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Extracting the rules of cell-to-cell interactions in tissue dynamics is challenging even if high-resolution live
microscopy is accessible. In order to seek and compare the different rules enforced in developing and home-
ostatic tissues, it will be desirable to have a systematic method that outputs the rules of multi-cellular kinetics
simply from live images and cell tracks. Here we demonstrate that graph neural network (GNN)-based models
can predict cell fate in the mammalian epidermis when spatiotemporal graph constructed from cell tracks and
contacts are given as inputs. By extracting the rules learned by GNN, we find neighbor cell fate inductions and
inhibitions consistent with previous findings as well as some that have been previously overlooked. This study
demonstrates how GNN-based methods can be useful in inferring stochastic dynamics such as multi-cellular
kinetics involving proliferation and loss of agents.

INTRODUCTION

One of the grand challenges in the physical study of biol-
ogy is to write down the “equation of motion” that governs
the time evolution of whole multicellular systems. Recent ad-
vances in single-cell profiling experiments and computational
methods have refined the molecular view on cell differentia-
tion processes [1] and enabled the prediction of cell lineage
trees at a massive scale [2, 3]. Yet, it is still difficult to as-
sess the rules of cell-to-cell interactions, which are known to
play key roles in all stages of multicellular dynamics [4]. Al-
though there are promising attempts to probe the cell interac-
tions from high-throughput data [5–11], the relevance of the
interactions in the spatiotemporal domain (e.g., their effects
on determining the fate of the cells) can so far only be ad-
dressed through direct live imaging.

In the homeostasis of the adult mammalian epidermis,
where the basal layer cells undergo rapid turnover within a
time scale of days, clonal analyses have shown that cell di-
visions and differentiations are stochastic [12, 13]. It has re-
cently been further identified through live imaging that there
exists a correlation in the fates between the neighboring cells,
indicating that the basal layer cells are communicating with
each other to maintain the stem cell pool [14]. Similar mecha-
nisms have been found in the drosophila intestine [15] as well
as in the mammalian intestine [16] and stomach [17]. In gen-
eral, the stem cell pool in homeostatic tissues must be main-
tained through some feedback mechanism acting between the
cells [18], either directly through cell contacts [14–17] or in
more indirect forms such as niche competition [19, 20] in or-
der to prevent overgrowth or depletion.

Inferring the rules of interaction from experiments in tissue
dynamics typically requires case-by-case analyses involving
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the testing of specific hypotheses based on live imaging and
perturbation experiments. Alternatively, it will be desirable
to have a computational pipeline where rules behind the dy-
namics of the tissue can be unbiasedly suggested after feeding
in live image data and cell tracks. One way will be to train a
model based on machine learning to predict the future dynam-
ics of cells from past data, and later challenge the model by
partially hiding data, applying attribution methods, or using
symbolic reduction to extract the rules that have been learned
by the machine.

Machine learning methods have been heavily used to ex-
tract features of cells from live or fixed cell image se-
quences. Applications include segmentation and tracking
[21–23], in silico labeling [24], and direct prediction of cell
fates [25], which all use versions of convolutional neural net-
works (CNN). The downside in using image data directly for
cell fate prediction is that images typically contain redundant
information making it difficult to focus on the most relevant
components to interpret the rules. For instance, a key feature
of cells undergoing cell division is their size growth, which
means that the machine will likely learn through images that
cell size is a good predictor of cell fate. This strong associa-
tion will be a problem when we are interested in the mecha-
nism upstream of fate decision (i.e., commitment to cell divi-
sion), since cell size is difficult to mask out from images. On
the other hand, important aspects such as cell tracks, lineages,
and contacts are not trivially deducible by the machines from
the images, making it harder to conduct interpretable rule ex-
tractions based on the experiences of individual cells.

An alternative machine learning approach toward auto-
matic rule discoveries is the graph neural network (GNN)
scheme [26]. The GNN approach has been utilized not only
in forward dynamics predictions of physical systems [27]
but has also been successful in inferring the rules of agent-
interactions [28] and dynamical properties [29] from time-
lapse data obtained by simulations and experiments. The
GNN framework is particularly suited for characterizing the
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Fig. 1. Bidirectional spatiotemporal GNN model: analysis of the hind paw epidermis data. (A) Schematic of cell division and delamina-
tion in the basal layer of the mouse epidermis. (B) Schematic of the cell-contact graph and temporal edges in the basal layer. (C) Schematic of
the 2+1 dimensional spatiotemporal graph. A 3-time model is shown as an example. The spheres represent cells, and double-headed arrows
represent the neighboring cell connection and the temporal tracks. The GNN models predict the cell fate (NB, Del, Div) conducted in the final
layer (t = 0). (D) Schematic of the information flow in the bidirectional spatiotemporal GNN model. The information flow in a target cell’s
subgraph is shown. The target and the neighboring cells are represented by boxes and circles, respectively. Each arrow indicates the direction
of the information flow, the order of which is represented by the different colors. (E) The area under the curve score (AUC) of the bidirectional
spatiotemporal GNN models with sum and mean aggregation is shown for models under various feature conditions. The AUC for each cell
fate label is shown with different markers (NB: circle, Del: diamond, Div: square), which are obtained by averaging over six trained models.
Error bar: standard deviation. (F) Graph motifs that are potentially useful in predicting the target cell fate. The correlation of these motifs to
the target cell fate can be exploited to make predictions in the bidirectional spatiotemporal GNN model.

dynamics in multicellular systems since it can represent the
heterogeneous contact interactions between cells, temporal
cell tracks involving occasional cell division and loss, together
with the intracellular features such as gene expressions or any
other information extractable from image data. Representing
track data of a multicellular tissue as spatiotemporal graphs
is also a natural way of data compression; the characteristics
of the graphs can be compared across tissues and organisms
as well as to graphs generated by numerical models and from
contexts outside of biology [30]. In this work, we show how
the GNN-based approach can predict the fates of cells in the

epidermal stem cell pool, and demonstrate how the rules of
cell interactions can be inferred by systematically reducing
the components of GNN models and applying the attribution
method.

RESULTS

The epidermis is maintained by continuous cell divisions
occurring in a pseudo-two-dimensional region called the basal
layer. Cells in the basal layer can irreversibly delaminate
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toward the suprabasal layer and differentiate (i.e., turn post-
mitotic), and eventually shed off (Fig. 1A). We use the dataset
of cell tracks previously generated from live images collected
from the non-hairy mouse plantar (hind paw) skin [14], which
includes the tracks of all the cells within a region of the basal
layer. Between the time frames, cells conduct one of the three
possible behaviors; divide (Div), delaminate from the basal
layer and migrate into the suprabasal layer (Del), or stay (no
behavior, NB), typically with the ratio of 1:1:8 within the time
interval of the original image acquisition (12 hours). Loss by
cell death is negligibly rare in this tissue under homeostasis.
The relative motion between the cells is slow, meaning that
the main source of the cell motion is displacement due to cell
division and cell delamination.

We construct graphs with the basal layer cells as nodes,
connected by edges in spatial and temporal directions. The
spatial edges represent the cell-to-cell contact obtained from
the two-dimensional segmentation in the basal layer, based on
the membrane reporter signal (Fig. 1B). The temporal edges
are the tracks of the cells, involving forks corresponding to
cell divisions and terminal ends representing cell delamina-
tion; we do not track the cells after they have left the basal
layer. In each node (i.e., cell in a time frame), multiple fea-
tures extracted from the raw images can be assigned. For the
hind paw data, we chose the cross-section area of the cell in
the two-dimensional basal layer calculated from the segmen-
tation, and the level of the Fucci-G1 reporter [31] which is
the integral of the corresponding fluorescent channel within
the segmented cell area. The GNN model takes in the spa-
tiotemporal graphs as well as the features associated with each
node, and outputs predictions on the behavior of cells in the
last frame (Div, Del, or NB).

We trained a GNN model using training and test data taken
from two separate regions of the same mouse hind paw, each
involving more than 200 cells tracked over fifteen time frames
with a total of approximately 250 Div and Del events occur-
ring in each region. In the training of a Nt-time model, we ex-
tracted graphs composed of sequential Nt time frames, where
the time frames are indexed from t = −(Nt−1) to 0 in temporal
order (Fig. 1C), and conducted supervised machine learning to
predict the fate of the target cell in the last frame t = 0.

The model calculates the output from the input by sequen-
tially updating the features in the nodes in the following way
(information flow schematically shown in Fig. 1D: bidirec-
tional spatiotemporal GNN model). First, the model performs
message passing (MP) on the temporal edges from the future
to the past Nt − 1 times. Here, a single MP is conducted by
concatenating the features of adjacent nodes to be processed
through a multi-layer perceptron (MLP), and then passing on
that processed feature to the past node. Second, the model
performs MP bidirectionally on the spatial edges Ns times
(fig. S1A). Third, the model performs MP Nt − 1 times on
the temporal edges from the past towards the future nodes. In
all MP, we use the sum aggregation in order to properly re-
flect the graph structure [32]. The order of MP is critical in
sending the information of the graph structure. In the end of
the MP, the node feature in the last frame incorporates the in-
formation from its Nt-frame ancestor nodes, Ns-step neighbor

nodes of the ancestor nodes in the cell contact graph, as well
as the daughter cells of the ancestor neighbors (Fig. 1C). We
fix Ns = 1 in the following analyses since the performance of
the model were similar for Ns = 1 and 2 (fig. S1), and also
Nt = 4, which will be changed later. Finally, we decode the
node feature in the last frame via another MLP and output the
softmax score for each cell fate label (Div, Del, and NB).

The GNN model was successfully trained using standard
methods employing a loss function (softmax-cross-entropy
loss for the three cell behavior labels) and the Adam opti-
mizer (fig. S2). The Area Under the Curve (AUC) score shows
that all behaviors are predicted significantly better than a ran-
dom guess (AUC=0.5) (Fig. 1E). In particular, we found that
cell divisions can be predicted with high accuracy compared
with Del and NB. We further found that by training the model
with reduced features (i.e., without the cell area, G1-phase
reporter signal, or both), the score decreased significantly, in-
dicating that these features are utilized in making reliable pre-
dictions. Indeed, the cross-section area tends to be larger for
dividing cells (figs. S3A and E), consistent with previous ob-
servations [14, 33]. Furthermore, the G1-phase signal tends
to be lower in dividing cells as expected, while there was no
difference in the G1-phase signal between NB and Del cells
(fig. S3F).

Intriguingly, we found that even without the node features,
the GNN model can predict the fates with significant scores
(Fig. 1E). This indicates that the graph structure itself en-
codes useful information in predicting cell fate. A candidate
structure in the graph that can be used in the prediction is the
number of edges (i.e., neighboring cells, Fig. 1F). Indeed, the
number of neighboring cells is positively correlated with cell
division in the next time frame, which is explained by the fact
that cells with a larger area tend to be in contact with more
cells in the basal layer (fig. S3C). To see whether the number
of edges is important in the prediction, we changed the model
to take mean aggregation in the calculation step of the spatial
edges, which will make the number of contacts invisible in
the model. We found that this change in the model only has a
minor effect on the AUC score, suggesting that there are other
subgraph motifs that are utilized in the prediction.

Other subgraph motifs which can be interpreted in the bio-
logical context include the temporal length up to the last cell
division point (Fig. 1F). This is essentially the age of the tar-
get cell, which can be used to predict fate if the fate choice is
temporally non-random [34]. The neighbor cell fates are also
reflected as motifs, which should be important according to
previous results [14]. Similarly, the sibling cell behavior can
be exploited if there are sibling fate correlations such as in the
case of asymmetric division [35], although this is less relevant
for the current dataset [14, 34].

Next, we considered reducing the GNN model in order to
deduce the effect of graph motifs in the predictions more effi-
ciently. By excluding the initial step of propagating the in-
formation toward the past frames, the flow of information
becomes unidirectional, which is distinct from the previous
model in that the information of the temporal branches in the
neighboring cells is not transmitted to the target cell. To com-
pensate for this lack of information, we introduced an addi-
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Fig. 2. Unidirectional spatiotemporal GNN model with sum aggregation. (A) The next frame behavior (NFB) feature introduced to
represent the local branch structure. (B) Schematic of the information flow in the model of the unidirectional spatiotemporal GNN (see
Fig. 1D). (C) The AUC of the unidirectional spatiotemporal GNN is shown for models under various feature sets, obtained by averaging over
six trained models. Error bar: standard deviation. (D-G) The attributions of the unidirectional spatiotemporal GNN model are shown for each
feature condition: (Area, G1-phase signal, NFB, Random)= (+,+,+,+) (D), (+,−,+,+) (E), (−,+,+,+) (F), and (−,−,+,+) (G). The IG
averaged over six trained models is shown for each pooled feature. Error bar: standard error. The upper and lower values of the IGs of the
random features are shown as the orange zone.

tional feature to each cell, the next frame behavior (NFB),
which takes Div, Del, or NB (Fig. 2A). The reduced GNN
model is essentially turning a network structure (i.e., branch
and termination representing Div and Del) into a feature of the
node, which is useful in addressing the impact of the structure
on the predictions. This additional feature was added only to
the past cells (t ≤ −1).

The new GNN model predicts cell fates almost as well as
the previous model with and without the area and G1-phase
reporter signal features (Fig. 2C and fig. S4), indicating that
the key ingredients are captured without the backward-time
propagation. By further eliminating the NFB, we confirmed
that this feature has an impact on the prediction of all behav-
iors (Fig. 2C and fig. S5).

So far, we have been treating the GNN as a black box that

outputs predictions of cell fate with varying reliability depend-
ing on the inputs. To address the detail of the mechanism of
prediction, we next employed the attribution method called
the integrated gradient (IG) [36]. In this method, the impact
of each input variable on the output is quantified by integrat-
ing the change in the output score level upon the gradual shift
of each input feature (Figs. 2D-G). The IG also reflects the
sign of the impact of each feature; a negative attribution score
of feature f toward fate a means that the observation of f will
decrease the output score towards predicting a. To account
for the noise in IG induced by finite sample size, we further
added a random feature to the cells that have no correlation
with cell fate and calculated its IG score to identify the base-
line for non-zero signal (orange shades, Figs. 2D-G).

First, in Figs. 2D and E, the area of target cells at t = 0
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division and lateral inhibition of delamination by neighbor cell delamination.

are found to give positive and negative attribution for the pre-
diction of cell division and delamination, respectively. This
indicates that cells with large areas tend to conduct cell divi-
sion in the next frame, while they are unlikely to delaminate.
On the other hand, in Fig. 2F, negative attribution is observed
in the G1-phase signal of the target cells at t = 0, which is con-
sistent with the expectation that a high G1-phase signal of the
target cell should predict no cell division in the next frame.
Interestingly, the G1-phase signal has a relatively low score
when the cell area feature is present (Fig. 2D); the G1-phase
signal is mostly redundant for cell fate prediction. These re-
sults highlight how the model is efficiently focusing on the
most important variables from the multi-dimensional input.

Without the cell area and G1-phase reporter signal, non-
zero attribution scores are found for the prediction of fates
by the division of the target cell (Fig. 2G). This is reflecting
how the age of the cell can be used in the cell fate predic-
tion; newly born cells tend to undergo a refractory period [34],
meaning that the target cell is less likely to divide again if it
divided (was born) recently. More generally, the distributions
of lifetime can be distinct between cells with different fates
(fig. S6), which can be exploited in making fate predictions.
To eliminate the cell age information altogether, we set all
the features of the target cell sequence to zero (Fig. 3A: cell
external model). We also took mean aggregation in conduct-
ing the MP on spatial edges to make the number of contacts
invisible. This new model can still learn to predict the fates
significantly better than random (Fig. 3B). We found a high
IG score indicating that Del of a neighboring cell 24 hours be-
fore (two frames prior) is useful in predicting Div (Fig. 3C).
Consistent with this, when changing the number of input time

frames Nt, the AUC score largely increased between Nt = 2
and 3 (fig. S7A). These results match with the previous obser-
vation that cell delamination correlates with neighboring cell
division 1-2 days later [14].

Moreover, the GNN model predicts that there is an effect of
neighboring Del suppressing Del in the next frame (Fig. 3C
and D). This indicates that cell delamination is not entirely
random, and there may exist a mechanism to suppress two or
more neighboring cells to delaminate at the same time. This
finding demonstrates that the rule extraction procedure using
the GNN model is useful in predicting unexplored mecha-
nisms.

To confirm that the combination of model prediction and
the attribution method is indeed pulling out real mechanisms,
we conducted numerical simulations of coordinated cell fate
models and tested whether artificially implemented rules can
be correctly extracted. In the simulated models, cells are
represented by points in the 2D space undergoing repulsive
interaction with each other. Cell divisions and delamina-
tions are recapitulated by abrupt point duplication (with small
noise) and elimination, respectively (Fig. 4A). We encoded
the cell fate coordination in the following ways (Fig. 4B).
In the delamination-induced division setup, we first randomly
picked a cell to delaminate and chose another cell randomly
from its six-nearest neighbors to divide two frames after the
first cell delaminated. In the division-induced delamination
setup, the rules were flipped; a randomly picked cell was set
to divide while one of its six nearest neighbors was randomly
chosen to delaminate after the division. We also tried another
setup where these two rules were equally mixed.

Running the same GNN learning algorithm, we found
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that the AUC scores of each fate are in the expected order
(Fig. 4C); in the delamination-induced division setup, the di-
vision was predictable and delamination was not, and vice
versa. By testing the attribution method on these simulated
data, we confirmed that the inferred mechanisms indicate the
implemented rules (Fig. 4D). We noticed that the predictabil-
ity of the fates become significantly low for the mixed rule
setup; even in such situation, the attribution method was able
to pull out the coordination rules.

Finally, we analyzed the recently obtained mouse ear skin
data [37] to compare the mechanism of homeostasis across
different tissues. Although the ear skin has more structure
(i.e., hair follicles and other appendages), we have previously
observed that the behaviors of the interfollicular epidermal
basal cells in the ear skin are similar to that of the hairless hind
paw [14, 34]. A noticeable difference is that the rate of divi-
sions and delaminations were approximately two-fold slower
in the ear, which is why the interval between the frames was
set as 24 hours for the ear data collection. In Fig. 5, we show
the AUC and the attributions for the ear data; the largest pos-
itive (negative) IG score for Div (Del) is attributed to the Del
of neighboring cells from one frame earlier, indicating the ex-
istence of the same rule as the hind paw epidermis.

In addition, there are positively (negatively) large IG scores
for Del (Div) attributed to the Div of neighboring cells, which
were not seen in the hind paw epidermis. These scores im-
ply that a mechanism of neighboring Div-induced Del and

Div-suppression may exist; the rule of homeostasis in the ear
epidermis may be closer to the mixed setup in the simulation
compared with the hind paw epidermis. This difference was
confirmed by conducting a neighbor-fate imbalance analysis
(fig. S8A,B). In this analysis, we focus on individual cells
that either divided or delaminated and follow the subsequent
behaviors of their six-nearest neighbor cells to calculate the
neighbor fate imbalance [14]. The average fate imbalance in-
deed deviates from zero for the neighbors of dividing cells in
the ear, similar to the case of the simulation with the mixed
rule setup (fig. S8C-E).

DISCUSSION

Here we have used the graph-based learning framework to
systematically infer how interactions correlate with cell fates
in the basal layer stem cell pool of the epidermis. The GNN
models were able to predict the future cell fate using the rela-
tionships of the target cell and the cells in contact in the past
time frames. We identified the cell features that are attributed
to the predictability of the model using IG, and clarified that
neighboring cell fates have a delayed effect on the target cell’s
fate outcome. The GNN-based approach gives interpretable
attributions in the words of the spatiotemporal relationship be-
tween the cells, which is an advantage compared with direct
image-based approaches employing CNNs.
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Fig. 5. Analysis of the ear epidermis data. (A) The AUC of the cell external model with mean aggregation for the ear epidermis data, obtained
by averaging over six trained models. Error bar: standard deviation. (B) The attribution of the cell external model with mean aggregation is
shown for ear data for the feature set: (Area, G1 signal, NFB, Random)=(−,−,+,+). The IG averaged over six trained models is shown for
each pooled feature. Error bar: standard error. The upper and lower values of the IG of the random feature are shown as the orange zone.

The extracted rules from the dynamics in the epidermis in-
cluded the previously reported delamination-induced neigh-
boring division [14] as well as potentially novel interactions:
suppression (induction) of cell delamination by neighbor-
ing delamination (division). Inhibition of certain behaviors
by cells in contact is a common motif observed in cell bi-
ology [38–40]. Neighboring division-induced delamination
may be associated with local mechanical forces [41]. Testing
whether known molecular pathways responsible for lateral in-
hibition and mechanical signaling are playing roles in tissue
homeostasis will be an interesting next step.

The predicted rules are favorable mechanisms in keeping
the cell density in the homeostatic tissue, and it is intriguing
that there exist differences in the rules adopted in distinct re-
gions of the skin. A possible explanation for this is the cell
density; the hind paw epidermis is crowded compared with
the ear (26,000 cells/mm2 versus 14,000 cells/mm2, with al-
most the same thickness, 15 µm, fig. S9). In high cell density
regions such as the hind paw, it is reasonable that spontaneous
cell division is suppressed and cells can only proliferate when
there is space provided by neighboring delamination. Inter-
estingly, in the developing skin where the cell density is much
lower than the adult ear, the stratification of cells has been re-
ported to be driven by neighboring cell division [42]. These
results imply how the balance between cell differentiation and
proliferation can be maintained through distinct mechanisms
depending on the operating cell density regimes.

In predicting the kinetics, multiple time frames were re-
quired as inputs in our example (fig. S7A) due to the signif-
icant time delay between the cell fate events. This indicates
that the proper treatment of the temporal axis was necessary,
which is why GNN approaches based on static graphs [43, 44]
are not directly applicable to the problem of multicellular ki-
netics. Furthermore, although different models have recently

been proposed to deal with evolving graphs with nodes and
edges being added or removed [45–47], to the best of our
knowledge, there has been no example of a graph-based ap-
proach dealing with replication of nodes (i.e., cell division).
Since the incorporation of the cell tracks including cell divi-
sion is fundamental in the analysis of multi-cellular systems,
this study serves as an important step towards building an un-
biased rule extraction framework for tissue dynamics.

Multicellular dynamics is inherently stochastic owing to
the complex interaction between cells and the environment as
well as the single-cell level fluctuations. Likely due to this
stochasticity, the prediction scores generated by the GNN in
this study were far from accurate. Nevertheless, the models
were able to provide sensible predictions and cell interaction
rules from the epidermis data and inferred the correct rules
from the simulation data. The success of the current approach
on data generated by highly-stochastic kinetics suggests that
the framework is applicable not only for general multi-cellular
dynamics such as developing embryos, malignant tissues, and
organoids, but also for a wide range of systems where mod-
eling by stochastic interacting agents is effective such as in
disease spreading and ecology.

MATERIALS AND METHODS

Data preparation

The cell track data of the mouse hind paw epidermis basal
layer was generated in our previous work [14].

For the ear epidermis data, we used the images collected in
the work of [37], and conducted the semi-automated tracking
procedure similar to the previous method [14]. We first per-
formed 3D segmentation by cellpose [23] using the nucleus
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channel (K14H2BmCherry) from a region size of 0.3 mm ×
0.3 mm × 40 µm and obtained the 3D masks of the cell nuclei.
We then defined the height of the interface between the epider-
mis and the dermis based on the 3D masks of the nuclei and
subtracted this height from the original 3D data to level the
basal layer position. From the height-corrected 3D images,
we took three consecutive z-positions containing the nucleus
of all the basal layer cells and averaged the intensity over the
three slices to obtain 2D images in each channel. We calcu-
lated the local maxima of the cell nuclei (K14H2BmCherry)
and automatically corrected the shifts between time frames
by minimizing the square distance between the nearest cell
positions across the frames using affine transformation. The
cells included in all ten time frames were used in the follow-
ing analysis. The crop size in the 2D plane therefore varied
across different areas, ranging from 139 µm × 139 µm to 238
µm × 238 µm.

At each time frame, we segmented the cells using
the marker-controlled watershed algorithm using the mem-
tdTomato channel and the maxima of the cell nuclei posi-
tions. We assigned each cell (i.e., segmented area) to a seg-
mented area in the previous time frame with the largest over-
lap. Tracked cells were frequently lost or were associated with
more than one cell in the subsequent time frame, which in-
dicated cell delamination from the basal layer and cell divi-
sion, respectively. We then manually corrected the errors in
the tracking with a guide from the height-corrected 3D im-
ages using a pipeline employing napari [48], and cropped out
the region close to the edge so that the remaining region only
includes reliably tracked cells. The script outputted the seg-
mented areas of the cells at each time point and their lineages,
which was used to build the spatiotemporal graphs. All codes
involved in generating the basal layer cell tracks in the ear
epidermis were written in Python.

We used two areas of tracking data for the hind paw data,
and six areas for the ear data. The total number of cell-frames
in the spatiotemporal graphs was 5, 996 for the hind paw data
(∼ 214 unique cells per area per time frame) and 12, 828 for
the ear data (∼ 267 unique cells per area per time frame). We
split the graph data into two, the training set and the test set.
The number of cell-frames in the two sets was made to be
comparable. The proportion of cells that experience delami-
nation and division in each frame were both 9 % in the hind
paw epidermis data and both 7 % in the ear epidermis data.

For the neighbor fate net imbalance analysis, we applied the
same method as previously described [14] to the ear epidermis
data as well as to the simulation data.

Graph neural network

Bidirectional spatiotemporal GNN model

The spatiotemporal graphs were created from Nt sequen-
tial time frames from the segmented time-lapse images using
Deep Graph Library [49]. We first created the cell-contact
graphs for each time frame. The neighboring cells α and β
were connected by two directed edges pointing at each other.

We then added directional edges between the same cells in the
future and the past as well as their parents and daughter cells
in the sequential time frames. The cell feature vector xi,α ∈ R

n

was assigned to each cell α for the i-th time frame. We used
the cell area and G1-phase reporter signal as components of
the feature vector, which were obtained from the original seg-
mented images. The features were normalized by dividing the
values by the maximum values among all the training and test
data. When reducing a feature, we set that particular feature
to zero in all nodes.

We processed these spatiotemporal graphs with a GNN
model using PyTorch. Our first GNN model is a collection
of models which consists of a backward temporal edge model
ΦB,edge, a backward temporal node model ΦB,node, a spatial
edge model φedge, a spatial node model φnode, a forward tem-
poral edge model ΦF,edge, a forward temporal node model
ΦF,node, and a decoder ψdec.

First, we propagated the information from the future to
the past using ΦB,edge, and then updated the node feature by
ΦB,node. By initializing the node feature a(0)

i,α = xi,α, the (k+1)-
th update (0 ≤ k ≤ Nt − 2) of the node feature a(k+1)

i,α of cell α
in the i-th frame (0 ≤ i ≤ Nt − 1) is given by,

A(k+1)
(i,α)⇐(i+1,β) = ΦB,edge(a(k)

i,α,a
(k)
i+1,β), (1)

B(k+1)
i,α =

∑
(i+1,β)∈D(i,α)

A(k+1)
(i,α)⇐(i+1,β), (2)

a(k+1)
i,α = ΦB,node(B(k+1)

i,α ,a(k)
i,α). (3)

Here, the subscript (i, α) denotes cell α in the i-th frame, and
(i, α)⇐ ( j, β) denotes the edge between cell α in the i-th frame
and cell β in j-th frame. We calculated Eq. 1 for all the con-
nected pairs of cells in the spatiotemporal graphs. D(i, α) is
the set of the daughters of the cell α in the i-th frame if the
cell α divides in the i-th frame; otherwise, D(i, α) is cell α it-
self in the (i + 1)-th frame. We set the features of the cells in
the final frame a(k+1)

i,α = a(0)
i,α , which was not updated. Further-

more, for cell α which delaminates or exits the field of view
in the i-th frame, we set B(k+1)

i,α = 0.
Second, we calculated the edge features in each time frame

using φedge, and then updated the cell feature vectors with the
edge features using φnode. By initializing with b(0)

i,α = a(Nt−1)
i,α ,

the (l + 1)-th update of the node feature b(l+1)
i,α of cell α in the

i-th frame is given by,

H (l+1)
(i,α)⇐(i,β) = φedge(b(l)

i,α, b
(l)
i,β), (4)

I (l+1)
i,α = AGG({H (l+1)

(i,α)⇐(i,β) : (i, β) ∈ N(i, α)}) (5)

b(l+1)
i,α = φnode(I (l+1)

i,α , b(l)
i,α). (6)

Here, N(i, α) is the set of the neighbor cells of α in the i-th
frame. In Eq. 5, AGG represents either the sum aggregation
or the mean aggregation across the set of the neighbor cells.
We repeat this process for Ns times to take into account the
Ns-step neighbor interactions, in which case 0 ≤ l ≤ Ns − 1.

Third, we propagated the information from the past to the
future using ΦF,edge, and then updated the node feature by
ΦF,node. By initializing with c(0)

i,α = b(Ns)
i,α , the (m + 1)-th up-

date (0 ≤ m ≤ Nt − 2) of the node feature c(m+1)
i,α of cell α in
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the i-th frame is given by,

U (m+1)
(i+1,α)⇐(i,β) = ΦF,edge(c(m)

i,α , c
(m)
i+1,β), (7)

V (m+1)
i,α = U (m+1)

(i+1,α)⇐P(i+1,α), (8)

c(m+1)
i,α = ΦF,node(V (m+1)

i,α , c(m)
i,α ). (9)

Here, P(i + 1, α) is the parent of cell α in the (i + 1)-th frame if
the cell α is born in the (i + 1)-th frame; otherwise, P(i + 1, α)
is cell α itself in the i-th frame. We set the features of the
cells in the final frame c(m+1)

i,α = c(0)
i,α , which was not updated.

Furthermore, for cell α which pops in the field of view from
the outside in the i-th frame, we set V (m+1)

i,α = 0.
Finally, we decoded the cell feature of cell α in the final

frame ((Nt − 1)th frame) by:

YNt−1,α = ψdec(c(Nt−1)
Nt−1,α). (10)

For all the functions ΦB,edge : R2n → Rn,ΦB,node : R2n →

Rn, φedge : R2n → Rn, φnode : R2n → Rn,ΦF,edge : R2n →

Rn,ΦF,node : R2n → Rn, ψdec : Rn → R3 in our GNN model,
we used the multi-layer perceptron (MLP), whose compo-
nents are (1) Nlayer hidden layers which are respectively com-
posed of a fully-connected layer and a rectified linear unit
(ReLU), and (2) an output fully-connected layer.

Unidirectional spatiotemporal GNN model

For the unidirectional spatiotemporal model, we skipped
the backward temporal edge and node models in the bidirec-
tional spatiotemporal model. Hence, we initialized b(0)

i,α = xi,α
in the spatial edge and node models. In the cell external
model, we assigned a null feature vector for the target cells; in
the spatial edge model, we initialized b(0)

i,α = 0 and b(0)
i,β = xi,β

for the edges from cell β to cell α in the i-th frame.
To represent the local lineage branch structure, we intro-

duced the next frame behavior (NFB) as a new feature, which
encodes the behavior of the next frame of that cell by a one-hot
vector, NB ([1, 0, 0]), Del ([0, 1, 0]), or Div ([0, 0, 1]). Since
the NFB in the final frame of each network is what we aim
to predict, we set the NFB in the final frame to null vector
([0, 0, 0]).

Training

Since the proportion of the three cell fates is imbalanced,
we used the weighted softmax-cross-entropy loss where the
weight of each label was set to the inverse of the proportion
of the cell fate in the training data. To minimize the loss, we
used Adam optimizer with the learning rate lr = 0.0001. In
the training, we input a spatiotemporal graph of Nt sequential
time frames obtained from an imaging area to update the pa-
rameters of the GNN model. We repeated the update for all
the spatiotemporal graphs in a single epoch of the training.

To optimize the number of layers Nlayer, the number of
nodes Nnode of a hidden layer of the MLPs, and the dropout

rate p, we tested the performance of the GNN model by
changing these parameters. For this test, we used the simu-
lation data of delamination-induced division setup with NFB
and random features. First, we investigated the effect of Nlayer
by setting Nnode = 50 and p = 0. To quantify the perfor-
mance of the GNN model, we calculated the maximum value
of macro-F1 score of the test data during learning for 2000
epochs. We ran 5000 epochs for Nlayer = 2, since the learning
was exceptionally slow. As shown in fig. S10A, Nlayer = 1 and
Nlayer = 2 give comparable performance. Second, we investi-
gated the effect of Nnode by setting Nlayer = 1 and p = 0. We
found that Nnode does not significantly affect the performance
(fig. S10B). Hence, we chose Nlayer = 1 and Nnode = 50 to
minimize the size of the GNN model. Finally, we changed p
as shown in fig. S10C, and found that p also does not signif-
icantly affect the performance. We here chose p = 0.1 since
the average performance was slightly better and the standard
deviation is smaller compared with the other conditions. In
all the training, we set Nlayer = 1,Nnode = 50 and p = 0.1,
and ran 2000 epochs. We exceptionally ran 5000 epochs for
the bidirectional spatiotemporal model with mean aggregation
without any feature.

We also tested the effect of data size on the performance
(fig. S11). We found that the prediction score and attribu-
tion score are sufficiently high when the number of cell-frames
used in the training data is above 2000.

The AUC and attribution of each condition were calculated
for the GNN model obtained at the epoch at which the model
achieves the maximum macro-F1 score [50]. In fig. S2, we
show an example of the learning curves of the cell external
model for the hind paw data with NFB and the random feature.
The weighted softmax-cross-entropy loss, macro-F1 score, re-
call, and precision curves are shown respectively in fig. S2.
The vertical lines in figs. S2B-D indicate the epoch at which
the model achieves the best macro-F1 score.

Attribution method

We used the integrated gradients (IG, [36]) for the attribu-
tion. The IG Ik(g) of the k-th feature for an input subgraph g
of a target cell is given by:

I f
k (g) = (Xk − X′k) ·

∫ 1

0

∂F f (X ′ + α · (X −X ′))
∂Xk

dα. (11)

The function F f is the softmax score of fate f ∈

{NB,Del,Div} as a function of the input features calculated by
the trained network. X represents the concatenated features
of all the cells of g, and Xk is the value of the kth feature. X ′

is the baseline, which is the null vector of the same size as X .
We calculated the IG for three cell fate labels of all the input
graphs.

Since the baseline should be neutral for calculating the at-
tribution, the GNN model must be trained for the null graphs
to provide equal soft-max scores for three cell fate labels. To
this end, we minimized the mean-squared-error (MSE) loss
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defined as,

LMSE =
1

Nsub

∑
f

Nsub∑
n=1

(
p f ,null

n −
1
3

)2

(12)

together with the weighted softmax-cross-entropy loss. Here,
p f ,null

i is the softmax score of fate f ∈ {NB,Del,Div} of the
null graph of the n-th target cell’s subgraph, and Nsub is the
number of the subgraphs. Within a single epoch, we first in-
put a spatiotemporal graph to update the parameters using the
weighted softmax-cross-entropy loss, and then input the cor-
responding null graph to update the parameters using the MSE
loss. By this learning method, we approximately obtained the
neutral baseline softmax scores for null graphs (fig. S12).

In the analysis of the attribution, we pooled each feature
of each target cell’s subgraph into the relative spatiotempo-
ral position of the feature with respect to the target cell. We
calculated the average IG of each category for each cell fate
label. With respect to the average IG of NFB, we averaged the
IG of each category of NFB only among the cells in the cate-
gory. Finally, we calculated the mean of the average IG over
all the trained GNN models. We also defined the baseline for
non-zero signals shown as the orange shades in the attribution
plots. The minimum (maximum) value of the range of the
baseline is defined as the minimum (maximum) of the model-
average of IG subtracted (added) by the standard error among
all the pooled random features.

Since
∑

f F f (X) = 1 for any X , we have∑
f

I f
k (g) = 0, (13)

To make the plots in Figs. 2-5, we pooled the features ac-
cording to the spatiotemporal position. The pooled features,
which we denote as a, contain multiple features k in the orig-
inal calculation. The attribution score for each pooled feature
is evaluated by

I f
a (g) =

∑
k∈a I f

k (g)∑
k∈a 1

. (14)

Note that the normalization still holds:∑
f

I f
a (g) =

∑
k∈a

∑
f I f

k (g)∑
k∈a 1

= 0. (15)

Numerical simulations

For the numerical data that mimics the dynamics of basal
layer dynamics, we took a simplified model of interacting par-
ticles that exclude each other through mechanical interactions
and undergo stochastic division and elimination events. We
placed N0 cells labeled by α in a two-dimensional plane with
size L × L and with periodic boundary conditions and let the
cells interact with each other through an interacting potential.
The equation of motion reads

ṙα(t) = −
∑
β,α

∂

∂rα
u(rα, rβ), (16)

which is an overdamped kinetics without noise. rα is the po-
sition vector of cell α. The repulsive interacting potential has
the typical length scale l:

u(rα, rβ) =

 1
2 K(|rα − rβ| − l)2 |rα − rβ| < l
0 |rα − rβ| ≥ l

. (17)

The rules of cell division and delamination were imple-
mented by the Monte Carlo method. At the time frame of
cell division of cell α, a newly born cell α′ is generated at a
random position within a small distance d = 0.001 × L. Cell
delamination is conducted by eliminating a particle instanta-
neously. In both cases, the position of the cells quickly re-
laxes to a dispersed state due to the repulsive force between
the cells, Eq. 16.

The stochastic rules of fate coordination that we tested are:

• Delamination-induced division: delaminating cells are
chosen randomly with rate λ from the pool of cells that
have not yet committed to delaminate or to divide. The
chosen cells are committed to delaminate and are as-
signed a remaining lifetime chosen from a uniform dis-
tribution between 32.4 hours and 39.6 hours. At the
time point of delamination, one of the six-nearest neigh-
bors of the delaminating cell is randomly chosen, again
excluding the cells that have already committed to di-
vision or delamination, and is assigned to divide after a
randomly chosen remaining lifetime drawn from a uni-
form distribution between 44.4 hours and 51.6 hours.
N0 = 612.

• Division-induced delamination: dividing cells are cho-
sen randomly with the rate λ from the pool of cells that
have not yet committed to delaminate or to divide. The
chosen cells are committed to dividing and are assigned
a remaining lifetime randomly chosen from a uniform
distribution between 32.4 hours and 39.6 hours. At the
time point of division, one of the six-nearest neighbors
of the dividing cell is randomly chosen, again exclud-
ing the cells that have already committed to division
or delamination, and is assigned to delaminate after a
randomly chosen remaining lifetime drawn from a uni-
form distribution between 44.4 hours and 51.6 hours.
N0 = 412.

• Mixed: the two schemes explained above were mixed,
with the rate of randomly assigning the delaminating
and dividing cells being almost halved so that the over-
all event rate does not change. N0 = 512.

We used K = 9 hours−1, l = 0.125, and L = 1 in all the
simulations. For the time steps, we took ∆t = 1.2 hours.

In generating the data for the graph construction, we first
prepared N0 points randomly placed inside the box (size L×L)
and simulated the time evolution according to Eq. 16 by the
Euler method for 100 steps to obtain a dispersed cell configu-
ration. Next, we ran the simulation up to 300 steps (360 hours)
with both the equation of motion Eq. 16 and the stochastic di-
visions and delaminations, to make sure that the system has
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reached a steady-state (fig. S13). Finally, we ran the simu-
lation for another 300 steps and sub-sampled the time points
every 20 steps (24 hours) from this final time series to generate
data resembling the ear epidermis. The initial number of cells
N0 was changed in the three setups to ensure that the num-
ber of cells in the frames at steady-state are roughly the same
(around 500, fig. S13). The rates of fates λ were also tuned
for each setup so that the number of events that take place per
cell per time frame is comparable with the experiment.

We cropped out the edges and used the data from the points
in the center region 0.65 L×0.65 L so that the number of points
per frame is roughly the same as the number of cells per frame
in the hind paw and ear data (around 210). The neighboring
cell network was generated by the two-dimensional Voronoi
tessellation, and by whole spatiotemporal network was fed to
the GNN learning process in the same way as the experimental
data.
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[12] E. Clayton, D. P. Doupé, A. M. Klein, D. J. Winton, B. D. Si-
mons, P. H. Jones, A single type of progenitor cell maintains
normal epidermis. Nature 446, 185–189 (2007).

[13] A. M. Klein, B. D. Simons, Universal patterns of stem cell fate
in cycling adult tissues. Development 138, 3103–3111 (2011).

[14] K. R. Mesa, K. Kawaguchi, K. Cockburn, D. Gonzalez,

J. Boucher, T. Xin, A. M. Klein, V. Greco, Homeostatic Epider-
mal Stem Cell Self-Renewal Is Driven by Local Differentiation.
Cell Stem Cell 23, 677–686.e4 (2018).

[15] J. Liang, S. Balachandra, S. Ngo, L. E. O’Brien, Feedback regu-
lation of steady-state epithelial turnover and organ size. Nature
548, 588–591 (2017).

[16] L. Ritsma, S. I. Ellenbroek, A. Zomer, H. J. Snippert, F. J.
de Sauvage, B. D. Simons, H. Clevers, J. van Rheenen, Intesti-
nal crypt homeostasis revealed at single-stem-cell level by in
vivo live imaging. Nature 507, 362–365 (2014).

[17] S. Han, J. Fink, D. J. Jörg, E. Lee, M. K. Yum, L. Chatzeli, S. R.
Merker, M. Josserand, T. Trendafilova, A. Andersson-Rolf,
C. Dabrowska, H. Kim, R. Naumann, J.-H. Lee, N. Sasaki,
R. L. Mort, O. Basak, H. Clevers, D. E. Stange, A. Philpott,
J. K. Kim, B. D. Simons, B.-K. Koo, Defining the Identity and
Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell
25, 342–356.e7 (2019).

[18] H. Yamaguchi, K. Kawaguchi, T. Sagawa, Dynamical crossover
in a stochastic model of cell fate decision. Phys. Rev. E 96
(2017).

[19] R. R. Stine, E. L. Matunis, Stem cell competition: finding bal-
ance in the niche. Trends Cell Biol. 23, 357–364 (2013).

[20] Y. Kitadate, D. J. Jörg, M. Tokue, A. Maruyama, R. Ichikawa,
S. Tsuchiya, E. Segi-Nishida, T. Nakagawa, A. Uchida,
C. Kimura-Yoshida, S. Mizuno, F. Sugiyama, T. Azami,
M. Ema, C. Noda, S. Kobayashi, I. Matsuo, Y. Kanai, T. Na-
gasawa, Y. Sugimoto, S. Takahashi, B. D. Simons, S. Yoshida,
Competition for Mitogens Regulates Spermatogenic Stem Cell
Homeostasis in an Open Niche. Cell Stem Cell 24, 79–92.e6
(2019).

[21] O. Ronneberger, P. Fischer, T. Brox, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, Lecture
Notes in Computer Science (Springer International Publishing,
Cham, 2015), pp. 234–241.

[22] T. Falk, D. Mai, R. Bensch, O. Çiçek, A. Abdulkadir,
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Cells undergoing Div, Del, and NB are indicated by red, blue, and yellow circle markers. The cell-contact graph is also shown.
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Random)=(+,+). The macro-F1 score averaged over six trained models is plotted against the hyperparameters. Error bar: standard deviation.
(A) The effect of Nlayer is tested with Nnode = 50 and p = 0. (B) The effect of Nnode is tested with Nlayer = 1 and p = 0. (C) The effect of p is
tested with Nnode = 50 and Nlayer = 1.
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(B-F) The attribution is shown for the different numbers of cells: (B) 479, (C) 911, (D) 1913, (E) 2920 and (F) 3917. The result in the main
text is for 2920 cells in the training data. The IG averaged over six trained models is shown for each pooled feature. Error bar: standard error.
The upper and lower values of the IG of the random feature are shown as the orange zone.
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Fig. S12. Baseline softmax score. The baseline softmax score, which is the softmax score for null-graphs, is shown for the four and five-time
cell external model with mean aggregation for the hind paw data. The feature condition is (Area, G1 signal, NFB, Random)=(−,−,+,+). The
horizontal dashed line indicates the target baseline softmax score 1/3.
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Fig. S13. Numerical simulations of the homeostatic tissue model. (A) Time-evolution of the number of cells and (B) the number of fate
events in the simulations of the Del-induced Div model, Div-induced Del model, and the mixed model. We used the data from 15 to 30 days
in these simulations for the GNN analyses.
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