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Many intrinsically disordered proteins (IDPs) may undergo liquid-
liquid phase separation (LLPS) and participate in the formation of
membraneless organelles in the cell, thereby contributing to the reg-
ulation and compartmentalisation of intracellular biochemical reac-
tions. The phase behaviour of IDPs is sequence-dependent, and its
investigation through molecular simulations requires protein mod-
els that combine computational efficiency with an accurate descrip-
tion of intra- and intermolecular interactions. We developed a gen-
eral coarse-grained model of IDPs, with residue-level detail, based
on an extensive set of experimental data on single-chain proper-
ties. Ensemble-averaged experimental observables are predicted
from molecular simulations, and a data-driven parameter-learning
procedure is used to identify the residue-specific model parameters
that minimize the discrepancy between predictions and experiments.
The model accurately reproduces the experimentally observed con-
formational propensities of a set of IDPs. Through two-body as well
as large-scale molecular simulations, we show that the optimization
of the intramolecular interactions results in improved predictions of
protein self-association and LLPS.
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Many intrinsically disordered proteins (IDPs) and proteins1

with disordered regions can condense into liquid-like2

droplets, viz. a biomolecule-rich phase coexisting with a more3

dilute solution (1–5). This de-mixing process is known as4

liquid-liquid phase separation (LLPS) and is one of the ways5

cells compartmentalise proteins, often together with nucleic6

acids (6). While LLPS plays crucial biological roles in the cell,7

its dysregulation leads to maturation of biomolecular conden-8

sates into hydrogel-like assemblies, promoting the formation of9

neurotoxic oligomers and amyloid fibrils (5, 7). A quantitative10

model for the ‘molecular grammar’ of LLPS, including the in-11

fluence of disease-associated mutations and post-translational12

modifications (PTMs) on the propensity to phase separate, is13

key to understand these processes. The sequences of IDPs un-14

dergoing LLPS are generally characterized by stretches of polar15

residues (spacers) interspersed by aromatic residues (stickers),16

which are instrumental for the formation of reversible physical17

cross-links via π-π, cation-π and sp2-π interactions (8–12). Y18

and R residues were shown to be necessary for the LLPS of19

a number of proteins including FUS, hnRNPA1, LAF-1 and20

Ddx4 (8, 10, 11, 13–17). While the propensity to undergo21

LLPS increases with the number of Y residues in the sequence,22

recent studies have revealed that the role of R residues is23

context dependent (16) and strongly affected by salt concen-24

tration (17), reflecting the unusual characteristics of the R25

side chain (18, 19).26

Here, we present the development of a coarse-grained (CG) 27

model capable of accurately predicting the phase behaviour 28

of IDPs based on amino acid sequence. CG models enable 29

the combination of a sequence-dependent description with 30

the computational efficiency necessary to explore the long 31

time and large length scales involved in phase transitions 32

(11, 20, 21). Although CG molecular simulations have been 33

employed to explain the sequence dependence of the LLPS 34

of a number of IDPs (11, 15, 17, 20–22) as well as the effect 35

of phosphorylation on LLPS propensities (23, 24), previous 36

models are unable to consistently provide accurate predictions 37

of the phase behaviour of very diverse sequences (25). Build- 38

ing on recent developments, including experimental phase 39

diagrams of a number of IDPs (3, 4, 15, 16), we trained and 40

tested a robust sequence-dependent model of the LLPS of 41

IDPs. Our starting point is the hydrophobicity scale (HPS) 42

model (21) (with minor modification; see SI Materials and 43

Methods) wherein, besides steric repulsion and salt-screened 44

charge-charge interactions, residue-residue interactions are de- 45

termined by hydropathy parameters (λ) which were derived 46

from the atomic partial charges of a classical all-atom force 47

field (26). To address the current limitations of the HPS 48

model, we reevaluate the λ parameters based on the analysis 49

of 87 hydrophobicity scales. This intermediate model is further 50

improved by optimizing the λ parameters through a Bayesian 51

parameter-learning procedure (27–32). The training set com- 52

prises SAXS and paramagnetic relaxation enhancement (PRE) 53

NMR data of 45 IDPs which we selected from the literature. 54

First, we run Langevin dynamics simulations of single IDPs 55

and estimate the experimental observables using state-of-the- 56

art methods (33). Second, we employ a Bayesian regularization 57

approach to prevent over-fitting the training data and select 58

three models which are equally accurate with respect to single- 59

chain conformational properties. Third, through two-chain 60

simulations, we validate the models by comaparing predicted 61

and experimental intermolecular PRE NMR data for the low 62

complexity domain (LCD) of the heterogeneous nuclear ri- 63

bonucleoprotein (hnRNP) A2 (A2 LCD) (22) and the LCD of 64

the RNA-binding protein fused in sarcoma (FUS LCD) (23). 65

Four, we perform coexistence simulations to test the models 66

against the phase behaviour of A2 LCD (22, 24), FUS LCD 67

(34, 35), variants of hnRNP A1 LCD (A1 LCD) (15, 16) and 68
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Fig. 1. (A) Probability distributions of the λ parameters calculated from 87 min-max normalized hydrophobicity scales. Lines are the λ parameters of the HPS model (blue), the
average over the hydrophobicity scales (orange) and the HPS-Urry model (green) (36). Intramolecular PRE intensity ratios for the S43C mutant of α-Synuclein (B) and the
S243C mutant of A2 LCD (C) from simulations and experiments (22, 37) (black). (D) χ2 values quantifying the discrepancy between simulated and experimental intramolecular
PRE data, scaled by the hyperparameter η = 0.1 (Materials and Methods). (E, F) Relative difference between simulated and experimental radii of gyration for non-phase
separating sequences (E) and for variants of A1 LCD (F), with negative values corresponding to the simulated ensembles being more compact than in experiments.

the N-terminal region of the germ-granule protein Ddx4 (Ddx469

LCD) (8, 10, 13).70

Results and Discussion71

Analysis of Hydrophobicity Scales. The λ values of the origi-72

nal HPS model are based on a hydrophobicity scale derived73

from the atomic partial charges of the OPLS all-atom force74

field (26). Dozens of amino acid hydrophobicity scales have75

been derived from experimental as well as bioinformatics ap-76

proaches such as the partitioning of amino acids between water77

and organic solvent, the partitioning of peptides to the lipid78

membrane interface and the accessible surface area of residues79

in folded proteins (38, 39). To put the HPS λ values into80

context and find alternative models, we analyzed 98 hydropho-81

bicity scales collected by Simm et al. (39). Each scale was82

min-max normalized and, after ranking in the ascending order83

of the HPS scale, we discarded all the scales yielding a linear84

fit with negative slope. The resulting set of 87 scales was used85

to calculate the average scale (AVG) and the probability dis-86

tribution of the λ values for the 20 amino acids, P (λ), which is87

normalized so that
∑

aa

∫ λaa=1
λaa=0 P (λaa) dλaa = 20 (Fig. 1A).88

Except for R and C residues, the HPS values are systematically89

larger than the AVG values. However,
∑

aa
P (λaa) = 37.2 and90

36.9 for the HPS and the AVG values, respectively, indicating91

that the two scales are comparably consistent with P (λ).92

We assessed the HPS and AVG parameter sets by running93

simulations of 45 IDPs ranging in length between 24 and94

334 residues and compared the results against experiments.95

Specifically, we compared the simulations with the radii of96

gyration, Rg, of 42 IDPs (Tab. S1) and intramolecular PRE97

data of six IDPs (Tab. S2) (16, 22, 23, 37, 40–53).98

Compared to the AVG scale, the HPS model overestimates99

the compaction of α-Synuclein whereas it closely reproduces 100

the PRE data for A2 LCD (Fig. 1B and C). In general, the 101

HPS model accurately predicts the conformational properties 102

of sequences with high LLPS propensity, e.g. FUS LCD, A2 103

LCD and A1 LCD (Fig. 1D and F), while the AVG scales 104

is considerably more accurate at reproducing the Rg of non- 105

phase separating proteins (Fig. 1E). The recently proposed 106

HPS-Urry model (36) is the most accurate at predicting the 107

intramolecular PRE data while it shows intermediate accuracy 108

for the Rg values of both non-phase separating proteins and 109

A1 LCD variants. 110

Optimization of Amino-Acid Specific Hydrophobicity Values. 111

To obtain a model that accurately predicts the conformational 112

properties of IDPs of diverse sequences and LLPS propensities, 113

we trained the λ values on a large set of experimental Rg 114

CG simulations
of IDPs in

Tab. S1 and S2

All-atom
trajectories
of IDPs in
Tab. S2

Calculate Rg

and PRE data

Nudge
λ

Values

New Energies
and Weightsφeff > 0.3

Reweighted
χ2

P RE and χ2
Rg

ξ ≥ 10−15 Accept/Reject
λ Set

False
True

False

True

Fig. 2. Flowchart illustrating the Bayesian parameter-learning procedure (Materials
and Methods).
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Fig. 3. (A) Overview of the optimal λ sets with ηχ2
P RE < 21 and χ2

Rg
< 3 collected through the parameter learning procedures started from λ0 =AVG (circles), M1

(squares) and M2 (triangles). The gray gradient shows the Spearman’s correlation coefficient between experimental and simulated Rg values for the A1 LCD variants in the
training set. Colored open symbols indicate the M1 (blue circle), M2 (orange square) and M3 (green triangle) scales whereas the adjacent values are the respective Spearman’s
correlation coefficients. (B) Covariance matrix of the λ sets with ηχ2

P RE < 21 and χ2
Rg

< 3. (C) M1 (blue), M2 (orange) and M3 (green) scales. The gray shaded area

shows the mean ±2SD of the λ sets with ηχ2
P RE < 21 and χ2

Rg
< 3. (D–E) Comparison between (D) ηχ2

P RE and (E) χ2
Rg

values for the HPS model (gray) and the
optimized M1 (blue), M2 (orange) and M3 (green) models.

and PRE data using a Bayesian parameter-learning procedure115

(27) shown schematically in Fig. 2 (Materials and Methods).116

We initially performed an optimization run starting from the117

AVG λ values and setting the hyperparameters to θ = η = 0.1118

(Fig. S1A). We collected the optimized sets of λ values which119

yielded ηχ2
PRE < 21 and χ2

Rg
< 3 (circles in Fig. 3A). The120

optimization was repeated starting from λ = 0.5 to assess that121

the parameter space sampled by our method is independent122

of the initial conditions (Fig. S2A and S1D). From the pool123

of optimized parameters, we selected the λ set which resulted124

in the largest Spearman’s correlation coefficient (ρ = 0.78)125

between simulated and experimental Rg values for the A1126

LCD variants. We base the selection of the optimal λ set on127

the Spearman’s correlation coefficient because we expect that128

capturing the experimental ranking in chain compaction will129

result in accurate predictions of the relative LLPS propensities130

(15, 16, 20, 54, 55). The selected model, referred to as M1131

hereafter, is the starting point for two consecutive optimization132

cycles (Fig. S1C) which were performed with a lower weight133

for the prior (θ = 0.05), yielding a new pool of optimized134

parameters (squares in Fig. 3A) and model M2 (largest ρ =135

0.75). To generate a third model, we further decreased the136

confidence parameter to θ = 0.02 and performed an additional137

optimization run starting from M2 (Fig. S1D).138

From the collected optimal parameters (triangles in139

Fig. 3A), we selected M3 (largest ρ = 0.73). As shown in140

Fig. 3B, the optimal λ values collected through the four in-141

dependent optimization runs (Fig. S1A–D) are weakly inter-142

correlated. The covariance values range between -0.015 and143

0.015 for most amino acids, with the exception of the standard144

deviations of N, C, T, M, W, and I. C, M, W, and I are among145

the least frequent amino acids in the training set (Fig. S3) 146

and, unsurprisingly, we observe the largest covariance values 147

for C-W (0.017), C-M (-0.02) and C-I (-0.016). Fig. 3C shows 148

that M1–3 fall within two standard deviations (SDs) above 149

and below the mean of the λ values yielding ηχ2
PRE < 21 and 150

χ2
Rg

< 3 (gray shaded area). Despite the significant differences, 151

M1–3 fit the training data equally accurately and result in 152

an improvement in χ2
PRE and χ2

Rg
of ∼30% and ∼95% with 153

respect to the HPS model, respectively (Fig. 3D,E). 154

Notably, the optimization procedure captures the sequence 155

dependence of the chain dimensions (Fig. 4) and results in 156

accurate predictions of intramolecular PRE data for both 157

highly soluble and phase-separating IDPs (Fig. S4B–D and 158

Fig. S5–S10) as well as in radii of gyration with relative errors 159

Fig. 4. (A) Comparison between experimental and predicted radii of gyration (Tab.
S1), Rg , for the HPS, HPS-Urry, and M1–3 models. (B) Zoom-in on the Rg values of
the A1 LCD variants.
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−14% < ∆Rg / Rg,exp < 12% (Fig. S4E,F). Besides reproduc-160

ing the experimental Rg values for the longer chains with high161

accuracy, the optimized models also capture the differences162

in Rg and scaling exponents, ν, for the variants of A1 LCD163

(Fig. 4B and S11). The lower Pearson’s correlation coefficients164

observed for ν, compared to the corresponding Rg data, may165

originate from the different forward models used to infer ν166

from SAXS experiments and simulation data, i.e., respectively,167

the molecular form factor method (16, 48) and least-squares fit168

to long intramolecular pairwise distances, Rij , vs |i− j| > 10169

(56) (Fig. S12).170

To assess the impact of phase separating proteins on the171

optimized models, we perform an optimization run wherein the172

A1 LCD variants are removed from the training set. The major173

difference between the resulting optimal λ set and models M1–174

3 is the considerably smaller values for R and Y residues175

(Fig. S2C). Indeed, the large λ values for R and Y residues in176

M1–3 relative to the HPS, AVG and HPS-Urry models, is a177

striking feature which resonates with previous experimental178

findings pointing to the important role of R and Y residues in179

driving LLPS (8, 14–16, 22, 57, 58).180

Testing Protein-Protein Interactions. To test whether the pa-181

rameters trained on single-chain conformational properties182

are transferable to protein-protein interactions, we compared183

experimental intermolecular PRE rates, Γ2, of FUS LCD and184

A2 LCD (22, 23) with predictions from two-chain simulations185

of the M1–3 models performed at the same conditions as the186

reference experiments. Intermolecular Γ2 values were obtained 187

from solutions of spin-labeled 14N protein and 15N protein 188

without a spin-label in equimolar amount and report on the 189

transient interactions between a paramagnetic nitroxide probe 190

attached to a cysteine residue of the spin-labeled chain and 191

all the amide protons of the 15N-labeled chain. We carried 192

out the calculation of the PRE rates using DEER-PREdict 193

(33), assuming an effective correlation time of the spin la- 194

bel, τt, of 100 ps and fitting the overall molecular correlation 195

time, τc, within the interval 1 ≤ τc ≤ 20 ns. In agreement 196

with experiments, Γ2 values predicted by the M1–3 models 197

are characterized by no distinctive peaks along the protein 198

sequence (Fig. 5A–E), which is consistent with transient and 199

non-specific protein–protein interactions. Notably, while PRE 200

rates for FUS LCD are of the same magnitude for all spin 201

labeled sites, A2 LCD presents larger Γ2 values for S99C than 202

for S143C indicating that the tyrosine-rich aggregation-prone 203

region (residues 84–107) is involved in more frequent inter- 204

molecular contacts with the entire sequence. The discrepancy 205

between predicted and experimental intermolecular PRE data, 206

χ2
PRE , varies significantly as a function of τc (Fig. 5F–G). For 207

both FUS LCD and A2 LCD, the optimal τc is larger for M1 208

than for M3, which suggests that the latter has more attractive 209

intermolecular interactions. While for M1 the minimum of 210

χ2
PRE is at τc = 17 ns for both proteins, for M3 the optimal τc 211

value is ∼ 8 ns smaller for FUS LCD than A2 LCD. Although 212

the accuracy of τc is difficult to assess in the case of transiently 213

interacting IDPs, this large difference in τc (Fig. 5) suggests 214

Fig. 5. (A–E) Comparison between experimental (black) intermolecular PRE rates (Tab. S3) and predictions from the M1 (blue), M2 (orange) and M3 (green) models for FUS
LCD (A–C) and A2 LCD (D,E) calculated using the best-fit correlation time, τc . (F–G) Discrepancy between calculated and experimental intermolecular PRE rates χ2

P RE as a
function of τc. (H) Second virial coefficients, B22, of FUS LCD (circles) and A2 LCD (squares) calculated from two-chain simulations of the M1–3 models. Error bars are SEMs
estimated by bootstrapping 1,000 times 40 B22 values calculated from trajectory blocks of 875 ns. (I) Probability of the bound state estimated from protein-protein interaction
energies in two-chain simulations of the M1–3 models. (L) Dissociation constants, Kd, of FUS LCD (circles) and A2 LCD (squares) calculated from two-chain simulations of the
M1–3 models. For pB and Kd, error bars are SDs of ten simulation replicas.
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that the protein-protein interactions predicted for FUS LCD215

by M3 may be overly attractive.216

To quantify protein-protein interactions with the optimized217

models, we calculated second virial coefficients, B22, from218

two-chain simulations (SI Materials and Methods). The net219

interactions are attractive for both the sequences (B22 < 0),220

and considerably stronger for A2 LCD than for FUS LCD. As221

expected from the λ values and amino acid compositions, M3222

presents the most negative B22 values (large λ values for Q,223

G and P), followed by M2 and M1 (Fig. 5I).224

To test whether predictions of protein self-association by225

M1–3 are sequence dependent, we compared the probability226

of finding proteins in the bound dimeric state, pB , in simu-227

lations of α-Synuclein, p15PAF, full length tau (ht40), A2228

LCD and FUS LCD performed at the solution conditions of229

the reference experimental data (37, 46, 59) (SI Materials230

and Methods). In agreement with experimental findings, we231

find that the highly soluble α-Synuclein, p15PAF and ht40232

proteins do not self-associate substantially in our simulations,233

whereas A2 LCD and FUS LCD have pB ∼4% and ∼1%, re-234

spectively. We further estimated the dissociation constants of235

A2 LCD and FUS LCD using Kd = (1− pB)2/(NApBV ) and236

Kd = 1/(NApB(V −B22)) self-consistently (60), where NA is237

Avogadro’s number (SI Materials and Methods, Fig. S13 and238

Fig. 5L).239

Testing LLPS propensities. To test the ability of the models240

to capture the sequence-dependence of LLPS propensity, we241

performed multi-chain simulations in a slab geometry and242

calculated protein concentrations of the coexisting condensate,243

ccon, and dilute phase, csat. Simulation results are tested244

against an extensive set of sequences which have been shown245

to undergo LLPS below an upper critical solution temperature246

(UCST), namely FUS LCD (23, 34, 35), A2 LCD (22, 24), the247

NtoS variant of A2 LCD (24) as well as variants of A1 LCD248

(15, 16) and Ddx4 LCD (8, 10, 13). From simulations of the249

optimized models at 37◦C, we observed that, for a number of250

sequences in the test set, the predicted csat values are too low 251

to allow for converged estimates from µs-timescale trajectories 252

(Fig. S14). Conversely, the least LLPS-prone variants of Ddx4 253

LCD yielded one-phase systems when simulated at 37◦C using 254

HPS-Urry and M1–3 models. Thus, to be able to estimate 255

converged csat values (Fig. S15 and S16) for all the proteins in 256

Fig. 6, simulations were carried out at 50◦C for most sequences, 257

and at 24◦C for the HPS-Urry model as well as for the Ddx4 258

LCD variants (Tab. S4). 259

Simulations of M1 and M2 at 50◦C recapitulate the experi- 260

mental trend in csat across the diverse sequences (Fig. 6A,D) 261

and also reproduce the reference ccon and csat values measured 262

at room temperature. M3 and HPS overestimate the relative 263

LLPS propensity of FUS LCD, whereas HPS-Urry underesti- 264

mates the LLPS propensity of A1 LCD. We further test our 265

predictions against 15 variants of A1 LCD (Fig. 6B,E). These 266

include aromatic and charge variants, which were designed to 267

decipher the role on the driving forces for phase separation of 268

Y vs F residues and of R, D, E and K residues, respectively 269

(16). The nomenclature, ±NXX±NZZ, denotes increase or 270

decrease in the number of residues of type X and Z with re- 271

spect to the WT, which is achieved by mutations to or from G 272

and S residues while maintaining a constant G/S ratio. M1–3 273

are found to be equally accurate, and present a considerable 274

improvement over previous models with respect to their ability 275

to recapitulate the trends in LLPS propensity for the aromatic 276

and charged variants of A1 LCD. Since M1–3 were selected 277

based on their performance in predicting the experimental 278

ranking for the Rg values of 21 A1 LCD variants (Tab. S1), 279

this result supports our model development strategy. 280

M1–3 and the recently proposed HPS-Urry model (36) re- 281

produce the experimental ranking for LLPS propensity of the 282

Ddx4 LCD variants, i.e. WT�CS>FtoA&RtoK (Fig. 6C,F). 283

Albeit smaller by an order of magnitude, the csat values pre- 284

dicted by these models strongly correlate with the experimen- 285

tal values measured at the same temperature, with Pearson’s 286

correlation coefficients of 0.86 for the HPS-Urry model and 287

Fig. 6. Protein concentrations in the condensate (A–C) and in the dilute phase (D–E) from slab simulations of the M1–3, HPS and HPS-Urry models. Simulations of the M1–3
and HPS models were performed at 50◦C, except for the Ddx4 LCD variants in panels D and F which were conducted at 24◦C. The HPS-Urry model was simulated at 24◦C for
all the proteins. Red open squares indicate experimental measurements at∼24◦C, except for the concentrations of A1 LCD variants in panels B and E which were measured
at∼4◦C. Error bars are SEMs of averages over blocks of 0.3 µs.
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exceeding 0.99 for M1–3. On the other hand, as previously288

shown by Das et al. (25), the HPS model predicts a consider-289

able increase in LLPS propensity upon replacement of all 24290

R residues in the Ddx4 LCD with K (RtoK variant; Fig. 6C),291

in apparent contrast to experimental observations (10, 13).292

M3 displays the lowest LLPS propensities, especially for the293

FtoA variant (14 F residues mutated to A) whereas M1 and294

M2 yield comparable csat values and significantly differ only295

for the charge scrambled (CS) variant, which has the same296

net charge and amino acid composition as the WT but a more297

uniform charge distribution along the linear sequence.298

As we observe, M1 and M2 differ mainly for the λ value of299

the N residues and perform equally well against the test set of300

Fig. 6. To assess which model is more accurate, we test the301

ability to predict the LLPS propensity of the NtoS variant of302

A2 LCD with respect to the wild type. Only the M1 model,303

which has λ values for N and S of similar magnitude correctly304

predicts approximately the same LLPS propensity for variant305

and WT (Fig. S17), in agreement with experiments (24).306

Comparing intra- and inter-molecular interactions. After es-307

tablishing the ability of model M1 to accurately predict trends308

in LLPS propensity for diverse sequences, we analyze the non-309

electrostatic residue-residue energies for FUS LCD and A2310

LCD within a single chain, as well as between pairs of chains in311

the dilute regime and in condensates. We find a striking simi-312

larity between intra- and intermolecular interaction patterns313

for both proteins (Fig. 7), consistent with a mostly uniform314

distribution of stickers along the linear sequence (Fig. 7G,H)315

(15, 61). Notably, besides the aromatic F and Y residues, the316

analysis also identifies an M residue and four R residues as 317

stickers in FUS LCD and A2 LCD, respectively. Therefore, the 318

parameter-learning procedure presented herein corroborates 319

the role of R as a sequence dependent sticker (16), whereby 320

the large λ value for R in models M1–3 presumably reflects 321

the ability of the amphiphilic guanidinium moiety to engage 322

in H-bonding, as well as π stacking and charge-π interactions 323

(18). Further, in the dilute regime, the intra- and intermolecu- 324

lar interactions are weaker in the N- and C-terminal regions 325

than for the rest of the chain, as evident from the upturning 326

baselines of the 1D interaction energy projections. This result 327

is consistent with the faster local motions of the terminal 328

residues inferred from 15N NMR relaxation data e.g. for a 329

number of phase separating IDPs (15, 22, 23). We also find 330

that the aggregation-prone Y-rich region of A2 LCD (residues 331

84–107) interacts with the entire polypeptide chain (Fig. 7D– 332

F) and thus likely drives chain compaction, self-association as 333

well as LLPS. Finally, we observe that the polypeptide chains 334

of A1 LCD, A2 LCD and FUS LCD are more expanded in the 335

condensed phase than in the dilute phase, and that differences 336

in compaction between wild-type and charge variants of A1 337

LCD are greater in the dilute than in the condensed phase 338

(Fig. S18) 339

Correlating single-chain properties and phase separation. 340

Motivated by the above similarity, we perform a detailed 341

analysis of the coupling between chain compaction and phase 342

behaviour of the A1 LCD variants. The log10 (csat) values 343

predicted for A1 LCD variants by the M1–3 models at 50◦C 344

linearly correlate with the experimental values measured at 345

Fig. 7. Energy maps from simulations of the M1 model of FUS LCD (A–C) and A2 LCD (D–F) calculated using non-electrostatic interaction energies. (G–H) 1D projections of
the energy maps for FUS LCD (G) and A2 LCD (H), normalized by the absolute average interaction energy |〈E〉| and shifted vertically for clarity. Colors indicate that the
energies were calculated within a single chain at infinite dilution (blue), between two chains in the dilute regime (orange) and between a chain located at the center of a
condensate and the surrounding chains (green).
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4◦C (Pearson’s correlation coefficients > 0.7) (Fig. 8A). More-346

over, variants of intermediate LLPS propensity simulated at347

37◦C are in agreement with the predictions of the M1–3 mod-348

els with the reference csat values at 4◦C (Fig. S14). Since349

csat values from simulations at 37◦C and 50 ◦C are highly350

correlated (Fig. 8B), we can use the linear correlations shown351

in Fig. 8A,C to infer the ranking in predictive performance of352

the various models with respect to the phase behaviour of the353

A1 LCD variants, i.e. M2 performs the best, followed by M1,354

M3, HPS-Urry and HPS.355

In agreement with previous observations (16), the356

log10(csat) values for the aromatic variants show a linear re-357

lationship with the scaling exponent, νsim, whereas changes358

in the number of charged residues (charge variants) result in359

significant deviations from the lines of best fit (Fig. 8D–F).360

Following the approach of Bremer, Farag et al. (16), we plot361

the residuals for the charge variants with respect to the lines362

of best fit as a function of the net charge per residue (NCPR)363

(Fig. 8G–I). The results for M1 and M2 show the V-shaped pro-364

file observed for the experimental data (16), which reveals that365

mean-field electrostatic repulsion between the net charge of the366

proteins is responsible for breaking the coupling between chain367

compaction and LLPS propensity. In agreement with experi-368

mental data (16), we observe that for M1 and M2 the driving369

forces for LLPS are maximal for small positive values of NCPR370

(∼ 0.02). The dependence of LLPS on NCPR is clarified by371

comparing the residual non-electrostatic energy maps of +8D372

(NCPR=0), +4D (NCPR=0.3) and -4D (NCPR=0.9) with373

respect to the wild type of A1 LCD (Fig. S19 and S20). While 374

in case of NCPR=0 the residual interaction patterns within 375

the isolated chain and between chains in the condensate largely 376

overlap, the energy baselines are clearly down- and up-shifted 377

for NCPR=0.3 and NCPR=0.9, respectively (Fig. S19G–I 378

and S20G–I). Although the interaction patterns are still domi- 379

nated by the stickers, deviations of the net charge from ∼ 0.02 380

result in electrostatic mean-field repulsive interactions that 381

disfavor LLPS. The LLPS-promoting effect of small positive 382

NCPR values finds explanation in the amphiphilic character 383

of the R side chains (18) which compensate for the repulsion 384

introduced by the excess positive charge by allowing for favor- 385

able interactions with both Y and negatively charged residues. 386

As opposed to M1–2, the readily phase-separating M3 model 387

shows a weaker dependence on NCPR, especially for variants 388

of net negative charge. This suggests that the experimental 389

observations regarding the coupling between conformational 390

and phase behaviour of A1 LCD stem from a well-defined 391

balance between mean-field repulsion and sticker-driven LLPS 392

which can be offset by an overall moderate increase of 3–4% 393

in the λ values of the residues present in A1 LCD. 394

Conclusions 395

In this work we implement and validate an automated proce- 396

dure to develop an accurate model of the LLPS of IDPs based 397

on experimental data reporting on single-chain conformational 398

properties. We show that the method succeeds in agreement 399

Fig. 8. (A) Correlation between log10(csat) from experiments at 4◦C (16) and from simulations of the A1 LCD variants performed at 50◦C using the M1–3 models. (B)
Correlation between log10(csat) at 50 and 37◦C calculated from simulations of the M1–3 models. (C) Correlation between log10(csat) from experiments at 4◦C (16) and
from simulations of the HPS and HPS-Urry models performed at 50 and 24◦C, respectively. (D–F) log10(csat) vs νsim for A1-LCD variants from simulations performed
using the M1 (D), M2 (E) and M3 (F) models. Black and colored circles indicate aromatic and charge variants, respectively. Black lines are linear fits to the aromatic variants.
(G–I) Residuals from the linear fits of panels D–F for the charge variants of A1 LCD as a function of the net charge per residue. Values reported in the legends are Pearson’s
correlation coefficients. Error bars of log10(csat) values are SEMs of averages over blocks of 0.3 µs. Error bars of νsim are SDs from the linear fit to log (Rij) vs
log (|i− j|), with |i− j| > 10. Solid and dashed lines are linear fits to the data. Dotted lines in G–I are lines of best fit to the experimental data by Bremer et al. (16).
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with the previously observed coupling between chain com-400

paction and propensity for phase separation (15, 20, 54, 55),401

but also appears to recapitulate the recent discovery that402

charge effects may break this relationship (16). Our simula-403

tions reveal that, for sequences characterized by a uniform404

distribution of stickers, residue-residue interactions determin-405

ing chain compaction also drive self-association and LLPS.406

Our model optimization with and without the A1 LCD vari-407

ants indicates that the presence of phase-separating IDPs in408

the training set is necessary for the parameter-learning pro-409

cedure to capture the role of Y and R residues as stickers.410

Finally, using the model optimized herein, we show that the411

experimentally observed dependency of LLPS on protein net412

charge appears to be captured by salt-screened electrostatic413

repulsion, assuming a uniform dielectric constant throughout414

the two-phase system.415

We have here shown how our model may be used to help416

elucidate the residues that are important for LLPS of IDPs417

with UCST behaviour. Further, we suggest the model could be418

applied to study the influence of disease-associated mutations419

on the material properties of protein self-coacervates (62, 63),420

the LLPS of protein mixtures as a function of composition,421

and the partitioning of non-phase separating proteins into422

condensates (64). Finally, owing to the generalized parameter-423

learning approach, the model could be readily refined as new424

experimental data are collected and it should be possible to425

extend it to account for PTMs (65) and the temperature426

dependence of solvent mediated interactions (66).427

Materials and Methods428

We use the Cα-based model proposed by Dignon et al. (21) aug-429

mented with extra charges for the termini and a temperature-430

dependent treatment for dielectric constant of water (SI Materials431

and Methods). Langevin dynamics simulations are conducted using432

HOOMD-blue v2.9 (67) in the NV T ensemble using the Langevin433

thermostat with a time step of 5 fs and friction coefficient 0.01 ps−1434

(SI Materials and Methods).435

Bayesian Parameter-Learning Procedure. The λ values are optimized436

using a Bayesian parameter-learning procedure (27, 30, 68). The437

training set consists of the experimental Rg values of 42 IDPs (Tab.438

S1) and the intramolecular PRE data of six proteins (Tab. S2)439

(16, 22, 23, 37, 40–53). To guide the optimization within physically440

reasonable parameters and to avoid over-fitting the training set, we441

introduce a regularization term which penalizes deviations of the λ442

values from the probability distribution, P (λ), which is the prior443

knowledge obtained from the statistical analysis of 87 hydrophobicity444

scales. The optimization procedure consists of the following steps445

(Fig. 2):446

1. Single-chain CG simulation of the proteins of the training set447

(Tab. S1);448

2. Conversion of CG simulations into all-atom trajectories using449

PULCHRA (69);450

3. Calculation of per-frame radii of gyration and PRE data. The451

PRE rates and intensity ratios are calculated using DEER-452

PREdict (33) with τt = 100 ps and optimizing the correlation453

time, τc ∈ [1, 10] ns, against the experimental data.454

4. Random selection of six λ values which are nudged by random455

numbers picked from a normal distribution of standard devi-456

ation 0.05. The prior probability distribution, P (λ), sets the457

bounds of the parameter space: any λi for which P (λi) = 0 is458

further nudged until P (λi) 6= 0.459

5. Calculation of the Boltzmann weights for the ith frame as460

wi = exp−[U(ririri,λkλkλk)− U(ririri,λ0λ0λ0)]/kBT , where U(ririri,λkλkλk) and461

U(ririri,λ0λ0λ0) are the total Ashbaugh-Hatch energies of the ith462

frame for trial and initial λ values, respectively. If the effective 463

fraction of frames, 464

φeff = exp

[
−
Nframes∑

i

wi log (wi ×Nframes)

]
, [1] 465

is below 30%, the trial λkλkλk is discarded. 466

6. The per-frame radii of gyration and PRE observables are 467

reweighted and the extent of agreement with the experimental 468

data is estimated as 469

χ2
Rg

=
(
Rexpg −Rcalcg

σexp

)2

[2] 470

and 471

χ2
PRE =

1
NlabelsNres

Nlabels∑
j

Nres∑
i

(
Y expij − Y calcij

σexpij

)2

[3] 472

where σexpij is the error on the experimental values, Y is either 473

Ipara/Idia or Γ2, Nlabels is the number of spin-labeled mutants 474

and Nres is the number of measured residues; 475

7. Following the Metropolis criterion (70), the kth set of λ values 476

is accepted with probability: 477

Ak−1→k =

{
exp
[
L(λk−1λk−1λk−1)]−L(λkλkλk)

ξk

]
, L(λkλkλk) > L(λk−1λk−1λk−1)

1, L(λkλkλk) ≤ L(λk−1λk−1λk−1),
[4] 478

where the control parameter, ξk, scales with the number of 479

iterations as ξ = ξ0 × 0.99k. L is the cost function 480

L(λλλ) = 〈χ2
Rg

(λλλ)〉+ η〈χ2
PRE(λλλ)〉 − θ

∑
i

ln [P (λi)] [5] 481

where 〈χ2
Rg

(λλλ)〉 and 〈χ2
PRE(λλλ)〉 are averages over the proteins 482

in the training sets. θ and η are hyperparameters of the 483

optimization procedure. θ determines the trade-off between 484

between over- and under-fitting the training set whereas η sets 485

the relative weight of the PRE data with respect to the radii 486

of gyration. 487

Steps 4–7 are iterated until ξ < 10−15, when the reweighting cycle 488

is interrupted and new CG simulation carried out with the trained 489

λ values. A complete parameter-learning procedure consists of two 490

reweighting cycles starting from ξ0 = 2 followed by three cycles 491

starting from ξ0 = 0.1. The threshold on φeff results in average 492

absolute differences between χ2 values estimated from reweighting 493

and calculated from trajectories performed with the corresponding 494

parameters of ∼1.8 and ∼0.8 for ηχ2
PRE and χ2

Rg
, respectively 495

(Fig. S21). 496

Data deposition. Datasets, code and Jupyter Notebooks for repro- 497

ducing our analyses are available on GitHub at github.com/KULL- 498

Centre/papers/tree/master/2021/CG-IDPs-Tesei-et-al and on Zen- 499

odo, DOI: 10.5281/zenodo.5005954. 500
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