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Abstract  

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown immense promise 

for patient-specific disease modeling, cardiotoxicity screening, and regenerative therapy 

development. However, hPSC-CMs in culture have not recapitulated the structure or functional 

properties of adult CMs in vivo thus far. To gain global insight into hPSC-CM biology, we 

introduce a multi-omics strategy for analyzing the hPSC-CM metabolome and proteome from the 

same cell culture, creating multi-dimensional profiles of hPSC-CMs. Here we developed a 

sequential extraction to capture metabolites and proteins from hPSC-CM monolayer cultures, and 

analyzed these extracts using high resolution mass spectrometry (MS). Using this strategy, we 

identified an average of 205 metabolites/lipids and 4,008 protein groups from 106 cells with high 

reproducibility. We further integrated the proteome and metabolome measurements to create 

network profiles of molecular phenotypes for hPSC-CMs. Out of the 310 total pathways identified 

using metabolomics and proteomics data, 40 pathways were considered significantly 

overrepresented (FDR-corrected p ≤ 0.05). Highly populated pathways included those involved in 

protein synthesis (ribosome, spliceosome), ATP generation (oxidative phosphorylation), and 

cardiac muscle contraction. This multi-omics method achieves deep coverage of metabolites and 

proteins, creating a multidimensional view of the hPSC-CM phenotype. This strategy can be used 

to generate biological hypotheses and identify biomarker candidates to advance the understanding 

of hPSC-CM differentiation and maturation.   
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Introduction  

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown immense 

promise for patient-specific disease modeling, cardiotoxicity screening, and regenerative therapy 

development [1-5]. Enabled by recent advances, hPSC-CMs can now be generated consistently 

with high yield and purity at a clinically relevant scale [6-9]. However, one of the roadblocks 

impeding the realization of the full potential of hPSC-CMs is their structural and phenotypic 

immaturity compared to adult CMs [9, 10]. Significant efforts have been made to mature hPSC-

CMs and considerable progress has been achieved; nevertheless, hPSC-CMs still lack adult-like 

phenotypes in vitro [9, 11].  As hPSC-CM maturation entails complex signaling networks, new 

discovery approaches are urgently needed to gain systems-level insights into hPSC-CM biology 

[9, 12, 13].  

High-throughput “omics” technologies provide transformative insights to elucidate 

complex biological processes. Conceivably, a multi-omic strategy will offer a more comprehensive 

understanding of hPSC-CM complexity than any single omic technology alone [14-17]. In the 

post-genomic era, proteomics and metabolomics offer an unbiased suite of tools to link proteins 

and metabolites for integrated analysis of signal transduction, cellular metabolism, and phenotype 

on a systems biology level [17-19]. Analysis of lipids, metabolites, and proteins from the same 

sample can provide precise insights to the phenotype from which they arise, and elimination of 

parallel sample processing mitigates concerns around batch variability [15, 20]. By measuring 

metabolites and proteins from the same hPSC-CM monolayer sample, the amount of information 

is maximized from these costly and time-consuming cultures. However, a multi-omics method 

with the capability to analyze both metabolome and proteome from the same hPSC-CM culture 

remains lacking.  There are still challenges associated with reproducible sample extraction for both 
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metabolomics and proteomics, as well as correlation of metabolite and protein measurements from 

the same cell culture.  

Herein, we developed a novel multi-omics method enabled by a sequential extraction and 

high-resolution mass spectrometry (MS)-based metabolomics and proteomics to analyze 

monolayer cultures of hPSC-CMs. After acquisition of metabolite and protein measurements from 

the same cell culture, we create a multi-dimensional profile of molecular phenotypes of hPSC-

CMs. This report represents the first integration of untargeted metabolomics and proteomics data 

from hPSC-CM monolayer cultures to identify prominent biological pathways of hPSC-CMs. We 

demonstrate high reproducibility in our metabolomics and proteomics measurements, which 

provides a strong technological foundation to better understand hPSC-CM biology. 

 

Materials and Methods  

hPSC and hPSC-CM Cell Culture and Validation: Human induced pluripotent stem cells (WTC11 

cell line) were maintained and differentiated into cardiomyocytes using the GiWi protocol as 

described previously [21]. hPSC-CM differentiation efficiency was assessed in parallel wells by 

flow cytometry for cardiac troponin T (cTnT)-positive CMs on Day 16 of differentiation [21]. The 

resulting purity was 72 ± 2% cTnT+ (n=5) (Figure S1). 

Sequential Extraction of hPSC-CM Culture: Metabolites and proteins were sequentially extracted 

using a solvent-based quench technique [22]. Cells were incubated in 1.0 mL cold (4ºC) 100% 

methanol for 1 minute to quench cellular metabolic activity. Subsequently, cells were scraped into 

a 1.5 mL microcentrifuge tubes in methanol, referred to as “Metabolite-Protein Mixture.” 

Metabolite-Protein Mixture was vortexed for 10s and incubated for 10 min at 4 ºC. The Metabolite-
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Protein Mixture was centrifuged for 5 min at 14,000 g, creating a metabolite-rich supernatant and 

protein-rich cell pellet. The pellet was rinsed with 200 µL DPBS. Metabolite and protein samples 

were dried under vacuum and stored at -80 ºC. 

Untargeted Metabolomics of hPSC-CM: Metabolites were reconstituted in 1:1 methanol:water. 

FIE-FTICR MS-based metabolic fingerprinting was performed using a Waters ACQUITY UPLC 

M-Class System (Waters Corporation, Milford, MS, USA) coupled to a Bruker solariX 12T FTICR 

mass spectrometer (Bruker Daltonics, Bremen, Germany) without an LC column as described 

previously [23]. MS data were processed using MetaboScape v2021 and feature assignments were 

manually validated using DataAnalysis v4.3 (both Bruker Daltonics, Bremen, Germany). Bucket 

lists for data collected in positive and negative ionization modes were generated using the T-Rex 

2D algorithm and combined to create one merged bucket list using a mass error tolerance of < 1.0 

ppm. Features were  annotated by SmartFormula in MetaboScape as described previously [24] and 

by accurate mass using the Mass Bank of North America, Human Metabolome Database (HMDB) 

[25], LipidBlast [26], and METLIN databases [27] with an error tolerance ≤ 3.0 ppm. Overlap in 

metabolite features between hPSC-CMs was visualized using BioVenn [28]. Metabolites were 

mapped to networks using MetScape plugin in CytoScape v 3.8.1 [29]. 

Global Proteomics Analysis of hPSC-CM: Proteins from the dried cell pellet were solubilized in 

10 μL buffer containing 0.25% w/v Azo. Samples were normalized, reduced, alkylated, and 

digested with Trypsin Gold (Promega, Madison, Wisconsin, USA). Samples were quenched and 

irradiated at 305 nm for 5 min, desalted and dried under vacuum.  

Nanoflow LC-MS analysis of tryptic peptides was performed using a timsTOF Pro [30] 

coupled to a nanoElute nano-flow UHPLC system using a Captivespray nano-electrospray ion 

source all Bruker Daltonics, Bremen, Germany). The timsTOF Pro was operated in Parallel 
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Accumulation and Serial Fragmentation (PASEF) mode. Tandem mass spectra were searched 

against the UniProt human database UP000005640 using MaxQuant v1.6.17.0 [31] using a false 

discovery rate of 0.01. Label free quantification (LFQ) was performed using classic normalization 

and a minimum ratio count of 2. To determine correlation of LFQ intensities across samples, 

Perseus software v1.6.14.0 [32] was used to transform the data by log2x and generate scatter plots 

with Pearson correlation coefficients. Overlap in protein groups and peptides identified between 

hPSC-CMs was visualized using BioVenn. Pathway analysis of proteins identified in the dataset 

was performed using the ReactomeFI plugin for Cytoscape [33].  

Multi-omics (Metabolomics-Proteomics) Data Integration: Protein (UniProt identifications) and 

metabolite (KEGG identifiers) lists were uploaded to MetaboAnalyst 5.0 for integrative pathway 

analysis [34]. The Joint Pathway Analysis module was used to determine significantly enriched 

pathways within the dataset (hypergeometric test, p ≤ 0.05). 

For further details, refer to Supplemental Materials and Methods.  

 

Results and Discussion  

A Multi-Omics Platform 

We have developed a novel multi-omics platform to analyze metabolites (including lipids) 

and proteins from the same hPSC-CM sample. To harvest metabolites and proteins, cellular 

activity was quenched using cold methanol [22], simultaneously extracting metabolites and 

precipitating proteins (Figure S2). This quenching protocol achieves rapid, reproducible access to 

the metabolome and proteome. After a brief centrifugation step, the metabolite-rich supernatant 

and the dehydrated cell pellet were easily separated and analyzed using MS-based metabolomics 

and proteomics, respectively.  The supernatant required no further preparation prior to analysis by 
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MS-based metabolomics, while the cell pellet was resolubilized using Azo before the analysis by 

the MS-based proteomics. Direct metabolite extraction using methanol was chosen over traditional 

cell-lifting based protocols as it has been shown to better preserve endogenous intracellular 

metabolite profiles [35].  

We used several specialized analytical approaches to enable a high throughput and 

comprehensive analysis of hPSC-CM metabolites and proteins. To measure metabolites, we used 

an automated flow injection electrospray (FIE) platform integrated to Fourier transform ion 

cyclotron resonance (FTICR) MS [24]. The ultrahigh mass accuracy and resolving power of the 

FTICR MS enable simultaneous detection and quantification of complex mixture of metabolites 

without the need for chromatographic separation, sample fractionation, or chemical derivatization, 

resulting in metabolite identifications with sub-ppm mass accuracy and a high-throughput 

analytical workflow [24].  

To solubilize proteins for global bottom-up proteomics, we used Azo [36], a novel photo-

cleavable surfactant that enables high-throughput enzymatic digestion. Further, minimal sample 

cleanup is required as <5 minutes of exposure to UV light will degrade it into MS-compatible 

products [23, 37]. Moreover, Azo has been shown to effectively access critical membrane and 

ECM proteins [23]. To analyze peptides, we used online data-dependent Parallel Accumulation-

Serial Fragmentation (dda-PASEF) on the timsTOF Pro [38, 39]. The coupling of trapped ion 

mobility spectrometry (tims) with PASEF on the timsTOF Pro enables rapid sequencing of 

peptides, resulting in deep and sensitive proteome coverage using a standard 120 minute sample 

run [39]. 
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High Resolution Untargeted Metabolomics enabled by FIE-FTICR MS Platform 

Metabolite samples were directly infused into a 12 T FTICR MS using an automated flow 

injection and electrospray ionization (FIE-FTICR MS) (Figure 1A, S2). Our FIE-FTICR MS 

platform requires only 5 min of analysis time per sample and detects hundreds of metabolite 

features with high mass accuracy (Figure S3A). Additionally, the FIE-FTICR MS platform can 

profile small molecule metabolites as well as lipid composition of the sample within this 5 min 

analysis. FIE-FTICR MS enables fast polarity switching, allowing for more access to unique 

metabolites in the sample, including amino acids, alkenes, and ceramides in the positive mode and 

a variety of phospholipid classes in the negative ionization mode (Figure S3B). From 

approximately 106 cells, we detected an average of 626 metabolite features between positive and 

negative ionization modes. Of those features, 468 were annotated by the SmartFormula (SF) 

function in MetaboScape with ≤ 5.0 ppm mass error tolerance, generating a putative chemical 

formula based exact mass and isotopic pattern. In a representative zoomed-in window of the mass 

spectrum ranging from 180-250 m/z showed 14 SF annotations made within 5 ppm error in positive 

ionization mode, with 12 features annotated with errors around 2 ppm (Figure S4A). In the 

negative ionization mode, 12 features were annotated by SF in the same 70 m/z window within 5 

ppm error, with 7 of them annotated with an m/z error tolerance of < 1 ppm (Figure S4B). 

Metabolites were annotated from databases such as METLIN and Mass Bank of North America 

were annotated using high mass accuracy (≤ 3.0 ppm). These annotations cover a broad range of 

metabolites and lipids, including triglycerides (TAG), ATP, NADH, and UDP-glucose (Figure 

1B).  

We demonstrated highly reproducible injections for the analysis of hPSC-CM metabolites 

(Figure S5A). Mass spectra of triplicate injections show similarity in metabolite feature intensity 
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and populations in both positive and negative ionization modes. After a blank reduction step, 624-

629 features were detected in each injection replicate and shared 623 features in common, 

corresponding to over 99% overlap between triplicate injections (Figure S5B). Variation in shared 

feature intensities was low, with 6.9% median relative standard deviation (RSD) for all features 

detected. 96% of features detected had a signal intensity variation less than 20% RSD and 72% of 

features less than 10% RSD (Figure S5C). We used this strong technical foundation to evaluate 

the reproducibility of hPSC-CM metabolite extraction using biological replicates (n=3). Visual 

comparison of mass spectra shows similar intensities and feature population between hPSC-CM 

biological replicates in both ionization modes (Figure S6A). 619-623 features were detected in 3 

of 3 triplicate injections for each biological replicate and 613 features were shared between them, 

corresponding to 98% overlap of features detected between biological replicates (Figure S6B). Of 

these shared features, 459 were annotated with SF. Variation in feature intensity across biological 

replicates was 13% median RSD, and 84% of features varied by ≤ 20% RSD (Figure S6C). Taken 

with the high overlap in features detected between biological replicates and high technical 

reproducibility, these variation in the data indicate the methods’ sensitivity to differences in 

metabolite profiles between hPSC-CMs.  

Hundreds of metabolites important to hPSC-CM biology were identified in our dataset with 

high mass accuracy, involving pathways such as amino acid metabolism, glycolysis, and 

glycerophospholipid metabolism (Figure 1C). 205 metabolites were annotated using a 

combination of the METLIN, HMDB, LipidBlast, and MoNA databases with an error tolerance of 

≤ 3.0 ppm. Of those metabolites, 46 were annotated with mass error tolerance of ≤ 0.2 ppm, and 

117 were annotated ≤ 1.0 ppm. Energy-yielding substrates such as glucose, ATP, fatty acids, acyl-

carnitines, amino acids, and triglyceride (TAG) species were detected in the dataset (Table S1), 
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which can be correlated to energy-generating pathways. Metabolites involved in oxidative 

phosphorylation (e.g. NAD+/NADH, ATP/ADP), a primary source for ATP generation in mature 

CMs [40, 41], were also consistently identified in the dataset (Figure 1D). Diverse phospholipid 

species including sphingolipids, ceramides, phosphocholines (PC), cardiolipins (CL), 

phosphotidylserines (PS), phosphotidylglycerols (PG), and phosphotidylethanolamines (PE) were 

also identified in the dataset. Phospholipids have been shown to play a key role in the position and 

function of membrane-embedded ion transporter proteins, which regulate cardiac contraction [42]. 

Thus, we can access a wide range of biologically relevant metabolite classes, from carbohydrates 

to lipids, using this fast and reproducible procedure to investigate active metabolic pathways in 

hPSC-CM biology.  

 

Global proteomics of the hPSC-CM cell pellet 

After metabolite extraction, we subsequently extracted proteins from the hPSC-CM cell 

pellet using label-free global bottom-up proteomics. The pellet was resolubilized in a buffer 

containing MS-compatible surfactant Azo [23], enzymatically digested, and analyzed by online 

LC-PASEF-MS using the timsTOF Pro (Figure 2A, S2) [39]. Technical reproducibility was 

demonstrated for the Azo-enabled bottom-up global proteomics method through similar protein 

yields for each pellet as demonstrated by Bradford assay, with protein yields of 26-31 μg of total 

protein per hPSC-CM sample (Table S3). Given that only 100-200 ng peptides are required for 

each bottom-up global proteomics run, this procedure yields adequate protein to analyze each 

hPSC-CM monolayer culture and could be scaled down to accommodate smaller monolayer 

cultures (<106 cells). The online data-dependent PASEF proteomics platform showed high 

technical reproducibility and robustness throughout the analysis. Over the course of 29 sample 
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injections (58 hours, 2.5 days), the maximum shift in retention time is only 0.2 min difference 

between injections of the K562 whole cell lysate standard at 200 ng at the beginning and end of 

the run, demonstrating impressive run-to-run reproducibility across multiple samples injections 

(Figure S7A,B). Additionally, label-free quantitation (LFQ) of the K562 cell standard showed 

strong correlation between three bracketing standard runs spanning 58 hours, with a Pearson 

correlation coefficient of 0.997 (Figure S7C).  

Global proteomics revealed a large diversity in protein groups recovered from the cell 

pellet after the initial metabolite extraction. Analysis of online dda-PASEF bottom-up proteomics 

data using a false discovery rate (FDR) of 1% at the protein and peptide level revealed a total of 

31,617 unique peptides between three hPSC-CM biological replicates, corresponding to 4,319 

combined protein groups. Using only 200 ng per run, 21,240 peptides were shared between three 

hPSC-CM cultures (Figure 2B). We found 3,663 proteins in common between replicates, 

corresponding to 85% overlap between biological replicates (Figure 2C). Additionally, strong 

correlation of LFQ intensities show consistent recovery of proteins from the dual extraction, with 

Pearson correlation coefficients ranging from 0.960-0.983 (Figure 2D). Normal unimodal 

distribution of log transformed (LFQ) intensities was observed for each of the three replicates 

(Figure 2E). These results illustrate the reproducible extractions of proteins from the residual 

hPSC-CM pellet by this sequential extraction strategy and demonstrate the feasibility of applying 

this method for quantitation between samples from sequentially-extracted hPSC-CMs for 

metabolomics and proteomics.  

Gene ontology analysis revealed highly diverse protein groups recovered from the 

sequentially-extracted hPSC-CM pellet. Protein groups within our dataset represented the majority 

of KEGG pathways using the Database for Annotation, Visualization, and Integrated Discovery 
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(DAVID) [43]. Using this tool, we found 91 KEGG pathways represented by the proteomics 

dataset. Among them, 65 pathways were considered abundantly represented (FDR-corrected p ≤ 

0.05), many of which reflect ATP-generating pathways as well as cardiomyocyte function and 

development (Table S5). For example, two of the most significantly abundant pathways 

represented in the dataset, the Spliceosome and Ribosome, are relevant to protein processing and 

translation.  

Proteins involved in metabolic pathways were highly represented throughout the dataset, 

constituting 417 total protein groups (Figure 2F). Among them, diverse pathways were identified, 

such as amino acid metabolism pathways and mitochondrial fatty acid β-oxidation. Glycolysis is 

responsible for the majority of ATP generation in the immature hPSC-CMs [40], and was 

represented by 37 proteins in the dataset, including hexokinase-1 (HK-1, gene: HK1), -enolase 

(gene: ENO1), and pyruvate kinase (gene: PKM). Oxidative metabolism generates the majority of 

ATP in mature CM phenotypes [41], and mitochondrial pathways TCA cycle and oxidative 

phosphorylation comprised 24 and 74 proteins in the dataset, respectively, including each 

constituent of the membrane-embedded electron transport chain (Figure 1D). Fatty acid 

degradation comprised 24 proteins in the dataset, including mitochondrial proteins glutaryl-CoA 

dehydrogenase (gene: GCDH) and very long-chain specific acyl-CoA dehydrogenase (gene: 

ACADVL).  Metabolism of amino acids and derivatives, including valine, leucine, and isoleucine 

degradation (hsa00280) and biosynthesis of amino acids (hsa01230) was represented by 39 and 48 

proteins, respectively. The depth of coverage of metabolic protein groups and pathways in the 

hPSC-CM dataset can be used for metabolite annotations to analyze the cells from a multi-omics 

perspective.  
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Cardiac-specific proteins were also consistently detected throughout the dataset. Cardiac-

specific pathways found in KEGG pathways included Cardiac Muscle Contraction (hsa02460) and 

Adrenergic Signaling in Cardiomyocytes (hsa02461) comprising 36 and 57 proteins, respectively 

(Figure 2G). Cardiomyocyte-specific marker cardiac troponin T (cTnT, gene: TNNT2) [8] was 

consistently detected in each CM replicate with 0.2% RSD in LFQ intensity (Figure S11A). Other 

cardiac proteins such as slow skeletal troponin I (ssTnI, gene: TNNI1), α-cardiac muscle actin (α-

CAA, gene: ACTC1), cardiac troponin C (cTnC, gene: TNNC1), cardiac myosin binding protein C 

(gene: MYBPC3), cardiac phospholamban (gene: PLN), and cardiomyocyte transcription factor 

GATA-4 (gene: GATA4) [44] were consistently detected as well (Figure S11 B-F). Important 

cardiac contractile proteins and markers of CM specification were consistently identified, 

including the atrial and ventricular isoforms of myosin light chain (MLC-2a, gene: MYL7 and 

MLC-2v, gene: MYL2, respectively), and - and β-myosin heavy chains (α-MHC, gene: MYH6, 

β-MHC, gene: MYH7, respectively) (Figure S11 G-J). MLC-2v and MLC-2a are considered 

markers of development and the presence of MLC-2v can also indicate development of ventricular 

CM linages [10].  

Importantly, a large number of proteins associated with the extracellular matrix (ECM) 

sub-proteome (“matrisome”) were detected in the sequentially-extracted hPSC-CMs (Figure 2G). 

Cardiac ECM proteins are crucial to providing structural support to the CM monolayer and help 

to withstand mechanical stress from continual contraction of the sarcomere [45]. Key ECM 

proteins to CM function [45] were detected in the sequentially-extracted cultures, including 

collagen I (genes: COL1A1, COL1A2), collagen III (gene: COL3A1), and basement membrane 

proteins collagen IV (genes: COL4A1, COL4A2, COL4A3 and COL4A6) and fibronectin (gene: 

FN1). Overall, core matrisome proteins [46] were consistently detected throughout the dataset, 
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including 21 collagen species, 62 glycoproteins, and 11 proteoglycans. We also detected 115 

matrisome-associated proteins, which are ECM regulators and secreted factors, or are structurally 

affiliated with the ECM (Supplemental File 1) [46]. 43 proteins were associated with the KEGG 

pathway “ECM-receptor interaction” (hsa04512) including various subunits of the transmembrane 

integrin receptor complex (genes: ITGB1 and 3, ITGAV, and ITGA1, 2, and 5-7), as well as -, β-

, and - chains of the laminin complex (genes: LAMA1-LAMA5, LAMB1 and 2, and LAMC1 and 

2). The reliable detection of diverse matrisome species using a sequentially-extracted method is 

significant because protein solubility is the primary challenge of ECM proteomics [47, 48]. Often, 

multi-step extraction procedures are used to isolate the ECM. Using a single-step proteomics 

extraction enabled by Azo, we detected a diverse array of core and associated matrisome 

constituents in addition to the metabolic and sarcomeric subproteomes, enabling analysis of each 

subproteome on a global scale.  

 

Integrative Multi-Omics Reveals Highly Populated Biological Pathways 

Finally, we integrated the metabolomics and proteomics results to reveal pathways 

abundantly represented in the data using the Joint Pathway Analysis module in MetaboAnalyst 

[34]. Here, metabolites and proteins were converted to KEGG identifiers and pathways. Out of 

310 identified pathways, 25 were considered statistically enriched by hypergeometric test (FDR-

corrected p ≤ 0.05), with many of them corresponding to metabolic processes within the KEGG 

global metabolic network, including fatty acid metabolism, pentose phosphate pathway, glycolysis 

and TCA cycle, purine metabolism, and amino acid metabolism (Figure 2I). Metabolite-protein 

constituents of each pathway were identified using MetaboAnalyst and can be mapped for further 
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analysis. To look closer at the identified pathway results, we used the Joint Pathway Analysis 

module to visualize 55 proteins and 3 general metabolite classes (“branched fatty acids”) 

represented in the fatty acid biosynthesis and degradation pathways (Figure 2J). Other metabolic 

pathways abundantly represented in the dataset includedglycerophospholipid metabolism, 

oxidative phosphorylation, and cell junction, (i.e. focal adhesion, tight junctions). Pathways 

involved in protein synthesis such as RNA transport and degradation, and the spliceosome were 

also abundantly represented (Figure S12; Table S6). Together, these results offer holistic insights 

into which cellular pathways are most active in d42 hPSC-CMs.  

 

Conclusions  

Our novel multi-omics strategy for the analysis of metabolites and proteins from the same 

hPSC-CM monolayer culture enables an integrated assessment of the hPSC-CM proteome and 

metabolome comprehensively and reproducibly. Benefiting from the rapid metabolite extraction 

from hPSC-CM cell culture and the facile sample processing for MS analysis, a large number of 

samples can be extracted and analyzed. We achieved broad coverage of metabolite classes from a 

rapid methanol extraction of hPSC-CM in culture, including carbohydrates and amino acids to a 

variety of phospholipids.  Strong technical and biological reproducibility was shown by highly 

similar mass spectra and metabolite annotations. Additionally, we achieved high proteome 

coverage of the residual hPSC-CM cell pellet, identifying nearly 4,000 proteins per hPSC-CM 

pellet.  Here, we showed consistent recovery of protein from each hPSC-CM monolayer. Using 

200 ng per sample, we measured strong correlation of protein intensities from sequentially-

extracted cultures. Finally, we mapped identified metabolites and proteins to networks and 

identified highly-abundant pathways in the dataset. We envision this multi-omics strategy will 
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provide a technical foundation for future studies on the quantitative evaluation of various hPSC-

CM conditions and identification of integrated proteomic and metabolomic markers to advance 

our understanding of hPSC-CM biology.  
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Figure 1. Ultrahigh-resolution mass spectrometry (MS)-based metabolomics of hPSC-CMs. 

A) Schematic of the extraction and MS analysis of metabolites from hPSC-CM monolayer culture. 

B)  Identification of metabolites from complex broadband spectra enabled by FIE-FTICR MS. 

Important metabolites are identified with sub-ppm mass accuracy, including stearic acid (upper 

left), NADH (upper right), UDP-glucose (lower left), and cardiolipin (lower right). C) Network 

analysis of identified metabolites show arachidonic acid metabolism, glycolysis, and 

glycerophospholipid metabolism pathways represented in the dataset. D) Oxidative 

phosphorylation was well-represented, with a total of 84 protein and metabolite hits within the 

dataset, highlighted in red. Additionally, many phospholipid species that comprise the 

mitochondrial membrane were detected, including cardiolipins (CL), phosphocholines (PC), 

phosphoethanolamines (PE), phosphoinostitols (PI), phosphoglycerols (PG), and 

phosphatidylserines (PS). 
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Figure 2. Global proteomics of hPSC-CM cell pellet after metabolomics and pathways 

revealed by integrated multi-omics analysis. A) hPSC-CM proteomics sample preparation 

workflow starting from the combined metabolite-protein sample. Residual dehydrated cell pellet 
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is resolubilized in a buffer containing 0.25% Azo, a novel photo-cleavable surfactant proven to 

access critical membrane proteins. Proteins are enzymatically digested using trypsin before 

separation by RPLC and analysis by PASEF-enabled timsTOF Pro. Database searching and 

normalization were performed using MaxQuant, further annotated and visualized using Perseus. 

Pathway and functional enrichment analysis was performed by DAVID. B) Overlap in peptides 

identified for each sequentially-extracted hPSC-CM biological replicate (n=3). We detected 

21,240 shared peptides between three hPSC-CM cultures. C) Reproducibility in hPSC-CM 

biological replicates (n=3). Protein groups identified show 85% overlap between three hPSC-CM 

monolayer cultures, corresponding to 3,663 protein groups in common. D) Log2x-transformed 

LFQ intensities of shared proteins in each biological replicate show strong correlation between 

samples, with Pearson correlation coefficients ranging from 0.960-0.983. E) Histogram showing 

normal distribution of log2x-transformed LFQ intensities from sequentially-extracted hPSC-CM 

biological replicates. F) Representative KEGG pathways considered statistically-overrepresented 

(FDR-corrected p ≤ 0.05) for Metabolic Proteins (F) and Cardiac-specific proteins (G). Metabolic 

proteins included those involved in glycolysis (hsa00010, orange), amino acid metabolism 

(biosynthesis of amino acids, hsa01230, and valine, leucine, and isoleucine degradation, hsa00280, 

both purple), and oxidative respiration (oxidative phosphorylation, hsa00190, TCA cycle, 

hsa00020, and fatty acid degradation, hsa00071, all yellow). Proteins involved in cardiac-specific 

pathways such as adrenergic signaling of cardiomyocytes (hsa04261, green) and cardiac muscle 

contraction (hsa04260, blue) were identified. The number of proteins in each pathway is indicated 

in parentheses. H) Extracellular matrix (ECM) proteins were categorized into Core Matrisome 

(red) and Matrisome-associated proteins (blue). The number of proteins in each category is 

indicated in parentheses. Core matrisome proteins include proteoglycans, glycoproteins, and 

collagen species, while matrisome-associated proteins include secreted factors, ECM regulators, 

and ECM-affiliated proteins. I) Visualization of multi-omics metabolism pathways by 

MetaboAnalyst. Proteomics and metabolomics data were uploaded to MetaboAnalyst for pathway 

analysis. The Network Analysis module showed significantly-enriched pathways within the 

KEGG metabolic network for proteins and metabolites, including fatty acid metabolism, amino 

acid metabolism, purine/pyrimidine metabolism, and glycolysis, pentose phosphate pathway, and 

TCA cycle. J) Zoom panel shows detailed pathways showing detected entities for fatty acid 

degradation. In total, 58 members of fatty acid degradation pathway were detected, indicated in 

yellow. KEGG nomenclature is used to describe proteins and metabolites. 
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