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ABSTRACT 

Studies in cardiomyocytes have established that adrenergic receptors, conventionally thought to initiate 
signaling events exclusively from the plasma membrane, can also localize to and signal from the nuclear 
membrane. Activation of these receptors by their endogenous cationic ligands requires transmembrane uptake 
mediated by organic cation transporter 3 (OCT3). We have demonstrated that OCT3 is densely localized to outer 
nuclear membranes in neurons and astrocytes, suggesting that nuclear adrenergic signaling is also present in the 
central nervous system. In this study, we examined the subcellular localization of β1-adrenergic receptors, their 
G-protein signaling partners, and catecholamine transporters in mouse astrocytes. We identified a population of 
β1-adrenergic receptors localized to astrocyte inner nuclear membranes. We demonstrated that key 
components of Gs-mediated signaling are localized to the nuclear compartment and identified OCT3 and other 
catecholamine transporters localized to plasma and nuclear membranes. Treatment of astrocytes with 
norepinephrine induced rapid increases in nuclear PKA activity which were blocked by pretreatment with 
inhibitors of catecholamine transport. These data indicate that nuclear β1-adrenergic receptors are functionally 
coupled to Gs-coupled signaling mediators and that their activation by norepinephrine requires transporter-
mediated uptake. These receptors represent a powerful mechanism by which norepinephrine may alter 
astrocyte gene expression and brain function.  
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INTRODUCTION 

 G-protein-coupled receptors mediate powerful influences of diverse ligands on cellular function through 

signal transduction pathways that alter the phosphorylation of proteins throughout the cell. The specific effect 

of an extracellular ligand on a given target cell depends not only on the number and class of receptors expressed 

by the cell, but also on the localization of receptors in relation to intracellular effectors. Recent studies have 

demonstrated that, in addition to the plasma membrane, G-protein-coupled adrenergic receptors may also be 

localized to, and activated at, intracellular membranes including Golgi apparatus and inner nuclear membranes, 

and that receptors in distinct cellular locations mediate distinct cellular responses to catecholamines (Boivin et 

al., 2006; Dahl et al., 2018; Irannejad et al., 2017; Vaniotis et al., 2011; Wang et al., 2020; Wu et al., 2014). These 

studies have also shown that access of norepinephrine, a cationic and therefore membrane-impermeable ligand, 

to adrenergic receptors in the inner nuclear and Golgi membranes is mediated in part by organic cation 

transporter 3 (OCT3), a high-capacity transporter for norepinephrine and other monoamines (Irannejad et al., 

2017; Wang et al., 2020; Wright et al., 2008). In addition to its actions on peripheral targets, norepinephrine is a 

potent regulator of integrated central nervous system function through its actions on neuronal and glial targets. 

Adrenergic receptors localized to the nuclear membrane represent powerful mechanisms by which 

norepinephrine may regulate diverse aspects of cellular function. However, no studies have examined the 

localization of adrenergic receptors to endomembranes in neuronal or glial cells.  

 We recently demonstrated using immunoelectron microscopy that, in addition to plasma membrane 

sites, OCT3 is densely expressed in the outer nuclear membranes of astrocytes in the rat and mouse brain 

(Gasser et al., 2017). The presence of this catecholamine transporter in the outer nuclear membrane suggested 

that adrenergic receptors may be localized to inner nuclear membranes in astrocytes, and that these receptors 

may mediate previously described effects of norepinephrine on astrocyte gene expression and physiology. Here, 

we examined the subcellular localization of β1-adrenergic receptors (β1-AR), their signaling partners, and 

catecholamine transporters in mouse astrocytes. We confirmed the nuclear localization of OCT3 in primary 
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astrocytes and identified a population of β1-ARs localized to astrocyte inner nuclear membranes. We 

demonstrated that key components of Gs-mediated signaling are localized to the nuclear compartment and 

identified multiple catecholamine transporters in addition to OCT3 localized to plasma and nuclear membranes 

in astrocytes. Finally, we tested the hypothesis that activation of nuclear β1-ARs by norepinephrine requires 

catecholamine transporter-mediated uptake. Treatment of astrocytes with norepinephrine induced rapid 

increases in nuclear PKA activity which were blocked by pretreatment with inhibitors of catecholamine 

transport. These findings reveal a previously undescribed mechanism by which norepinephrine regulates nuclear 

PKA activity in astrocytes, and through which norepinephrine may exert powerful influences on astrocyte gene 

expression, contributing to important metabolic, neuroprotective, and immunomodulatory actions of 

norepinephrine in astrocytes.     

RESULTS 

OCT3 is localized to astrocyte nuclei.  

To confirm that OCT3 is localized to the nuclear envelope in cultured astrocytes as it is in situ, we used an 

antibody directed against a peptide in the large intracellular loop of mouse and rat OCT3 (Alpha Diagnostic 

International, cat# OCT31-A, RRID:AB_1622571; (Gorboulev et al., 2005)) in immunofluorescence and 

immunoblotting studies. Punctate OCT3-like immunoreactivity was observed over cell bodies and nuclei of 

nearly all cultured astrocytes (Fig. 1A-C), with higher density over nuclei than over cell bodies.  

β1-adrenergic receptor is localized to both plasma and inner nuclear membranes of astrocytes 

To visualize the subcellular localization of β1-AR in astrocytes, we used two different commercially available 

antisera, each directed against a distinct epitope of the receptor, in immunofluorescence studies in cultured 

mouse astrocytes and frozen brain sections. One antibody (Thermo Fisher, cat# PA1-049, RRID:AB_2289444) is 

directed against an amino acid sequence in the C-terminal tail of mouse β1-AR which is an intracellular epitope 

of the plasma membrane-localized receptor. The second antibody (Alomone Labs, cat# AAR-023, 
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Fig. 1. OCT3 is expressed in astrocyte nuclei. Fluorescence photomicrographs depicting OCT3 immunoreactivity (magenta in A, 
B; white in C); GFAP immunoreactivity (green in A only); and lamin A/C immunoreactivity (green in B only) in primary cultured 
mouse astrocytes. Box in (B) indicates area shown at higher magnification in (C). OCT3-like immunoreactivity is localized over 
apparent nuclei in all GFAP+ astrocytes (A). At higher magnification (B, C), OCT3-like immunoreactivity is observed over cell 
bodies (arrowheads in B, C) and nuclei (arrows in B, C).  Images are representative of n = 5 independent experiments.  Scale bar, 
80 µm (A), 25 µm (B), 6.25 µm (C). 
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RRID:AB_2340886) is directed against an amino acid sequence in the second extracellular loop of the plasma 

membrane-localized receptor. Nuclei were identified either by counterstaining with the DNA stain DAPI, or by 

immunolabeling with an antibody against the nuclear proteins lamins A and C.  

 The two β1-AR antibodies produced similar patterns of immunofluorescence in triton-permeabilized 

GFAP+ astrocytes (Fig. 2A, B). Punctate β1-AR-like immunoreactivity (β1-like ir) was diffusely distributed over 

astrocyte somata and densely localized over nuclei. Putative nuclear β1-like ir was reliably observed in nearly all 

cultured astrocytes. This pattern of staining was observed in 11 repeated assays with the C-terminal antibody 

and 7 repeated assays with the ECL2 antibody (each replicate used astrocyte cultures from distinct mouse 

litters). β1-AR-like-ir was not observed over nuclei or somata when immunofluorescence was conducted using  

primary antibodies which had been pre-adsorbed with an excess of the respective antigenic peptide (Fig. 2C, D, 

G, H).  

 To confirm that the nuclear immunofluorescent signal represented β1-adrenergic receptor and not a 

cross-reactive protein, we transfected cultured mouse astrocytes with plasmids directing the expression of an N-

terminal FLAG peptide-tagged human β1-AR (Tang et al., 1999), and conducted immunofluorescence using an 

anti-FLAG peptide antibody ~2 days after transfection. Anti-FLAG immunoreactivity was observed over nuclei 

and diffusely over cell bodies of transfected astrocytes (Fig. 2I, J). To determine whether nuclear β1-like ir is 

present in mouse cortical astrocytes in situ, we incubated fixed, frozen brain sections of mouse forebrain with 

the C-terminal-directed β1-AR antibody. β1-AR-like immunoreactivity was observed over both nuclei and somata 

in mouse prefrontal cortex (Fig. 2K, L). Identification of astrocyte nuclei is difficult in sectioned brain tissue using 

GFAP-immunoreactivity, as cortical astrocytes in situ express low levels of GFAP (Verkhratsky and Nedergaard, 

2018) and because astrocyte processes extend three-dimensionally throughout the tissue, making it difficult to 

determine definitively whether a given nucleus belonged to a GFAP+ cell. However, nuclear β1-AR-like 

immunostaining was observed in a small number of nuclei that were obviously surrounded by GFAP-

immunofluorescence.   
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Fig. 2. β1‐adrenergic receptor localization in astrocytes. Fluorescence photomicrographs depicting β1‐AR immunoreactivity in mouse primary 
astrocytes.  β1‐AR (magenta) was detected with an antibody against extracellular loop 2 (A, C, D) or the C‐terminal tail (B, G, H) of the receptor. 
GFAP immunoreactivity is shown in green. Antibodies used in C, D, G, and H were pre‐adsorbed with the immunizing peptide prior to 
application to cells. (I, J) Immunofluorescence of primary mouse astrocytes transfected with a FLAG‐tagged human β1‐AR and incubated with 
antibodies against FLAG peptide (magenta) and GFAP (green). Box in I indicates area shown at higher magnification in J. Arrowhead in I 
indicates cell body‐localized FLAG (putative β1‐AR) immunoreactivity. Arrow in J indicates nuclear FLAG (putative β1‐AR) immunoreactivity. (K, 
L) Fluorescence photomicrographs depicting β1‐AR (magenta) and GFAP (green) immunoreactivity in mouse prefrontal cortical tissue. DAPI 
labeling of DNA is depicted in blue. Arrows indicate β1‐AR‐immunoreactive nuclei. Arrowheads indicate β1‐AR‐immunonegative nuclei. Insets in 
A, B are higher magnification images from the same experiment. Images are representative of n ≥ 3 independent experiments (except for C, D, 
for which n=2 experiments).  Scale bar, 62.5 µm (A, B), 25 µm (C, D, G, H, I, insets in A, B); 3.7 µm (K); 9.25 µm (L). 
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 The immunofluorescent signal observed over astrocyte nuclei could represent receptor localized to 

either inner or outer nuclear membrane, to plasma membrane overlying the nucleus, or to perinuclear 

endoplasmic reticulum. To determine whether the nuclear immunofluorescence originates from receptors 

localized to the inner or outer nuclear membranes, we conducted immunostaining using each of the two β1-AR 

antibodies on astrocytes permeabilized with either Triton X-100 or digitonin. Triton X-100, which solubilizes all 

cellular membranes, allows free access of antibodies to all cellular compartments. Digitonin at the concentration 

used here preferentially permeabilizes cholesterol-rich membranes like the plasma membrane, leaving inner 

and outer nuclear membranes mainly intact (Adam et al., 1990). Thus, in digitonin-permeabilized cells, 

antibodies would not be able to bind antigens in the nuclear lumen or the perinuclear space (between outer and 

inner nuclear membranes). After the differentially permeabilized astrocytes had been incubated with the β1-AR 

antibodies, astrocytes were permeabilized again, this time with triton, to open the nuclear membranes prior to 

incubation with Lamin A/C antibodies. This allowed identification of nuclei in all astrocytes. For both antibodies, 

the dense nuclear β1-AR-like immunofluorescence observed in triton-permeabilized astrocytes was almost 

completely absent in digitonin-permeabilized astrocytes (Fig. 3C-F, G-J). To further confirm nuclear localization, 

we purified plasma membrane and nuclear proteins from primary astrocyte cultures (see Methods) and 

conducted western blots. Immunoreactivity for the nuclear lamins A and C appeared in whole cell lysates and 

nuclear fractions, but not in plasma membrane fractions, while immunoreactivity for the ATP1A1 subunit of the 

sodium-potassium ATPase appeared in whole cell lysates and plasma membrane fractions, but not in nuclear 

fractions (Fig. 4A). β1-AR-like-immunoreactive bands of approximately 65 kDa molecular weight, consistent with 

previous studies (Clements and Jamali, 2009; Hakalahti et al., 2010) were observed in whole cell lysates, as well 

as in both plasma membrane and nuclear fractions (Fig. 4B).  

Gsα and Gs-coupled signaling components are localized to the nucleus in cultured astrocytes.  

 To begin testing the hypothesis that nuclear membrane-localized β1-ARs are functionally coupled to 

intranuclear G-protein-mediated signaling pathways, we used immunofluorescence with differential detergent 
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Fig. 3. β1‐adrenergic receptors are localized to the astrocyte inner nuclear membrane. (A, B) Fluorescence photomicrographs of 
formaldehyde‐fixed mouse primary astrocytes permeabilized with Triton X‐100 (A) or digitonin (B) and incubated with antibodies against GFAP 
(green) and lamin A/C (magenta). (C‐J) Fluorescence photomicrographs depicting β1‐AR (magenta in C, E, G, I; white in D, F, H, J) and lamin A/C 
(green in C, E, G, I) immunoreactivity in mouse primary astrocytes. Astrocytes were initially permeabilized with either Triton X‐100 (C, D, G, H) 
or digitonin (E, F, I, J) and incubated with antibodies directed against the extracellular loop 2 (C‐F) or C‐terminal domain (G‐J) of β1‐AR. After β1‐
AR antibody incubation, all cells were re‐permeabilized with Triton X‐100 and incubated with an antibody against Lamin A/C (green in C, E, G, 
and I) to label nuclei. Arrowheads indicate β1‐AR‐immunoreactive perikarya. Nuclei are outlined in white in F and J. Images are representative 
of n ≥ 3 independent experiments. Scale bar, 25 µm (A‐C, E, G, I); 9.25 µm (D, F, H, J).  
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permeabilization to examine the potential nuclear localization of several components of canonical G-protein-

coupled receptor signaling. Specifically, we used antibodies against Gαs, adenylyl cyclase (ADCY) 2, ADCY 5/6, and 

PKA regulatory subunit isoforms I and II (PKA-RI, PKA-RIIα). Nuclei of cultured astrocytes were identified by 

immunolabeling with an antibody against nuclear lamins A and C. Decisions of which isoforms of adenylyl  

cyclase and PKA subunits to examine were based on astrocyte gene expression data from the brain RNASeq 

database (Zhang et al., 2014).  

 We observed dense Gsα-like immunofluorescence over nuclei, and more diffuse, punctate 

immunofluorescence over somata of triton-permeabilized astrocytes (Fig. 5A, B). Nuclear Gsα-like 

immunofluorescence was almost completely absent in digitonin-permeabilized astrocytes, while 

immunofluorescence over the soma remained (Fig. 5C, D). In western blots of proteins from astrocyte 

subcellular fractions, a Gsα-ir band of approximately 45 kDa was observed in both membrane and nuclear 

fractions. A 50-kDa Gsα-ir band was observed in nuclear, but not membrane fractions, and an intermediate sized 

band was observed in membrane, but not nuclear, fractions (Fig. 5U).  These bands may represent distinct Gαs 

isoforms that have been previously reported (Robishaw et al., 1986).  

 ADCY2-like immunofluorescence was observed primarily as bright speckles over the nuclei of triton-

permeabilized astrocytes, with very little signal observed over somata (Fig. 5E, F). Nuclear staining was not 

observed in digitonin-permeabilized astrocytes (Fig. 5G, H). Punctate ADCY5/6-like immunofluorescence was 

observed diffusely over cell bodies, and densely over nuclei, of triton-permeabilized astrocytes (Fig. 5I, J). In 

digitonin-permeabilized astrocytes, cell body ADCY5/6 immunostaining was observed over cell bodies, but not 

over nuclei (Fig. 5K, L). In western blots of astrocyte subcellular fractions, ADCY 5/6-ir bands with apparent 

molecular weight between 125 and 160 kDa were observed in whole cell, plasma membrane, and nuclear 

fractions (Fig. 5U).  (Predicted molecular weights = 130 kDa (ADCY6 UniProt ID: Q01341), 139 and 148 kDa 

(ACDY5 UniProt ID: P84309)). 
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Fig. 4. Nuclear localization of β1‐adrenergic receptors in astrocytes. (A) Validation of subcellular fractionation protocol. Immunoblotting of 
proteins from whole cell lysate, membrane, and nuclear fractions using antibodies against lamin A/C (Lamins), sodium/potassium ATPase 
subunit alpha‐1 (ATP1A1), and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH). Images are representative of n = 4 independent 
experiments. (B) β1‐AR immunoblotting of whole cell lysate, membrane, and nuclear proteins from primary cultured astrocytes using 
antibodies directed against either the C‐terminal tail or ECL2 of β1‐AR. All images are representative of n = 3 independent experiments.  
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 PKA-RI-like immunoreactivity was observed over cell bodies and nuclei of triton-permeabilized 

astrocytes, with dense staining observed over nuclei (Fig. 5M, N). Nuclear PKA-RI immunostaining was almost 

completely absent in digitonin-permeabilized astrocytes, while cell body staining remained (Fig. 5O, P). In 

western blots, a PKA-RI-ir band of approximately 40 kDa was observed in both membrane and nuclear fractions, 

while a 50-kDa band was observed only in membrane fractions (predicted molecular weight = 43 kDa  

UniProt ID: Q9DBC7) (Fig. 5U). Punctate PKA-RIIα-like immunoreactivity was distributed evenly over cell bodies 

and nuclei of triton-permeabilized astrocytes, and at higher density in endomembrane (ER or Golgi)-like profiles 

(Fig. 5Q, R). Nuclear PKA-RIIα immunostaining was weaker in digitonin-permeabilized than in triton-

permeabilized astrocytes (Fig. 5S, T). In western blots, PKA-RIIα-ir bands of 40-45 kDa (predicted molecular 

weight = 45 kDa, UniProt ID: P12367) were observed in whole cell lysate, membrane, and nuclear fractions (Fig. 

5U). 

 We observed PKA catalytic subunit (alpha isoform) immunoreactivity in western blots of astrocyte 

nuclear and membrane fractions. A PKA Cα-immunoreactive band of approximately 40 kDa molecular weight 

(predicted molecular weight = 40 kDa, UniProt ID: P05132) was observed in whole cell lysates, plasma 

membrane, and nuclear fractions (Fig. 5U).  

Catecholamine transporters are localized to astrocyte nuclei and plasma membranes.   

Access of norepinephrine, which is cationic and membrane-impermeable at physiological pH, to β1-ARs localized 

to inner nuclear membranes would require carrier-mediated transport across both plasma and outer nuclear 

membranes. While our studies indicate that OCT3 could potentially mediate transport across both membranes, 

it is possible that additional catecholamine transporters are involved. To characterize more completely the 

mechanisms by which norepinephrine may access nuclear β1-AR, we examined the localization of two additional 

uptake2 transporters: organic cation transporter 2 (OCT2) and the plasma membrane monoamine transporter 

(PMAT), and of the uptake1 catecholamine transporters NET (norepinephrine transporter) and DAT (dopamine 

transporter), using immunofluorescence (exclusively on triton-permeabilized astrocytes) and western blot.  
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Fig. 5. Nuclear localization of β‐adrenergic signaling components in mouse astrocytes. (A‐T) Fluorescence photomicrographs 
of mouse primary astrocytes. Astrocytes were permeabilized with either Triton X‐100 or digitonin, followed by incubation with 
antibodies directed against adrenergic receptor downstream signaling components (magenta in dual color images, white in 
single color). All astrocytes were then permeabilized with Triton X‐100 and incubated with an antibody against lamins A and C 
(green) to label nuclei. Boxes indicate areas shown at higher magnification to the right. Arrows indicate the position of nuclei. 
Images are representative of n ≥ 3 independent experiments for each of the following proteins: (A‐D) Alpha subunit of the 
stimulatory G protein (Gsα); (E‐H) adenylyl cyclase 2 (ADCY2); (I‐L) adenylyl cyclase 5/6 (ADCY 5/6); (M‐P) PKA regulatory subunit 
I (PKA RI); and (Q‐T) PKA regulatory subunit IIα (PKA RIIα). In each pair of images, scale = 25 µm in the dual‐color image, 9.25 
µm in grayscale image. (U) Immunoblotting of whole cell lysate, membrane, and nuclear proteins from primary mouse 
astrocytes using antibodies against Gsα, ADCY 5/6, PKA catalytic subunit (PKA Cα), PKA RI, and PKA RIIα. Images are 
representative of n = 3 independent experiments. 
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 Both OCT2-like and PMAT-like-ir were observed over nuclei and somata of triton-permeabilized 

astrocytes (Fig. 6A-D). In western blots, OCT2-ir bands of between 50 and 70 kDa molecular weight (predicted 

molecular weight = 62 kDa (Karbach et al., 2000; Urakami et al., 1999)) were observed in membrane and nuclear 

fractions (Fig. 6I). PMAT-ir bands of approximately 50 and 60 kDa molecular weight (predicted molecular weight 

= 58 kDa (Xia et al., 2007)) were observed in nuclear fractions, while a single ~65-kDa PMAT-ir band was 

observed in membrane fractions (Fig. 6I). Faint NET-like immunofluorescence was observed over astrocyte 

somata and nuclei (Fig. 6E, F). In western blots, NET-like-ir bands of approximately 45-, 65- and 70-kDa 

molecular weight were observed in both membrane, and nuclear fractions, though all bands in membrane 

fractions were very faint (Fig. 6I). Non-glycosylated hNET migrates in western blots at approximately 46-50 kDa 

(Melikian et al., 1996), with glycosylated forms appearing at 54- and 70 kDa (Matthies et al., 2009; Melikian et 

al., 1996). Faint DAT-like immunofluorescence was observed over astrocyte cell bodies and nuclei (Fig. 6G, H). A 

major 50-kDa DAT-ir band was observed in western blots of astrocyte nuclear fractions, with additional bands of 

higher molecular weight in both nuclear and membrane fractions (Fig. 6I). Fully glycosylated DAT appears in 

western blots as a broad band centered around 75-85 kDa molecular weight, while non-glycosylated DAT (40-50 

kDa), and several intermediate glycosylation states of DAT (40-85 kDa) are also observed (Li et al., 2004).  

Norepinephrine induces rapid and prolonged increases in nuclear PKA activity.   

The localization of β1-ARs to inner nuclear membranes and the evidence that G-proteins and their signaling 

partners occur in astrocyte nuclei suggest that nuclear receptors are capable of activating downstream cAMP 

signaling. The presence of OCT3 and other catecholamine transporters in both plasma and nuclear membranes 

suggests the hypothesis that access to and activation of nuclear membrane β1-ARs is gated by transporter 

activity. To determine whether nuclear β1-ARs are functionally coupled to signaling machinery and to test the 

hypothesis that activation of nuclear receptors is transporter-gated, we transfected astrocytes with plasmids 

driving the expression of a nuclear localized PKA activity sensor, ExRai-AKAR-NLS, to allow monitoring of nuclear 

PKA activity in real time. This sensor consists of a PKA substrate sequence and a phosphoamino acid-binding 
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Fig. 6. Localization of catecholamine transporters in mouse astrocytes. (A‐H) Fluorescence photomicrographs of mouse 
primary astrocytes permeabilized with Triton X‐100 and incubated with antibodies against lamin A/C (green) and catecholamine 
transporters (magenta and white). Images are representative of n ≥ 3 independent experiments for each of the following 
transporters: (A, B) organic cation transporter 2 (OCT2); (C, D) plasma membrane monoamine transporter (PMAT); (E, F) 
norepinephrine transporter (NET); (G, H) dopamine transporter (DAT). Arrows indicate the positions of nuclei. Arrowheads 
indicate cell body immunoreactivity. Scale bar, 25 µm in all dual‐color images, 9.25 µm in all grayscale images. (I) 
Immunoblotting of whole cell lysate, membrane, and nuclear proteins from primary mouse astrocytes using antibodies against 
OCT2, PMAT, NET and DAT. Images are representative of n = 3 independent experiments.   
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domain fused with the circularly permuted GFP from GCaMP3. This recombinant protein displays two excitation 

peaks (~400 and ~509 nm with a shoulder at ~480 nm), both of which emit at ~515 nm. Phosphorylation of the 

PKA substrate sequence induces a conformational change in the sensor that results in a decrease in 400 nm-

induced emission and an increase in 488 nm-induced emission, resulting in a large increase in the “excitation 

ratio” (Mehta et al., 2018). We examined the effects of bath-applied norepinephrine (50 nM) on nuclear 

excitation ratios in astrocytes in the presence or absence of catecholamine transport inhibitors. Transfected 

astrocytes were pretreated with either vehicle or a cocktail of catecholamine transport inhibitors including 

atomoxetine (NET inhibitor), GBR12909 (DAT inhibitor), and corticosterone at a concentration shown to inhibit 

OCT3, OCT2, and PMAT (Duan and Wang, 2010; Engel et al., 2004;  Gründemann et al., 1998). After the 

preincubation period, excitation ratiometric data were collected every 20 seconds for a 3-minute baseline 

period, after which norepinephrine was bath applied to all astrocytes and ratiometric data were collected every 

20 seconds for an additional 30 minutes. Increases in nuclear PKA were detected as increases in the excitation 

ratio. Norepinephrine-induced increases in nuclear excitation ratio were observed in both vehicle- and transport 

inhibitor-pretreated cells, but the kinetics of responses in the two groups were different. In vehicle-pretreated 

cells, NE treatment produced rapid and robust increases in nuclear excitation  

ratio over the initial 10-minute period (representative traces and ratio images in Fig. 7A, B; mean responses in 

Fig. 7C, D). In transport inhibitor-treated cells, NE treatment led to delayed increases in nuclear excitation ratio 

that appeared in the second 10-minute post-treatment period. A 2 (Group: Vehicle vs Inhibitors) x 4 (Period: 

Baseline vs 0-10 vs 10-20 vs 20-30 minutes) ANOVA revealed higher average ratios in the Vehicle group relative  

to the Inhibitors group, F(1, 34) = 8.18, p = 0.007, and an increase in the ratio across time periods, F(1, 102) = 

64.93, p < 0.0001, as well as an interaction between group and time period, F(1, 102) = 3.31, p = 0.023 (Fig. 7E). 

Planned interaction contrasts showed that excitation ratios increased more in the Vehicle group from baseline 

to 0-10 minutes relative to the Inhibitors group, F(1, 34) = 38.47, p < 0.0001, consistent with the hypothesis that 

the rapid nuclear PKA response is dependent on catecholamine transport. However, across the subsequent time 
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Fig. 7. Rapid norepinephrine‐induced increases in nuclear PKA activity require catecholamine transporter function. (A) 
Representative time courses of nuclear PKA responses to 50 nM norepinephrine in ExRai‐AKAR‐NLS‐expressing astrocytes 
pretreated with vehicle (blue) or catecholamine transport inhibitors (green). Curves are plotted as 488/402 nm excitation ratios 
normalized with respect to time 0. (B) Pseudocolor images of the ExRai‐AKAR‐NLS ratio responses of the astrocytes from A. 
Warmer colors indicate higher excitation ratios as shown in the scales to the right of the images. Red arrowheads indicate the 
time of norepinephrine application. Pretreatment condition is indicated to the left of the images. (C, D) Average time courses (t 
= ‐3 to 15 min in C; 15‐35 min in D) of nuclear PKA responses to 50 nM norepinephrine in ExRai‐AKAR‐NLS‐expressing astrocytes 
pretreated with vehicle (blue, n = 19 cells from 5 separate experiments) or transport inhibitors (green, n = 17 cells from 5 
separate experiments). Curves are plotted as 488/402 nm excitation ratios normalized with respect to time 0. Solid lines 
represent the mean; shaded areas represent s.e.m. (E) Normalized nuclear PKA responses to 50 nM norepinephrine of vehicle 
(blue)‐ or transport inhibitor (green)‐pretreated ExRai‐AKAR‐NLS‐expressing astrocytes (same cells shown in (C)). Ratiometric 
responses obtained during the indicated time periods were pooled and averaged for each cell. Thick, horizontal lines represent 
the mean and error bars represent SD. * indicates significantly different from the baseline excitation ratio for that group (p < 
0.05).  
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periods (0-10 minutes vs. 10-20 minutes), the rate of change in nuclear PKA was similar between the two groups 

(F(1, 34) = 0.89, p = 0.35). A Tukey’s HSD analysis supported this conclusion, showing that excitation ratios 

increased across every post-NE time period in the vehicle-pretreated group (ps < 0.025), but only exhibited a 

significant elevation above baseline after 10-minutes of norepinephrine exposure in the transport inhibitor-

pretreated group (ps < 0.004). Taken together, the results suggest that rapid nuclear PKA responses (within 10  

minutes) in astrocytes are dependent on carrier-mediated transport of norepinephrine, and that more gradual 

increases in nuclear PKA signaling (after 10 minutes) are not.   

DISCUSSION 

 Norepinephrine is a key mediator of integrated central nervous system responses to stressful and 

arousing stimuli. In addition to its well-characterized influences on neuronal function and synaptic plasticity, 

norepinephrine has powerful effects on core astrocyte functions, including neuroprotective (Junker et al., 2002), 

immunomodulatory (Laureys et al., 2014), and metabolic support functions (Coggan et al., 2018). These effects, 

mediated by G-protein-coupled α- and β-adrenergic receptors, include both rapid, short-term changes in cellular 

physiology and delayed, long-term changes in gene expression and cellular structure. For example, 

norepinephrine induces rapid activation of cytosolic glycogen phosphorylase, leading to increases in glycogen 

breakdown and lactate release (Coggan et al., 2018; Hertz et al., 2010; Sorg and Magistretti, 1991) and gradual 

increases in the expression of glycogen synthase mRNA and protein, allowing adaptive re-synthesis of glycogen 

(Sorg and Magistretti, 1991). Thus, integrated cellular responses to norepinephrine require the propagation of 

adrenergic receptor signaling events to cytosolic, plasma membrane, and nuclear targets. Dysregulation of 

noradrenergic signaling and of astrocyte function have been implicated in neurodegenerative disorders, 

including Alzheimer’s disease and multiple sclerosis (Keyser et al., 2010; Santello et al., 2019). Determining the 

mechanisms by which norepinephrine-induced signals reach distinct cellular locations is critical for a complete 

understanding of noradrenergic regulation of cellular function under normal and pathological conditions. 
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 The present studies provide evidence that the inner nuclear membrane is an adrenergic signaling 

platform in astrocytes. They reveal a population of functional, G-protein-coupled β1-adrenergic receptors 

localized to the inner nuclear membranes of astrocytes and indicate that norepinephrine accesses these 

receptors through the actions of catecholamine transporters localized to plasma and outer nuclear membranes. 

Norepinephrine-induced activation of these receptors leads to rapid increases in nuclear PKA activity that are 

blocked by catecholamine uptake inhibitors. These receptors represent a powerful mechanism by which NE may 

directly influence nuclear processes including transcription factor activity and chromatin modification, leading to 

profound effects on gene expression, and contributing to the neuroprotective, immunomodulatory, and 

metabolic regulatory actions of norepinephrine in astrocytes. 

 Growing numbers of studies have demonstrated that adrenergic and other G-protein-coupled receptors 

can initiate signaling cascades from intracellular locations including the nuclear membrane (Campden et al., 

2015; Jong et al., 2018). Our studies provide evidence, using western blot on subcellular fractions as well as 

immunofluorescence, that β1-ARs are localized to both plasma and nuclear membranes in astrocytes. They 

further indicate that β1-ARs are localized to inner, but not outer, nuclear membranes of cultured astrocytes, as 

the nuclear immunofluorescence observed in triton-permeabilized astrocytes with antibodies directed against 

both intra- and extracellular epitopes of the receptor was attenuated when astrocytes were permeabilized with 

digitonin. If nuclear labeling represented receptors localized to the outer nuclear membrane or to peri-nuclear 

ER, nuclear fluorescence resulting from at least one of the two antibodies would be unchanged by digitonin 

permeabilization. These findings are the first to document nuclear localization of adrenergic receptors in any 

CNS cell type and suggest that, in addition to its actions at the plasma membrane, norepinephrine may initiate 

Gs-mediated signaling cascades in the nuclear compartment of astrocytes. They are consistent with studies 

demonstrating that, in cardiomyocytes, α- and β- adrenergic receptors are localized to the nuclear envelope, 

where they activate Gq- and Gs-coupled signaling pathways and mediate effects on gene expression and myocyte 

physiology (Vaniotis et al., 2011; Wu et al., 2014).  
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 Our studies suggest that, while β1-ARs are localized to both cell surface and nuclear membranes, 

receptors at the two sites may initiate distinct cAMP signaling processes. The subcellular localizations of key 

components of the canonical Gs signaling machinery, including Gαs, adenylyl cyclase isoforms, and PKA subunits, 

differed between nuclei and cell bodies. Distinct isoforms of adenylyl cyclase and PKA regulatory subunits were 

observed in nuclear and plasma membrane sites, consistent with the emerging understanding that PKA can be 

organized into signaling microdomains organized by A-Kinase-Anchoring Proteins (AKAPs) with distinct cellular 

localizations (Torres-Quesada et al., 2017). Thus, nuclear and plasma membrane-localized receptors may initiate 

distinct cAMP signaling processes which mediate distinct aspects of the overall response to norepinephrine.   

 The immunostaining patterns observed in the present studies suggest that there are robust, and 

possibly diverse, cAMP signaling mechanisms in astrocyte nuclei. Gαs and at least two distinct isoforms of 

adenylyl cyclase were identified in astrocyte nuclei, suggesting that activation of nuclear β1-ARs may induce 

rapid increases in nuclear cAMP as has been previously described in HEK-293 cells (Sample et al., 2012). The 

western blot banding patterns indicate that there may be distinct Gαs isoforms localized to nuclear and plasma 

membrane sites. At least two, and possibly three, isoforms of adenylyl cyclase were identified in astrocyte 

nuclei. ADCY2 was observed exclusively in nuclei, where it was localized to discrete, brightly labeled clusters, 

while ADCY5 and/or 6 were localized to both plasma and nuclear membranes. The ADCY2-labeled nuclear 

structures may represent “speckles”, nuclear microdomains enriched in RNA processing enzymes, RNA 

Polymerase II, and certain transcription factors (Spector and Lamond, 2011), and recently shown to be enriched 

with AKAP95 and other signaling proteins (Li et al., 2020). It was not possible to determine from our data 

whether staining in either subcellular compartment represented adenylate cyclase 5, 6 or a combination of the 

two isoforms. The finding of nuclear-localized adenylyl cyclase is consistent with early studies that identified, in 

purified lymphocyte nuclei, adenylyl cyclase activity that could be stimulated by treatment with the β-AR agonist 

isoproterenol (Wedner and Parker, 1977), suggesting that lymphocytes may also express nuclear-localized β-

ARs.  
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 Consistent with previous studies that demonstrated the existence of a cAMP-activable pool of PKA 

holoenzyme resident in nuclei of HEK-293 cells (Clister et al., 2019; Sample et al., 2012), our studies suggest that 

a subset of PKA holoenzyme resides in the nuclei of unstimulated astrocytes. Both PKA RI and RIIα were localized 

to astrocyte nuclei, with RI more strongly localized to nuclei and RIIα distributed more evenly between plasma 

membrane and nuclei. PKA RIIα also appeared in putative endomembrane profiles, and was densely localized to 

a perinuclear structure, likely the centrosome. PKA RIIα has previously been localized to both centrosomes and 

Golgi apparatus (Keryer et al., 1999).  

 The present studies provide evidence that multiple catecholamine transporters may gate access of 

norepinephrine to nuclear receptors. They confirm our previous observation that OCT3 is localized to plasma 

and outer nuclear membranes (Gasser et al., 2017), and they suggest potential roles for OCT2 and PMAT, as well 

as the uptake1 transporters DAT and NET, in gating activation of nuclear receptors. They are consistent with 

studies demonstrating that inhibition or genetic knockout of OCT3 decreases the activation of nuclear alpha-

adrenergic receptors (Wright et al., 2008) and Golgi-localized β1-ARs (Irannejad et al., 2017; Wang et al., 2020). 

While the present studies are the first to suggest nuclear membrane localization of OCT2, PMAT, and NET, they 

are not the first to suggest that DAT may be localized to the nucleus. Immunogold electron microscopic 

examination of neurons in the substantia nigra revealed DAT localized to both inner and outer nuclear 

membranes (Block et al., 2015; Hersch et al., 1997). Our studies did not determine the specific localization of 

any transporters to inner or outer nuclear membranes and provide no information about the orientation of any 

of the transporters in the membrane. The role of a given transporter in either allowing or limiting the activation 

of nuclear β1-ARs would depend on its localization to the inner or outer nuclear membrane and on its 

orientation in those membranes. Localization of monoamine transporters to the nuclear envelope is also 

interesting in light of recent studies documenting the phenomenon of histone monoaminylation, in which 

dopamine and serotonin, both substrates of the uptake2 transporters, are enzymatically conjugated to histones 

and modulate gene expression (Chan and Maze, 2020; Farrelly et al., 2019). 
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 We observed two classes of nuclear PKA responses to norepinephrine based on their sensitivity to 

pretreatment with inhibitors of catecholamine transport: a transporter-dependent, early response, and a 

transporter-independent, delayed response. The transporter-dependent response was rapid, detectable within 

the first minutes of norepinephrine treatment, and was absent in cells pre-treated with uptake inhibitors. The 

transporter-independent response was more gradual, only becoming significant during the second 10-minute 

time block after norepinephrine treatment and was unaffected by uptake inhibition. The rapid onset of early, 

transporter-dependent responses suggests that they are mediated by PKA that is resident to the nucleus and 

activated in response to nuclear β1-AR-initiated Gs signaling, and not by PKA activated at the plasma membrane 

and diffusing to the nucleus. This is consistent with studies examining the kinetics of nuclear PKA activation in 

response to cAMP generated either at the plasma membrane or in the nucleus (Sample et al., 2012). In those 

studies, when cAMP was generated at the plasma membrane, nuclear PKA activity increased gradually, with a 

half time (t1/2) of approximately 20 minutes and was mediated by catalytic subunits which had been activated at 

the plasma membrane and diffused into the nucleus. When cAMP was generated within the nucleus, nuclear 

PKA activity increased rapidly, with t1/2 of 3-4 minutes, and appeared to be mediated by nuclear-resident PKA. In 

our studies, the rapid onset of the transporter-dependent increase in PKA activity suggests that it reflects 

activation of nuclear-resident PKA in response to locally generated cAMP. The delayed onset of the transporter-

independent PKA response in the present studies suggests that it reflects the activity of cytosolic PKA activated 

in response to plasma-membrane-localized β-AR receptor activation. Alternatively, it is possible that the 

inhibition of norepinephrine uptake in our experiments facilitated the activation of cell surface α2-adrenergic 

receptors which have been shown to inhibit β-AR-induced activation of adenylyl cyclase (Northam et al., 1989). 

This could explain the delayed increase in nuclear PKA activity we observed. Further studies are needed to 

explore this possibility.  

 Norepinephrine exerts powerful and pervasive actions in the central nervous system. In astrocytes, 

these effects include neuroprotective, immunomodulatory, and metabolic regulatory actions. Many of these 
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actions critically involve regulation of nuclear processes and alterations in gene expression patterns. Activation 

of astrocyte β-adrenergic receptors induces phosphorylation of RNA Polymerase II (Lee and Jungmann, 1981), 

histones (Harrison et al., 1980), and CREB (Koppel et al., 2018), and regulates the expression of neurotrophic 

factors (Juric et al., 2008; Koppel et al., 2018), metabolic enzymes (Allaman et al., 2000; Pellegri et al., 1996) and 

immunoregulatory proteins (Feinstein et al., 2002; Gavrilyuk et al., 2002; Madrigal et al., 2009). Our findings 

suggest a novel and powerful mechanism by which norepinephrine may initiate these and other actions in the 

nucleus. They add to the growing body of evidence that G-protein-coupled receptors can be localized to, and 

activated at, endomembrane sites (Jong et al., 2018). The presence of β1-ARs at both nuclear and plasma 

membranes suggests the possibility that the two populations of receptor may mediate distinct aspects of the 

integrated cellular response to norepinephrine, each contributing uniquely to the neuroprotective, and 

immunomodulatory and metabolic regulatory actions of norepinephrine in astrocytes.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.24.446972doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.446972
http://creativecommons.org/licenses/by/4.0/


MATERIALS AND METHODS 

Antibodies and plasmids.  

Antibodies used in western blot and immunofluorescence studies are described in Table 1. The PMAT antibody 

was the generous gift of Dr. Joanne Wang. The pcDNA3 Flag β1-adrenergic-receptor plasmid was a gift from Dr. 

Robert Lefkowitz (Addgene plasmid # 14698; http://n2t.net/addgene:14698 ; RRID:Addgene_14698). The ExRai-

AKAR-NLS plasmid was a gift from Dr. Jin Zhang.  

Antigen RRID Source  Cat # Host Concentration/Dilution 
ADCY2 AB_2036171 GeneTex GTX101360 Rb IF: 0.66 μg/mL (1:500) 

ADCY5/6 AB_2819175 GeneTex GTX133788 Rb 
W: 6.45 μg/mL (1:1000)       
IF: 32.25 μg/mL (1:200, IF) 

ATP1A1 AB_2060976 Thermo Fisher Scientific MA3-928 Ms W: 0.374 μg/mL (1:5000) 

β1-AR (C-terminal) AB_2289444 Thermo Fisher Scientific PA1-049 Rb W, IF: 1:1000  

β1-AR (ECL2) AB_2340886 Alomone Labs AAR-023 Rb 
W: 1.7 μg/mL (1:500)           
IF: 2.125 μg/mL (1:400, IF) 

DAT AB_1586991 Millipore-Sigma AB2231 Rb 
W: 1 μg/mL (1:1000)            
IF: 2 μg/mL (1:500) 

FLAG AB_262044 Millipore-Sigma F1804 Ms IF: 2 μg/mL (1:500) 

GAPDH AB_10615768 Millipore-Sigma AB2302 Ckn W: 0.067 μg/mL (1:15000) 

GFAP AB_11212597 Millipore-Sigma MAB360 Ms IF: 1:1600 

GFAP AB_10001722 Novus Biologicals NB300-141 Rb IF: 1:2000 

Gsα AB_2868457 Abcam ab235956 Rb IF: 15 μg/mL (1:200) 

Gsα AB_631538 Santa Cruz Biotechnology sc-823 Rb W: 0.4 μg/mL (1:500) 

Lamin A/C AB_10545756 Cell Signaling Technology 4777S Ms 
W: 3.5 ng/mL (1:2000)         
IF: 17.5 ng/mL (1:400) 

Lamin A/C AB_2572338 Boster Biological Technology M00438-2 Ckn IF: 1:1000 

NET AB_10687241 Alomone Labs AMT-002 Rb IF: 1:200; 4 μg/mL (1:200) 

NET AB_2571639 MAb Technologies NET 05-2 Ms W: 1:1000 

PKA Cα AB_398293 BD Transduction Laboratories 610980 Ms W: 0.25 μg/mL (1:1000) 

PKA RI AB_397566 BD Transduction Laboratories 610165 Ms 
W: 0.25 μg/mL (1:1000)       
IF: 1:500 

PKA RIIα AB_2819176 GeneTex GTX35228 Rb W, IF: 3.29 μg/mL (1:1000) 

PMAT AB_11175851 GeneTex GTX82547 Rb W: 1:500; 4 μg/mL (1:500) 

PMAT "P469" none Gift from Joanne Wang N/A Rb IF: 1:1000 

OCT2 AB_1621334 Alpha Diagnostic International OCT21-A Rb 
W: 0.5 μg/mL (1:2000)         
IF: 1:100 (IF) 

OCT3 AB_1622571 Alpha Diagnostic International OCT31-A Rb W, IF: 1 μg/mL (1:500) 

Table 1. Primary antibodies used in western blot and immunofluorescence experiments. W: Western blot; IF: 
Immunofluorescence. 
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Primary astrocyte cell culture 

Astrocytes were cultured from cerebral cortices of postnatal day 1-2 C57BL/6 mouse pups bred in an in-house 

colony. Mice were handled in accordance with a protocol approved by the Marquette University institutional 

animal care and use committee and in compliance with the US National Institutes of Health Guide for the Care 

and Use of Laboratory Animals. Primary cortical astrocyte cultures and reagents were prepared as described in 

Uliasz et al (Uliasz et al., 2011). After 10 days in culture, confluent cells were treated with an anti-mitotic agent, 

cytosine arabinoside (ara-C), to limit microglial contamination. Astrocytes were harvested for subcellular 

fractionation or plated for immunofluorescence or excitation ratio imaging 3-5 weeks after initial culture. One 

day before all experiments astrocytes were treated with L-leucine methyl ester (LME) to further deplete 

microglia. 

Immunofluorescence and microscopy 

For all immunofluorescence experiments, cultured astrocytes were plated on glass-bottomed chamber slides 

(MatTek, Ashland, MA, USA or Millicell EZ Slide, Millipore Sigma). 5-7 days after plating, astrocytes were fixed 

(PBS + 2% paraformaldehyde, 10 min, 4°C), rinsed in 0.05M PBS, and permeabilized by incubation in blocking 

buffer (0.05M PBS, 0.3M glycine, 5% donkey serum) containing one of two detergents: Triton X-100 (0.1%; PBST) 

or digitonin (10µg/mL, 0.001%). Triton X-100 permeabilizes all cellular membranes, while digitonin, at the 

selected concentration, preferentially permeabilizes cholesterol-rich membranes, leaving nuclear membranes 

essentially intact (Jamur & Oliver, 2009). Astrocytes were then rinsed and incubated (overnight, 4°C) in 0.05M 

PBS containing the primary antibody of interest (see Table 1 for antibody and dilution information). After 

thorough rinsing, astrocytes were incubated (2 h, room temp) in 0.1% PBST containing the appropriate 

fluorophore-conjugated secondary antibody (AlexaFluor 488 or 594, 1:2000; Jackson ImmunoResearch). Triton 

X-100 was included to allow secondary antibody to reach all cellular compartments. In experiments in which a 

second antigen was labeled, cells were thoroughly rinsed and incubated in blocking buffer with 0.1% Triton X-

100 (20 min, room temperature) prior to incubation with primary and secondary antibodies as above. After final 
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rinses, cells were dried and slides were coverslipped using fluorescent mounting medium (VectaShield, Vector 

Laboratories, Inc., Burlingame, CA, USA; or EverBrite, Biotium, Inc, Fremont, CA USA). In some studies, nuclei 

were counterstained using DAPI. Each detergent comparison experiment was repeated at least three times using 

cells cultured from separate mouse litters. Photomicrographs were captured using a Nikon 80i microscope fitted 

with an Orca Flash 4.0L T digital camera (Hammamatsu, Japan) linked to a computer running NIS Elements BR 

software (Nikon Instruments, Melville, NY) or a Nikon A1R+ laser scanning confocal microscope linked to a 

computer running NIS Elements AR software. Photomicrographs of cells in the two detergent conditions were 

captured with identical exposure times or, in the case of the confocal microscope, identical laser power and 

illumination settings. To confirm that the two detergents differentially permeabilized plasma and nuclear 

membranes, we probed triton- and digitonin-permeabilized astrocytes with anti-lamin A/C antibodies. Dense 

lamin-like immunoreactivity was observed over the nuclei of triton-permeabilized astrocytes but was nearly 

absent in digitonin-permeabilized astrocytes (Fig. 3 A, B). 

Localization of FLAG-tagged β1-AR. To confirm the subcellular localization of β1-AR, astrocytes were chemically 

transfected using Lipofectamine 3000 (Invitrogen) with a plasmid directing expression of a recombinant FLAG-

tagged human β1-AR. During transfection cells were incubated with 1 µg of plasmid (37°C, 5 hours), followed by 

rinsing and incubation for 72 h in fresh growth medium. Cells were then fixed and permeabilized with 0.1% 

PBST. Immunofluorescence using an anti-FLAG primary antibody (Table 1) was carried out as described above.  

Perfusions and immunofluorescence in mouse brain tissue. Mice (C57BL6, Envigo) were deeply anesthetized by 

intraperitoneal injection of sodium pentobarbital (100 mg/kg) and were transcardially perfused with ice-cold 

0.05 M phosphate-buffered saline followed by 4% paraformaldehyde in 0.1 M sodium phosphate buffer (PB, pH 

7.4). Following perfusion, brains were removed and post-fixed in the 4% paraformaldehyde solution for 12 hours 

at 4°C and rinsed twice in 0.1 M PB for 12 hours. Brains were then incubated in 30% sucrose in 0.1 M PB for 

approximately 72 hours followed by rapid freezing in dry-ice-chilled liquid isopentane and storage at –80 °C until 

sectioning.  Forebrain sections (25 µm) were cut across the coronal plane using a cryostat (Leica Biosystems, 
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Buffalo Grove, IL, USA), and stored in cryoprotectant (30% ethylene glycol (w/w)/20% glycerol (w/w) in 0.05 M 

PB, pH 7.4) at –20 °C until immunostaining.  

 After rinsing in PBS, sections were incubated overnight with C-terminal-directed anti-β1-AR antibody in 

0.1% PBST. Sections were rinsed the next day and incubated with fluorophore-conjugated secondary antibodies 

(AlexaFluor 594-conjugated donkey anti-rabbit IgG; 1:2000; Jackson ImmunoResearch) for 2h. Sections were 

then rinsed and incubated with anti-GFAP antibody in 0.1% PBST overnight. The following day sections were 

rinsed, incubated 2h with fluorophore-conjugated secondary antibody (AlexaFluor 488-conjugated donkey anti-

mouse IgG), rinsed, and mounted onto SuperFrost microscope slides. After drying, sections were coverslipped 

with mounting medium (VectaShield + DAPI, Vector Laboratories, Inc., Burlingame, CA, USA). Photomicrographs 

were acquired using a Nikon 80i microscope fitted with an ORCA-Flash 4.0LT digital camera (Hammamatsu, 

Japan) linked to a computer running NIS Elements-BR software (Nikon Instruments, Melville, NY).  

Subcellular fractionation, gel electrophoresis and Western blot  

 Cytosolic, nuclear, and plasma membrane proteins were purified from cultured astrocytes using a 

commercially available kit (Qproteome Cell Compartment Kit; Qiagen, Inc, Germantown, MD, USA) according to 

the manufacturer’s instructions. Protein concentration in each fraction was determined (Pierce BCA Protein 

Assay, ThermoFisher Scientific, Waltham, MA, USA). Subcellular fractions were prepared for electrophoresis by 

addition of 4x Bolt LDS sample buffer and reducing agent (Invitrogen, Carlsbad, CA, USA) followed by heating at 

37°C for 30 min. Proteins (approximately 6 µg/sample) were electrophoresed on 4-12% Bis-Tris polyacrylamide 

gels (Invitrogen) at 200V for 55 minutes, followed by electroblotting (25V, 0.13A. 17W 1.5 hours) onto 

Immobilon-FL polyvinylidene difluoride membranes using a wet transfer apparatus (Thermo Fisher).  

Membranes were dried overnight at room temperature.  The following day, membranes were briefly re-wet in 

100% methanol, rinsed, blocked (Odyssey TBS Blocking Buffer, Li-Cor Biotechnology, Lincoln, NE), and incubated 

overnight at 4 °C in blocking buffer containing 0.1% Tween-20 and primary antibodies of interest (see Table S1). 

Blots were then rinsed and incubated (2 h, room temperature) with species-specific secondary antibodies 
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conjugated to a fluorophore (AlexaFluor 680- or AlexaFluor 800-conjugated goat anti-mouse and/or goat anti-

rabbit (Invitrogen); 1:15,000).  After rinsing, digital images of the fluorescent bands were captured using an 

Odyssey Fc Imaging System (LI-COR Biotechnology, Lincoln, NE, USA). Images were captured at each wavelength 

and saved as separate files. Data for individual antigens are presented separately as black-and-white images.  

Each immunoblot was repeated at least three times with proteins from separate astrocyte cultures.   

Excitation ratio imaging 

 Cultured astrocytes were transfected (Lipofectamine 3000; Invitrogen) with a plasmid driving the 

expression of ExRai-AKAR-NLS, a single-fluorophore biosensor that combines a PKA substrate sequence with the 

FHA1 domain of AKAR, a circularly permuted GFP, and a nuclear localization sequence. The fluorophore has two 

discrete excitation peaks: one centered around 400 nm and another around 509 nm, with a shoulder at 480 nm. 

Phosphorylation of the PKA substrate sequence results in increased efficacy of 480 nm-induced excitation and 

decreased efficacy of 400 nm-induced excitation. Thus, an increase in kinase activity is observed as an increase 

in the 488-/402-nm excitation ratio (Mehta et al., 2018). Excitation ratio imaging experiments were conducted 

24 hours after transfection. Thirty minutes before imaging, cells were rinsed with serum-free medium and 

incubated in medium containing either vehicle (2.4 mg/ml HBC) or a cocktail of catecholamine transport 

inhibitors. The following transport inhibitors were used: corticosterone (500 µM) to inhibit OCT2 (IC50 = 500nM 

(Dirk Gründemann et al., 1998)), OCT3 (IC50 = 120 nM (Gründemann et al., 1998)) and PMAT (IC50 = 400 µM 

(Engel et al., 2004)); atomoxetine (10 µM) to inhibit NET; and GBR12909 (10 µM) to inhibit DAT.  Dishes 

containing live astrocytes were then transferred to the temperature-controlled stage of a Nikon A1R confocal 

microscope to monitor excitation ratio responses to norepinephrine. Images at two excitation wavelengths (402 

and 488 nm) were collected every 20 seconds for 3 minutes prior to, and for 30 min after, bath application of 

norepinephrine (final concentration 50 nM). This experiment was conducted on matched pairs (Groups: Vehicle 

and Transport Inhibitors) of dishes from 5 separate primary astrocyte culture preparations. Graphs were 

prepared using GraphPad Prism.  
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Excitation Ratio Analysis 

Nuclear fluorescence intensities for each excitation wavelength were normalized based on the average intensity 

during the baseline period for each nucleus. A ratio was then calculated by dividing the normalized intensity at 

488 nm by the normalized intensity at 402 nm. Thus, increases in PKA are exhibited as increases in the ratio. 

Before examining group differences, any nuclei with excessive ratio drift during the baseline period were 

eliminated. The slope of the ratio during the baseline period was calculated for each nucleus, and the standard 

deviation of all slopes was calculated. Nuclei with baseline slopes exceeding two standard deviations of the 

mean were eliminated from subsequent analyses (one nucleus from the Transport Inhibitors group and two 

nuclei from the Vehicle group). For the remaining nuclei (n = 17 in the Transporter Inhibitors group and n=19 in 

the Vehicle group), average excitation ratios were calculated for the 3-minute baseline period and for each of 

three 10-min post-norepinephrine periods. The average excitation ratios for the two groups (Vehicle vs. 

Transport Inhibitors) were then analyzed with a mixed ANOVA across the 4 periods (Baseline vs. 0-10 vs. 10-20 

vs. 20-30 minutes). Because we anticipated that the largest effect of the inhibitors would occur during the early 

post-norepinephrine periods, we conducted two planned interaction contrasts comparing the baseline periods 

with the first post-NE period (Baseline vs. 0-10 minutes); and comparing the first two post-NE periods (0-10 vs 

10-20 minutes). Further comparisons were made using Tukey’s HSD. 
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