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Abstract 

The recognition of facial identity is essential for social interactions. Despite extensive prior 

fMRI and EEG/MEG research on the neural representations of familiar faces, we know little 

about the spatio-temporal dynamics of face identity information. Therefore, we applied a 

novel multimodal approach, by fusioning the neuronal responses recorded in an fMRI and an 

EEG experiment. We analyzed the neural responses to naturally varying famous faces and 

traced how face identity emerges over time in different areas of the brain. We found that 

image invariant face identity information prevails over an extended time period (from 150 to 

810 ms after stimulus onset) in the representational geometry of a broadly distributed 

network of parietal, temporal, and frontal areas with overlapping temporal profiles. These 

results challenge the current hierarchical models of face perception and suggest instead 

concerted and parallel activation of multiple nodes in the brain’s identity coding network while 

processing information of familiar faces.  

 

Keywords: face identification, representational similarity analysis, EEG-fMRI fusion  
 
 

Introduction 
 

Through the development of multivariate pattern analysis (MVPA) techniques, we have gained 

a deeper insight in the underlying neural mechanisms of face recognition and the development 

of familiarity.  Previous neuroimaging studies, focusing on the spatial domain, have shown that 

information, which is relevant for the identification of familiar faces, can be decoded from 

various regions of the face processing network (Gobbini and Haxby, 2007). These areas 

include parts of the core-network, processing various perceptual face aspects, such as the 

fusiform face area (FFA; Anzellotti et al., 2014; Axelrod and Yovel, 2015; Gilaie-Dotan and 

Malach, 2007; Goesaert and Op de Beeck, 2013; Nestor et al., 2011; Verosky et al., 2013; 
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Weibert et al., 2016), the anterior temporal lobe (ATL; Anzellotti et al., 2014; Kriegeskorte 

et al., 2007; Nasr & Tootell, 2012), and also parts of the so-called extended network, such as 

the medial temporal regions, medial and lateral parietal regions, the amygdala, the insula, and 

medial and inferior frontal regions (for a recent review see Kovács, 2020). On the other hand, 

a handful of EEG/MEG studies have used MVPA to investigate the temporal emergence of face 

identity representations. Identity can be decoded for both unfamiliar (Nemrodov et al., 2018, 

2016; Vida et al., 2017) and familiar faces (Ambrus et al., 2019; Dobs et al., 2019) within the 

first 200 ms post-stimulus onset. Furthermore, there seems to be a difference between the 

early and the later decoding phases in the sensitivity to low-level image-specific variations of 

the faces. While the earlier representations of face identity can be explained by  broader visual 

categories that are shared between stimuli, such as sex or age, the representations detected 

from 400 ms on are the result of higher-level, image-invariant decoding of identity (Ambrus 

et al., 2019; Wiese et al., 2019).  

Although a large body of research indicates that the several-hundred millisecond long 

activation of an extensive cortical network is necessary for the correct recognition of face 

identity, the exact temporal dynamics of the network is still largely unexplored. Dobs et al. 

(2019), using familiar and unfamiliar faces differing in age and sex, showed that basic visual 

dimensions of a face, such as low-level image-specific features but also information like age, 

sex and identity are decodable from MEG signals at different processing stages. These results 

suggest a coarse-to-fine information processing trajectory. Thus, it is possible that the higher-

level information within a familiar face (such as their image-independent perceptual 

representations, the recall of person-related semantic and episodic memories, the encoding 

of personality traits, attitudes and the associated emotional responses) are also extracted at 

different processing stages. Alternatively, the activation of the various areas underlying the 

above dimensions could occur in a temporally overlapping manner, parallel to each other.  
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To reveal the spatio-temporal dynamics of face identity processing, we used representational 

similarity analysis (RSA; Kriegeskorte et al, 2017; Kriegeskorte and Kievit, 2013) to integrate 

fMRI and EEG data. By relating multivariate similarity spaces obtained from EEG and fMRI via 

RSA, we were able to combine the superior temporal resolution of EEG with the precise 

spatial resolution of fMRI. This cutting-edge analysis method, that has only been used in a  

hand-full of studies so far, has brought significant advances in understanding the processing of 

objects (Cichy et al., 2016, 2014; Cichy and Pantazis, 2017; Hebart et al., 2018), biological 

motion (Chang et al., 2021) as well as emotions present in voices (Giordano et al., 2021) or 

faces (Muukkonen et al.,2020; Bayer et al, 2021). 

Here we used this approach to investigate the encoding of ambient faces (Jenkins et al., 2011) 

of famous persons across space and time. Our results show a distributed and prolonged 

processing of face identity, starting around 150 ms after stimulus onset within the inferior 

parietal cortex and quickly spreading simultaneously across the entire extended face network. 

Methods 
 

Participants 

24 healthy participants took part in the study. The data of four participants was excluded from 

the final analysis due to excessive head movements during the fMRI measurement, resulting 

in a poor signal-to-noise ratio in the individual data sets. Thus, the data of 20 participants (10 

male) with a mean age of 22.05 years (SD = 2.26) was analyzed. This sample size was based 

on previous studies employing the representational-similarity-based fusion of M/EEG and fMRI 

(Cichy et al., 2014; Muukkonen et al., 2020), but was slightly increased to enhance statistical 

power. All participants had normal or corrected-to-normal eyesight. Participants were either 

compensated financially or with partial course credits. The study was conducted in accordance 

with the Declaration of Helsinki and was accepted by the ethics committee of the Friedrich 
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Schiller University  Jena. 

 

 

EEG task and procedure 

The participants’ task was identical to the one employed by Ambrus et al. (2019). Briefly, 

participants viewed highly varying, ambient color images of four celebrities on a uniform gray 

backround (Angelina Jolie, Heidi Klum, Leonardo DiCaprio and Til Schweiger; size: 4.4° visual 

angle). Every participant could correctly identify these celebrities by recalling their names and 

occupations. During the experiment, participants were presented with 10 images per ID (4 x 

10 = 40 in total) in random order. Each stimulus was repeated 40 times (1600 non-target 

trials in total). In order to maintain the participants’ attention, 160 target trials were also 

included in which the images were rotated clockwise or counterclockwise (10°) and 

participants were required to signal the appearance of these images by pressing a button. 

These target trials were excluded from any further analysis. The experiment was written in 

Psychopy (Peirce, 2008). 

 

EEG data acquisition and pre-processing 

 

The EEG was recorded in a dimly lit, electrically shielded chamber using a 64-channel Biosemi 

Active II system with a sample rate of 512 Hz. An electrooculogram (EOG) was recorded 

from the outer canthi of both eyes as well as above and below the left eye. Participants were 

required to place their heads on a chin rest to ensure a distance of 96 cm between their eyes 

and the computer screen.  

The EEG data was pre-processed in EEGLAB (Delorme and Makeig, 2004). First, data was re-

referenced to common average, then a band-pass filter between 0.1 and 70 Hz was applied, 

and line noise was removed with the CleanLine plugin (Mullen, 2012). No further artifact 

correction or rejection was performed, as classifiers are thought to be robust to noise in 
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time-series neuroimaging data (Grootswagers et al., 2017). Data was downsampled to 100 Hz 

to increase signal-to-noise ratio. Finally, the EEG data was segmented between -200 ms and 

1300 ms relative to stimulus onset and then baseline corrected. 

 

fMRI task and procedure 

 

We always performed the fMRI recording before the EEG recording session and participants 

were only invited to the EEG session if they did not show excessive head movements during 

the fMRI measurements. 

A modified version of the EEG paradigm was used during the fMRI recording sessions. 

Participants completed four functional runs: In each run, every image was presented 5 times 

resulting in 800 non-target trials in total. During each trial, the images (size: 3.4° visual angle) 

were presented for 600 ms, followed by an interstimulus interval (ISI) of either 1400 or 3400 

ms (with equal probability) during which a black fixation cross was shown. Thus, the total trial 

length was either 2000 ms or 4000 ms. The position of the images was jittered by 10 pixels 

along the x- and y-axes across trials to avoid low-level adaptation. We included 4 target trials 

per run (16 in total) in which the participants had to respond to images that were rotated 

clockwise by 10° by pressing a button. All target trials were modelled in SPM as nuisance 

regressors, but again discarded from any further analysis. The experiment was programmed 

in MATLAB (Mathworks, 2013), using PsychToolbox (Brainard, 1997; Kleiner et al., 2007; 

Pelli, 1997). 

 

 

fMRI data acquisition and pre-processing 

 

fMRI data was recorded using a Prisma fit 3T scanner (Siemens Healthcare, Erlangen, 

Germany), fitted with a 20-channel head coil. High-resolution T1-weighted anatomical scans 

were collected with an MP-RAGE sequence (TR = 2300 ms, TE = 3.03 ms, 192 slices, 1 mm 
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isotropic voxel size). Functional scans were obtained using a T2*-weighted EPI sequence (35 

slices, 10° tilted relative to axial, TR = 2000 ms, echo time (TE) = 30 ms, flip angle 90°, in 

plane resolution 3 mm isotopic voxel size). Our analysis pipeline consisted of slice-timing, 

realignment, co-registration to the anatomical scan, normalization to MNI-152 space and 

resampling to 2 x 2 x 2 mm resolution. We pre-processed the fMRI data in SPM12 

(www.fil.ion.ucl.ac.uk/spm/). 

 

 

Representational-similarity-based EEG-fMRI fusion 

In order to trace identity information across both space and time, we conducted a 

representational-similarity-based EEG-fMRI fusion (Figure 1; Cichy et al., 2014; Cichy and 

Pantazis, 2017; Muukkonen et al., 2020). First, we created neural representational dissimilarity 

matrices (RDMs) for each time point of the segmented EEG data and every voxel in the 

functional MRI images.  

We constructed the EEG-RDMs by conducting single-trial pairwise decoding of every possible 

stimulus pair with a 5-fold-cross-validation, separately for each participant. We assigned 20% 

of the trials of a given stimulus to 1 of 5 datasets randomly, so that each set contained an even 

number of trials per stimulus. Support vector machine (SVM) classifiers were then trained on 

4 of the datasets and tested on the 5th in a leave-one-out design. This was done separately at 

each time point and for each possible stimulus pair with all of the 64 EEG channels as features. 

The classification accuracy at each time point was then calculated as the average of all cross-

validation folds. We assembled the resulting pairwise decoding accuracies for each possible 

stimulus pair into  40 x 40 RDMs, one for  each time point, omitting the diagonal to avoid the 

artificial inflation of similarity between RDMs (Ritchie et al., 2017). To increase the signal-to-

noise ratio, we averaged these EEG RDMs at each time point across participants and 

smoothed the pairwise decoding accuracies with a 30 ms rolling average (Cichy et al., 2016; 
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Muukkonen et al., 2020). All multivariate pattern classifications on the EEG data set were 

conducted using the Decision Decoding Toolbox (DDTBOX; Bode et al., 2019). 

For the classification, L2-norm SVMs with a regularization parameter of C = 1 were used, and 

were implemented in LIBSVM (Chang and Lin, 2011). 

To obtain the fMRI RDMs, we first estimated general linear models (GLMs) for each 

participant separately, specifying each of the 40 stimuli as a regressor (also including the target 

trials as a nuisance regressor). The resulting beta maps were then used to create RDMs at 

each voxel for each participant. We examined each voxel using a  searchlight approach (10 mm 

radius) and trained SVM classifiers to distinguish the activation patterns of each possible 

combination of stimulus pairs (Kriegeskorte et al., 2006, 2007). We employed a leave-one-

run-out design, so in each cross-validation fold, the classifiers were trained on the data of 3 

runs and tested on the data of the 4th. The pairwise decoding accuracies were then calculated 

as the averages across all cross-validation folds. Here again, the decoding accuracies of every 

possible stimulus pair were combined into 40 x 40 RDMs. All fMRI multivariate pattern 

classifications were carried out using The Decoding Toolbox (Hebart et al., 2015). Equal to 

the analysis of the EEG data, we used L2-norm SVMs as classifiers, with a regularization 

parameter of C = 1, which were implemented in LIBSVM (Chang and Lin, 2011).   

 

Finally, a model-based EEG-fMRI fusion using commonality analysis was conducted (Hebart et 

al., 2018; Seibold and McPhee, 1979). Commonality analysis is a variance decomposition 

method in which so-called commonality coefficients are calculated. These are determination 

coefficients (R²) that reflect how much variance is uniquely shared between multiple variables. 

In this particular application, they allow us to quantify how much variance is uniquely shared 

among the EEG RDMs at each time point, the fMRI RDMs at each voxel and the model RDMs. 

We created a conceptual identity model RDM (Figure 1) in which all images of the same 
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identity were considered similar (represented by a 0) and all images of different identities 

were considered dissimilar (represented by a 1).  

 

Figure 1. Design and analysis approach. A. Spatial (fMRI) and temporal (EEG) RDMs were 

constructed respectively for each voxel (10 mm searchlight radius) and each time point (10 

ms). Each cell of these RDMs reflects the pairwise decoding accuracy between a given stimulus 

pair, obtained from the corresponding neural data for each of the participants. B. Using 

commonality analysis, the unique variance shared between the participant-specific fMRI RDM 

at a given voxel, the averaged EEG RDM at a given time point and the identity model RDM 

was determined, while controlling for the pixel dissimilarity RDM. C. This yielded a 4D spatio-

temporal commonality time course for each participant, revealing the spatio-temporal 
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dynamics of face identity representations. 

 

In order to control for low-level image similarity, we also created a pixel dissimilarity RDM in 

the dissimilarity between pixel patterns of each possible stimulus pair was quantified, using  1 

- correlation as the distance measure. The approach was identical to Ambrus et al. (2019). 

Next, we conducted the fusion analysis by first vectorizing the lower triangle of each EEG 

RDM and fMRI RDM for each participant as well as the identity model RDM and the pixel 

dissimilarity RDM. We then iterated through the EEG time series and computed the 

commonality coefficients between the averaged EEG RDM at that specific point in time, the 

participant-specific fMRI RDM at each voxel and the identity model RDM while controlling for 

pixel dissimilarity. For each time point-voxel pair we first calculated two squared semipartial 

Spearman correlation coefficients (R²) between the EEG and fMRI RDMs, one in which only 

the pixel dissimilarity RDM was controlled for and one in which both the ID model RDM and 

pixel dissimilarity RDM were controlled for. We then obtained the commonality coefficients 

by calculating the difference between the two R2 coefficients. This commonality index thus 

reflects the variance shared between the EEG, the fMRI RDMs and the identity model RDM, 

when controlling for pixel dissimilarity. 

Note that when calculating these correlations, the EEG RDMs were always the dependent 

variable. Repeating this procedure for each time-point-voxel-combination and participant 

resulted in subject-specific 4D spatio-temporal commonality time courses. These consisted  

of a 3D commonality map for every time point, which contained the spatio-temporal dynamics 

of face identity information processing. Since we averaged the EEG RDMs at each time point 

across participants, all between-participant variance in these time courses can solely be 

attributed to the variance in the participant-specific fMRI RDMs. All 3D commonality maps 

were smoothed with an 8 mm FWHM Gaussian kernel in SPM12. 
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Statistical inference 

 

The obtained 4D spatio-temporal commonality time courses were tested for significance using 

a non-parametric 4D cluster-permutation test (Nichols and Holmes, 2002). The cluster 

definition threshold was determined by first conducting a one-sample t-test on each voxel in 

the 4D spatio-temporal commonality time courses in the baseline period (-200 to 0 ms). The 

resulting t-values were then aggregated into one empirical distribution under the null 

hypothesis and the cluster definition threshold was defined as the 99.5th percentile of this 

distribution (equivalent to a significance level of p = 0.005; Cichy et al., 2016). For the purpose 

of  constructing a permutation distribution of maximum spatio-temporal cluster sizes, we 

randomly flipped the sign of each participant’s 4D spatio-temporal commonality time course 

5000 times (including the original permutation). During each permutation, a t-map of the 4D 

spatio-temporal commonality time courses was constructed. This t-map was limited at the 

cluster definition threshold and 4D spatio-temporal clusters were formed. These were 

defined as above-threshold voxels that were either spatially and/or temporally contiguous. 

Finally, the maximum cluster size was determined during each permutation. This resulted in a 

permutation distribution of maximum cluster sizes under the null hypothesis. The p-value of 

each spatio-temporal cluster was defined as the proportion of maximum spatio-temporal 

cluster sizes in the permutation distribution that were at least as large as the cluster itself 

(Nichols and Holmes, 2002). Spatio-temporal clusters with p < 0.05 were reported as 

significant. For the sake of concision and interpretability, we applied a spatial and temporal 

cluster extent threshold to the spatial clusters within the significant spatio-temporal clusters. 

We only report spatial clusters within the above-defined spatio-temporal clusters that 1) were 

larger than the median cluster size of all spatial clusters in the spatio-temporal cluster and 2) 

lasted for at least 30 ms (a spatial cluster was defined as continuous for 30 ms, if at least 10% 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449599
http://creativecommons.org/licenses/by-nc-nd/4.0/


of its voxels were present at the previous time point and at least 10% were present at the 

subsequent time point).  

The data of the original significant spatio-temporal time course are presented in Figure S1 in 

the Supplementary Material.  

 

The spatial clusters at each time point within the significant spatio-temporal clusters were at 

first automatically labeled using the probabilistic cytoarchitectonic maps available in the SPM 

Anatomy toolbox (Eickhoff et al., 2005). They were then manually double-checked, based on 

the literature and publicly available brain atlases. 

 

Results 
 

The fusion of EEG and fMRI data revealed both where and when in the brain the neural activity 

is associated with facial ID processing.  The Supplementary Material contains a table (Table 

S2) that lists the coordinates and anatomical labels of all areas in the significant spatio-temporal 

time course. Furthermore, it also contains visualizations (Figure S3) and animations of the 

areas showing identity-model-explained representational correspondence of EEG and fMRI 

with a 10 ms temporal resolution. Figure 2b shows schematically, that the earliest face identity 

representations occur at around 150 ms. Surprisingly, the identity representations in this early 

time period of the EEG signal correlated with the activity patterns of the right inferior parietal 

lobule (IPL; Figure 2a). This correlation remained significant from 150 ms to 280 ms, peaked 

later on at around 550 ms, and then with brief interruptions persisted until about 750 ms. 
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Figure 2. Spatio-temporal RSA of the representations of face identity. A. Significant spatio-

temporal identity representations at selected time points. Maps are thresholded for 

significance (4D cluster-permutation test, n = 20, cluster definition threshold p < 0.005, cluster 

threshold p < 0.05) and plotted on the MNI template brain. Color scale signals unique variance 

shared between the fMRI RDM at a given voxel, the EEG RDM at a given time point and the 

identity model RDM while controlling for pixel dissimilarity. B. Schematic depiction of the 

identity commonality coefficients for the main regions within the significant spatio-temporal 

clusters as a function of time (see Table S2 in the Supplementary Material for a detailed list of 

all areas across time). Time courses reflect the mean identity commonality coefficients within 

a sphere (10 mm radius) in a given region over time. Colored plots mark time bins in which 

this region was part of the significant spatio-temporal cluster (see Methods section). C. The 

sum of voxels within the significant spatio-temporal time course, separately for the right 
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(orange) and left (blue) hemisphere, as a function of time.  

 

Next, starting at around 260-330 ms, significant identity information was decodable in 

different brain regions, including the bilateral superior parietal lobe, left IPL, right medial 

temporal lobe (MTL), the amygdala, bilateral postcentral gyrus, and the insula. Except for the 

left IPL (limited between 300 and 400 ms), commonality coefficients of face identity 

representations remained periodically significant until 590 to 810 ms after stimulus onset, 

depending on the respective brain area.  

A third wave of activity patterns was detected in cortical areas, including the middle and 

anterior parts of the right fusiform gyrus as well as the ventral surface of the anterior temporal 

lobe (ATL) and the superior temporal gyrus (STG), the right middle and superior frontal areas, 

the right precentral gyrus and the bilateral precuneus/posterior cingulate (PC/PCC).  In these 

regions, significant commonality coefficients were found, ranging  from 380 to 440 ms. Face 

identity information in these areas remained significant at intervals until around 560 to 770 

ms. Finally, the right inferior frontal cortex and the right temporo-parietal junction 

(TPJ)/posterior superior temporal sulcus (pSTS) showed identity-model-explained 

correspondence between EEG and fMRI data between 540-580, 650-720 and 670-700 ms, 

respectively.  

Overall, the spatio-temporal structure of face identity encoding showed a strong right-

hemispheric lateralization (Figure 2c) activating an extensive network of different areas,  with 

relatively late and extremely long-lasting processing.  

 

Discussion 
 

The current study aimed at providing detailed information about the spatio-temporal 
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dynamics of face identity processing in the human brain. For this purpose, we integrated fMRI 

and EEG measurements by using representational similarity analysis (Cichy et al., 2016, 2014).  

We investigated the involvement of a large variety of brain areas, using a hypothesis-free, 

search-light-based decoding approach, rather than limiting the analysis to pre-selected regions 

deemed relevant in previous works (Kriegeskorte et al., 2007). This analysis enabled us to 

track an identity related information flow in the whole cortical face network combining the 

temporal precision of EEG with the spatial precision of fMRI. So far, this is the first study 

integrating EEG/MEG and fMRI imaging for RSA to study the spatio-temporal dynamics of 

famous face identity processing. Overall, our analyses show that identity information is 

present simultaneously in a large network of cortical areas for a long time span, challenging 

the purely hierarchy-based models of face identity processing.  

The first correspondence of fMRI- and EEG-data-derived identity information was found at 

150 ms post-stimulus onset in the right IPL. This representation correspondence persisted, 

with some interruptions, until 750 ms. Such early-onset representations have previously been 

found in recent EEG/MEG studies for face identity (Dima et al., 2018; Nemrodov et al., 2018, 

2016; Vida et al., 2017) as well as for facial expressions (Muukkonen et al., 2020).  Our study 

is the first one to report that invariant aspects of face identity are initially detectable in the 

right parietal cortex. Nevertheless, which identity related features exactly are processed in 

this area, needs to be explored through systematic investigations in the future.   

 

The spatio-temporal cluster around the rIPL involved the superior intraparietal sulcus (sIPS) 

as well as the supramarginal and the angular gyri. This region is part of the extended face-

processing system and encodes gaze-direction and head orientation (for a review, see Haxby 

et al., 2000) as well as personality traits, attitudes, and mental states of others (Frith and Frith, 

1999)  and visual short-term memory for objects (Xu and Chun, 2006).  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2021.06.23.449599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449599
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jeong and Xu (2016) tested the role of the sIPS in object and face identity representation by 

using MVPA. As stimuli, they used famous faces, varying in viewpoint, hairstyle, expression 

and age and found significant identity representations in the sIPS around coordinates (MNI 

[x,y,z,]: 23, -52, 45; Xu and Chun, 2006) which correspond closely to the center of the rIPL 

cluster of our current study (MNI [x,y,z,]: 34, -48, 36). Therefore, we hypothesize, that the 

decoding within sIPS is most likely related to abstract identity processing. The persistence of 

the representational correspondence of the rIPL supports this conclusion, giving rise to the 

question which role this (previously relatively neglected) parietal area plays in the perception 

and processing of faces. 

Quite surprisingly, in several areas  identity specific representational correspondence arose 

simultaneously at around 300 ms post-stimulus onset. These included areas that were 

previously identified as parts of the extended face-processing network (Haxby et al., 2000) 

and have been shown to be involved in various steps of face identity processing (for a recent 

review, see Kovács, 2020). First, the rIPL activation extended bilaterally towards the superior 

parietal lobule and the postcentral gyrus. These regions were found in a recent meta-analysis 

to respond to newly learned familiar faces but not to famous or personally familiar faces (Blank 

et al., 2014). Second, regions of the MTL, including the hippocampus, perirhinal and entorhinal 

cortex have previously been reported to be involved in storing face-related biographical 

information and familiarity (Ramon et al., 2015). Third, the amygdala (Ramon et al., 2015) and 

the insula (Gobbini and Haxby, 2007; Ida Gobbini et al., 2004; Natu and O’Toole, 2011)  are 

related to the enhanced emotional processing of familiar identities. Finally, the sensory 

function of the precentral gyrus and its contribution to the processing of face identity remains 

unclear, although studies in the past have shown that it is indeed involved in face perception 

(Gobbini and Haxby, 2006; Watson et al., 2016). 
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So far, only a handful of studies used MVPA of fMRI data to locate the identity representations 

of famous faces. The results of these studies demonstrated the decodability of  face identity 

information in the right FFA (Axelrod and Yovel, 2015) or in a set of occipito-temporal 

(occipital face area, pSTS) and medial parietal areas, such as the PC/PCC (Tsantani et al., 

2019). Accordingly, many of these regions showed identity-specific representational 

correspondence when combining the EEG and fMRI data. This was also the case for other 

areas belonging to the core face-processing system (for a different interpretation see Kovács, 

2020), namely the ventral surface of the anterior temporal lobe and the superior temporal 

gyrus (Collins and Olson, 2014; Rajimehr et al., 2009). However, a surprising outcome of the 

current study that the representation of identity emerged relatively late, at around 400 ms 

post-stimulus onset. Recent MVPA studies suggest that the FFA and the ventral anterior 

temporal areas play a role in the image invariant encoding of face identities (Collins et al., 

2016; Goesaert and Op de Beeck, 2013; Nestor et al., 2011; Tsantani et al., 2021). The fact 

that these areas only showed representational correspondence at a later stage, correspond 

to their sensitivity to intermediate (Visconti Di Oleggio Castello et al., 2017) or high-level 

information (Tsantani et al., 2021), which is presumably related to the merging of perceptual 

and conceptual knowledge about the face (Collins et al., 2016; Morton et al., 2021).  

A few frontal and parietal areas showed representational correspondence with an onset of 

around 400 ms as well: The middle and inferior frontal representational correspondence 

during this time window might reflect activations of the inferior frontal face area (Axelrod 

and Yovel, 2013; Chan and Downing, 2011; Collins and Olson, 2014), which is also associated 

with the view-independent encoding of familiar face identities (Guntupalli et al., 2017). The 

PC/PCC and other medial parietal regions have also been associated with face familiarity in 

the past (Gobbini and Haxby, 2006; Visconti Di Oleggio Castello et al., 2017) as well as with 

the retrieval of person-specific (biographical) information from long-term memory (Burgess 
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et al., 2001; Gilmore et al., 2015; Leech and Sharp, n.d.; Wagner et al., 2005). 

Lastly, the right pSTS around the TPJ showed representational correspondence between 670-

700 ms post-stimulus onset. A recent study, measuring fMRI activation patterns for famous 

faces and voices found that this region integrates identity representations across visual and 

acoustic modalities.  Therefore, it may serve as a high-level identity processing area (Tsantani 

et al., 2019), which is consistent with the late occurrence of this correspondence in our 

analysis.  

It is noteworthy that all the above-described identity-selective representations occurred in a 

strongly right-lateralized network (Figure 2c). This result is  in accordance with a wide range 

of studies suggesting the right-hemisphere dominance of face perception (for a review, see 

Duchaine and Yovel, 2015). In summary,  the above mentioned areas are part of a large 

network recently defined as the „person identification network” (PIN; Kovács, 2020), which 

is assumed to be active for famous and, above all, personally familiar faces.  

 

Overall, the spatial pattern suggest the parallel and temporally overlapping activation of several 

members of the PIN, rather than a coarse-to-fine information processing trajectory. 

Moreover, the results are congreuent with previous studies, proposing the prolonged 

activation of several processing areas simultaneously for objects (Cichy et al., 2016), emotional 

voices (Giordano et al., 2021) and facial expressions (Muukkonen et al., 2020). The current 

study extends these observations to face ID identity representations.  

Importantly, the temporal dynamics of identity representations do not follow the currently 

accepted hierarchy of processing stages. The identity representation found in  areas such as 

the IPL, which is related to personality, traits and attitudes, preceded that of other areas, 

suggesting the rapid extraction of high-level information from faces and emphasizing their 

importance when meeting others. Memory- (medial temporal lobe) and emotion- (amygdala 
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and insula) related representations follow. From around 300 ms and only at around 400 ms 

identity information in the core network areas can be observed (likely representing higher-

level sensory and semantic identity processing via recurrent activations of the network).  

It is worth noting that the time window from around 300-400 ms to 600 ms reflects the most 

robust familiarity-related signals both in univariate (Wiese et al., 2019) and in multivariate 

studies (Ambrus et al., 2021, 2019; Dobs et al., 2019). This is the time window during which 

the largest amount of voxels show identity-model-explained representational correspondence 

with the EEG in our study as well. This emphasizes the importance of the cognitive processes 

that occur at this stage (presumably memory and emotion processing) for face identity 

representation. Such an interpretation is in line  with current models of PIN (Kovács, 2020) 

which highlight the role of these regions in separating the processing of familiar and unfamiliar 

faces.  

In sum, image invariant identity models explain the neural responses to faces in a broadly 

distributed network. However, our results also show how the representations in  the different 

processing areas develop across time, suggesting  prolonged and simultaneous activations of 

an overlapping network, informing the future development of models of face identification. 
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