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Abstract 

                    

The severity of the covid 19 has been observed throughout the world as severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2)  had spread globally claiming more than 2 million lives 

and left a devastating impact on peoples’ life.  Recently several virulent mutant strains of this 

virus, such as the B.1.1.7, B.1.351, and P1 lineages have emerged. These strains are 

predominantly observed in UK, South Africa and Brazil.  Another extremely pathogenic B.1.617 

lineage and its sub-lineages, first detected in India, are now affecting some countries at notably 

stronger spread-rates. This paper computationally examines the time-based structures of B.1.1.7, 

B.1.351, P1 lineages with selected spike protein mutations. Additionally, the mutations in the 

more recently found B.1.617 lineage and some of its sub-lineages are explored, and the 

implications for multiple point mutations of the spike protein’s receptor-binding domain (RBD) 

are described.  

 

Keywords: mutation; SARS-CoV-2 lineages; spike protein; structural biochemistry; variants, 
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1. Introduction 

COVID 19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed 

more than 2 million lives and left a devastating global impact since March 2020 [1]. In recent 

months, several variants of this life-threatening virus have been emerged with greater spread-

rates, adaptability and fitness. Among these virulent lineages B.1.1.7, B.1.351 and P1 were 

initially detected in UK, South Africa and Brazil, respectively [2]. These nomenclatures are 

based on Pango lineage [3].  As summarized in Table 1, these “Variant of Concern” have several 

notable mutations, some of which  are common among the three lineages The Table also includes  

the  highly pathogenic B.1.617 lineage and some of its sub-lineages, that have been first found in 

India more recently, and already included in  CDC’s “Variants of Interest” [4]. The delta variant 

(also known as B.1.617.2) has been listed under CDC’s “Variant of Concern” on June 15th, 

2021. The present work focuses on a set of comparative structural analyses of these new SARS-

CoV-2 variants. 

 Computational structural biology is rapidly becoming an integral part of applied 

immunology, as this field continues to aid the understanding of the structural basis of proteins, 

and thus, plays a key role in the development of preventive drug designs [5, 6]. Since the 

beginning of the Covid-19 pandemic, the availability of experimental results about the 

structure/function, epidemiological distribution and mutational fitness of this novel pathogen has 

been very limited in the commonly available literature. As a result, scientists have heavily relied 

on simulation-based tools and strategies to investigate this virus. In this regard, computational 

tools of immunoinformatics can be particularly useful to investigate such evolving infectious 

pathogens and host-pathogen interactions [7-9].  Our present effort is guided by these 

considerations.   
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 In our previous papers, we have analyzed several biologically relevant protein structures 

and mutant models of the angiotensin peptide coordinated to the Zn-bound ACE2 receptor;  more 

recently, we have reported a model structure of the SARS-CoV-2 N501Y variant [10-15]. In this 

current investigation of SARS-CoV-2 lineages, we will examine the implications for multiple 

point mutations on their spike RBD. In particular, we will measure the structural and 

conformational variations of these mutant variants as functions of time and, demonstrate how 

structural change corresponds to their functions. 

Table 1.  Selected Mutations in SARS-CoV-2 Lineages. 
 

Name of the 

lineage/sub-lineage 

Spike protein mutations
 

 

Experiments with key 

mutations on SARS-CoV-2 

spike RBD 

B.1.1.7 
[2]

 69/70 deletion, 144Y deletion, 

E484K*, S494P*, N501Y, A570D, 

D614G, P681H 

E484K, S494P, N501Y 

 

 

B.1.351
[2]

 K417N, E484K, N501Y,  D614G K417N, E484K, N501Y 

P1
[2]

 K417T**, E484K, N501Y, D614G K417T , E484K, N501Y 

B.1.617 
[4]

 L452R, E484Q, D614G  

 

L452R, E484Q 
B.1.617.1

[4]
 T95I*, G142D, E154K, L452R, 

E484Q, D614G, P681R, Q1071H 

B.1.617.3
 [4]

 T19R, G142D, L452R, E484Q, 

D614G, P681R, D950N 

variant with 

possible 

mutations
[16]

 

L452R, Y453F L452R,Y453F 

* found in some sequences 

** Initially observed as K417N/T, later this mutation was  identified as K417T in the P1 lineage 

 

 

The SARS-CoV-2 genome contains non-structural (NSPs) as well as structural proteins. 

There are 16 NSPs in SARS-CoV-2 genome, NSP1-NSP16. The structural portions consist of 

spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins. The S glycoprotein is the 

main interacting site for the host entry, and plays an important role in host defense and antibody 

neutralization. The accessory proteins contain several open reading frames (ORFs) including 

ORF1a/1b, ORF3a/3b, ORF6, ORF7a/7b, and ORFs8-10. The SARS-CoV-2 genome contains a 
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single strand sense RNA, containing some similarities with the previously identified beta-

coronavirus family members of the SARS-CoV and the Middle East respiratory syndrome 

(MERS-CoV) viruses.  

Structural illustrations of SARS-CoV-2 and its genome structure are schematically 

presented in Fig 1a-b. Though it has some structural similarities with SARS and MERS, as 

observed in their sequence similarities, the fast transmissibility and adaptability of the highly 

pathogenic SARS-CoV-2 is rather unique.  The SARS-CoV-2 is ~1273 amino acids (AAs) long, 

that contains the S1 (~14–685AAs) and S2 (~686–1273AAs) subunits. At the start of this 

structure, a small N-terminus signaling peptide (~1–13AAs) is present. Then comes the S1 

subunit, that helps in receptor binding and comprised of two domains, N-terminal domain (NTD; 

~14-305AAs) and receptor binding domain (RBD; ~319-541AAs) [17]. The mutations we 

discussed in this report are centered on the lately found variants of S1 RBD. 

 

Figure 1a. Schematic diagram of the SARS-COV-2 structure where the spike proteins are displayed in 

light brown. b. The genome structure of the SARS-COV-2.  
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2. Materials and Methods 

We have used the spike protein RBD for the first set of simulations, where  we have selected the 

wt type 6M0J: E as SARS-CoV-2 S1 RBD [18]  and some of the reported mutations found in the 

B.1.1.7, B.1.351, P1 lineages. Additionally, we have analyzed the B.1.617, lineage, as well as the 

sub-lineages B.1.617.1/B.1.617.3 with selected common mutations in their S1-RBD. The 

B.1.1.7, B.1.351 and P1 strains are currently listed under CDC’s “Variant of Concern”, while 

B.1.617 and some of its sub-lineages are included in CDC’s “Variant of Interest”. Very recently, 

B.1.617.2, the delta variant has been listed under CDC’s “Variant of Concern”. A possible 

mutant with two single-point mutations in its S protein’s RBD is also examined  [16].  

Starting from the native structures (6M0J:E), the mutant variants were generated using 

the mutator gui of Visual Molecular Dynamics (VMD) [19]. In total we have simulations for the 

mutations listed in Table 1, one wt S1 RBD and five S1-RBD variants with selected mutations. 

These simulations have used the Nanoscale Molecular Dynamics (NAMD), quickMD and Visual 

Molecular Dynamics (VMD) software programs [19-21]. After completing the initial protocols 

(minimization/annealing and equilibration processes), the MD simulation was continued for 30 

ns. The integration time was 2 fs for all procedures. All protocols have used the Generalized 

Born solvent-accessible surface area implicit solvation model [22]. For annealing and 

equilibration, the backbones were restrained, but no atoms were restrained during the final 

simulation process. Using Langevin dynamics the temperature was maintained at 300 K during 

final simulation process. The details of the simulation protocols are described elsewhere [15]. 

The proteins’ 3D models were set up  by using Biovia’s Discovery Studio Visualizer [23]. 
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3. Results and Discussion 

 

Fig.1a shows a generalized schematic of the wt SARS-CoV-2 structure, where the S, E, M, N 

and the viral RNA, as well as the two subunits S1 and S2 of the S protein are identified. The 

mutations considered in this report are found in the RBD, within the S1 subunit of the S protein. 

Fig. 1b shows a typical genomic display of the SARS-CoV-2, where different nonstructural and 

structural parts are presented, along with the open reading frames (ORFs).  

 

Figure 2. Secondary structures of SARS-CoV-2: S1-RBD variants with selected mutations. a. The 

selected mutant residues E484K, S494P and N501Y of B.1.1.7 lineage. b. The selected mutant residues 

K417N, E484K, N501Y of B.1.351 lineage. c. The selected mutant residues K417T, E484K, N501Y of 

P1 lineage. d. The mutant residues L452R, E484Q of B.1.617 lineage. e. The mutations L452R, Y453F 

within a possible mutant structure.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.23.449639doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449639


8 
 

As shown in Fig 2 the structural illustrations of the wt and mutant variants of the SARS-

CoV-2 RBD corresponds to the 6M0J:E subunit. This is a relatively small (319-541) subunit, and 

in Fig. 2a, we have focused on three selected mutant residues E484K, S494P and N501Y of the 

B.1.1.7 lineage. The mutant variant with residues K417N, E484K, N501Y of B.1.351 lineage is 

displayed in Figure 2b.  The mutant variant with residues K417T, E484K, N501Y of P1 lineage 

is shown in Figure 2c. The two mutant residues L452R and E484Q of the B.1.617 lineage are 

depicted in Figure 2d. The last two mutations are common to the B.1.617.1 and B.1.617.3 sub-

lineages.  Another possible variant with two mutations L452R, Y453F, on the spike RBD is 

displayed in Figure 2e. From Figure 2 it is evident that some of these mutations are located on 

the proteins’ surface regions. 

 

Figure 3. a. RMSD plots of wt and different SARS-CoV-2 variants with selected S1-RBD mutations. The 

two mutations identified in B.1.617 lineage (e) are also common in B.1.617.1 and B.1.617.3 sub-lineages. 
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Inset showing the RMSDs for the last 5ns. b. The RMSD graph with selected mutant residues from 

different lineages. c. The RMSF plots for the wt and different SARS-CoV-2 variants with selected S1-

RBD mutations. d. Variations in the number of H bonds of wt and different SARS-CoV-2 variants with 

selected mutations.  

 

Figure 3a shows comparative RMSD plots of the SARS-CoV-2 variants with selected 

mutations based on the RBD of 6M0J. All these variants reached convergence, during the last 5 

ns of the simulation. Nevertheless, as observed in the inset figure, the selected mutations with 

B.1.351 lineage (c) shows measurably  higher RMSD values than those of  P1 (d), B.1.617 (e) 

and the species of combined mutations 452 and 453 (f) during the last phase of the simulation. 

These last three variants are more stable than their WT species (a). Figure 3b represents RMSD 

of the selected mutations within the variants displayed in Figure 3a, and once again, the selected 

mutations of P1, B.1.617 and the third variant are seen to exhibit the lowest RMSD values, 

indicating a fairly stable nature shared by these mutations. The foregoing plots demonstrate that 

the selected mutations within P1, B.1.617 (also B.1.617.1 and B.1.617.3) lineages and the 

possible variant with 452 and 453 mutations are more stable than the mutant variants of B.1.351 

and B.1.1.7. It is unknown, however, if the protein’s stability is dictated by the number of 

mutations within the variant. As in the case of  the RMSD plots,  the RMSF plots in Figure 3c 

also shows that, the B.1.617 lineage (e), and the L452R-Y453F mutations (f) are characterized 

by minimal fluctuations (lowest in their comparison group). At the same time, the selected 

mutations in B.1.351 lineage (c) once again show the higher range of fluctuations in Fig. 3c. We 

have plotted the RMSD and RMSF graph for the wt RBD structure previously but for 

comparison we have included it in Figure 3a and c [15]. Figure 3d shows the hydrogen bond 

numbers during the simulation time; for none of the cases considered, these numbers exhibit any 

significant variations. 
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Figure 4. Time based secondary structure changes of SARS-CoV-2 mutant S1-RBDs. The time-based 

structure changes of  a. the variant of SARS-CoV-2 RBD with mutations E484K, S494P and N501Y.  

 a.’ E484K, S494P and N501Y residues within the B.1.1.7 lineage. b. the variant of SARS-COV-2 RBD 

with mutations K417N, E484K, N501Y. b’. The K417N, E484K, N501Y residues within the B.1.351 

lineage. c. the variant of SARS-COV-2 RBD with mutations K417T, E484K, N501Y. c’. K417T, E484K, 

N501Y residues within the P1 lineage. 

 

Figures 4-5 represent time based secondary structure-changes of the variant proteins as 

well as those of the selected mutant residues within these mutant strains. Secondary structures, in 

particular, the  helices and  sheets play a crucial role in determining proteins stability. From 

Figure, 4a-a’ it is clear that the mutations, S494P in B.1.1.7, is quite stable. Near the end of the 

simulation time, the E484K and N501Y transformations show slight fluctuations from coils to 

310 helices though they disappeared near the end the simulation. However, the actual 

manifestation of these latter effects may change with time.  

Within the B.1.351 variant in Figure 4b-b’, the K417N mutation shows some variations 

from  helices to 310 helices, turns and coils. This makes the K417 unstable during the last phase 

with the extinction of the  helices. The E484K mutation in this variant may show higher level 

of stability as some coils and turns are converted to few sheets near the last phase of the 
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simulation  even though they eventually disappear at the end. Coils to turns are still observed 

here at the end of simulation. There are some changes from turns to coils in the 501 residue, but 

it is not clear from the data if the latter correspond to the so called “coiled coils”.  

Among the mutations we studied in P1, the K417T and N501Y do not show any 

significant structure variations throughout the simulation time. The E484K mutation exhibits a 

higher level of stability as some coils and turns in this species are converted to sheets during 

the last phase of the simulation (Figure 4c-c’).  

Within the L452R residue of B.1.617 lineage and the B.1.617.1/B.1.617.3 sub-lineages 

the intermittent 3-10 helices and the isolated bridges are completely transferred into  sheets 

making this mutant residue more stable. In the case of E484Q, the random coils and turns are 

converted to 310 helices that are more stable, which, consequently make the secondary structure 

more rigid and solid (Figure 5d-d’).   

 

Figure 5. Secondary structure changes of d. the variant of SARS-COV-2 RBD with mutations L452R and 

E484Q. d’ L452R and E484Q residues within the B.1.617/B.1.617.1/B.1.617.3 lineage. e. the variant of 

SARS-COV-2 RBD with mutations  L452R and Y453F. e’ L452R and Y453F residues within a possible 

mutant variant. f. The color code of secondary structure analyses. 
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The L452R and Y453F mutations in Figure 5e-e’ are stable and do not indicate any 

significant secondary structure changes during the simulation. The secondary structure change of 

a protein ligand is a key factor for fully understanding the protein’s functional changes. From 

Figures 4-5 it is evident that the selected mutant residues within the B.1.351 strain are fairly 

unstable, and that the residues within the B.1.617/B.1.617.1/B.1.617.3 variants are mostly stable. 

Among these mutations, L452R, Y453F, E484Q, S494P are quite stable, and E484K is 

particularly stable in the P1 strain. 

Although numerous studies have already been reported on the structure and functions of 

SARS-CoV-2, the structures of the more recently found lineages have not been thoroughly 

investigated yet. The S1-RBD mutations of the B.1.617 lineage and its associated sub-lineages 

are of particular interest in this context. The B.1.617 strain was initially labeled as “double 

mutant” due to the presence of two mutations (E484Q, L452R) from two different lineages; 

L452R is found in B.1.427/B.1.429 while E484K, exists  in both B.1.351 and P1 . However, in 

B.1.617 the E484K mutation has been changed to E484Q. Another possible mutant variant with 

mutations L452R and Y453F are also the combination of two lineages, B.1.427/ B.1.429 and 

B.1.298. 

The stable mutation in residue 452 may form a stronger complex with ACE2. The Y453F 

in the Figure 5e’ also exhibits stronger stability with time. The wt E484 residue has been 

recognized as a “repulsive residue” between the RBD-ACE2 complex [24]. Since the mutations 

in the E484K/Q residue are particularly stable in the P1 and B.1.617 strains (Figure 4c’and 4d’), 

the mutations in this residue may form a stronger bond with the receptor. S494P is also very 

strong as it resides within the helix; within the B.1.1.7 lineage this appears to be the most 
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stable residue. There are numerous examples in the literature that N501Y mutation forms a stable 

connection with the receptor.  

 

4. Conclusions 

According to the results presented here, the mutant RBD variant of B.1.617 (as well as 

some of its sub-lineages), P1 and the potential variant with two possible mutants are the most 

stable forms. Among the mutations we have studied in this work, L452R, Y453F, E484Q, S494P 

are fairly stable. N501Y does not show significant variations during the simulation timescale. 

The E484K within the P1 strain is also rather stable. Since these newly found lineages are more 

spreadable than their predecessor species, some of the mutations may escape from antibody 

neutralization and cellular immunity. In fact, some of the  variants with mutations K417N/T, 

E484K, L452R and Y453F are recognized as antibody neutralizing escape mutants [16, 25]. The 

steady mutations identified here to occur within the highly infective species may help to further 

understand for the associated antibody cross-reactivity, and may also facilitate the task of 

designing effective inhibitors. The enhanced stabilities of some of the mutant residues, as found 

here with these newer variants, may have implications in the context of future vaccine 

developments to combat other impending strains and pathogenic variants of SARS-CoV-2.  
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