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Abstract 
 

Mechanotransduction describes activation of gene expression by changes in the cell’s 

physical microenvironment. Recent experiments show that mechanotransduction can lead to long-

term “mechanical memory”, where cells cultured on stiff substrates for sufficient time (priming 

phase) maintain altered phenotype after switching to soft substrates (dissipation phase), as 

compared to unprimed controls. The timescale of memory acquisition and retention is orders of 

magnitude larger than the timescale of mechanosensitive cellular signaling, and memory retention 

time changes continuously with priming time. We develop a model that captures these features by 

accounting for positive reinforcement in mechanical signaling. The sensitivity of reinforcement 

represents the dynamic transcriptional state of the cell composed of protein lifetimes and 3D 

chromatin organization. Our model provides a single framework connecting microenvironment 

mechanical history to cellular outcomes ranging from no memory to terminal differentiation. 

Predicting cellular memory of environmental changes can help engineer cellular dynamics through 

changes in culture environments. 

 

Introduction 

 

Cellular mechanical memory describes how cells acquire and retain information about the 

mechanical properties of their microenvironment. These extracellular matrix (ECM) properties 

impact cellular structure, function, and identity (1–3), and recent experiments suggest that this 

linkage depends on not just the present microenvironment but the accumulated mechanical history 

experienced by the cell (4–10). The mechanism by which this memory is developed, maintained, 

and lost is not yet understood and exhibits several unusual features. First, the timescale at which 

the cell responds to mechanical changes through signaling (minutes to hours) is an order of 

magnitude faster than the timescale of memory development and dissipation (days to weeks). This 
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implies that microenvironmental information is rapidly acquired and used by the cell, but stored 

and released much more slowly. Second, the persistence time of the developed mechanical 

memory ranges continuously from no memory all the way to permanent memory (cell 

differentiation), simply by varying the microenvironmental history that the cell is exposed to (Fig. 

1A). This strong coupling between the dynamics of memory retention and the dynamics of the 

stimulus being remembered is not found in common physical systems such as magnetic or shape 

memory materials. Understanding these unique dynamical phenomena is critical to engineering 

cell behavior and fate through temporal control of the cell’s physical environment. 

Cellular adaptation to changes in the mechanical environment occurs in both the 

cytoskeletal and nuclear domains (11, 12). On stiff substrates, examples of cytoskeletal phenotype 

changes include increased clustering of focal adhesions, actomyosin contractility, cell spreading 

area, and migration speed (13–15). On soft substrates, contractility is reduced and the mechanical 

properties of the cell adjust to match that of the surrounding environment by depolymerization of 

F-actin (16–18).  In the nucleus, the population of transcriptionally active proteins changes with 

ECM stiffness as certain transcription factors relocate in response to mechanical signals(19, 20). 

The chromatin structure experiences epigenetic modifications and physical deformation of the 

nuclear envelope from contractile forces, leading to alterations in gene expression (21, 22). The 

dynamic nature of mechanical memory development and depletion indicates that information 

about microenvironmental mechanics is continuously consumed by the cell, allowing stem cell 

differentiation to proceed from different time series of mechanical microenvironments (1, 4, 6, 

23).  

A hallmark of mathematical models of memory is bistability, which is a property of a 

system to have more than one steady state, and this concept forms the basis for Waddington’s 

famous landscape of cell differentiation. Bistability alone does not contain any information about 

dynamics of memory development or retention, only that it can occur (24, 25). Several mechanistic 

models have been put forward to explain the relationship between mechanics and cell 

differentiation (5, 26–28), but these models do not simultaneously capture 1) the timescale 

disparity between mechanical signaling / cell adaptation and memory development and 2) the 

continuous range of memory outcomes. More generally, regulatory gene network models with 

different topologies can give rise to memory using network motifs such as positive and negative 

reinforcement (29–34). However, explicit molecular network models for mechanotransduction are 

difficult to develop because there is not enough data available to determine the many model 

parameters or assert which components of the regulatory network are rate-limiting. This leads to 

rigid models which are difficult to interpret and cannot generalize across variations in priming time 

and priming stiffness, limiting their predictive power.  

In this work, we propose a model to describe the dynamics of mechanotransductive 

memory acquisition and persistence. The model starts from a general molecular framework, 

incorporating both fast and slow mechanosensitive pathways. We simplify this model to two 

ordinary differential equations, representing cytoskeletal and nuclear dynamics, respectively. First, 

we show that simple positive reinforcement between signaling and transcription is sufficient for 

mechanical memory acquisition. Second, we show that dynamic coupling between the cellular 

phenotype and the sensitivity of this reinforcement leads to a continuous range of memory 

persistence time. Biologically, the sensitivity of positive reinforcement corresponds to the 

epigenetic state and transcriptional environment of the cell, which govern the steady-state balance 

between synthesis and degradation of proteins correlated with either a stiff-ECM or soft-ECM 

phenotype. The rate at which signaling induces changes in the positive reinforcement sensitivity 
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(transcriptional environment) determines memory by shifting the phenotype (protein composition) 

from requiring external mechanical signal to a self-sustaining state. Simulating priming programs 

that match experimentally tested configurations, we observe emergent cases of no memory, 

temporary memory, and quasi-permanent memory (differentiation) by varying only the priming 

time and keeping other model parameters fixed. In designing future experiments or therapeutics, 

this simple but robust framework could help decouple the importance of positive reinforcement of 

mechanosensitive gene expression and their sensitivity to mechanical cues, thus optimizing the 

role of mechanical memory in optimizing biological outcomes. 
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Fig. 1 Model for dynamic mechanical memory in cells. (A) Experimental observations indicate that 

cells alter their phenotype when placed on stiff substrates (priming) in a matter of hours. The length of 

time that these phenotype features are retained when the cell is transitioned backed to soft substrates 

depends on the length of priming time on the scale of days. (B) Integrated cellular picture of 

mechanosensitive signaling and positive reinforcement enable by transcription and translation. 

Increased ECM stiffness leads to F-actin formation, increased cellular contractility, and nuclear 

localization of mechanosensors (blue arrows), while soft ECM stiffness leads to decomposition of these 

features (red arrows). (C) Slow changes in the stable chromatin state in response to nuclear tension, 

epigenetic changes, and shifts in the post-transcriptional regulation environment affect the efficiency of 

stiff phenotype reinforcement. High levels of reinforcement stabilize the stiff phenotype features. 
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Results 

 

Model for Dynamic Mechanosensitivity in the Cytoskeleton and the Nucleus 

 

We begin our model of mechanotransduction and mechanosensitive gene expression by 

introducing a matrix variable  𝑥⃗ whose elements 𝑥𝑖=1..𝑛 represent functionally active 

concentrations of stiff-activated proteins and transcription factors. For a cytoskeletal protein, 𝑥𝑖 
corresponds to the steady-state concentration which emerges from synthesis and degradation. 

Examples of stiff-correlated cytoskeletal proteins include F-actin (or α-SMA), vinculin, and 

integrins. For transcription factors, 𝑥𝑖 refers to a transcriptionally eligible concentration, which 

includes the steady-state level of nuclear localization. Examples of transcription factors with well-

known stiff-correlated nuclear localization include YAP (35, 36), MKL-1 (20, 37), and RUNX2 

(38, 39); nuclear localization is necessary for transcription factor activity due to the possibility of 

co-activation requirements. We also include epigenetically modifying enzymes such as HDAC and 

HAT as elements of  𝑥⃗,  which influence chromatin organization and demonstrate 

mechanosensitive activity patterns (8). Considering all these components, the net influence of 

ECM stiffness on the cell quickly becomes a complex multivariate problem, and there is limited 

data available to inform all the cross-activity of each stiff-correlated transcription factor and 

protein. Therefore, we adopt a simpler approach and average the components of 𝑥⃗ down to a single 

variable 𝑥 which tracks the effective mechanoactivation over all mechanosensitive processes. 

However, if the matrix of interactions between the variables 𝑥𝑖 is known, the present approach can 

be generalized as shown in SI Section I. The linear dynamics of 𝑥 can be written as: 

 𝑑𝑥

𝑑𝑡
= 𝑘𝑥↑(𝑚)(𝑥𝑟𝑒𝑓 − 𝑥) − 𝑘𝑥↓(𝑚)𝑥 

(1) 

 

where 𝑚 is the matrix stiffness, 𝑘𝑥↑(𝑚) gives the mechanosensitive rate of cytoskeletal protein 

synthesis and/or transcription factor nuclear import, 𝑘𝑥↓(𝑚) gives the rate of the reverse processes 

(degradation and nuclear export), and 𝑥𝑟𝑒𝑓 is a reference level of mechanoactivation at a 

characteristic stiffness 𝑚0. Processes described by 𝑘𝑥↑(𝑚) are shown with blue arrows in Fig. 1B, 

while processes described by 𝑘𝑥↓(𝑚) are shown with red arrows. We choose 𝑘𝑥↑(𝑚) to be a 

monotonically increasing but saturating function of stiffness, 𝑘𝑥↑ = 𝜏𝑥↑ − exp(−
𝑚

𝑚0
), to capture 

the mechanosensitivity of stiff activation, and for simplicity we choose the degradation and export 

rate 𝑘𝑥↓(𝑚) to be a constant 𝜏𝑥↓ over stiffness (36) (Fig. S1). This is motivated by experimental 

evidence that nuclear import of transcription factors is more mechanosensitive than nuclear export 

(36) and that cellular response saturates at very high stiffness (40). While specific functional 

choices are arbitrary, the results we present are general to different functional forms which 

maintain positive correlation of 𝑘𝑥↑ with stiffness. A systems circuit of our model is included in 

Fig. S2 for further reference. 

 

Transcription Creates Positive Reinforcement Loop for Mechanical Signaling 

 

 Next, we consider that the transcriptional activity of the many components of 𝑥⃗ creates a 

positive reinforcement loop by enhancing adaptations to increased stiffness of the ECM. For 

example, YAP and MKL-1 activate transcription of genes which lead to increased stability of focal 

adhesions, F-actin, and contractility through Rho-Rock pathways and support of G-actin 

polymerization (41–43). This stabilization releases additional bound cytoplasmic transcription 
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factors to translocate to the nucleus, further increasing 𝑥. The transcriptional positive 

reinforcement is depicted in Fig. 1B by the purple arrows; we incorporate this positive 

reinforcement mechanism into equation (1) by adding a nonlinear Hill relation: 

 𝑑𝑥

𝑑𝑡
= 𝑘𝑥↑(𝑚)(𝑥𝑟𝑒𝑓 − 𝑥) − 𝑘𝑥↓(𝑚)𝑥 + 𝛼

𝑥𝛽

𝑥𝛽 + 1
 

(2) 

 

Here 𝛼 is the sensitivity of the positive reinforcement and 𝛽 determines the sharpness of the Hill 

function, which transitions from a low value to a high value like a smoothed step function. Positive 

reinforcement loops in cells have been extensively modeled using Hill relations and are a known 

source of bistability in dynamical systems (44–46). Bistability indicates at least two steady-state 

solutions to a dynamical system and underpins hysteresis and memory in many physical systems. 

Biologically, the sensitivity parameter 𝛼 contains all the information about the efficiency of the 

mechanosensitive self-reinforcement, which directly corresponds to the transcription landscape. 

We consider this parameter as a function 𝛼({𝑦𝑖}, 𝑧), where each 𝑦𝑖 represents a protein, mRNA, 

or non-coding miRNA involved in regulating the transcription-translation pipeline, and 𝑧 is a label 

for the fraction of euchromatin relative to heterochromatin in the nucleus. Implicitly, a subset of 

𝑦𝑖 and 𝑧 depend on mechanosensitive actors 𝑥𝑖, which in turn depend on 𝑚. Fig. 1C illustrates 

how changing 𝛼 reflects changes in both 3D chromatin architecture and post-transcriptional 

regulation, altering the efficiency of mechanosensitive transcription even in the limit of excess 

transcription factors. In the heterochromatic state, fewer chromatin sites are available for 

transcription. In the more active euchromatic state, a complex and modifiable regulatory 

environment (including miRNAs) exists in between the chromatin and downstream protein 

expression. Acknowledging that many transcriptional machinery and regulatory components co-

depend on each other to function, we can expand 𝛼 as a sum of terms which consider all possible 

contributions from coupled interactions at increasing levels of complexity. 

 𝛼({𝑦𝑖},  𝑧) =  ∑𝑎𝑖𝑦𝑖
𝑖

+ 𝑎𝑧𝑧 +∑𝑎𝑖𝑗𝑦𝑖𝑦𝑗
𝑖,𝑗

+∑𝑎𝑖𝑧𝑦𝑖𝑧

𝑖

+ ∑𝑎𝑖𝑗𝑧𝑦𝑖𝑦𝑗
𝑖,𝑗

𝑧… 
(3) 

The coefficients 𝑎𝑖𝑗 act as weights which scale the relative importance of each transcriptional and 

regulatory component to the total state variable of the system, 𝛼. These weights are analogous to 

activity coefficients in regular solution theory, where cooperativity between different species in 

solution can break the linearity of mixing thermodynamics far from the dilute limit. This 

cooperativity arises from favorable binding interactions between solute species and long-range 

forces in polar media. These same features are prominent in the nucleoplasm, particularly the 

catalysis of transcription by formation of multi-component binding complexes (47, 48). 

 

Fast and Slow Dynamics of Transcriptional Reinforcement Sensitivity 

 

Since 𝑥𝑖 and 𝑚  have time dependence, we know that 𝛼({𝑦𝑖}, 𝑧) must also have a dynamic 

evolution which is bounded on the fast end by 
𝑑𝑥𝑖

𝑑𝑡
 and 

𝑑𝑚

𝑑𝑡
 because 𝑦𝑖 shares elements of 𝑥𝑖 and 𝑧 

depends on 𝑥𝑖 and 𝑚. Using the chain rule we can write the time derivative of 𝛼({𝑦𝑖}, 𝑧) as  

 𝑑𝛼

𝑑𝑡
=∑

𝜕𝛼

𝜕𝑦𝑖
 
𝑑𝑦𝑖
𝑑𝑡

 
𝑖

+
𝜕𝛼

𝜕𝑧
 
𝑑𝑧

𝑑𝑡
 

(4) 
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While upper-bounded by 
𝑑𝑥𝑖

𝑑𝑡
 and 

𝑑𝑚

𝑑𝑡
, the unknown terms 

𝜕𝛼

𝜕𝑦𝑖
 and 

𝜕𝛼

𝜕𝑧
 can significantly slow the 

overall dynamics of 𝛼 below those  of 𝑥𝑖 or 𝑚 due to complex rate-limiting or anti-cooperative 

relationships contained within the series expansion of 𝛼.  Evidence of time-dependent relationships 

between reinforcement and transcription has been collected on individual mechanisms, including 

some involving mechanosensitive factors such as RUNX2 (49, 50). Although we lack the data and 

explicit mechanistic understanding to specify all the contributing mechanisms to 𝛼, we can capture 

the essential nature of this time dependence by rewriting 𝛼 as the sum of a fast changing component 

(on the scale of 
𝑑𝑚

𝑑𝑡
 or 

𝑑𝑥𝑖

𝑑𝑡
) and a slow changing component which is effectively constant on the 

timescale of 𝑥𝑖 and 𝑚. Complete details of the derivation are included in SI Section I; the result 

for 𝛼(𝑡) is: 

 
𝛼(𝑡) = 𝛼(𝑡𝑠𝑙𝑜𝑤) + 𝑐

𝑚𝜁

𝑚𝜁 + 1
 

(5) 

 

We use another Hill relation in stiffness 𝑚 with degree 𝜁 and sensitivity 𝑐 to model the fast portion 

of 𝛼, which captures the fact that the positive reinforcement sensitivity is explicitly 

mechanosensitive and that stiff reinforcement requires the presence of mechanosensitive 

transcription factors such as YAP and MKL-1 to occur(41, 42, 51–53). Recent evidence indicates 

that the nuclear structure and chromatin conformation physically responds to environmental 

stiffness via forces transmitted through the LINC complex and not merely through chemical 

signals, and these direct processes are captured by this fast component of 𝛼(𝑡) (12, 54, 55). For 

the remaining term 𝛼(𝑡𝑠𝑙𝑜𝑤), we are free to choose a form which generally depends on 𝑥𝑖 and 

𝑚 such that 
𝜕𝛼

𝜕𝑡𝑠𝑙𝑜𝑤
(𝑥𝑖, 𝑚) represents a weighted average of the slow, nonlinear dynamics present 

in equation (4). 

 Plugging equation (5) back into equation (2), our time-dependent equation for cellular 

mechanoactivation is now: 

 𝑑𝑥

𝑑𝑡
= 𝑘𝑥↑(𝑚)(𝑥𝑟𝑒𝑓 − 𝑥) − 𝑘𝑥↓(𝑚)𝑥 + (𝛼(𝑡𝑠𝑙𝑜𝑤, 𝑥, 𝑚) +

𝑚𝜁

𝑚𝜁 + 1
)

𝑥𝛽

𝑥𝛽 + 1
 

(6) 

 

In this ODE, we established mechanosensitivity of synthesis and nuclear import of 𝑥 (first term), 

mechanosensitivity of degradation and nuclear export of 𝑥 (second term), and positive 

reinforcement of cellular mechanoactivation (third term) with a time-dependent sensitivity that 

evolves slowly with respect to changes in 𝑥. 

 

Phase Diagram of Cellular Mechanoactivation Shows Selective Bistability 

 

We can visualize the steady-state solution space of 𝑥 by recognizing equation (6) as the 

negative gradient of a “Waddington-like” energy landscape with respect to 𝑥, 
𝑑𝑥

𝑑𝑡
= −

𝜕𝑈

𝜕𝑥
. Since 

𝛼(𝑡𝑠𝑙𝑜𝑤, 𝑥,𝑚) evolves on a much slower timescale than 
𝑑𝑥

𝑑𝑡
, we treat 𝛼 as a constant when finding 

the steady state solutions of 𝑥. Integrating equation (6), we arrive at 

𝑈(𝑥,𝑚, 𝛼) =  −𝑘𝑥↑(𝑚)𝑥𝑟𝑒𝑓𝑥 +
𝑥2

2
(𝑘𝑥↑(𝑚) + 𝑘𝑥↓(𝑚))

+ 𝑥 (𝛼 + 𝑐
𝑚𝜁

𝑚𝜁 + 1
) ( 2𝐹1 [1,

1

𝛽
, 1 +

1

𝛽
,−𝑥𝛽] − 1) 

(7) 
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where 2𝐹1 is the special hypergeometric function. Fig. 2A gives a phase diagram of the solutions 

of 𝑥 (identified as local minima in the free energy landscape) as a function of the dimensionless 

Fig. 2 Phase diagram of the stiff-correlated phenotype. (A) Phase diagram of steady-state stiff 

phenotype expression as a function of ECM stiffness 
𝑚

𝑚0
 and transcriptional reinforcement sensitivity 

𝛼. Insets demonstrate a slice of the energy surface vs. 𝑥 for a typical point in each region, where the 

dots mark the energy minima and the corresponding steady state values of 𝑥. (B,C) Transitioning from 

region I to region II (gray arrows) by increasing 𝛼 at constant stiffness above 𝑚𝑐 leads to a significant 

increase in the steady-state value of 𝑥. Green line indicates crossing the phase boundary between 

regions. (D,E) Transitioning from region I to region III (pink arrows) at constant stiffness by increasing 

𝛼 below 𝑚𝑐 traps the system in a low-𝑥 steady state. However, the transition from region II to region 

III by dropping the ECM stiffness at large 𝛼 (gold arrows) keeps the system in a high-𝑥 minima. 
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ECM stiffness 
𝑚

𝑚0
 (y-axis) and the reinforcement sensitivity 𝛼 (x-axis). The insets on the phase 

diagram show representative slices of the energy landscape for a point (𝛼,𝑚) within each region 

of the landscape.  

This landscape can be divided into three regions. In orange region I (low reinforcement 

sensitivity and stiffness), the energy minimum and single corresponding steady state is found at 

small 𝑥. In this monostable region, there is low mechanical signal from the soft ECM, and low 𝛼 

corresponds to a small influence of the positive reinforcement process on 𝑥. In light blue region 

II, the system is still monostable, but the increased ECM stiffness induces mechanical signaling 

and shifts the steady-state value of 𝑥 to a much higher value than in region I. Biologically, this 

corresponds to the classical pathways of mechanotransduction which occur on a timescale of 

hours. Compared to region I, a cell in region II exhibits greater nuclear localization of transcription 

factors such as YAP, RUNX2, and MKL-1, and increased focal adhesions, contractility, and areal 

spreading (Fig. 1B). Above a particular stiffness value, this shift occurs for any value of 𝛼. In dark 

blue region III (low stiffness and large reinforcement sensitivity), the system is bistable; the 

positive reinforcement is sufficiently strong to support a ‘stiff’ steady state at large 𝑥 in the absence 

of direct mechanical signal, in addition to the expected ‘soft’ steady state at low 𝑥. This means that 

for a given value of ECM stiffness and reinforcement sensitivity in region III, the cell can exhibit 

either low or high mechanoactivation; this allows for hysteresis, meaning the observed state will 

be determined by the prior history of the ECM stiffness and the reinforcement sensitivity. 

Region boundaries (green lines) in the phase diagram can be crossed by altering either the 

ECM stiffness or the reinforcement feedback sensitivity, inducing transitions in the steady-state 

mechanoactivation. Considering the soft phenotype region I as the initial condition, there are two 

possible transition pathways. Traversing to region II by increasing 𝛼 above a critical stiffness (gray 

arrow) leads to a continuous and reversible increase in the observed value of 𝑥 (Fig. 2B,C). If the 

mechanical signal is then removed (region II to region III, gold arrow), 𝑥 will remain elevated as 

the minimum from region II smoothly transitions to the large 𝑥 minima in region III (Fig. 2C,E).  

Traversing from region I to region III below the critical stiffness value (pink arrow, Fig. 2D) will 

not observably change 𝑥 from the low region I value, since the region I minimum smoothly 

transitions to the small 𝑥 local minimum in region III (Fig. 2E). Further increasing the positive 

reinforcement sensitivity within region III eventually leads back to region II, with a single ‘stiff’ 

steady state at large 𝑥 for all values of ECM stiffness. The hysteresis loop created by the path 

dependence in the stiffness-reinforcement phase diagram provides a mechanism for dynamic 

mechanosensitive memory. A key feature of the phase diagram which corresponds to experimental 

observations is that increasing mechanical stiffness alone can increase 𝑥, allowing the cell to begin 

adapting to the environment on short timescales by expressing stiff-correlated proteins and 

localizing stiff-correlated transcription factors to the nucleus (1). However, these changes are fully 

reversible (exhibit no memory) unless the sensitivity of the positive reinforcement is sufficiently 

large. In the next section, we explore how evolving 𝛼 on a slow timescale can lead to different 
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expressions of mechanical memory depending on the time program of external mechanical 

stimulus.  

 

Nonlinear Dynamics of Positive Reinforcement Sensitivity Capture Full Range of Memory 

Retention Outcomes 

 

Having shown that the trajectory of 𝛼 can determine if memory is observed for a particular 

ECM mechanical history, we return to 𝛼(𝑡𝑠𝑙𝑜𝑤) in equation 5 and consider an explicit form for the 

slow evolution of the reinforcement sensitivity. Given sufficient data on low-level biological 

dynamics, 𝛼(𝑡𝑠𝑙𝑜𝑤) can be rigorously derived from equation (4) (SI Section II), but in lieu of this 

Fig. 3 Dynamics of the transcriptional environment. In region I, the cell receives little mechanical 

signal and has limited positive reinforcement, so there is no driving force for the transcriptional 

environment to shift. In region II, signaling is sufficient to drive chromatin reorganization and changes 

to the post-transcriptional regulatory environment, such as miRNA synthesis. In region III, the 

mechanical signal is lost and there is net degradation / reversal of the stiff-correlated phenotype. As 

self-reinforcement 𝛼 increases, less external mechanical signal is required to maintain the stiff 

phenotype cultivated in region II. 
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data, we choose the following form to maximize simplicity while capturing key phenomenological 

features from experiment: 

𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
= 

{
  
 

  
 −

𝛼 − 𝛼0
𝜏𝑓

,                         𝐼 

𝛼

𝜏𝑠

𝑚

𝑚0
exp−

𝑥

𝑥𝑟𝑒𝑓
,             𝐼𝐼

−
𝛼

𝜏𝑠

𝑚0

𝑚
exp−

𝑥

𝑥𝑟𝑒𝑓
,       𝐼𝐼𝐼

 

(8) 

 

where 𝜏𝑓 and 𝜏𝑠 are time constants on the scale of hours and days, respectively, and can be directly 

related to 
𝑑𝑦𝑖

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 in equation (4). Fig. 3 overlays the different piecewise components of equation 

(8) and their biological interpretation as reinforcement dynamics on top of the phase diagram from 

Fig. 2A. The y-axis remains the rescaled ECM stiffness 𝑚/𝑚0 and the x-axis the strength of 

positive mechanosensitive reinforcement 𝛼. 

 In region I (low stiffness and cytoskeletal reinforcement) we simply set 
𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
 to quickly 

converge to a reference value 𝛼0. At low levels of mechanical signaling and without prior 

mechanical activation, there is no driving force to spur phenotypic change. While soft ECMs 

promote cell differentiation and memory, in our example we are only considering stiff-correlated 

genes for 𝑥, and there is no evidence for undifferentiated cells to develop memory which resists 

stiff priming. In Fig. 3, this corresponds to no change in the chromatin state or transcriptional 

activity over time. Memory develops at high stiffness and is lost at low stiffness unless the cell 

differentiates, so we choose 𝛼 to increase in region II and decrease in region III to complete our 

piecewise description. By our definition, increasing 𝛼(𝑡𝑠𝑙𝑜𝑤) in region II accounts for slow, 

nonlinear processes (shifts in the 3D chromatin and transcriptional regulation environment) which 

increase reinforcement of a stiff cellular phenotype (Fig. 3). Decreasing 𝛼(𝑡𝑠𝑙𝑜𝑤) in region III 

models net decay of these stiff phenotype features (which can have lifetimes on the scale of days 

to weeks (56)) and reversal of the transcriptional environment in the absence of sufficient 

mechanical signal.  

In the priming region II, multiplying by 
𝑚

𝑚0
 ensures that the priming time required to 

achieve a given level of memory decreases when increasing the priming stiffness. Including a 

dependence on 𝑥 ensures that the persistence time of mechanical memory increases nonlinearly 

with priming time for a specified priming stiffness (6). Mechanistically, our definition of 𝑥 

includes mechanosensitive epigenetic modifiers such as HDAC and HAT (8, 57, 58), and while 

the activity of these enzymes to flip epigenetic marks occurs on shorter timescales relative to 

memory (57), chromatin structural organization and downstream effects on transcription can be 

much slower due to glassy dynamics of actual chromatin conformational change (59–61). This 

couples the slow dynamics of the reinforcement sensitivity to the steady-state value of 𝑥, which 

changes depending on the specific location within each region of the phase diagram. This coupling 

of reinforcement sensitivity to the signal itself is a new feature of our model which has not been 

studied in other models of cellular positive reinforcement loops. For simplicity and to limit free 

parameters, we choose the 𝛼 degradation dynamics in region III to be the reverse of the priming 

dynamics. Net degradation of the reinforcement and dissipation of memory will be faster at smaller 

𝑚 and will smoothly change from the value of 𝛼 in region II. 
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Each of the three arrows (grey, red, and blue) in Fig. 3 correspond to a different 

hypothetical stiff priming program which leads to a different class of memory outcome. The initial 

conditions, priming stiffness, and model parameters (Table 1) are fixed across the three programs. 

The corresponding time evolution of 𝑥 and 𝛼 for each mechanical priming program is plotted in 

Fig. 4A-C.  Between each of the three priming program results shown in Fig. 4A-C, only the 

length of time that the simulated cell is exposed to stiff substrate (10 kPa) is changed; the soft 

substrate is modeled at 2 kPa. 

 

  Parameters (Fig. 4) Values Units 

Phase Diagram 

𝑚0 6.5 kPa 

𝑥𝑟𝑒𝑓 2. Arb. 

𝛽 6 n/a 

𝜁 35 n/a 

𝑐 1. Hours-1 

𝜏𝑥↓ 1.5 Hours 

𝜏𝑥↑ 1.5 Hours 

Dynamics    

𝜏𝑓 12. Hours 

𝜏𝑠 150. Hours 

𝛼0 1. Arb.  

Priming 

𝑚𝑠𝑡𝑖𝑓𝑓 10 kPa 

𝑚𝑠𝑜𝑓𝑡 2 kPa 

Table 1. Parameters for simulations in Fig. 4A-D. 
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Fig. 4 Applying different mechanical priming programs. Dot-dash lines 𝑥𝑟𝑒𝑓 indicate the value of 

𝑥 without 𝛼 dynamics (𝛼 = 𝛼0).  (A) Short priming time of a few days does not result in memory, 

corresponding to the gray trajectory in (D) and in Fig. 3. (B) Medium priming time results in memory 

on the timescale of priming, but eventually this memory decays and the system resets. (C) Longer 

priming time prevents the system from entering the memory dissipation region when the substrate 

stiffness is decreased, leading to permanent memory of stiff phenotype. All model parameters in (A-C) 

are fixed except for the length of priming time in the mechanical program (top plots). (D) Two-phase 

mechanical priming program which illustrates cumulative priming. The first priming phase is identical 

to (B), and the total priming is equivalent to (C). The second short priming pulse generates significantly 

more memory than the first priming pulse, yet the cell remains reversibly plastic compared to (C) since 

some priming is reversed between the two pulses. 
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Short Priming Does Not Lead to Memory Formation 

 

The grey program does not exhibit any memory – the time that the cell is exposed to the stiff 

environment is short, and when the cell is returned to a soft ECM, the system returns to region I. 

While the phenotype quickly shifts to respond to the stiffening substrate at the beginning of the 

priming program (crossing the dashed green line corresponding to the boundary between regions 

I and II), the mechanical signal is not maintained long enough to alter the transcriptional 

environment to the point where it can sustain memory. The stiff phenotype is lost just as rapidly 

as it was gained (timescale of hours) since the dynamic trajectory returns directly to region I when 

the stiffness is relaxed. In the case of a stem cell, this corresponds to an insufficient mechanical 

signal to sustain differentiation.  

 

Medium Priming Leads to Temporary Memory with Variable Retention Time 

 

The red program in Fig. 3 exhibits temporary memory – by holding the cell in priming region 

II for longer than the gray program, 𝛼 increases sufficiently such that when the cell is returned to 

a soft environment, it enters the bistable region III. The positive reinforcement loop traps the 

system in a steady state of large 𝑥 despite the absence of persisting stiff mechanical signaling (Fig. 

4B). The dot-dash line 𝑥𝑟𝑒𝑓 shows the phenotype expression of 𝑥 in the absence of 𝛼 dynamics (𝛼 

is fixed at 𝛼0) under the same priming program. The significant deviation of 𝑥 from 𝑥𝑟𝑒𝑓 represents 

the ‘phenotypic distance’ of the cell from the low reinforcement case; the length of time that this 

difference is maintained (while the cell is in region III) gives the length of time of observed 

memory. Since the dynamic evolution of 𝛼 fundamentally changes the energy surface, the 

persistence time of memory is decoupled from the relaxation rate of 𝑥, as is observed 

experimentally. Depending on the specific length of priming time and priming stiffness, the model 

predicts a continuous range of memory persistence times from much shorter than the priming time 

to much longer than the priming time using the same parameter set. Over time, 𝛼 slowly decreases 

(driving 𝑥 to decrease) due to the absence of continued signaling promoting epigenetic change and 

natural degradation of stiff phenotype proteins, dissipating memory and eventually returning the 

system to region I. The model also predicts that as substrate stiffness decreases after priming, the 

window of reversible memory (range of 𝛼 which corresponds to region III) grows significantly. 

This means that the phenotype of the cell is more likely to be reversible if the dissipative 

mechanical signal is stronger. 

 

Long Priming Leads to Permanent Memory 

 

Finally, the blue program corresponds to permanent memory, which in the case of MSCs 

indicates lineage specification to a stiff phenotype (osteocyte). As the sensitivity of the positive 

reinforcement 𝛼 continues to increase, it requires a stronger reversing signal (softer ECM) to enter 

the bistable, temporary memory regime. At a certain point (beyond the axis break in Fig. 3), it 

becomes practically impossible to sufficiently reverse the mechanical signaling and the cell will 

permanently exhibit a phenotype correlated with large 𝑥 and saturated large 𝛼. In vitro experiments 

confirm that differentiated osteocytes exhibit sustained higher nuclear activation of YAP/TAZ and 

other stiff-correlated proteins, qualitatively agreeing with our picture of a phenotype which retains 

features of high 𝑥 (52). Fig. 4C shows how simply increasing the priming time using the same 
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ECM stiffnesses of the mechanical programs in Fig. 4A and 4B prevents the system from leaving 

region II of the phase diagram after the priming phase. Physically, this means that the 

transcriptional and epigenetic state of the cell has absorbed enough mechanical signal during the 

priming phase to self-sustain the stiff phenotype once that signal is removed. Even after reducing 

the ECM stiffness, 𝛼 and 𝑥 will continue to slowly increase until they reach a saturation value 

which corresponds to lineage specification (Fig. S3). The model predicts that this transition to a 

‘permanent’ phenotype is a result of the net cumulative mechanical signal absorbed by the cell; 

for example, consecutive short priming programs will have an additive effect due to the dynamics 

of 𝛼 in regions II and III (Fig. 4D). In this trajectory, the initial priming period is the same as that 

in Fig. 4B, but the short second prime ends up building significantly longer memory than in Fig. 

4B due to the accumulated ‘environmental knowledge’ which is not dissipated in the short 

intermediate soft period. This agrees with experimental evidence that cyclical stretching and stress 

stiffening of cellular substrates induces stiff differentiation (a ‘pumping’ effect) (62–64). The 

model also predicts that if the epigenetic / transcriptional state labeled by 𝛼 is manipulated by a 

drug or other mechanism, the cell can lose its permanent mechanical memory and be 

‘reprogrammed’, which corresponds physically to reversible lineage specification enabled by so-

called Yamanaka factors (65). 
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Noise in 𝜶 Dynamics Results in Qualitatively Accurate Memory Distributions when 

Compared with Experiment 

 

 We have so far identified and predicted a wide range of phenomenological features of 

cellular mechanical memory with our simple, dynamic positive reinforcement model at the single 

cell level. However, biological systems are inherently noisy and experimental measurements of 

cellular phenotype and mechanical memory are most often taken over a population of cells. We 

categorize possible random fluctuations in our model into two categories – noise which affects  

Fig. 5 Adding noise to nonlinear 𝜶 

dynamics. (A) Global energy minima of 𝑥 

vs. 𝛼 and 𝑚 overlaid with priming 

programs from Fig. 3 and phase boundaries 

from Fig. 2. For the majority of Region III, 

the large x minima is also the global energy 

minima, indicating that noise on fast 

timescales is unlikely to cause well-

hopping and disrupt temporary memory. 

(B,C) Cumulative distribution (CDF) of 

memory times from simulations with slow, 

gaussian noise incorporated onto 
𝑑𝛼

𝑑𝑡
 for 

priming of 7 days ((B) and 10 days (C)), 

matching experimental conditions from 

Yang et al. Fig. 3 (green bars and purple 

control lines). The black dashed line shows 

the CDF of a normal distribution with the 

same mean and standard deviation as the 

model distribution for reference. 
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mechanosensation and signaling (‘fast’ noise) and noise which affects the slower dynamics of 

reinforcement (‘slow’ noise). ‘Fast’ noise contains all the fluctuations which might cause the  

phenotype of a cell to not occur at the local minimum of the energy landscape on fast timescales 

(deviations away from steady state). This is particularly relevant in the bistable region III, where 

fluctuations could cause cells to jump between different local minima, corresponding to changes 

in phenotype and changing observations of memory. In a bistable energy landscape, a normal 

distribution of fluctuations away from steady state values of 𝑥 will bias a population towards the 

global minimum over the local minimum since the jump rate will be higher if the energy barrier  

height between wells is lower (Fig. S4). Fig. 5A shows the global minimum steady state value of 

𝑥 over the stiffness-reinforcement phase diagram from Fig. 2A (region boundaries in green). In 

the majority of region III, the high-𝑥 minimum is lower in energy. For our purposes of stiff priming 

programs which enter region III from a single-minima, high-𝑥 state in region II, this means that 

fluctuations from steady state will tend to 

reinforce a noisy population to remain in 

the high-𝑥 state, preserving memory and 

having little qualitative effect on the model 

results.  

 ‘Slow’ noise captures fluctuations in 

the dynamic evolution of 𝛼, and this is 

more interesting to consider due to the 

nonlinearity of 𝛼(𝑡). The fact that 
𝑑𝛼

𝑑𝑡
 

depends on the current steady state of 𝑥 

(and therefore the prior history of 
𝑑𝛼

𝑑𝑡
) 

means that a normal distribution of noise in 

the dynamics of 𝛼 could lead to a non-

normal distribution of memory results. We 

investigated the impact of including noise 

on 
𝑑𝛼

𝑑𝑡
 by introducing a normal distribution 

of noise with 0 mean, unit standard 

deviation, and magnitude 𝐴=0.01 at each 

time step of the simulations conducted in 

Fig. 4A-C and generating a distribution of results over N = 256 simulations. The distribution of 

memory times observed from the noisy simulations is shown in blue in Fig. 5B,C. This data 

contains all simulation runs including those without memory, so the difference between the first 

bin and second bar shows the percentage of trials (cells) which did not exhibit any mechanical 

memory. The thin black line gives the cumulative distribution function of a normal distribution 

with the same mean and standard deviation as our generated dataset. This confirms that applying 

normally distributed noise to the dynamic evolution of 𝛼 results in a non-normal distribution of 

observed memory persistence times due to the non-linearity of the 𝛼 dynamics. 

Experimental data on persistence time of YAP and RUNX2 nuclear localization as a 

function of priming time on stiff substrates (10 kPa) taken from (6) is overlaid on Fig. 5B,C. We 

averaged their results from YAP and RUNX2 to get a general sense of how the mechanoactivated 

cell population changes over time (green bars) after the substrate is switched from stiff to soft (2 

kPa). The purple control lines indicate the experimental baseline of mechanoactivation in nuclear 

localized YAP and RUNX2 without any substrate switching. With added noise, our model captures 

Parameters (Fig. 5) Values Units 

Phase Diagram 

𝑚0 6.1 kPa 

𝑥𝑟𝑒𝑓 1.2 Arb. 

𝛽 4.9 n/a 

𝜁 35 n/a 

𝑐 1 Hours-1 

𝜏𝑥↓ 1.1 Hours 

𝜏𝑥↑ 1.5 Hours 

Dynamics    

𝜏𝑓 12. Hours 

𝜏𝑠 160. Hours 

𝛼0 1. Arb.  

Noise 

𝜎 0.7 Arb. 

𝐴 0.01 Arb. 

Priming   

𝑚𝑠𝑡𝑖𝑓𝑓 10 kPa 

𝑚𝑠𝑜𝑓𝑡 2 kPa 

Table 2. Parameters for simulations in Fig. 5B-C. 
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the qualitative changes in the phenotype distribution over time as priming time is changed, with 

longer-primed cells being more resistant to return to the soft control phenotype. As in Fig. 4, all 

parameters aside from priming time are held constant between the Fig. 5B and Fig. 5C to best 

replicate the experimental conditions (Table 2). In both the experimental data and the model, 10 

days of priming leads to significantly higher retention of the stiff phenotype in the cell population 

than 7 days of priming.  

To isolate the effect of the nonlinear coupling between mechanical signaling (𝑥) and 

transcriptional environment dynamics 𝛼(𝑡) on the population statistics, we attempted the same 

noisy simulations using a linear form for 
𝑑𝛼

𝑑𝑡𝑠𝑙𝑜𝑤
 without 𝑥 or 𝑚 dependence (Fig. S5). This 

emphasizes that the nonlinear coupling between mechanical signaling and the dynamic evolution 

of the transcriptional environment is a fundamental conceptual ingredient which can explain both 

the disparate timescales of cellular adaptation and memory and captures non-normal population 

statistics. The linear noise simulations can still result in zero, temporary, or permanent memory. 

However, the population statistics reflect the normal distribution of the noise applied, as seen by 

the agreement between the red model results and the black normal distribution CDF. While the 

available experimental data is limited, the same set of parameters using linear dynamics cannot 

qualitatively capture the experimental population distribution change with priming time nearly as 

well as the nonlinear dynamics, despite the same number of free parameters. The selection 

procedure for choosing the free parameters is discussed in the Methods section. 

 

Model Feature Comparison with General Experimental Observations 

 

We selected the data from the Yang et al. study on mesenchymal stem cells for direct 

comparison with our model since this is one of the few experimental studies to explicitly track 

components of cellular mechanotransduction as a function of mechanical priming time. While 

drawing quantitative comparisons across different experimental studies is difficult due to 

confounding variables such as cell lineage and growth media, we highlight several features of our 

model which appear in other studies (results summarized in Table S1). In our model, increasing 

ECM stiffness enough will always lead to cellular expression of a stiff phenotype on the scale of 

𝜏𝑥↓ and 𝜏𝑥↑ irrespective of memory formation; our chosen values for these parameters are based on 

the adaptation time observed experimentally of ~1 hour (17). The characteristic stiffness value 

𝑚0which we use in Figure 4 and Figure 5 is consistent with the priming and memory stiffnesses 

used in other experiments in Table S1. Short priming of ~1 day does not lead to appreciable 

memory in both our model and experiments (7), and temporary memory retention time is generally 

greater than or equal to the priming time across different experiments. In our phase diagram, 

reduction of 𝛼 from region II to region III or region I erases permanent memory; experimentally, 

knockdown of miR-21 (a component of 𝛼(𝑡𝑠𝑙𝑜𝑤)) also erased permanent memory even after long 

priming (5). Temporary memory development correlated with RUNX2 nuclear localization using 

stiff and soft substrates of 8 and 0.5 kPa after 7 days of priming was recently observed by Watson 

et al. in epithelial cells (66); these values are similar to the data from Yang et al., indicating that 

similar parameters in our model are translatable to a different cell type. Finally, in our model the 

reinforcement strength and acquired memory is cumulative; this agrees qualitatively with 

experiments which have investigated dynamic cyclical stretching as a way to observe mechanical 

memory (63, 64). Fig. 6A-C gives a schematic overview of the progression from external 
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mechanical signal to self-sustaining mechanical memory by way of increased transcriptional 

reinforcement spurred by mechanotransduction.  

 

Simple Generalization for Analogous Soft-ECM Correlated Mechanical Memory 

 

Fig. 6 Summary of dynamic mechanical memory. (A) At short priming times, 

mechanical signaling leads to cellular adaptation but does not persist for sufficient 

time to increase reinforcement, leading to no memory. subsequent reinforcement is 

low, preventing observation of memory. (B) At intermediate priming times, 

reinforcement increases with persisting mechanical signal. The transcriptional 

environment shifts enough to build temporary memory, but this reinforcement will 

slowly decay to erase memory once the mechanical signal is removed. (C) At long 

priming times, reinforcement strength continues to grow with input mechanical 

signal and an adapting transcriptional environment. Reinforcement becomes strong 

enough to sustain without any mechanical signal, and the new phenotype persists 

if the substrate is changed (permanent memory). 
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In this work, we focused on stiff-priming and stiff-correlated mechanical memory since 

these conditions are the most widely studied due to applicability in stem cell therapies for fibrosis 

and osteogenesis. However, cells can also develop analogous soft-correlated mechanical memory 

which can eventually lead to soft tissue generation such as neurogenesis with sufficient priming 

(1). Our model is instantly generalizable to this case by reconstructing 𝑥 as an averaged quantity 

of soft-activated phenotype components (𝑥⃗ →  𝑥⃗𝑠𝑡𝑖𝑓𝑓 , 𝑥⃗𝑠𝑜𝑓𝑡) and inverting the scaled stiffness from 
𝑚

𝑚0
 to 

𝑚0

𝑚
 (Fig. 6A-C). The phase diagram for soft-correlated memory and phenotypic activation is 

shown in Fig. S6 and retains the three distinct regions which allow for no memory, temporary 

memory, and permanent memory depending on priming time. Recent experiments which primed 

adipose stem cells on 1 kPa substrates for two weeks found that temporary soft memory develops 

with similar persistence times (between one and two weeks) to stiff memory (10). In contrast with 

stiff priming, nuclear YAP localization was not found to be a marker of soft-priming. This 

observation agrees well with our definition of the mechanically correlated phenotype fingerprint 

vector 𝑥⃗; nuclear YAP is an element of the stiff-correlated 𝑥⃗ but not the soft-correlated 𝑥⃗. Using 

this simple, modular model framework, more complex models can be assembled which 

simultaneously consider soft and stiff memory and downstream consequences for differentiation. 

 

Discussion 

 

The acquisition and maintenance of mechanical memory is a general phenomenon across 

different cell types and culture environments (4–10, 67). Balestrini et. al. cultured lung fibroblasts 

for two weeks on stiff (100 kPa, priming phase) substrates and found that they continued to express 

elevated fibrotic activity after being transferred to soft substrates (5 kPa, dissipative phase) for at 

least two weeks. A follow-up study by Li et al. under similar conditions identified miR-21 as a 

necessary molecule for long-time memory maintenance, indicating the role of transcriptional 

efficiency in memory regulation (5). Some miRNAs can have half-lives on the scale of multiple 

days, which motivated our formulation of 𝛼(𝑡𝑠𝑙𝑜𝑤) to conceptually include these non-coding RNA 

molecules. More recent experiments have focused on detailed changes of chromatin organization 

within the nucleus, confirming that epigenetic changes occur in response to mechanical signaling 

(8) and highlighting the role of the LINC complex as a direct, physical mechanosensory (12, 54, 

68). Additionally, we have recently shown that epithelial cell sheets primed on a stiff matrix for 3 

days also store mechanical memory through nuclear YAP localization, which continues to enhance 

cell migration through enhanced pMLC expression and focal adhesion formation on soft matrix 

for 2-3 days (7).  

In developing our model, we sought to synthesize and distill the phenomenological 

observations from these experiments and related studies covering the impact of mechanics on 

lineage specification, which has not been accomplished by existing models to our knowledge. Li 

et. al. proposed a reservoir model along with their identification of miR-21 as a memory regulator, 

where priming leads to production of memory keepers which slowly dissipate after priming halts. 

This model alone does not explain the timescale disparity between mechanical adaptation and 

development of memory. Mousavi et al. and Peng et al. proposed two different mechanically 

activated differentiation models based on population dynamics and gene regulatory networks, but 

these models do not capture the variable rates of memory dissipation observed in experiments. 

These models rely on ~20 and ~40 free kinetic parameters, respectively, yet do not account for key 

qualitative features of the memory phenomena. Our model uses 8 unique free parameters, which 

sacrifices resolution on specific biological mechanisms but allows us to identify that a simple 
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nonlinear coupling between signaling and transcriptional evolution is sufficient to capture the 

phenomenological features of cellular plasticity.  

 The continuous range of cellular plasticity persistence time from zero (no memory, Fig. 

6A) to permanent (lineage specification, Fig. 6C) is unique when compared to other physical 

memory systems, which often either exhibit permanent memory or no memory. Although early 

studies of lineage specification viewed this process as uni-directional (such as the traditional 

Waddington landscape), the targeted reversibility of plasticity under the right conditions is also a 

unique physical feature. The traditional Waddington landscape identifies specific branch points 

which split cells into separate wells representing stable phenotypes (24). Our model generalizes 

this picture by showing that both the Waddington landscape surface and the rate at which the cell 

progresses down each well can be altered by external stimuli such as stiffness. This ‘graduated 

reversibility’ may function biologically to make the cell more resilient to local short-term 

fluctuations in environment, while still allowing for long term, correlated population shifts in 

response to persistent environmental cues.  

 Predicting the memory response of cells to their mechanical environment has significant 

implications for designing cell-based therapy and studying other cellular mechanisms in vitro. 

Based on our model, we predict that small changes in priming stiffness or priming time can have 

large consequences on the retention time of developed phenotypes due to the nonlinearity of slow-

evolving components. Our phase diagram indicates that recovery of stem-like, soft phenotypes can 

be enhanced after priming by reducing the stiffness of the recovery substrate, extending the range 

of region III which allows for memory dissipation. However, beyond a certain point, mechanical 

signal alone will not lead to phenotype reversal due to formation of permanent memory. Measuring 

the extent of priming may require nuclear information and not just data on signal activity, since 

the timescale of signaling is independent of the timescale of memory development. External 

methods to change 𝛼, such as Yamanaka factors or changes in growth media, can overwrite the 

natural permanent persistence of the stiff phenotype in these situations. In future work, we 

anticipate that this model framework for mechanical memory can be extended to include a 

chemical axis, which can be used to consider more general cases of cell differentiation and 

coupling between chemical and mechanical contributions to memory acquisition and retention. 

 

Limitations  

 

In our model, we made two key assumptions: 1) Positive feedback loops exist in 

mechanosensing pathways, and 2) Shifts in the transcriptional environment which affect these 

feedback loops depend on signaling but occur on slow timescales. Quantitative predictions of cell 

responses will require more experimental data to validate more complex and precise models. Based 

on our results in this work, determining the rate of change of the transcriptional environment (𝛼(𝑡)) 
as a function of priming stiffness and priming time is the most important unknown quantity. This 

is difficult to assess from epigenetic modifiers alone since chromatin reorganization occurs on a 

longer timescale than epigenetic enzyme activity. Hi-C experiments during both priming and 

memory dissipation would provide information on the rate of change of the chromatin 

conformation. While this would not completely specify the transcriptional environment, this 

information would be key to understand which steps are rate-limiting in the evolution of 

mechanically activated cellular plasticity. The further that 𝛼(𝑡) can be specified with mechanistic 

information from the nucleus, the greater predictive accuracy on the dynamics of memory can be. 
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Materials and Methods 

 

The model was implemented using a standard ODE solver (fsolve) in the open source SciPy 

package (Python). In Fig. 5, parameter selection was done using a design-of-experiments 

approach. A latin hypercube sampling method was used to generate combinations of the 

parameters 𝛼0, 𝑚0, 𝑥𝑟𝑒𝑓, 𝜏𝑠, 𝜏𝑥↓, 𝜏𝑥↑, 𝑛, 𝜎, and 𝐴. Each parameter combination was run for priming 

times of 3, 7, and 10 days, with 250 noisy trials run for each priming time. Parameter combinations 

were scored against the experimental data from Yang et al. using a Kolmogorov-Smirnov test, a 

least-squares test, and manual inspection. The data shown in Fig. 5 (nonlinear dynamics) and Fig. 

S6 (linear dynamics) represent the distributions with the best-fit from the sampling conducted in 

both metrics. We note that these do not represent best-fits to the data but were sufficient to show 

qualitative agreement and differentiate the two different dynamics approaches. 
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