO-GO

NO-GO

Baseline activity
Net excitation to cue
Net inhibition to cue

Con
tex

t 1

Context 2

Cue 1

Cue 2

Cue 1

Cue 2

GO

GO

NO-GO

NO-GO

Baseline activity
Net excitation to cue
Net inhibition to cue

Con
tex

t 1

Context 2

Cue 1

Cue 2

Cue 1

Cue 2

GO

GO

NO-GO

NO-GO

Baseline activity
Net excitation to cue
Net inhibition to cue

Not affected by cue

General cue responseContext State value

0 1 2 3 4 5
Time from context cue onset (s)

Fi
rin

g 
ra

te

0 1 2 3 4 5
Time from context cue onset (s)

Fi
rin

g 
ra

te

Context 1 - Cue 1
Context 2 - Cue 2
Context 1 - Cue 2
Context 2 - Cue 1

Context 1 - Cue 1
Context 2 - Cue 2
Context 1 - Cue 2
Context 2 - Cue 1

Context 1 - Cue 1
Context 2 - Cue 2
Context 1 - Cue 2
Context 2 - Cue 1

A B C

0 1 2 3 4 5
Time from context cue onset (s)

Fi
rin

g 
ra

te

Figure 4: Schematic of hypothetical coding scenarios for context cues. A: Context cues function to gate the routing of subsequent
target cues. Target cues in this study are reward-predictive cues whose reward-predictive properties are dynamic and not fixed. Top:
Schematic of network activity for a pool of neurons in response to a series of motivationally-relevant cues, similar to that presented in
1. In this schematic, a behavioral response to cue 1 is rewarded when preceded by context cue 1 but not by context cue 2, and vice
versa for cue 2. After presentation of a context cue, the network shifts to a new activity state, characterized by a change in the firing
rates of individual neurons, with each context cue triggering a distinct network state. Furthermore, the difference in the excitability of
individual units after presentation of the context cue then determines the receptivity of individual units in the network to subsequent
response of the target cue, allowing the generation of dynamic value estimates to facilitate the appropriate Go/No-go response. In this
case the network is coding a gating response, that is modulated by the context. Bottom: Hypothetical PETHs for each trial type for a
context coding population-level representation. Note, the representation discriminates firing to the two context cues and this difference
is sustained until target cue presentation (purple vs. orange lines). Red lines border presentation of the context cue, black lines border
presentation of the target cue (see Figure 1 for further details). B: Context cues are interpreted in the NAc by their proximity to a
rewarded state. Top: Presentation of either context cue elicits a similar network state, that is further amplified upon presentation of the
rewarded target cue. This ramp-like activity in the network is coding a state value signal. Bottom: Hypothetical PETHs for a population-
level state value coding signal. Note, the peak activity during presentation of the target cue for rewarded trial types (dark colors) but
not unrewarded trial types (light colors), and the ramp leading up to this via the context cues. C: Context cues are not dissociated from
other motivationally-relevant cues in the NAc. Top: Presentation of any of the separate motivationally-relevant cues (context or target)
elicits a similar network response in the NAc. The NAc is coding a general cue response. Bottom: Hypothetical PETHs for general cue
coding. Note, the example representation responds identically to all cues.

forcement learning. The outcome-predicting signals in the NAc are often interpreted as state value signals,146

supplying the “expected future reward” part of the equation for the calculation of reward prediction errors147

(Ito & Doya, 2015; van der Meer & Redish, 2011b). For instance, previous efforts have identified correlates148

in the NAc such as ramp neurons that increase their firing rate as an animal approaches a reward site, and149

recent computational work has found success modeling NAc as supplying state values (Stoianov et al. 2018;150

van der Meer & Redish 2011a). Given that contexts can be thought of as distinct task states, entering a151

context would modify the current state value relative to the preceding task state, and it is possible that NAc152
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represents this associated state value, instead of the contextual features themselves. For instance, presenta-153

tion of a context-setting cue that determines the value of a subsequent cue could be interpreted by the NAc as154

a state closer to reward, regardless of the identity of the context cue (Figure 4B). Finally, a third possibility155

is that the NAc may generalize across all motivationally-relevant cues (Figure 4C).156

A possible functional role for this context signal is to appropriately gate the response to cues whose relevance157

is context-dependent. In this case, context-dependent activity preceding target cue presentation should be158

able to predict the behavioral response for a given target cue. For example, if a unit shows a higher firing rate159

for context cue O1 over O2, this discrimination would be linked to subsequent behavior if on a trial-by-trial160

basis it informed whether or not an animal licked in response to O3. In this situation, a licking response to161

O3 would be predicted on trials where the unit had a higher firing rate preceding target cue presentation. To162

test for this at the single-unit level, we first reran our firing rate comparisons across the whole trial period,163

and found that 15-26% of units had firing rates that discriminated between the two context cues during the164

span of the context cue and delay periods (Figure 5A). We then trained a binomial regression to predict the165

behavioral response (lick or no lick) for a given target cue using the firing rate of a unit at various time points166

in a trial. We found that 5-13% of units across time points were able to predict subsequent response to a167

target cue above chance, suggesting that individual units possess some information about the context that168

informs future response behavior (Figure 5B).169
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Figure 5: Predicting behavioral response to a given target cue based on firing rate activity. For a given target cue such as O3, this
analysis sought to predict whether a lick or no lick response occurred based on activity preceding the target cue during the context and
delay period. A: Sliding window demonstrating the proportion of units that show discriminatory activity between the two context cues
throughout the different periods in the trial, similar to Figure 3B-C. Red lines border context cue presentation, and black lines border
target cue presentation. B: Proportion of all units whose firing rate at a given point in the trial predicts the behavioral response to a
given target cue above chance, according to a binomial regression. C: Same as B, but using the firing rates of all units recorded for a
mouse to generate a pseudo-ensemble prediction of the behavioral response for a given target cue. Each line denotes the prediction
for a various mouse. Note, the variability across mice reflects the variability in single-unit context coding seen in Figure 3G.

While single-unit analyses are informative to get a sense of what information is present within a neural170
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population, the utility of these responses are dependent upon their position within the broader NAc network,171

and how they are interpreted by downstream structures. To characterize this population-level activity, we172

combined across-session data for each mouse to generate 4 pseudo-ensembles, one for each mouse in the173

dataset. As a first step to test if the population could improve predictions of trial outcome above and beyond174

that of the best performing single-unit units, we trained a binomial regression to predict the behavioral175

response for each target cue using the firing rates of these pseudo-ensembles (Figure 5C). This analysis176

revealed the ability to accurately predict subsequent the behavioral response for a given target cue was above177

chance for 3 out of the 4 mice (Prediction accuracy at most significant time point, M040: 82%; z-score:178

5.82; p < 0.001; M111: 69%; z-score: 2.40; p = 0.016; M142: 80%; z-score 5.26; p < 0.001; M146: 75%;179

z-score: 4.13; p < 0.001). The variability observed across mice closely followed the observations from the180

single-unit data, with the M111 pseudo-ensemble data being unable to accurately predict above chance the181

subsequent behavioral response.182

To determine which patterns of ensemble activity were driving these behavioral predictions, as well as to test183

the hypothetical coding scenarios outlined above (Figure 4), we used the dimensionality reduction technique184

dPCA to extract the task-related latent factors relating to the context cues, target cues, and trial value (Figure185

6). dPCA was the method selected as it constrains dimensionality reduction to extract the components that186

explain the most variance in the data for a given task parameter. dPCA differs from PCA as the latter extracts187

the components that capture the most variance in the data, agnostic to any aspects of the task. Additionally,188

dPCA was chosen over LDA, as LDA is focused on reconstructing identities, while dPCA is focused on189

reconstructing data means, and thus, dPCA is better suited to preserve aspects of the original data. We applied190

dPCA to the pseudo-ensemble data from each mouse individually, and extracted the top components related191

to each major task component (see Figure 7 for relative contributions of each component). The strongest192

component across all animals was a non-specific time-varying signal whose activity and time course was193

related to the time course of the odor cues, and for this reason we call it the “general cue” signal (Figures194

4C, 7A). Another strong non-specific signal was a ramping signal that increased in value from context cue195

onset to after target cue onset, with a discrimination being observed for rewarded and unrewarded trials for196
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3 of the 4 mice, consistent with a “state value” signal (Figures 4B, 7B).197
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Figure 7: Top extracted components demonstrating the presence of co-existing signals during the context and delay period for each
mouse, as outlined in Figure 4. dPCA was applied to the pseudeo-ensemble data from each mouse to extract low-dimensional
population representations for various task features. Each plot represents the trial-averaged projected activity onto the component
for a given task feature (rows) for each mouse (columns) for each trial type (purple: trials with context cue O1; orange: trials with
context cue O2; dark colors: rewarded trials; light colors: unrewarded trials). Plot title denotes the overall ranking of the component,
and the amount of variance explained by the component. Red lines border context cue presentation, and black lines border target cue
presentation. From left-to-right shows components for M040, M111, M142 and M146. A: Top non-specific signal that responded to
all odors, and called the general cue component (Figure 4C). Note that this signal is present during presentation of both context and
target cues. B: The extracted component from each mouse that best represents a state value signal (Figure 4B), with a ramping-like
activity after context cue onset, with a separation between rewarded (dark colors) and unrewarded (light colors) trials after target cue
onset. Note the variability in this component across mice (greatest rewarded and unrewarded separation for M040 and M111). C: The
context-related component that best separated context cues during the delay period (Figure 4A). Note that in the mice where this signal
is strongest (M040, M142), the strong separation between context O1 (purple) and context O2 (orange) trials from context cue onset
until target cue onset.

In terms of components related to the context cues, there are several noteworthy observations. First, there198

was heterogeneity across mice in terms of the magnitude of the context and delay components (Variance ex-199

plained for two context-related components, M040: 7.0%; M111: 1.3%; M142: 2.8%; M146: 2.8%), closely200

following the observations from the single-unit data and pseudo-ensemble predictions. Second, in the mice201

with the largest degree of separation in context-related neural space, there were two distinct patterns of activ-202

ity, a signal that was most dominant during the delay period that followed the context cue, the “delay” signal203

(Figures 4A, 7C), and a signal that followed the time course of the context cue, the “context” component204

(Figure 7-supplement 1 D). The dot product between delay context-related component and the general cue205

(M040: 0.07; p = 0.136; M111: 0.05; p = 0.219; M142: 0.18; p < 0.001; M146: 0.24; p = 0.002) and state206

value (M040: -0.07; p = 0.156; M111: 0.05; p = 0.242; M142: -0.16; p = 0.001; M146: 0.45; p < 0.001)207

components did not significantly deviate from zero in some, but not all, mice, suggesting that in some cases208

these signals are orthogonal and can coexist independently within the same population of NAc units. Finally,209

there were also clear components related to the identity of the target cue, the “target” component (Figure210
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7-supplement 1 E), and the behavioral response of the animal, the “value” component (Figure 7-supplement211

1 F), which were consistently orthogonal from the delay context-related signals (M040: 0.03; p = 0.340;212

M111: -0.03; p = 0.340; M142: 0.04; p = 0.257; M146: 0.03; p = 0.359). Together, this suggests that all213

aspects of task-related activity are represented in the population-level activity of the mice, including domi-214

nant state value representations that were not generally apparent in the single-unit responses. Furthermore,215

unlike the single-unit analysis, the presence of distinct population-level representations within a single neural216

population opens up second order questions that allow the investigation of how individual components are217

related to each other within the same neuronal population, such as testing for context-dependent gating of218

value representations, which we do below.219

To test which of these population-level representations are responsible for the previously-demonstrated ca-220

pacity of the pseudo-ensemble activity to accurately predict the behavioral response for a target cue, we ran221

the same binomial regression, predicting lick or no lick for a given target cue, using the pseudo-ensemble222

activity from each mouse projected onto the extracted population-level components for each task feature223

(Figure 7-supplement 2). Unsurprisingly, only the context-related components were able to predict informa-224

tion about the animal’s upcoming response to each target cue during the delay period, and the strength of225

this prediction was related to how strong the component was in a given mouse (Figure 8B for M040 & sup-226

plements for M111, M142, M146; Prediction accuracy at end of delay period, M040: 99%; z-score: 3.06; p227

= 0.002; M111: 62%; z-score: 1.69; p = 0.091; M142: 92%; z-score 3.98; p < 0.001; M146: 83%; z-score:228

3.38; p < 0.001). In fact, in the two mice that showed the largest separation in the delay context-component,229

the predictions using this component alone surpassed that of the entire pseudo-ensemble, suggesting that this230

context-related activity is related to the animal’s subsequent response.231
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Context-specific ensemble states predict the magnitude of the subsequent value response232

The findings of clear context-related components that hold information about the trial context during the233

delay period until presentation of the target cue, and the ability of these components to predict the animals234

subsequent response, raises the possibility that this activity might be able to predict the behavioral response235

via gating value-related activity to the target cue. Specifically, if each context cue brings the NAc to a236

unique network state that possesses distinct input-output transformations for a given target cue to enable the237

generation of context-appropriate value representations (Figure 4A), then a biomarker for this relationship238

should be observed in the linking between context-related and value-related population representations. For239

instance, if the transformation of target cue O3 into a value representation is dependent upon whether the240

NAc is in the network state related to context cue O1 or context cue O2, then context-related activity during241

the context period should be informative of subsequent value-related activity to the target cue (See Figure 6B242

for schematic; Figure 8A & supplements for data trajectories across mice). If, on the other hand, the context-243

related network state is not relevant for the transformation of the target cue into a value representation,244

then there should be no relationship between the context-related and value-related components. To test this,245

we trained a linear regression to predict the activity of the top value-related component during target cue246

presentation, from the delay context-related component, and found that the delay component could account247

for a significant amount of variability for the value-related component for a given target cue during the248

delay period (Figure 8C for M040 & supplements for M111, M142, M146; Proportion of variance explained249

at end of delay period, M040: 0.45; z-score: 63.16; p < 0.001; M111: 0.15; z-score: 7.25; p < 0.001;250

M142: 0.42; z-score: 10.92; p < 0.001; M146: 0.22; z-score: 8.89; p < 0.001). As a control, we also tried251

to predict variability in the value-component to a given context cue, but were generally unable to (Figure252

8D for M040 & supplements for M111, M142, M146; Proportion of variance explained at end of delay253

period, M040: 0.09; z-score: 0.08; p = 0.936; M111: 0.13; z-score: 1.59; p = 0.112; M142: 0.21; z-254

score: -1.56; p = 0.119; M146: 0.11; z-score: 0.14; p = 0.889). This suggests that the ability of the delay255

context-related component to predict variability in the value-related component was specific to the delay256

component and not a general feature of the population-level representations. Furthermore, to assess whether257
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this effect was driven by a few highly contributing units, we repeated these predictions while iteratively258

removing the top 10% of contributors to the component and found that this prediction persisted even after259

removing the top ∼20% of units (Figure 8E for M040 & supplements for M111, M142, M146). Together,260

these findings suggest that the NAc ensemble encodes a context-related component during the delay period,261

and that this activity is linked to subsequent value-coding during the target cue period in a way that supports262

the context-dependent gating account of context coding. Importantly, this gating feature was unique to the263

population-level representations, and was not apparent from analysis of single-unit activity.264

Discussion265

A dominant view of NAc function and what is encoded in its activity is that it tracks fundamentally value-266

centric quantities (Floresco, 2015; Gruber & McDonald, 2012; Koob & Volkow, 2016; Nicola, 2010; Salam-267

one & Correa, 2012). Here, we present a number of findings that demonstrate this view is too narrow, which268

we discuss in the following paragraphs. We have shown that both NAc single-unit and population-level rep-269

resentations distinguished between the two context cues in the experiment, even though they did not differ270

in expected value. Importantly, at both the single-unit and population-level, this coding persisted throughout271

the delay period when the animal must maintain a representation of this cue to inform subsequent behavior272

to the target cue. Additionally, at both the single-unit and population-level, activity during the context and273

delay period could predict the subsequent behavioral response for a given target cue. At the population-274

level, patterns of activity for different coding scenarios during the context and delay period were found.275

Furthermore, context-related activity during the context and delay period could be extracted independently276

from value-related activity after target cue onset. Despite this independence, these context components could277

explain a significant proportion of variance in the value components in response to a given target cue.278
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Figure 8: Context-dependent gating of the value-related component, as outlined in Figure 6B. Shown in this Figure is the relationship
between the context-related delay component and the value-related component for M040, data for M111, M142 and M146 can be
found in the supplements to this Figure. A: Progression of neural activity through a trial for each trial type (purple: trials with context
cue O1; orange: trials with context cue O2; dark colors: rewarded trials; light colors: unrewarded trials) in a two-dimensional neural
subspace, with the trial-averaged projected activity in the context-related delay component (see Figure 7C) on the x-axis, and the trial-
averaged projected activity in the value component (see Figure 7-supplement 1 F) on the y-axis. During the context and delay periods
a separation is observed along the context axis between context O1 and context O2 trials, after which separation is observed along the
value axis following target cue presentation for rewarded versus unrewarded trials. Red circles signal context-cue onset, cyan circles
signal delay period 1 s after context cue offset, black circles signal 1 s after target cue onset. B: Using a binomial regression to predict
the behavioral response (lick or no lick) for a given target cue based on projected activity along the context-related delay component
at various timepoints, showing the high accuracy during the context and delay periods. Red lines border context cue presentation,
and black lines border target cue presentation. C: Using a linear regression to predict projected activity along the value-related axis
after target cue onset for a given target cue (black circles from A) based on projected activity in the context-related axis at various
timepoints, showing performance above chance levels during the context and delay period. D: Control analysis showing the inability of
using a linear regression to predict projected activity along the value-related axis after target cue onset for a given context cue based on
projected activity in the context-related axis. E: Iteratively removing the top 10% of contributors to the context-related delay component
and repeating the linear regression-based analysis of predicting value-related activity as in C, showing the ability to achieve above
chance perform even after removing the top 20% of single-unit contributors to the context-related delay component.

Context coding in the NAc279

To our knowledge, this study is the first to show in rodents that NAc units discriminate between context280

cues that are not directly tied to reward (26% of units across mice), but instead set the expected value of281

subsequently presented reward-predictive cues. This finding of context coding is not likely due to unequal282
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cue salience across context cues as we counterbalanced the odor associations across mice, and observed283

behavioral performance to be similar across cues for each animal. The present study expands upon our pre-284

vious work that demonstrated NAc units that distinguished between sets of motivationally-relevant stimuli285

that had equal outcome predictive properties (Gmaz et al., 2018). Interestingly, a subset of these stimulus286

set-discriminating units also showed sustained changes in firing during trial periods before the presentation287

of the cue, suggesting that they encoded an abstract task feature not directly tied to stimulus presentation.288

However, given that the outcome-predictive properties of the motivationally-relevant stimuli were fixed, and289

the sets of stimuli were presented in separate continuous blocks, we were unable to further characterize this290

signal. The present experiment addresses these prior limitations by being the first NAc recording study to291

present both distinct, temporally precise context cues, and cues with dynamic outcome-predictive properties,292

demonstrating that the NAc codes information about the context that continues into the delay period. Addi-293

tionally, our work is comparable to work by Sleezer et al. (2016) that found evidence for rule encoding in the294

primate NAc, suggesting that this rule coding might be part of a more general NAc computation that primes295

the network to distinct states to enable behavioral flexibility. Together, our study is the first to demonstrate296

the presence of context-related correlates in the rodent NAc, providing further support for the burgeoning297

recognition of the NAc in decision-making outside of pure value processing.298

While we use the term “context” throughout the text to refer to the first cues presented during a trial, we299

acknowledge that since we only used one cue per context we cannot rule out the possibility that these units300

encoded cue identity as opposed to context. However, even if NAc encoded context cue identity as opposed301

to context, it would not affect our interpretation of the data through the gating model (see below), as NAc302

units just need to be in distinct network states during these cues for it to be feasible. Additionally, while we303

believe that the 2 s of active flushing of the odorant during the delay between cues is sufficient for the context304

cue odor to disperse from the experimental apparatus, we cannot exclude the possibility that a proportion305

of the odor remained and combined with the target cue to form a compound cue. However, we think this306

is unlikely given the presence of single-unit and population-level correlates that only discriminated between307

context cues during the delay period following context cue offset, as well as the correlates that discriminated308

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.24.449720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449720
http://creativecommons.org/licenses/by/4.0/


between the target cues, regardless of which context cue was previously presented. Finally, given that the309

value of a trial and the behavior of the animal were yoked in our task, that is rewarded trials were followed310

by licking behavior, and unrewarded trials were followed by the absence of licking, we cannot fully separate311

contributions of value and behavior to our value-related components. However, this does not interfere with312

the interpretation of our primary finding of context coding, or the linking of context-related activity during313

the delay period with subsequent, behaviorally-relevant activity during the target cue period.314

Although each individual animal had individual units that showed context coding, there was also heterogene-315

ity in the degree of context coding across mice. The clearest relationship between this heterogeneity and any316

other component of the experiment was in the training duration for the animals, with mice that took less days317

to reach performance criterion on the task before recording showing less separation in the population-level318

context component, while those that took more days to reach criterion had a larger separation in the context319

component. Given the small sample size in each group (n = 2), it is hard to draw any substantial inferences320

from this data. However, speculatively this finding may suggest that during initial learning, the NAc receives321

cue information and processes it solely in terms of its motivational relevance, and some other structure is322

supporting context-dependent behavior, but then after extensive learning, it forms representations of the as-323

sociative structure. Interestingly, recent work has suggested that motivated approach behavior becomes less324

NAc-dependent as training progresses (Dobrovitsky et al., 2019). Whether or not this is related to a shift in325

the role of the NAc as a behavior becomes learned, or related to distinct inputs such as from the hippocampus326

and cortex, remains to be determined. An additional potential contributor to the variability across mice is327

recording location. The mouse that contained the lowest number of context-related single-unit responses328

was also the mouse whose recording coordinates spanned the most caudal aspect of the NAc. Several lines329

of investigation suggest a heterogeneity in NAc processing along the rostral-caudal gradient (Gill & Grace,330

2011; Groenewegen et al., 1982; Ma et al., 2020; Reynolds & Berridge, 2008), largely due to a different331

distribution of inputs, suggesting that a portion of the observed variability in context coding may be due to332

differences in recording location.333
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Relationship between context and value coding in the NAc334

In addition to showing context coding using a biconditional task design specifically designed to control for335

value, a further innovation in this study is the population-level analysis, which allowed us to show evidence336

for co-existing activity patterns in the population-level representations, as well as a functional link between337

context coding and subsequent value coding. To determine whether our behavioral predictive power was338

arbitrary to any population-level component, we ran the binomial regression on all major components, and339

found that only those containing significant context information had predictive utility during the delay pe-340

riod. These population-level results align with a growing body of work advocating for population-level341

interpretations of neural data, suggesting that certain neural computations are better understood in terms342

of their population-level versus single-unit output (Ebitz & Hayden, 2021; Gallego et al., 2017; Saxena &343

Cunningham, 2019; Vyas et al., 2020). A primary argument for this approach is that there is a high degree344

of correlation and redundancy across single-unit coding, suggesting that the large neural space occupied by345

units in a region can be captured by a drastically lower dimensional latent space. Furthermore, the utility of346

single-unit output is ultimately determined by how it is integrated with other inputs by a receiver network.347

A proxy for this integration can be assessed by investigating the individual unit weightings of components348

extracted from dimensionality reduction techniques, as the weights for a component hypothetically represent349

how units are integrated for a particular output signal. We next discuss interpretations of our findings through350

this population-level framework below.351

The finding of a clear non-value signal supports other work that the NAc is coding for more than a low-352

dimensional value signal (Gmaz et al., 2018; Sleezer et al., 2016). A potential function for the context353

coding observed in the present study is implementation of the hypothetical switchboard function of the NAc354

(Gruber et al., 2009; Murer & O’Donnell, 2016), serving as a routing mechanism to enable dynamic value355

representations of target cues (gating; Figure 6B). Indeed, the distinct occupancy in the pseudo-ensemble356

space for each context cue signals that the context cues might be driving the NAc into separate network357

states, setting an initial state for subsequent input-output flow of the target cue. In addition to the presence358
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of a context signal, this routing function would also require that the context signal is both functionally359

linked to the subsequent value signal, while simultaneously not interfering with value-related output. We360

found support for the former from the observation that activity in this space during the delay period could361

explain a significant proportion of variance in the value-related component during the target cue period.362

Similar observations have been observed in the field of motor control and, more recently, economic choice363

(Elsayed et al., 2016; Kaufman et al., 2014; Yoo & Hayden, 2019). Furthermore, given that the context-364

related and value-related components were orthogonal from one another, it suggests that context coding does365

not interfere with the ability of downstream structures to read-out value-related information. Finally, another366

potential functional role for the observed context coding is in forming the associations between reward-367

predictive cues and the rewards themselves. Recently, several studies have implicated the cortical-striatal368

access in credit assignment (Oemisch et al., 2019; Parker et al., 2019), raising the possibility that this context369

may be used for learning to assign credit to the appropriate state. Whether these context components are370

generated in the NAc or inherited from inputs, as well as if they represent an internal computation that is371

locally used to organize NAc activity, or are conveyed downstream, remains to be determined.372

Beyond context-dependent gating interpretations of the data, we also found support for reinforcement learning-373

inspired accounts of NAc function (state value; Figure 4B; Averbeck & Costa 2017; van der Meer & Redish374

2011b). In 3 out of 4 mice, a signal that showed both ramping after context cue onset as well a discrimina-375

tion between rewarded and unrewarded trial types at target cue onset was present, with dynamics that closely376

mimic what would be expected from a signal conveying state value. Interestingly, this signal co-existed377

within the same population of units as the context signal, and was orthogonal from the delay context-related378

component in the 2 mice with the clearest rewarded versus unrewarded discrimination, suggesting that the379

NAc can process both types of information. This signal is similar to ramping signals observed previously in380

single-unit studies (van der Meer & Redish, 2011a), and may be the result of the strong hippocampal input381

to the NAc. Future experiments inactivating hippocampal drive should test the relationship, as well as the382

necessity of this signal for proper evaluation of outcome-predictive cues.383
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Interestingly, across all the animals, the strongest extracted component was a general cue signal that signalled384

the onset and duration of all cues used in this study (general cue; Figure 4C). These condition-independent385

signals are being found across various domains of systems neuroscience (Kaufman et al., 2016; Raposo et386

al., 2014; Thura et al., 2020), and their strikingly relative dominance to other task-related signals suggest that387

they signal general task-related transitions in neural state space, although their exact role is unknown. Given388

the NAc is part of a broader limbic network that is entrained by respiration, and has strong connections with389

olfactory-processing regions, it is possible this component is signalling to the NAc the presence of a salient390

event, and priming it to process the associative content of the cues, perhaps by increasing the excitability391

of the NAc and opening the aforementioned gate. Regardless of the precise functional relevance of the392

observed correlates in this study, the finding of clear non-value correlates suggests a revision of the value-393

centric account of neural activity, encouraging future work to view NAc activity as a richer signal containing394

more than just reward.395

Methods396

Subjects397

A total of 4 adult female wild-type C57BL-6J mice (Jackson Labs) were used as subjects (data from a398

5th mouse was collected, but was not analyzed due to poor behavior). Mice were group housed before399

being selected for the experiment with a 12/12 hour light-dark cycle, were individually housed once training400

commenced, and tested during the light cycle. Mice were food restricted to 85 - 90% of their free feeding401

weight (weight range at start of experiment was 19.7 - 23.8 g), and water restricted for a minimum of 6 hours402

before testing. All experimental procedures were approved by the Dartmouth College Institutional Animal403

Care and Use Committee (IACUC).404
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Overall timeline405

Mice initially underwent surgery where craniotomies were marked and a headbar was affixed to the skull.406

After a 3 day recovery period, mice were food restricted, and acclimated to being handled by the experi-407

menter and being held by the headbar in the experimental room for 3 days. Mice were then habituated to408

being head-fixed on the apparatus over the course of 3 or more days, starting with 5 minutes and working409

up to an hour of being head-fixed. During later head-bar habituation sessions, animals were placed on water410

restriction, and trained to lick a spout for 12% sucrose solution. After learning to lick for sucrose (1 - 2411

sessions), mice were then trained to lick in response to the rewarded odors in the task for 1 - 3 days before412

undergoing full task training. Once behavioral criterion was reached in the full task (6+ days; described413

below), the first craniotomy was made, and acute recordings commenced after a 24 hour recovery period.414

Recording sessions were carried out for 5 - 7 days, after which a contralateral craniotomy was made and415

the process repeated. After sufficient data collection, mice were euthanized and histology was performed to416

confirm recording sites.417

Behavioral task and training418

In order to assess whether the NAc codes for information related to context cues, mice were trained to419

perform a biconditional discrimination task where they were presented with two odors in sequence. The420

identity of the first odor, the context cue, determined the value of the subsequently presented odor, the target421

cue, such that each context cue had a rewarded and unrewarded target cue pairing (Figure 1A,B; adapted422

from Han et al. 2018). The apparatus was a custom built head-fixed mouse behavioral setup, consisting of423

a running wheel, odor port, lickometer, and headbar holders (Grasshopper Machinewerks LLC). Pressurized424

air passed through an olfactory delivery system containing 5 distinct tubes, with 1 tube containing mineral oil,425

and the rest a mixture of mineral oil and a specific odorant. Each tube was connected to an experimentally-426

controlled valve that then sent the air-odorant mixture to the odor manifold on the head-fixed setup, where427
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the active line was sent to the mouse. Apart from odorant presentation, mice were continuously presented428

with unscented air via the mineral oil only line. Odorants used in the study were propyl formate, 1-butanol,429

propyl acetate and 3-methyl-2-buten-1-ol (Sigma). Odorants were selected based on previous work using this430

task (Gu & Li, 2019; Han et al., 2018; Zhang et al., 2019). The lickometer detected changes in capacitance431

from mouse licks, and sent this information to a Digital Lynx acquisition system (Neuralynx). The task was432

controlled via a custom-written MATLAB script (Mathworks) that triggered TTL pulses from the acquisition433

system to control the odorant and sucrose valves.434

After initial handling and habituation mice were first trained to lick a spout for 12% sucrose solution, until435

they manually triggered over 100 sucrose water rewards in < 20 mins. Mice were then shaped to lick in436

response to pseudo-randomized presentation of the 2 rewarded context-target odor pairs, with the context437

odor determining the outcome predicted by the subsequent target odor. Odor selection and pairing was438

pseudo-randomized across mice to ensure unique pairings across animals. A single trial consisted of a 1 s439

presentation of the context odor, followed by a 2 s delay where unscented air was presented to flush out the440

odorant, followed by a 1 s presentation of the target odor, followed by an additional 1 s response window,441

followed by a 12 +/- 2 s inter-trial interval (Figure 1A). Licking either during presentation of the target odor442

or the subsequent response window registered as a correct response. During the shaping phase, sucrose443

water was delivered pseudo-randomly in 1/3 of the trials in which mice failed to lick. Mice were allowed to444

complete up to 200 trials in a session, with an individual session being terminated either at 200 trials or if the445

mouse became sufficiently disengaged by the task, measured by the absence of licking for 10 consecutive446

trials. This phase of training continued until the mouse licked for ∼80% of trials. After the shaping phase,447

mice then underwent the full task training, where they were presented in pseudo-randomized sequence all 4448

context-target odor pairs. Upon reaching criterion of 3 consecutive sessions with >80% correct responses449

(range: 7 - 28 sessions), a craniotomy was made over the first hemisphere, and recordings began after a450

recovery period.451
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Surgery452

Mice underwent 3 surgeries over the course of the experiment. The first surgery consisted of exposing the453

skull, marking the location of future craniotomies, and securing the headbar. The second surgery consisted454

of making the first craniotomy, and installing a posterior reference wire above the cerebellum. The third455

surgery consisted of making the second craniotomy. In all surgeries, mice were anesthetized with isoflurane,456

induced with 5% in medical grade oxygen and maintained at 2% throughout the surgery (∼0.8 L/min), and457

were administered ketoprofen as an analgesic prior to surgery, with a supplementary dose 24 hours after the458

procedure.459

Data acquisition and preprocessing460

For recording sessions, 32 (NeuroNexus; A4x2-tet) or 64 (Cambridge NeuroTech; P-1) channel silicon461

probes were lowered into the NAc (AP: 0.8 - 1.4 mm; ML: +/- 1.0 - 2.0 mm; DV: 4.0+ mm). After let-462

ting the probes settle for 30 minutes, single-unit activity was recorded during behavioral performance. NAc463

signals were acquired using a Digital Lynx data acquisition system with an HS-36 PTB preamplifier (Neu-464

ralynx). Putative spikes were recorded as threshold crossings of 600 - 6000 Hz band-pass filtered data with465

waveforms sampled at 30 kHz. Signals were referenced locally to maximize signal-to-noise of the spiking466

waveforms. Spike waveforms were clustered with KlustaKwik using energy and the first derivative of energy467

as features, and subsequently manually sorted using MClust (MClust 3.5, A.D. Redish et al.). Isolated units468

containing less than 200 spikes during the trial period were excluded from analysis.469
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Data analysis470

Behavior471

If mice learned the appropriate associations between context and target cues, then correct behavior on the472

task would look like a high licking response rate to context-target pairings that are rewarded, and a low473

licking response rate to context-target pairings that are unrewarded (see Figure 1B for hypothetical learned474

trial structure). To assess whether mice learned to discriminate between rewarded and unrewarded odor pairs475

we compared the mean proportion of rewarded and unrewarded trials that the animal made a lick response476

for a given odor, relative to shuffling the trial type label for the mean proportion of trials licked for a given477

session. Furthermore, to assess whether mice were not responding differently to individual target cues we478

also compared the mean proportion of trials with a lick for each target cue, relative to shuffling target cue479

identity for the mean proportion of trials licked for a given session.480

Single-unit coding481

To address our question of how the NAc responds to context cues and their relationship to target cues, we482

compared the mean firing rates for different trial types at different time points for each unit. To determine483

whether or not a unit responded at all to any context cue, we compared the 1 s pre and 1 s post context cue484

onset period. To determine whether or not a unit discriminated between the context cues, we compared the485

mean firing rate for the 1 s presentation of each context cue. To determine whether or not a unit discriminated486

between the context cues during the delay period, we compared the mean firing rate for each context cue487

for the 1 s period preceding target cue presentation. Likewise, a similar comparison was performed for488

general target cue responsiveness (1 s pre vs post target cue onset), target cue selectivity (target cue 1 versus489

target cue 2 during 1 s target cue presentation period), and outcome-predictive selectivity (rewarded versus490
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unrewarded trials during 1 s target cue presentation period). All firing rate comparisons were related to491

a shuffled distribution where the trial identity was shuffled across trials. Overlapping proportions were492

determined to be significant if they were larger than shuffling the identity of significant units for each task493

parameter. For all analyses, a value of +/- 2.58 z-scores from the shuffled distribution was used as the494

threshold value for significance. All analyses were completed in MATLAB 2018a. For single-unit examples,495

peri-event time histograms (PETHs) were generated by smoothing the trial-averaged data with a Gaussian496

kernel (σ: 100 ms).497

To determine how context is signaled throughout the period between context-cue onset and target-cue onset,498

we calculated the proportion of units that showed discrimination in firing to the context cues at each time499

point in the trial in 0.5 s intervals. To determine whether this coding had any utility in informing future500

behavior we used a binomial regression to predict the animal’s behavioral response for a given target based501

on the firing rate for a unit.502

Population-level coding503

To assess population level predictions of behavior, we generated pseudo-ensembles for each mouse from the504

data recorded across sessions. We then trained a binomial regression to predict the behavioral response for505

each target cue using the firing rates of the pseudo-ensembles. To determine how context cues are represented506

at the network level, we performed demixed principal component analysis (dPCA) to extract information re-507

lated to the context and target cue from the population of recorded units (see Kobak et al. 2016 for a detailed508

description of the methodology). dPCA is an analysis that aims to explain most of the variance in the data509

as in principal component analysis (PCA), while also separating the data for several task parameters similar510

to how linear discriminant analysis (LDA) does for a single task parameter (Figure 6A). The dPCA method511

first took the mean-subtracted, trial-averaged data for all units, and decomposed the population data matrix512

into a sum of separate data matrices that each represented the contributions of a different aspect of the task,513
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and noise. These task features are inputs to the analysis set by the experimenter, and in the current experi-514

ment the task inputs were context cue type, target cue type, and the interaction between context and target515

cue signifying cue value. The loss function of dPCA then used the ordinary least squares solution to find516

the transformation that minimized the reconstruction error between the reconstructed data and the decon-517

structed data, with the deconstructed data matrix representing the contributions of a given task-parameter518

to the full trial-averaged data. Dimensionality reduction was then achieved via eigendecomposition of the519

covariance matrix of the transformed data, and the top components were stored. The explained variance of520

each component was the fraction of the total variance in the trial-averaged data that could be attributed by521

the reconstructed data for that component.522

In our task, we sought to ‘demix’ the contributions of the context cue, target cue, and cue value across time,523

projecting the data using components derived from these task variables, and visualized how the projected524

neural trajectories evolved throughout a trial in this reduced dPCA space (see Figure 6B for hypothetical525

trajectories along context and outcome axes). This analysis requires a sample size of 100 neurons to achieve526

satisfactory demixing, and thus sessions within a mouse were pooled together to run on pseudo-ensembles.527

Furthermore, given that dPCA does not constrain the components extracted for each parameter to be or-528

thogonal, components were identified as being non-orthogonal if the dot product significantly deviated from529

zero.530

If activity in response to the context cue was indeed constraining subsequent information flow in response to531

the target cue, then we would expect to be able to predict both behavioral and neural features during the target532

cue epoch, based on the assumption that a given target cue would possess distinct input-output mappings for533

each context cue. First, to determine the contributions of the extracted components in predicting subsequent534

behavioral response to a target cue, we used binomial regressions to predict behavioral response from the535

projected activity using each component. Next, to more directly test the feasibility of our hypothesis of536

context-dependent gating of value representations, we used a linear regression to predict the projected activity537

in the top value component during a particular target cue from the projected activity in the delay component538
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across the two contexts. As a control, we also attempted to predict activity across target cues for the same539

context cue. Additionally, to determine whether any effects were driven by a few top contributors to these540

components, we repeated this analysis while iteratively removing the top 10% of units that had the largest541

weights.542

Histology543

Immediately following the final recording session, mice were asphyxiated with carbon dioxide, and tran-544

scardial perfusions were performed. Brains were fixed and removed, and then sectioned in 50 mm coronal545

sections. Sections were then stained with thionin, and visualized under light microscopy to determine probe546

placement (Figure 9).547

Posterior
(Bregma +0.86 mm)

Anterior
(Bregma +1.70 mm)

M040
M111
M142
M146

Mice used:

B

T

L

Figure 9: Histology. After the recordings were completed, brains were sectioned and probe placement was identified. Schematic
showing recording areas for all subjects.
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Figure supplements548
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Figure 3 supplement 1: Characterization of single-unit responses to the task for each individual mouse. Each plot is a heat plot
showing either max normalized firing rates or firing rate differences for trial-averaged data for all eligible units, with unit identity sorted
according to the peak value for the comparison of interest. From left-to-right shows data for M040, M111, M142 and M146. Red
lines border context cue presentation, and black lines border target cue presentation. A: Firing rate profiles for units at 1 s pre- and
post-context cue onset, sorted according to maximum value after context cue onset. B: Firing rate differences for units across context
cues, sorted according to maximum difference during context cue presentation. C: Firing rate differences for units across context cues
during the delay period, sorted according to maximum difference during the 1 s period preceding target cue presentation. D: Firing
rate differences for units across target cues, sorted according to maximum difference during target cue presentation. E: Firing rate
differences for units for rewarded and unrewarded trial types during target cue presentation, sorted according to maximum difference
during target cue presentation.
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Figure 8 supplement 1: Context-dependent gating of the value-related component. Shown in this Figure is the relationship between
the context-related delay component and the value-related component for M111. A: Progression of neural activity through a trial for
each trial type in a two-dimensional neural subspace, with the trial-averaged projected activity in the context-related delay component
(see Figure 7C) on the x-axis, and the trial-averaged projected activity in the value component (see Figure 7-supplement 1 F) on the
y-axis. Note the relatively weak structure in the context-related delay axis, compared to M040. Red circles signal context-cue onset,
cyan circles signal delay period 1 s after context cue offset, black circles signal 1 s after target cue onset. B: Predicting behavioral
response for a given target cue based on projected activity along the context-related delay component at various timepoints. Red lines
border context cue presentation, and black lines border target cue presentation. C: Predicting projected activity along the value-related
axis after target cue onset for a given target cue (black circles from A) based on projected activity in the context-related axis at various
timepoints. D: Control analysis predicting projected activity along the value-related axis after target cue onset for a given context cue
based on projected activity in the context-related axis. E: Iteratively removing the top 10% of contributors to the context-related delay
component and attempting to predict value-related activity as in C.
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Figure 8 supplement 2: Context-dependent gating of the value-related component. Shown in this Figure is the relationship between
the context-related delay component and the value-related component for M142. A: Progression of neural activity through a trial for
each trial type in a two-dimensional neural subspace, with the trial-averaged projected activity in the context-related delay component
(see Figure 7C) on the x-axis, and the trial-averaged projected activity in the value component (see Figure 7-supplement 1 F) on the
y-axis. Throughout the progression of a trial a separation is observed along the context axis, which then flows into the value axis after
target cue presentation, similar to M040. Red circles signal context-cue onset, cyan circles signal delay period 1 s after context cue
offset, black circles signal 1 s after target cue onset. B: Predicting behavioral response for a given target cue based on projected activity
along the context-related delay component at various timepoints. Red lines border context cue presentation, and black lines border
target cue presentation. C: Predicting projected activity along the value-related axis after target cue onset for a given target cue (black
circles from A) based on projected activity in the context-related axis at various timepoints. D: Control analysis predicting projected
activity along the value-related axis after target cue onset for a given context cue based on projected activity in the context-related
axis. E: Iteratively removing the top 10% of contributors to the context-related delay component and attempting to predict value-related
activity as in C.
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Figure 8 supplement 3: Context-dependent gating of the value-related component. Shown in this Figure is the relationship between
the context-related delay component and the value-related component for M146. A: Progression of neural activity through a trial for
each trial type in a two-dimensional neural subspace, with the trial-averaged projected activity in the context-related delay component
(see Figure 7C) on the x-axis, and the trial-averaged projected activity in the value component (see Figure 7-supplement 1 F) on the
y-axis. Note the relatively weak structure in the context-related delay axis, compared to M040. Red circles signal context-cue onset,
cyan circles signal delay period 1 s after context cue offset, black circles signal 1 s after target cue onset. B: Predicting behavioral
response for a given target cue based on projected activity along the context-related delay component at various timepoints. Red lines
border context cue presentation, and black lines border target cue presentation. C: Predicting projected activity along the value-related
axis after target cue onset for a given target cue (black circles from A) based on projected activity in the context-related axis at various
timepoints. D: Control analysis predicting projected activity along the value-related axis after target cue onset for a given context cue
based on projected activity in the context-related axis. E: Iteratively removing the top 10% of contributors to the context-related delay
component and attempting to predict value-related activity as in C.
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