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Abstract

High throughput spatial transcriptomics (HST) is a rapidly emerging class of experimental
technologies that allow for profiling gene expression in tissue samples at or near single-cell res-
olution while retaining the spatial location of each sequencing unit within the tissue sample.
Through analyzing HST data, we seek to identify sub-populations within a tissue sample that
reflect distinct cell types or states. Existing methods either ignore the spatial heterogeneity in
gene expression profiles, fail to account for important statistical features such as skewness, or
are heuristic-based network clustering methods that lack the inferential benefits of statistical
modeling. To address this gap, we develop SPRUCE: a Bayesian spatial multivariate finite
mixture model based on multivariate skew-normal distributions, which is capable of identifying
distinct cellular sub-populations in HST data. We further implement a novel combination of
Pólya–Gamma data augmentation and spatial random effects to infer spatially correlated mix-
ture component membership probabilities without relying on approximate inference techniques.
Via a simulation study, we demonstrate the detrimental inferential effects of ignoring skewness
or spatial correlation in HST data. Using publicly available human brain HST data, SPRUCE
outperforms existing methods in recovering expertly annotated brain layers. Finally, our appli-
cation of SPRUCE to human breast cancer HST data indicates that SPRUCE can distinguish
distinct cell populations within the tumor microenvironment.

Key Words: Spatial transcriptomics; conditionally autoregressive models; Mixture models;
Skew-normal; Bayesian models
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1 Introduction

High throughput spatial transcriptomics (HST) is a developing class of experimental technologies
that has proven invaluable in studying a wide range of biological processes in both diseased (van den
Brink et al., 2020; Chen et al., 2020) and healthy (Baccin et al., 2020; Mantri et al., 2020) tissues.
The advantage of HST over existing sequencing tools like single-cell RNA-sequencing (scRNA-
seq) is that HST preserves the spatial location of cells within a tissue sample, while scRNA-seq
decouples gene expression information from cell locations during the sequencing process (Burgess,
2019). However, since spatial proximity has been shown to be a principal source of heterogeneity
in important biological settings such as the tumor microenvironment (Janiszewska, 2020; Moncada
et al., 2018), it is critical to properly weigh both the spatial location of cells and their gene expression
profiles when analyzing HST data.

Since the advent of HST technologies, a small number of computational and statistical methods
have been proposed to jointly analyze gene expression and spatial location data to infer biologically
distinct sub-populations of cells within a tissue sample – a critical and foundational step in the
analysis of HST data. Dries et al. (2019) introduced Giotto, a nearest neighbors network-based
clustering tool that offers the ability to cluster cells based on gene expression information only
using the Louvain algorithm (Blondel et al., 2008), then spatially refine cell cluster assignments
using a hidden Markov random field model. Similarly, in a recent version of the popular scRNA-seq
analysis package Seurat, Hao et al. (2020) included the ability to incorporate spatial information
into the cell clustering using a spatially-weighted similarity matrix. In a related work, Pham et al.
(2020) proposed stLearn, which clusters cells by applying the Louvain or K-means algorithm to
a spatially perturbed dimension reduction of the gene expression space, then infers spatial sub-
clusters using the DBSCAN algorithm (Ester et al., 1996). While these methods offer the ability
to introduce spatial information into standard cell clustering routines, they each adopt network-
based approaches that depend heavily on tuning parameters like the number of neighbors and
cell clustering resolution, and thus lack the inferential benefits of statistical modeling, such as
uncertainty quantification and optimization of parameters using model fit criteria.

Zhao et al. (2021) improved on these works by developing BayesSpace, a Bayesian multivariate-t
mixture model that induces spatial correlation in mixture component weights via the use of Potts
model prior. However, BayesSpace is limited in that (i) it models principal components of gene
expression features instead of directly modeling gene expression, thus reducing the interpretability
of results and obfuscating the need for a multivariate approach since principal components are, by
definition, orthogonal (Abdi and Williams, 2010); (ii) BayesSpace assumes symmetric multivariate
outcome distributions, which makes its direct application to gene expression features difficult to
justify, due to the inherent skewness of gene expression across a tissue sample as shown in Section
2; and (iii) BayesSpace uses a global spatial smoothing parameter that must be chosen a priori to
induce spatial correlation, thus ignoring important local heterogeneities in spatial patterns across
a tissue sample.

To address these gaps, we developed SPRUCE (SPatial Random effects-based clUstering of
single CEll data) for robust identification of cell type sub-populations using HST data. Our
proposed model extends the current methodology in a number of ways. First, SPRUCE models
gene expression features directly using a multivariate approach. By doing so, we allow for a more
natural interpretation in which mixture components correspond to sub-groups of cells with distinct
transcriptional regulatory factors (Wan et al., 2019), and thus distinct gene expression profiles.
Next, while existing approaches consider spatial information only in the cluster allocation portion
of the mixture model, SPRUCE directly accounts for spatial dependence in both gene expression
outcomes and cell-type membership probabilities. This model design allows for local heterogeneities
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in gene expression that can be explained by spatial information, and offers the ability to infer
spatially smooth mixture components across a tissue sample. We also accommodate skewed gene
expression distributions – a ubiquitous feature of all transcriptomics data. Finally, SPRUCE relies
on a robust and efficient Gibbs sampling algorithm with built-in protection against label switching
and is implements using a novel application of Pólya–Gamma data augmentation to allow for Gibbs
sampling of all model parameters, thereby improving upon the reliability of existing methods.

2 Data

While a variety of experimental methods exist for measuring spatially resolved RNA abundance in a
tissue sample, we focus on high throughput sequencing-based technologies such as the popular 10X
Genomics Visium, which allow for measurement of the entire transcriptome instead of a smaller
subset of pre-specified genes. Current sequencing-based HST technologies divide the tissue sample
into a contiguous array of “spots”, each roughly 55 µm in diameter and containing a small number
(often < 5) of spatially close cells (Maniatis et al., 2021). In situ barcoding of spots is then used to
correlate spatial centroids with the expression levels of thousands of RNAs in each spot (Maniatis
et al., 2021). Raw sequencing-based HST data take the form of (i) a spot-by-gene expression matrix,
where the number of spots is between 1,000 to 5,000 and the number of genes can exceed 30,000
in most samples (Maniatis et al., 2021); and (ii) a 2-dimensional coordinate matrix locating the
centroid of each sequencing spot within the tissue sample. However, it has been shown that there
exists vast statistical redundancy in the genes sequenced due to either highly correlated or lowly
expressed genes (Edsgärd et al., 2018), and thus we first select a small subset of spatially variable
genes (SVGs) using either pre-existing feature selection methods (Hafemeister and Satija, 2019;
Edsgärd et al., 2018; Hao et al., 2020) or by focusing on known marker genes for certain tissue
settings.

To illustrate the important characteristics of HST data, we plot in Figure 1 the spatial expression
patterns and densities of a set of SVGs within a human brain tissue sample (Maynard et al., 2021),
in which 33,538 genes were sequenced across 3,085 cell spots using the 10X Visium platform. In
Section 5.1, we explore this particular data set in more detail using the expert annotations of
brain layers by Maynard et al. (2021) as ground truth to benchmark our proposed statistical model
relative to existing tools. To quantify the spatial autocorrelation of gene expression throughout the
human brain tissue sample, we computed Moran’s I statistic (Gittleman and Kot, 1990; Paradis
and Schliep, 2019) and associated p-value for three SVGs identified using standard approaches
(Edsgärd et al., 2018), namely PCP4, MBP, and MTCO1. Further, we quantified skewness of gene
expression within each expert annotated brain layer using sample skewness (Joanes and Gill, 1998;
Meyer et al., 2021).

As shown in Figure 1, the expression of certain genes across a tissue sample can exhibit high
spatial variability, hence the need for robust statistical models that account for spatial correlation
in gene expression. In addition to spatial correlation, Figure 1 shows residual skewness of gene
expression features after accounting for brain tissue region using expert annotations. In fact,
skewness occurs in most all normalized gene expression features due to the nature of converting
overdispersed count data to normalized data. Thus, a robust statistical model for HST data analysis
should allow for non-symmetric gene expression distributions.

While the human brain is a natural choice for benchmarking HST data analysis methods due
to its well-studied spatial structure, it is of great scientific need to generate similar insights in
settings like the breast cancer tumor microenvironment, a setting that has yet to be studied using
existing HST data analysis tools. To address this gap, in Section 5.2 we analyzed the human
invasive breast cancer tumor sample made publicly available by 10X Genomics (10x Genomics,
2020), which consists of 36,601 genes measured across 3,798 spots generated by the 10X Visium
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Figure 1: Human brain slice sequenced with the 10X Genomics Visium platform. (Top row)
The spatial expression patterns of three SVGs, PCP4, MBP, MTCO1 are shown on the tissue
sample, where brighter colored spots correspond to higher expression. Moran’s I statistics and
associated p-values display significant spatial autocorrelation present in gene expression. (Bottom
row) Gene expression densities are shown for each gene within each expert annotated tissue layer
along with sample skewness statistics. Empirical densities and skewness statistics imply the need
for accommodation of non-symmetric gene expression features.
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platform. Figure 4A shows the spatial expression patterns and densities of a selection of SVGs
across the breast tissue sample. Here, we see that the strength of spatial autocorrelation differs
between the human brain tissue sample and the breast cancer tumor sample, hence the need for
allowing spatial information to enter flexibly into our statistical model for HST data.

3 Model

In Section 3, we present SPRUCE, a Bayesian spatial mixture model capable of addressing the
important challenges presented by HST data described in Section 2. First, in Section 3.1, we
develop the general multivariate mixture model framework that is capable of clustering cells while
accounting for spatial correlation, gene-gene correlation, and skewness of gene expression features.
Then, in Section 3.2 we improve upon previous approaches for analyzing HST data by implementing
a novel cluster-membership model that combines Pólya–Gamma data augmentation with spatially-
correlated CAR priors to induce spatial dependence among neighboring cells and allow for robust
interpretation of mixture components. Section 3 concludes with discussion of prior distributions,
accommodation of heavy-tailed gene expression features, model selection, and Markov chain Monte
Carlo (MCMC) simulation details.

3.1 General Mixture Model

Our proposed model is relevant for sequencing-based HST platforms such as 10X Visium, which,
as shown in Figure 1, divide the tissue sample into a regular lattice of cell spots. Each spot is
associated with a high-dimensional gene expression profile that can be used to infer cell type (e.g.,
T cells, B cells, natural killer cells, et cetera) (Asp et al., 2020). To identify biologically relevant sub-
populations such as cell type within the tissue sample, we adopt a finite mixture model that accounts
for important features of the data such as spatial dependence among cell spots, dependence across
correlated genes, and non-normality of gene expression profiles. Our approach extends existing
spatial finite mixture models in the statistical literature (Neelon et al., 2014) to this challenging
setting.

Let yi = (yi1, ..., yig)
T be the length g vector of gene expression features for spot i (i = 1, ..., n).

As discussed in Section 5, the standard pre-processing steps for HST data include identification and
normalization of the g top SVGs before modeling (Edsgärd et al., 2018). To identify biologically
relevant cell sub-populations within a tissue sample using these g pre-selected spatially variable
gene expression features, we propose a finite mixture model of the form

f(yi) =

K∑
k=1

πkf(yi|θk), (1)

where θk is the set of parameters specific to component k (k = 1, ...,K) and πk is a mixing weight
that measures the probability of a given spot belonging to cell sub-population k. For now, we
assume π = (π1, ..., πK) is common to all cell spots, though in Section 3.2 we develop a model for
cell spot-specific mixing weight parameters. The number of cell sub-populations K may be specified
based on biological knowledge, or may be identified entirely from the data, as described in Section
3.4.2.

To facilitate Bayesian inference, we introduce latent cluster indicator variables z1, ..., zn, where
zi ∈ {1, ...,K} indicates the mixture component assignment for cell spot i. Given zi = k, we assume
that the gene expression features for spot i follow a g−dimensional multivariate skew normal (MSN)
distribution (Azzalini and Valle, 1996)

yi|(zi = k) ∼ MSNg(ηik,αk,Ωk), with density (2)

f(yi|zi = k) = 2fφg(yi;ηik,Ωk)FΦ{αT
k (yi − ηik)},
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where, given zi = k, ηik is the length g mean vector for spot i, αk is a length g vector of feature-
specific skewness parameters for mixture component k, Ωk is a g×g scale matrix that captures asso-
ciation among the gene expression features in mixture component k, fφg(yi;ηik,Ωk) is the density
function of a g-dimensional normal distribution with mean ηik and variance-covariance matrix Ωk

evaluated at yi, and FΦ is the CDF of a scalar standard normal random variable. When αk = 0g×1,
the distribution of yi is multivariate normal (MVN) with mean ηik and variance-covariance ma-
trix Ωk. Positive elements of αk imply positive skewness relative to the MVN distribution, while
negative values imply negative skewness. While model (2) allows for mixture component and
feature-specific departures from normality in terms of skewness, in Section 3.3 we further extend
model (2) to accommodate heavy tailed gene expression densities using the multivariate skew-t
distribution.

We may represent the MSN distribution using a convenient conditional representation in terms
of the MVN distribution and a spot-level standard normal random variable truncated below by
zero ti ∼ N[0,∞)(0, 1) (Frühwirth-Schnatter and Pyne, 2010). To implement this conditional MSN
representation and incorporate spatial variability across the tissue sample into the gene expression
model, we let

yi|(zi = k, ti,φi) = µk + φi + tiξk + εi, (3)

where µk is the length g gene expression mean vector for mixture component k, φi is a length g
spatial effect that allows for spatially-correlated departure from µk in spot i, ξk controls the mixture
component-specific skewness of each gene expression feature in the conditional MSN representation,
and εi ∼ Ng(0,Σk). In Web Appendix B, we describe how the original MSN parameters ηik, αk,
and Ωk can be obtained through back-transformations as functions of the parameters in equation
(3).

To accommodate spatial dependence among cell spots in the tissue sample, we adopt a multi-
variate intrinsic conditionally autoregressive (CAR) prior (Besag, 1974) for φi:

φi|φ−i,Λ ∼ Ng

 1

mi

∑
l∈δi

φl,
1

mi
Λ

 , (4)

where φ−i denotes the spatial random effects for all spots except spot i, Λ is a g × g variance-
covariance matrix for the elements of φi, mi is the number of neighbors of spot i, and δi is the set
of all neighboring spots to cell spot i. To aid in separability between Λ and Σk, we assume the
variance-covariance of the spatial random effects Λ is shared across mixture components, while Σk,
the conditional variance-covariance of yi, is mixture component-specific. We further discuss sepa-
rability and the competing variance problem in Section 6. As stated by Brook’s lemma (Banerjee
et al., 2014), model (4) leads to a uniquely defined yet improper joint distribution of (φ1, ...,φn) :

f(φ1, ...,φn|Λ) ∝ exp

[
−1

2
φ′{(M−A)⊗Λ−1}φ

]
, (5)

which is due to the fact that the n× n matrix (M−A) is singular, where M = diag(m1, ...,mn),
A is the n×n adjacency matrix for all cell spots within the tissue sample, with Aij = 1 if cell spot
i borders cell spot j and Aij = 0 otherwise, and φ is a length gn vector formed by concatenating
φ1, ...,φn. However, as described in Banerjee et al. (2014), we ensure a proper posterior distribution
for each φi by enforcing a sum-to-zero constraint on the elements of each φi for i = 1, ..., n. In
Section 3.4.1, we complete the fully Bayesian model specification by assigning conjugate priors to
all remaining model parameters, thus leading to closed-form full conditional distributions for all
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model parameters and allowing for an efficient Gibbs sampling algorithm detailed in Web Appendix
B.

The SPRUCE model presented in this section for the analysis of sequencing-based HST data has
several desirable features and provides distinct advantages over existing methods. First, through
the use of spatially correlated random effects, the spot-level SPRUCE model explicitly accounts for
spatial variability of gene expression throughout a tissue sample that is not explained by cell type
(i.e., µk). Next, SPRUCE directly accommodates skewness in each mixture component density –
a common feature in gene expression data that is ignored by existing methods for clustering single
cell data which assume symmetric distributions of gene expression features (Zhao et al., 2021).
Finally, SPRUCE provides the inferential benefits of a fully Bayesian approach, such as the ability
to make posterior probability statements about all model parameters and the ability to choose K,
the number of sub-populations, in a principled and model-based manner as described in Section
3.4.2.

3.2 Spatial Pólya–Gamma Multinomial Logit Regression Component Member-
ship Models

Thusfar, we have assumed that spatial dependence enters only into the model for gene expression
distributions, where each spot is allowed to vary with respect to its mixture component-specific
mean through the use of spatially correlated multivariate random effects. However, in many cases
we may wish to allow the probability π of belonging to each mixture component to vary spatially
as well. In doing so, we may ensure that the cellular sub-populations identified by the model are
informed by the spatial variability across tissue samples. First, we extend model (1) by letting

f(yi) =
K∑
k=1

πikf(yi|θk), where (6)

πik =
exp(wT

i ρk + ψik)∑K
h=1 exp(wT

i ρh + ψih)
for k = 1, ...,K,

where πik = P(zi = k), wi is a length p vector of covariates relevant to cluster membership,
ρk is an associated length p vector of fixed-effects, and ψik is a spatial random effect allowing
spatially-correlated variation with respect to wT

i ρk. For identifiability purposes, we choose mixture
component 1 as the reference category and set ρ1 = 0p×1 and ψi1 = 0 for all i = 1, ..., n. To
introduce spatial association into the component membership model, we assume univariate intrinsic
CAR priors for ψik:

ψik|ψ−ik, ν2
k ∼ N

 1

mi

∑
l∈δi

ψlk,
ν2
k

mi

 , for k = 2, ...,K, (7)

where ν2
k is a mixture component-specific variance for ψik.

We ensure closed-form full conditional distributions of the multinomial logit regression param-
eters by adopting a Pólya–Gamma data-augmentation approach as introduced by Polson et al.
(2013). In the context of Bayesian logistic regression, Polson et al. demonstrate that the inverse-
logit function can be expressed as a scale-normal mixture of Pólya–Gamma densities, and the
likelihood of the logistic model can in turn be written as a scale-mixture of normal densities, allow-
ing for closed-form conditional distributions of all model parameters. While previous models (Allen
et al., 2020) have applied these results from Polson et al. for use in multinomial logit mixture weight
regression models, the Pólya–Gamma data augmentation approach has yet to be used in conjunc-
tion with CAR priors in the context of modeling mixing weights in spatial finite mixture models.
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In Proposition 1 below, we show that Pólya–Gamma data augmentation allows for closed-form full
conditional distributions of ψik in this novel setting.

Proposition 1 Let πik follow the multinomial logit model defined in equation (6), and let ψik
have a univariate intrinsic CAR prior as defined in equation (7). Under Pólya–Gamma data
augmentation, the full conditional distribution of ψik is N(mik, Vik), where

mik =
1
mi

∑
l∈δi ψlk + U∗ik
m2

i

ν2k
+ 1

ω2
ik

, and Vik =
1

m2
i

ν2k
+ 1

ω2
ik

, (8)

where U∗ik = Uik−1/2
ωik

+ cik − wT
i ρk, Uik is an indicator equal to 1 if zi = k and 0 otherwise,

cik = log(
∑K

h 6=k exp(wT
i ρh + ψih)), and ωik ∼ PG(1, 0). The proof is provided in Web Appendix A.

.

3.3 Extensions to Multivariate Skew-t Distributions

In the case of outliers or heavy-tails in the distributions of gene expression features, we extend
model (2) to the multivariate skew-t (MST) distribution (Gupta, 2003):

yi|(zi = k)
ind∼ MSTg(ζik,αk,Ωk, ϕk), with density

f(yi|zi = k) = 2ftg(yi; ζik,Ωk, ϕk)Tϕk+g

{
αT
k (yi − ζik)

√
ϕk + g

ϕk +Qyi

}
, (9)

where ftg(yi; ζik,Ωk, ϕk) denotes the CDF of a g-dimensional t distribution with location ζik,
covariance Ωk, and fixed degrees of freedom ϕk that may vary across mixture components; Tϕk+g

denotes the distribution function of the scalar standard t distribution with ϕk+g degrees of freedom;
and Qyi = (yi−ζik)

TΩ−1
k (yi−ζik). Similarly to the MSN distribution, we may adopt a convenient

conditional representation for the MST distribution in terms of standard densities to allow for Gibbs
sampling of the MST model parameters (Frühwirth-Schnatter and Pyne, 2010). For inference with
heavy-tailed gene expression features, we extend model (3) as

yi|(zi = k, ti, di,φi) = µk + φi +
ti√
di
ξk +

1√
di
εi, (10)

where di|(zi = k) ∼ Gamma(κk/2, κk/2) is a spot-specific scale term, and κk is a pre-specified
degrees of freedom for each mixture component k = 1, ...,K. Lower values of κk allow for heavier
tails relative to MVN in cluster k.

3.4 Bayesian Inference

3.4.1 Priors

We complete a fully Bayesian specification of the SPRUCE model by assigning prior distribu-
tions to all remaining model parameters. For k = 1, ...,K, we assign cluster specific priors
µk ∼ Ng(µ0k,V0k), ξk ∼ Ng(ξ0k,X0k), Σk ∼ IW(ν0k,S0k). By default, we opt for weakly-
informative priors (Gelman et al., 2013) by choosing µ0k = ξ0k = 0g×1, V0k = X0k = S0k = Ig×g,
and ν0k = g + 2, which gives E(Σk) = Ig×g. We further assume Λ ∼ IW(λ0,D0) for k = 1, ...,K.
Weakly-informative priors result from setting λ0 = λ0k = g + 2, and D0 = D0k = Ig×g. Finally,
for k = 2, ...,K, we assume ρk ∼ Np(ρ0k,R0k) and ν2

k ∼ IG(u1k, u2k), where we obtain weakly-
informative priors by choosing ρ0k = 0p×1, R0k = Ip×p, and u1k = u2k = 0.001. A detailed
description of the resultant Gibbs sampling algorithm is provided in Web Appendix B.
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3.4.2 Model Selection

The choice of K, i.e., the number of mixture components used in the SPRUCE model, is a critical
step in the analysis of HST data. In some situations, it may be appropriate to specify K based on
strong biological knowledge of the cell types that will be present in a tissue sample, or the desire
to investigate a known number of “cell states” within a more homogeneous tissue sample. In other
cases, however, such prior information might be unavailable and the choice of K should be made
entirely based on the data. To identify the optimal value of K in terms of model fit, we make use
of the widely applicable information criterion (WAIC) (Watanabe, 2010) defined as

WAIC = −2

[
n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θ(s))

)
−

n∑
i=1

Vars=1,...,S

{
log
(
p(yi|θ(s))

)}]
, (11)

where s = 1, ..., S indexes the post-burn-in iterations of the Gibbs sampler detailed in Web Ap-
pendix B, and let θ(s) represents the current values of all parameters at iteration s.

3.4.3 Label Switching

Label switching is a common issue faced by Bayesian mixture models in which the invariance of
the likelihood to permutations of z = (z1, ..., zn) results in conflation of cluster-specific parameters
across distinct, yet statistically equivalent permutations of z (Stephens, 2000; Jasra et al., 2005).
Existing approaches for addressing the label switching issue either attempt to re-shuffle posterior
samples after MCMC convergence (Papastamoulis, 2016) or impose an arbitrary order restrictions
on the component-specific parameters θ(s). However, these existing approaches are not ideal since
(i) re-shuffling of posterior samples relies on prediction of component label re-mappings, thereby
introducing the potential for additional error that may impede the accuracy of component-specific
parameter estimates; and (ii) imposing order constraints on θk can lead to poorly estimated pa-
rameters when mixture components are not well-separated.

To overcome these challenges, we adopt the “canonical” remapping approach proposed by Peng
and Carvalho (2016) in the context of network community detection using blockmodels. Here,
Bayesian inference relies on sampling discrete community indicators, and thus is similarly suscep-
tible to the label switching problem. Peng and Carvalho avoid this issue by restricting the sample
space of z to a canonical sub-space, and define a canonical projection to remap the sampled z
at each MCMC iteration to the canonical sub-space. The canonical sub-space L is defined as
L = {z ∈ Ln : ord(z) = L}, where L = (1, ...,K), and ord(z) returns the length K vector of the
order in which each mixture component k = 1, ...,K appears in the vector z. Here, ord(z)[1] = z1 is
the first unique mixture component to occur in z, ord(z)[2] is the second unique mixture component
to occur in z, et cetera. We further define r(z) : Ln → L as the canonical projection used to remap
z to the canonical sub-space at each MCMC iteration as described in Web Appendix B. Finally,
we choose as our final estimate of z the maximum a posteriori (MAP) estimate of of z across all
post burn-in MCMC samples.

4 Simulation Study

To investigate the performance of SPRUCE and validate our proposed Gibbs sampling estimation
algorithm, we generated simulated HST data mimicking a publicly available sagital mouse brain
data set sequenced with the 10X Visium platform and made available by 10X Genomics (10x
Genomics, 2019). To ensure our simulation study is reflective of real HST data sets, we first
allocated the n = 2696 cell spots in the original sagital mouse brain data set into one of K = 4
simulated ground truth tissue segments that resemble distinct mouse brain layers (Figure 2A).
We then simulated spatially variable multivariate gene expression features of dimension p = 16
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according to the MSN model with parameters shown in Table 1. Parameters were chosen to result
in weakly separated mixture components, as is shown by the Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al., 2018) dimension reduction in Figure 2B. Next, we fit three
model variants: (i) an MVN mixture model with no spatial random effects; (ii) an MSN mixture
model with no spatial random effects; and (iii) an MSN mixture model with spot-level multivariate
CAR spatial random intercepts in the gene expression model. This set of models allows us to
demonstrate how accounting for skewness and spatial correlation in gene expression outcomes may
lead to improved parameter estimates relative to ground truth. Each model was run for 10000
MCMC iterations, with the first 1000 iterations discarded as burn-in, and priors were chose to be
weakly informative as described in Section 3.4.1.

Posterior parameter estimates and 95% credible intervals (CrI’s) for a selection of mixture
component k = 1 parameters are shown in Table 1. In Figures 2C-2E, we show the estimated
mixture component labels for each of the three model variants. We quantified the ability of each
model to recover ground truth simulated tissue region labels using the adjusted Rand index (ARI)
(Hubert and Arabie, 1985). Finally, in Figures 2F-2H we plot model fit as measured by WAIC for
each of the three model variants fit across a range of K = 2, ..., 6 to assess the ability of each model
variant to recover the true tissue region labels.

In Figures 2C trough 2E, we see that accounting for skewness and spatial correlation among
spots allows for more accurate recovery of true mixture component labels. In Figures 2F trough
2H, we see that the minimum WAIC value occurs at K = 4 for each of the three model variants,
indicating that WAIC is able to identify the correct model dimension in each case. Finally, Table 1
displays posterior means and 95% credible intervals for a selection of model parameters in mixture
component 1 for each model. The MSN spatial model was able to most accurately estimate the true
model parameters, while the MVN and MSN non-spatial models suffered from decreased accuracy
in parameter estimates.

5 Applications

5.1 Analysis of 10X Visium Human Brain Data

To assess the performance of SPRUCE relative to expert annotations and existing methods for
clustering HST data, we analyzed the human dorsolateral prefrontal cortex brain data recently
published by Maynard et al. (2021), which consisted of 33538 genes sequenced in 3085 spots across
the tissue sample. We compared SPRUCE to four existing methods, namely BayesSpace (Zhao
et al., 2021), stLearn (Pham et al., 2020), Seurat (Hao et al., 2020), and Giotto (Dries et al., 2019).
Due to the highly-organized spatial structure of human brain tissue samples and the presence of
known marker genes that can be used to delineate distinct layers of the brain, these data can
serve as an important benchmark for SPRUCE and existing methods. In this application, we treat
the expert annotations from Maynard et al. (2021) as ground truth and use ARI to quantify the
agreement between these gold standard annotation and those obtained by SPRUCE and existing
tools.

We first implemented the standard Seurat pre-processing pipeline for 10X Visium data (Hao
et al., 2020), which includes discarding low quality features, normalizing and scaling gene expression,
and computing dimension reductions. For the normalization step, we adopted sctransform: a
model-based variance stabilization transformation approach proposed by Hafemeister and Satija
(2019). For the dimension reduction step, we used principal component analysis to find the first
128 principal components, then implemented the UMAP dimension reduction algorithm on this
set of principal components to facilitate visualization. We used the top 16 SVGs as features for
SPRUCE, many of which were found to be layer characterizing genes by Maynard et al. (2021). The
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Figure 2: Sagital mouse brain tissue sample manually segmented into four regions. (A) True
simulated cluster labels. (B) UMAP dimension reduction of simulated gene expression matrix.
Points correspond to tissue spots in the sagital mouse brain. Points are colored according to
ground truth cluster labels and are positioned in the 2-dimensional UMAP space according to their
similarity in gene expression. (C) - (E) Model estimated cluster labels. (F) - (H) WAIC model
selection curves.
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Table 1: Simulated parameter values and estimates obtained from three model variants: (i) MVN:
multivariate normal clustering without spatial random effects; (ii) MVN Spatial: multivariate nor-
mal clustering with CAR spatial random effects; and (iii) MSN Spatial: multivariate skew-normal
clustering with CAR spatial random effects. Parameter estimates are shown as posterior means
with associated 95 % credible intervals.

Parameter True MVN MSN MSN Spatial

µ11 -2.00 -2.72 (-2.86, 1.77) -2.14 (-2.74, 1.62) -2.01 (-2.86, -1.55)
µ12 -1.00 -2.34 (-2.45, 1.01) -0.83 (-1.27, -0.79) -0.87 (-1.04, -0.63)
µ13 1.00 -0.97 (-1.07, 0.64) 1.32 (0.85, 1.53) 1.03 (0.82, 1.24)
µ14 2.00 1.79 (1.66, 2.89) 2.12 (1.95,2.36) 2.03 (1.84, 2.22)
ξ11 -1.50 / -0.95 (-1.59, -0.28) -1.64 (-1.82, -1.46)
ξ12 -0.75 / -0.41 (-0.79, 0.09) -0.78 (-1.14, -0.51)
ξ13 0.75 / 0.63 (0.36, 0.89) 0.75 (0.43, 0.95)
ξ14 1.50 / 1.27 (0.80, 1.52) 1.43 (0.8, 1.74)
Σ111 1.50 2.01 (1.78, 2.68) 1.45 (0.92, 2.21) 1.57 (1.42, 1.74)
Σ112 1.00 1.37 (1.17, 2.13) 1.11 (0.93, 1.75) 1.13 (0.89, 1.25)
Σ113 0.75 0.60 (0.42, 1.77) 0.75 (0.50, 1.45) 0.78 (0.64, 0.95)
Σ114 0.50 0.32 (-0.24, 1.22) 0.42 (0.25, 1.11) 0.49 (0.39, 0.60)
Σ122 1.50 1.37 (1.17, 2.13) 1.59 (0.39, 0.90) 1.61 (1.41, 1.72)
Σ123 1.00 0.79 (0.63, 1.74) 1.05 (0.68, 1.39) 0.88 (0.64, 1.05)
Σ124 0.75 0.32 (0.11, 1.26) 0.82 (0.49, 0.99) 0.71 (0.54, 0.99)
Σ133 1.50 1.71 (1.54, 2.13) 1.41 (1.01, 1.65) 1.52 (1.24, 1.83)
Σ134 1.00 0.32 (0.11, 1.26) 1.03 (0.76, 1.48) 1.11 (0.54, 2.13)
Σ144 1.50 1.48 (1.15, 1.70) 1.87 (1.01, 1.91) 1.44 (1.30, 1.96)
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Figure 3: Human brain tissue sample sequenced with the 10X Genomics Visium platform. Expert
annotations of brain layers (cell-types) are shown as ground truth labels. ARI measures performance
of HST data analysis methods relative to ground truth labels.

number of SVGs was chosen to result in a parsimonious subset of genes, whose expression collectively
spanned the spatial domain of the tissue sample. We ran the SPRUCE model MCMC estimation
for 10000 iterations with a burn in of 1000. The estimated cluster labels from SPRUCE were taken
as the MAP estimate across all saved MCMC samples. Finally, we used default parameter settings
for each of the four existing tools.

Figure 3 shows the estimated tissue layer labels from SPRUCE and the four existing HST
tools relative to expert annotations. SPRUCE achieved the highest ARI of 0.75 relative to manual
annotations, followed by BayesSpace (ARI = 0.55) which struggled discerning layers 4 and 5. The
explicit use of layer-specific spatially variable features with SPRUCE as opposed to BayesSpace’s
use of principal components computed from all genes may explain the improved performance, as
principal components can be affected by low-quality/noise genes while. Additionally, BayesSpace’s
use of a global smoothing prior across the entire tissue sample represents a stronger assumption
than SPRUCE’s random effects-based approach, which allows for more flexible spatial correlation
patterns. The three network-based approaches stLearn, Seurat, and Giotto each performed poorly
relative to the manually annotated ground truth labels (ARI = 0.33, 0.29, and 0.24, respectively).

5.2 Analysis of 10X Visium Breast Cancer Data

To demonstrate the application of our proposed method to the case of unlabeled data, we analyzed a
publicly available human Invasive Ductal Carcinoma breast tissue (10x Genomics, 2020) sequenced
with the 10X Visium platform. We applied the standard pre-processing pipeline and sctransform
normalization approach as in Section 5.1. In Figure 4A, we plot the expression of the top 16
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most spatially variable features across the tissue sample. These features display substantial spatial
heterogeneity in gene expression, with clear sub-regions existing within the tissue sample. We
applied the MSN SPRUCE model with spatially correlated random effects to the normalized breast
cancer data, where the 16 top SVGs in Figure 4 were used as features. We identified K = 5 as the
best fitting model using WAIC and used 10000 MCMC iterations with a burn in of 1000.

Figure 4B shows the MAP estimate of the mixture component labels across the tissue space,
which we use to infer distinct sub-regions, i.e., clusters, within the breast tissue sample. To charac-
terize each cluster biologically, we show the posterior mean expression of each gene in each cluster
via the heatmap in Figure 4C. This plot shows clearly distinct expression patterns between clusters.
Cluster 1 spanned a large portion of the tissue sample and was characterized by medium to low
expression of all markers except MALAT1. Cluster 2 was more localized in the bottom right region
of the tissue sample and was marked by very high expression of 9 of the 16 genes. This set of 9
genes, as shown in the gene-gene correlation heatmap in Figure 4D, demonstrated highly corre-
lated expression, suggesting a possible pathway function of these genes. Cluster 3 featured high
expression of CRISP3 and SLITRK6, but low to moderate expression of all other genes. Similarly
clusters 4 and 5 were characterized by high expression of a single pair of genes, namely COX6C
and CPB1 in cluster 4, and ALB and MGP in cluster 5.

These results generated by the SPRUCE model may be suggestive of important biological
functions related to breast cancer. For instance, expression of MALAT1 has been associated with
suppression of breast cancer metastasis (Kim et al., 2018), suggesting cluster 1 may be a region
of relatively low tumor expansion within the tissue sample. Meanwhile, cluster 2 expresses tumor-
associated antigens (TAAs), i.e., substances produced by tumor cells, such as GFRA1 (Bosco et al.,
2018) suggesting cluster 2 as a highly tumor invasive region of the tissue sample. Relatedly, cluster
2 expresses high levels of AGR2, which has been associated with poor breast cancer survival (Ann
et al., 2018). Taken together, these results point to an interesting interaction taking place in this
breast tissue sample between tumor resistant cells in cluster 1 and cancerous cells in cluster 2. Such
findings are illustrative of how SPRUCE may elucidate promising targets for future study across a
wide range of disease domains.

6 Discussion

We have developed SPRUCE: a fully Bayesian modeling framework for comprehensive analysis
of HST, which accounts for important features such as skewness and spatial correlation across
the tissue sample. Our model improves upon existing approaches by allowing for a wide range
of spatial gene expression patterns via the use of spatially correlated random effects instead of
assuming a global smoothing pattern over the tissue sample. We showed how Pólya–Gamma data
augmentation can be used to allow for Gibbs sampling of random intercepts modeled with CAR
priors in the context of finite mixture model component mixture probabilities. We also established
a robust Gibbs sampling algorithm that protects against label switching by remapping mixture
component labels to a canonical sub-space.

Through a simulation study based on publicly available 10X Genomics Visium data, we showed
how ignoring gene expression features like skewness and spatial correlation can result in poor recov-
ery of true mixture component labels, and bias mixture component-specific parameter estimates.
Conversely, when tissue spots are not clearly separated in standard dimension reductions of gene
expression features like UMAP, spatial information can be used to help separate distinct sub-
populations within the tissue sample. We also showed how model fit criteria such as WAIC may
be used to identify the best fitting number of mixture components, which improves upon many
existing clustering tools.

We applied SPRUCE to two publicly available 10X Genomics Visium data sets. The first
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Figure 4: Human Invasive Ductal Carcinoma breast tissue sample sequenced with the 10X Genomics
Visium platform. (A) Expression intensity of the top 16 top SVGs is shown across the tissue
(brighter color implies higher expression). (B) Inferred cluster labels from SPRUCE. (C) Heatmap
of gene mean gene expression profiles within clusters. (D) Heatmap of gene-gene correlations.
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application was concerned with assessing the ability of SPRUCE to recover expert annotations
of human brain layers. We found that SPRUCE was best able to discern human brain layers
compared to existing methods. Notably, the Bayesian mixture model-based methods (SPRUCE
and BayesSpace) performed considerably better than the network-based methods (stLearn, Seurat,
and Giotto). We attribute the improved performance of SPRUCE over BayesSpace to the fact that
(i) SPRUCE allows for non-symmetry in gene expression features, (ii) SPRUCE models the most
spatially variable gene expression features instead of principal components of all genes, and (iii)
SPRUCE allows for more flexible spatial correlation patterns compared to the global smoothing
approach implemented by BayesSpace.

Finally, we applied SPRUCE to an un-annotated breast cancer sample sequenced with the 10X
Visium platform. Using a set of the 16 top SVGs across the tissue sample, we discovered 5 unique
cell clusters within the tissue sample. These clusters were marked by unique gene expression profiles
which allowed us to characterize the biological function of each cluster using existing literature.
We discovered an interesting interactions between a cluster of tumor resistant cells and a cluster
of highly cancerous cells – an interplay which may have important implications for understanding
the dynamics of the tumor microenvironment in the context of breast cancer.

This work may be extended in a number of promising ways. While we presented a general
framework for accommodating a variety of spatial patterns using spatially correlated random ef-
fects, one might encode more specific biological hypotheses into the spatial component of the model
through alternative prior distributions on the mixture component labels. Finally, while we devel-
oped SPRUCE for the quickly developing field of spatial transcriptomics, the model is generally
applicable to multivariate data that feature spatial correlation across areal units.
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