AtPQT11 by YJ Huang et al.

1 AtPQT11, a P450 enzyme, detoxifies paraquat via N-demethylation

- 2 Yi-Jie Huang¹, Yue-Ping Huang^{1,2}, Jin-Qiu Xia¹, Zhou-Ping Fu³, Yi-Fan Chen³,
- 3 Yi-Peng Huang³, Aimin Ma⁴, Wen-Tao Hou¹, Yu-Xing Chen¹, Xiaoquan Qi⁴, Li-Ping
- 4 Gao³, Cheng-Bin Xiang¹
- 5
- ¹School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National
- 7 Science Center for Physical Sciences at the Microscale, University of Science and
- 8 Technology of China, The Innovation Academy of Seed Design, Chinese Academy of
- 9 Sciences, Hefei, Anhui Province 230027, China
- ²School of Life Sciences, Sun Yat Sen University, No. 135, Xingang Xi Road,
- 11 Guangzhou, 510275, P. R. China
- ³School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd,
- 13 Hefei 230036, Anhui, China
- ⁴ Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Innovation
- 15 Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- 16
- 17 Correspondence:
- 18 Cheng-Bin Xiang
- 19 Email: xiangcb@ustc.edu.cn
- 20 orcid.org/0000-0002-7152-1458
- 21
- 22 Li-Ping Gao
- E-mail: gaolp62@126.com

24

AtPQT11 by YJ Huang et al.

25 Abstract

26	Paraquat is one of the most widely used nonselective herbicides in agriculture.
27	Due to its wide use, paraquat resistant weeds have emerged and is becoming a
28	potential threat to agriculture. The molecular mechanisms of paraquat resistance in
29	weeds remain largely unknown. Physiological studies indicated that the impaired
30	translocation of paraquat and enhanced antioxidation could improve paraquat
31	resistance in plants. However, the detoxification of paraquat via active metabolism by
32	plants has not been reported to date. Here we report that an activated expression of
33	At1g01600 encoding the P450 protein CYP86A4 confers paraquat resistance as
34	revealed by the gain-of-function mutant paraquat tolerance 11D (pqt11D), in which a
35	T-DNA with four 35S enhancers was inserted at 1646 bp upstream the ATG of
36	At1g01600. The paraquat resistance can be recapitulated in Arabidopsis wild type by
37	overexpressing AtPQT11 (At1g01600), while its knockout mutant is hypersensitive to
38	paraquat. Moreover, AtPQT11 also confers paraquat resistance in E. coli when
39	overexpressed. We further demonstrate that AtPQT11 has P450 enzyme activity that
40	converts paraquat to N-demethyl paraquat nontoxic to Arabidopsis, therefore
41	detoxifying paraquat in plants. Taken together, our results unequivocally demonstrate
42	that AtPQT11/ CYP86A4 detoxifies paraquat via active metabolism, thus revealing a
43	novel molecular mechanism of paraquat resistance in plants and providing a means
44	potentially enabling crops to resist paraquat.
45	
46	Key words: paraquat, paraquat resistance, AtPQT11, pqt11, CYP86A4, P450,

- 47 herbicide, demethylation.
- 48
- 49

AtPQT11 by YJ Huang et al.

50 Introduction

Paraquat (1,1'-dimethyl-4,4'-bipyridynium dichloride) has been widely used as a broad spectrum nonselective herbicide in agriculture for decades ¹. Plants absorb paraquat from their environment and transport to chloroplasts, where it competes for electrons on the PSI and generates superoxide that is converted to H_2O_2 by superoxide dismutases (SODs), resultantly accumulating a large amount of ROS, which may lead to cell death ².

57 Paraquat resistant weeds have emerged after the wide use of paraquat in 58 agriculture. The underlying mechanisms of paraquat resistance in weeds have been studied mostly at physiological and biochemical levels ³⁻⁶. From these studies, two 59 60 major mechanisms of paraquat resistance were suggested, including defects in paraquat translocation restricting the transport of paraquat to chloroplasts ^{4,7}, and 61 enhanced antioxidation scavenging ROS more efficiently^{8,9}. However, no genetic or 62 molecular evidence for the proposed mechanisms has been revealed in weeds. With 63 64 the power of the model plant Arabidopsis, several research groups have isolated 65 paraquat resistant mutants, originally aiming at identifying novel components in oxidative stress response or cell death ^{10,11}. These studies with Arabidopsis paraquat 66 67 resistant mutants helped reveal the molecular mechanisms of paraquat resistance 68 proposed by weed scientists based on their studies on paraquat resistant weeds. The 69 unraveled molecular mechanisms from these studies fall into two categories; one involves paraquat uptake and transport¹²⁻¹⁵, and the other is the enhanced ability 70 scavenging ROS ^{10,11,16,17}. 71

However, no evidence of paraquat degradation by plant active metabolism has
been reported. Herbicide degradation by plants via active metabolism is a desirable
mechanism for engineering crop resistance to herbicides. CYP450s (cytochrome
P450s) constitute the biggest plant protein family and can mediate redox reaction in
plant. They usually function as demethylase and/or hydroxylase in herbicide
metabolism ¹⁸. Some P450s metabolize herbicides to lower toxic products which are
transferred to vacuole as glucosyl conjugates ¹⁹. Two plant cytochrome P450 enzymes,

AtPQT11 by YJ Huang et al.

79	CYP71A10 from Helianthus tuberosus and CYP76B1 from soybean, were reported
80	having urea herbicide metabolism activity ²⁰ . In addition, tobacco CYP81B2 and
81	CYP71A11 catabolize chlortoluron by ring methyl hydroxylation and N-methylation
82	21
83	We previously isolated a number of paraquat tolerant Arabidopsis mutants and
84	reported $pqt24$ and $pqt3^{15,16}$. Here we continue to characterize those paraquat
85	tolerance mutants by focusing on <i>pqt11D</i> in this study. We isolated <i>pqt11D</i> as a
86	gain-of-function mutant with enhanced paraquat tolerance and identified that the
87	At1G01600 (AtPQT11) was activated by the enhancers of the T-DNA insertion, which
88	caused paraquat resistance in the mutant. The mutant phenotype could be
89	recapitulated by overexpressing AtPQT11, encoding the protein CYP86A4, a member
90	of CYP450 super family, in the wild type Arabidopsis. Further analyses revealed that
91	AtPQT11/CYP86A4 could convert paraquat to N-demethyl paraquat in vitro by the
92	mean of N-demethylation, and demethylated paraquat was found nontoxic to
93	Arabidopsis, clearly demonstrating paraquat degradation by a plant P450 enzyme. Our
94	study revealed a novel molecular mechanism of paraquat resistance that has not been
95	reported in plants. Our findings should provide a new means for developing paraquat
96	resistance crops using AtPQT11/CYP86A4.
97	
98	Result
99	
100	Activated expression of At1G01600 confers paraquat resistance in pqt11D
101	From an Arabidopsis activation-tagging library of approximately 55000 lines, we
100	isolated a number of nervoust tolerance mutants. One of them nat 11D displayed

From an Arabidopsis activation-tagging library of approximately 55000 lines, we isolated a number of paraquat tolerance mutants. One of them, pqt11D, displayed enhanced resistance to paraquat (Fig. S1A). We found that the T-DNA with four 35S enhancers next to the right border was inserted at 1646 bp upstream the ATG codon of At1g01600 (Fig. S1B). As a result, the gene At1g01600 was activated (Fig, S1C), indicating that the activated expression of At1g01600 may be responsible for observed paraquat resistance in pqt11D. We therefore named At1g01600 as AtPQT11.

AtPQT11 by YJ Huang et al.

108	AtPQT11 is predicted to encode CYP86A4, a cytochrome P450 enzyme with 554
109	amino acids. It is expressed in all tissues examined with relatively higher levels in
110	roots, flowers and siliques (Fig. S1D), and induced by paraquat treatment for the first
111	3 hours, then declined (Fig. 1E).
112	The <i>pqt11D</i> phenotype can be recapitulated by overexpressing <i>AtPQT11</i> in the
113	wild type
114	To confirm whether the paraquat resistance of <i>pqt11D</i> was caused by an activated
115	expression of AtPQT11, we generated two AtPQT11 overexpression lines (OX1-4 and
116	OX3-1) and obtained a knockout mutant pqt11 (Salk_073078), in which the T-DNA
117	was inserted in the first exon of AtPQT11 from ABRC (Fig. S1B), and confirmed all
118	the genetic materials by 3-primers PCR (Fig. S1F) and qRT-PCR analyses (Fig. S1G).
119	Seed germination assay in response to paraquat treatment showed that two OX
120	lines had significantly higher survival after 7 days on MS medium with 2 μ M
121	paraquat compared with the wild type, while the knockout mutant pqt11 became
122	hypersensitive (Fig. 1A and B).
123	We also conducted paraquat resistance assay on soil-grown plants of different
124	AtPQT11 genotypes. When the plants grew to the stage with 8 rosette leaves, they
125	were sprayed with 10 μM paraquat every 3 days. 10 days after the first spray, The OX
126	lines showed a significantly higher survival than wild type control, whereas the
127	knockout mutant exhibited sicker phenotype and lower survival (Fig. 1C and D).
128	Together, these results demonstrate that an elevated expression of AtPQT11
129	confers paraquat resistance in Arabidopsis.
130	AtPQT11 renders E. coli resistant to paraquat
131	To further confirm AtPQT11-conferred paraquat resistance, we cloned AtPQT11
132	cDNA into pET28a vector (pET28a-P450) and expressed in E. coli. Based on 3-D
133	simulation of AtPQT11 structure (Fig. S2), we created single mutations of three
134	residues G309A, S461A, G463A around the predicted substrate binding pocket and
135	further expressed these three mutants in E. coli, respectively. In the absence of
136	paraquat in liquid culture medium, there was no difference was observed between the
137	bacteria expressing pET28a-P450 and the empty pET28a. In contrast, the bacteria $\frac{5}{18}$

AtPQT11 by YJ Huang et al.

138	expressing pET28a-P450 displayed a remarkable resistance to 1 mM paraquat than
139	those harboring the empty pET28a, whereas the bacteria transformed with the
140	constructs carrying 3 different point mutations in AtPQT11 exhibited no paraquat
141	resistance as the empty vector control (Fig. 1E). When grew on solid agar medium
142	containing 1 mM paraquat, only bacteria expressing pET28a-P450 formed colony
143	plaques (Fig. 1F). These results further confirm the role of AtPQT11 in paraquat
144	resistance and indicate that the amino acid residues are critical for its function.
145	AtPQT11 catalyzes the conversion of paraquat to N-demethyl paraquat in vitro
146	Considering that AtPQT11 encodes a P450 protein, we reasoned AtPQT11 might
147	catabolize paraquat to a nontoxic product. To demonstrate this, we first established an
148	in vitro enzyme assay using E. coli expressed AtPQT11 protein, paraquat as substrate,
149	and NADPH as electron donor as described in Materials and Methods. The
150	consumption of NADPH provides a convenient spectrophotometric monitor at
151	OD_{340nm} of the reaction. As shown in Fig. 2A, the consumption of NADPH was
152	AtPQT11-dependent in the reaction and increased with incubation time. Therefore, we
153	established the in vitro enzyme assay for AtPQT11 and used this assay to determine
154	the enzyme kinetic properties (Fig. 2B-D).
155	To identify the product of the reaction, the paraquat metabolite of the in vitro
156	reaction was analyzed by LC-MS/MS. A product peak was found at 2.7 min with m/z
157	171, which was AtPQT11- and NADPH-dependent (Fig. 3A-D, left panels). To
158	confirm that this product is derived from paraquat, we used the ² H-labeled paraquat as
159	the substrate, whose eight hydrogen atoms on paraquat pyridine ring were replaced by
160	deuterium so that the m/z of paraquat changed from 186 to 194. As expected, we
161	found the product peak with m/z 179, which was also AtPQT11- and
162	NADPH-dependent (Fig. 3A-D, right panels). The reaction product has the same
163	mass as N-demethyl paraquat (m/z 171).
164	To resolve the identity of the product, we analyzed the MS/MS spectrum and
165	found that the product showed the same fragment ions as N-demethyl paraquat
166	standard (Fig. 3F, left panel and G, right panel), which was further confirmed by the
167	same experiments with ² H-labeled paraquat (Fig. 3E and F, right panels). These $\frac{6}{18}$

AtPQT11 by YJ Huang et al.

- 168 results unequivocally show that the product is derived from the substrate and the
- 169 product matches N-demethyl paraquat based on their fragment ion pattern (Fig. 3G).
- 170 Thus, we have demonstrated that AtPQT11/ CYP86A4 functions as an N-demethylase
- 171 capable of converting paraquat to N-demethyl paraquat.
- 172 N-demethyl paraquat is nontoxic to Arabidopsis
- 173 Have identified N-demethyl paraquat as the product, we decided to find out
- 174 whether N-demethyl paraquat has herbicide activity. To demonstrate this, we simply
- 175 tested whether the N-demethyl paraquat is toxic to Arabidopsis. Seed germination
- assay in the presence of N-demethyl paraquat showed that two OX lines, WT and
- 177 knockout mutant pqt11 all survived and grew well on MS medium with 2 μ M
- 178 N-demethyl paraquat or 2 µM bipyridine (double demethylated paraquat) compared
- 179 with paraquat (Fig. 4A and B). This result clear shows that N-demethyl paraquat and
- bipyridine are nontoxic to Arabidopsis. Therefore, we have uncovered the molecular

181 mechanism underlying the paraquat resistance of *pqt11D*.

182

183 **Discussion**

184 In this study we reported the paraquat resistance mutant *pqt11D* and the 185 underlying molecular mechanism. The phenotype of the mutant was caused by an 186 activated expression of AtPQT11, which was confirmed by recapitulation analyses in 187 Arabidopsis wild type as well as in E. coli (Fig. 1 and Fig. S1A-C). The paraquat 188 hypersensitive phenotype of the AtPQT11 knockout mutant also supports that 189 AtPQT11 is responsible for the observed paraquat resistance (Fig. 1 and 4). Further 190 analyses revealed the AtPQT11 catalyzed biochemical reaction converting paraquat to 191 single demethylated product (Fig. 2 and 3), and we also found that N-demethyl 192 paraquat is nontoxic to Arabidopsis (Fig. 4). 193 CYP450 enzymes is widely found in biosynthesis or catabolic processes

through the whole life in all living organisms 22 . Several members of CYP450 family

- have been reported to detoxify herbicides 23,24 . As a xenobiotic, paraquat is not a
- natural substrate of the CYP450 enzyme AtPQT11. The natural substrates of

AtPQT11 by YJ Huang et al.

197	AtPQT11 remain unknown at present. AtPQT11 can catalyze the conversion of
198	paraquat to N-demethyl paraquat perhaps because paraquat may have similar
199	structural resemblance to its natural substrates.
200	Since paraquat is a widely used herbicide in agriculture, paraquat resistant weeds
201	have emerged, which is a potential threat to agriculture. Generally, plants could gain
202	paraquat resistance in three ways. First, paraquat absorption and transport are limited,
203	thus preventing paraquat from reaching chloroplasts. Second, an enhanced
204	intracellular antioxidant capacity would help plants to scavenge ROS more efficiently.
205	Third, paraquat may be degraded to nontoxic metabolites. Plants may have these
206	strategies in single or in combination to produce paraquat resistance ²⁵ . There are
207	many reports for the first two strategies ^{4,10,13,15,16} . However, paraquat degradation by
208	plants has not been reported thus far. Our finding with <i>pqt11D</i> fills up the gap for the
209	third strategy.
210	In conclusion, our findings with the paraquat resistant mutant pqt11D
211	unequivocally demonstrate that AtPQT11, a member of the P450 super family
212	detoxifies paraquat and confers paraquat resistance in Arabidopsis when
213	overexpressed, therefore providing a much needed means to engineering paraquat
214	resistance crops.
215	
216	Methods and materials

217

218 Plant material and growth conditions

Arabidopsis Col-0 was used as wild type in this study. We also used Col-0 as the

220 genetic background for all the mutants and transgenic plants. Salk_073078 was

- 221 ordered from the Arabidopsis Biological Resource Center (ABRC). Seeds were
- sterilized in 10% bleach for 10 minutes and washed with sterile water 5 times. The
- 223 washed seeds were kept in the dark at 4°C for 2 days before germination on MS
- medium at 22°C under 14 h light/10 h dark.

AtPQT11 by YJ Huang et al.

225 Construction of AtPQT11 overexpression lines

- 226 In order to get overexpression lines, we used forward primer
- 227 5'-GGGGACAAGTTTGTACAAAAAGCAGGCT
- 228 ATGGAAATATCCAATGCCATGC-3 and reverse primer
- 229 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT
- 230 TTAAACCACTGCAACTCCCGTA-3' to obtain the CDS of CYP86A4. By means of
- 231 GATEWAY system ²⁶, the CDS was cloned into vector pCB2004 via the shuttle vector
- 232 of pDONR207.
- 233 The constructed plasmid was transformed into Agrobacterium tumefaciens
- 234 C58C1 by electroporation. The floral-dip method was used to transfer the construct
- into plants²⁷. The positive lines were screened as glufosinate resistant plants and
- homozygous lines were obtained from F2 population.

237 **RNA extraction and qRT-PCR**

- 238 We extracted the RNA from one-week-old seedlings by Trizol (Invitrogen,
- 239 Carlsbad, California, USA) and reverse transcribed RNA to cDNA by TransScript Kit
- 240 (TaKaRa). The expression of CYP86A4 was detected by RT-PCR or quantitative
- 241 RT-PCR using forward primer 5'-CCCCAAGGGTTTCACTGAATTC-3' and reverse
- 242 primer 5'-AAGTAAATGCGAAGCCTGCTTG -3' and Applied Biosystem Step One
- 243 real-time PCR system or TaKaRa SYBR Premix Ex Taq II reagent kit. UBQ5 was
- 244 used as the internal reference.
- 245 Identification of the AtPQT11 knockout mutant
- 246 3 primers including forward primer 5'- TTCACCACATACAGCTGCATC -3',
- 247 reverse primer 5'- AAATGTTGTCGAATGTGAGCC-3' and intermediate primer
- 248 LBb1.3 5'-ATTTTGCCGATTTCGGAAC-3' were used to identify homozygotes of
- 249 SALK_073078. The homozygotes showed only one band around 750 bp while the
- wild type showed one band around 1000 bp. RT-PCR was performed to confirm null
- expression of the At1g01600 in SALK_073078 by using forward primer 5'-
- 252 ATGGAAATATCCAATGCCATGC-3' and reverse primer 5'-
- 253 TTAAACCACTGCAACTCCCGTA-3'. *TUBULIN* was used as the internal control.

AtPQT11 by YJ Huang et al.

254 Seed germination assay

255 Sterilized seeds for each line including WT, knock out mutant SALK_073078

256 (*pqt11/cyp86a4*) and two overexpression lines OX1-4 and OX3-1 were treated at 4°C

- 257 in dark condition for 2 days. Then we put these seeds on MS medium with $2 \mu M$
- 258 paraquat, MS medium was used as control. The plates were placed at 22°C under 14
- h light/10 h dark cycles. We considered the appearance of two green cotyledons as
- successful germination, 1 week later we recorded germination %.

261 Paraquat resistance assay on soil-grown plants

- 262 One-week-old seedlings grown on MS medium were transferred to soil. We
- 263 planted 5 seedlings per pot, grew to the stage with 8 rosette leaves, and sprayed with
- $10 \,\mu\text{M}$ paraquat and sprayed again 3 days later. Photos and survival rate were
- recorded 10 days after the first spray.

3-D model of At PQT11 structure

- The 3-D structure model of CYP86A4 was produced by Phyre2 and paraquat was docked into the structure model. Residues within the distance of 4 Å around paraquat are colored in red. Conservative residues likely responsible for the binding of paraquat are labeled and chosen as mutation sites.
- 271 Site-directed mutagenesis of AtPQT11
- 272 Specific primers for site-directed mutagenesis were designed, for changing
- 273 309Gly to Ala, 461Cys to Ala, 463Gly to Ala as listed in Table S1. pET28-CYP86A4
- or pCB2004-CYP86A4 were set as template and the PCR procedure was set for 20
- 275 cycles. After the PCR products were recycled, 1 µl Dpn was added to digest these
- 276 products. Then transferred these products to DH5 α and extracted plasmids from
- 277 overnight culture.

278 Paraquat resistance assay in E. coli

- 279 We used Rosetta or BL21 as host, transferred the constructed pET28-P450 and
- the three plasmids with point mutation: pET28-P450A (Gly309Ala), pET28-P450B
- 281 (Cys461Ala) and pET28-P450C (Gly463Ala) into the host bacteria, and empty vector
- pET28a as control. Single colonies grown on the plate were picked and cultured 10/18

AtPQT11 by YJ Huang et al.

283	overnight. Then the overnight culture was diluted into fresh LB medium with a
284	starting OD_{600} value of 0.1, and paraquat was added to make its final concentration of
285	1 mM. Another set of culture with 0 mM paraquat was used as control. The OD_{600}
286	value of the culture was monitored at regular intervals for 36 hours. Each culture was
287	triplicated and the growth curves were obtained. When tested on solid LB plate with 1
288	mM paraquat, the overnight liquid bacteria culture was inoculated on the plate with 0
289	or 1 mM paraquat and incubated overnight at 37°C.
290	Bacterial expression of AtPQT11
291	The CDS of AtPQT11 was ligated to the vector pET28a by T4 ligase. The
292	constructed plasmid was transformed into Rosetta strain with kanamycin selection. A
293	clone was picked from medium and was added with liquid LB, when the OD_{600} of
294	medium reached 0.6, IPTG was added with a final concentration of 0.3 mM. The
295	culture was shaken in 16° C with the speed of 120 rpm for 12-16 h. The culture was
296	centrifuged for 10 min at 4500 rpm to harvest bacteria, then the bacterial pellet was
297	resuspended with protein isolation buffer (20 mM Tris-Cl pH7.5, 0.2 M NaCl, 5%
298	glycerin, 1 mM EDTA, 1 mM PMSF) + 1% Dodecyl-beta-D-maltoside (m/v), and
299	ultrasonicated to break bacterial cell walls. The cell lysate was rotated at 4°C for 2h
300	and then centrifuged at 45000 rpm for 30 min. The supernatant was collected for
301	AtPQT11 protein purification using Ni-IDA-sefinose resin kit.
302	In vitro enzyme assay of AtPQT11
303	The reaction mixtures contained 0.1-10 μ M paraquat as substrate, 50-100 μ g
304	AtPQT11/ CYP86A4 protein, 1 mM NADPH as electron donor, 25 mM phosphate
305	buffer (pH7.0) in a total volume of 50 μ l. The reaction was initiated by adding
306	NADPH. The reaction mixtures without NADPH or AtPQT11/CYP86A4 were set as
307	controls. The mixtures were incubated for 30 min at 27°C and terminated by adding
308	50 μ l acetonitrile. To determine the enzyme kinetic properties, the reaction was
309	spectrophotometrically monitored at 340 nm for NADPH consumption. To identify

the reaction product, the mixtures was centrifuged at 14000g for 20 min, and the

AtPQT11 by YJ Huang et al.

311	supernatant was analyzed by HPLC-MS/MS as described below.
312	HPLC-MS/MS
313	HPLC-MS/MS analysis was performed using Agilent Q-TOF-LC/MS 6545
314	device (Agilent Technologies, Palo Alto, CA, USA) . A XBridge BEH HILIC $2.5\mu m$
315	Column (2.1*100 mm) from Waters was used for chromatographic separation. The
316	mobile phase was a mixture of solvent A (10 mM ammonium acetate added with 0.1%
317	V/V formic acid) and solvent B (10 mM ammonium acetate dissolved in 95%
318	acetonitrile) and was delivered at a flow rate of 0.3 mL/min. The column temperature
319	was set at 40°C and the injection volume was 2 μ l. The sample was followed the
320	gradient: 90% B (0 min), 10% B (3 min), 1% B (5 min), 90% B (5 min), with a total
321	run time of 12 min.
322	Mass acquisition was performed in the positive ionization mode at a
323	fragmentation voltage of 175 V. The following parameters were used: drying gas flow,
324	8 L/min; temperature, 325 °C; sheath gas flow, 11 L/min; temperature, 350 °C;
325	nebulizer pressure, 45 psi; and capillary voltage, 3500 V. The collision energy was set
326	at 15–40 V, and the mass range was recorded from m/z 50–1700. The acquired MS
327	and MS/MS data files were analyzed using Agilent MassHunter Qualitative Analysis
328	B.07.00.
329	Toxicity assay of N-demethyl paraquat
330	Seeds of different genotypes were washed and treated at 4°C in dark condition
331	for 2 days, then plated on MS medium with 2 μM N-demethyl paraquat, 2 μM
332	bipyridine, 2 μ M paraquat, respectively. MS medium was used as mock. Germination
333	and survival was recorded after 1 week.
334	Statistical analyses
335	Statistical significance was evaluated at the 0.05 probability level using Student's
336	t-test.
337	Supplemental information

Figure S1. Paraquat resistance phenotype of *pqt11D* and confirmation of

AtPQT11 by YJ Huang et al.

- 339 *AtPQT11* expression in *pqt11*, *pqt11D*, and overexpression lines.
- Fig. S2. 3-D model of AtPQT11 structure.
- Table S1. Primers used in this study.

342 Acknowledgements

- 343 This work was supported by grants from the National Natural Science Foundation
- of China (grant no. 31770273). We thank ABRC for providing Arabidopsis mutant
- 345 seeds.

346 Author's Contributions

- 347 CBX and YJH designed the experiments. YJH. performed the major experiments.
- 348 YPH isolated *pqt11D* and identified the T-DNA insertion site. JQX, WTH, AMM,
- 349 XQQ, YXC, participated in experiments and data analyses. ZPF, YFC, YiPH, LPG
- 350 contributed to LC-MS/MS analyses. YJH wrote the manuscript. CBX and LPG
- 351 revised the manuscript and supervised the project.

352 Conflict Interests

- 353 The authors declare no conflict of interest.
- 354
- 355

AtPQT11 by YJ Huang et al.

356 **References**

357

395

358	1	Baldwin, B., Clarke, C. & Wilson, I. Paraquat in chloroplasts. Biochimica et Biophysica Acta
359		(BBA)-Bioenergetics 162 , 614-617 (1968).
360	2	Farrington, J., Ebert, M., Land, E. & Fletcher, K. Pulse radiolysis studies of the reaction of
361		paraquat radical with oxygen. Implication for the mode of action of bipuridyl herbicides.
362		Biochimica et Biophysica Acta 314 , 372-381 (1973).
363 364	3	Lewthwaite, S. & Triggs, C. Identification of paraquatresistant Solanum nigrum and S americanum biotypes. <i>New Zegland Plant Protection</i> 62 , 349-355 (2009)
365	Д	Lori B et al. Role of transporters in paragulat resistance of horseweed Convia canadensis (L).
366	-	Crong Pesticide Riochemistry and Physiology 88, 57-65, doi:10.1016/j.pesthp.2006.08.013
367		(2007).
368	5	Lasat, M. M., DiTomaso, J. M., Hart, J. J. & Kochian, L. V. Evidence for vacuolar sequestration
369		of paraquat in roots of a paraquat-resistant Hordeum glaucum biotype. Physiologia
370		Plantarum 99 , 255-262 (1997).
371	6	Hawkes, T. R. Mechanisms of resistance to paraquat in plants. <i>Pest Manag Sci</i> 70, 1316-1323,
372		doi:10.1002/ps.3699 (2014).
373	7	Shaaltiel, Y. & Gressel, J. Kinetic analysis of resistance to paraquat in Conyza: evidence that
374		paraquat transiently inhibits leaf chloroplast reactions in resistant plants. Plant physiology 85,
375		869-871 (1987).
376	8	Ye, B. & Gressel, J. Transient, oxidant-induced antioxidant transcript and enzyme levels
377		correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta
378		211 , 50-61 (2000).
379	9	Tsuji, K., Hosokawa, M., Morita, S., Miura, R. & Tominaga, T. Resistance to paraquat in M azus
380		pumilus. <i>Weed Research</i> 53 , 176-182 (2013).
381	10	Chen, R. et al. The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione
382		reductase that is a key regulator of cell death. <i>Cell Research</i> 19 , 1377-1387,
383		doi:10.1038/cr.2009.117 (2009).
384	11	Kurepa, J., Smalle, J., Va, M., Montagu, N. & Inzé, D. Oxidative stress tolerance and longevity
385		in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. The Plant Journal
386		14 , 759-764 (1998).
387	12	Fujita, M. et al. Natural variation in a polyamine transporter determines paraquat tolerance
388		in Arabidopsis. Proceedings of the national academy of sciences of the united states of
389		<i>america</i> 109 , 6343-6347, doi:10.1073/pnas.1121406109 (2012).
390	13	Li, J. et al. Paraquat Resistant1, a Golgi-localized putative transporter protein, is involved in
391		intracellular transport of paraquat. <i>Plant Physiology</i> 162 , 470-483,
392		doi:10.1104/pp.113.213892 (2013).
393	14	Soar, C., Preston, C., Karotam, J. & Powles, S. Polyamines can inhibit paraquat toxicity and
394		translocation in the broadleaf weed Arctotheca calendula. Pesticide Biochemistry and

Physiology **80**, 94-105 (2004).

AtPQT11 by YJ Huang et al.

 doi:10.1111/j.166-318X.2011 (4830X (202). Luo, C. <i>et al.</i> PARAQUAT TOLERANCE3 is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b. <i>PLoS Genetics</i> 12 (2016). Sipari, N., Lihavainen, J., Shapiguzov, A., Kangasjärvi, J. & Keinänen, M. Primary Metabolite Responses to Oxidative Stress in Early-Senescing and Paraquat Resistant Arabidopsis thaiana red1 (Radical-induced Cel Death1). <i>Frontiers in plant science</i> 11, 194 (2020). Schuler, M. A. & Werck-Reichhart, D. Functiona genomics of P450s. <i>Annual review of plant biology</i> 54, 629-667 (2003). Kreuz, K., Tommasini, R. & Martinola, E. Old enzymes for a new job (herbicide detoxification in plants). <i>Plant physiology</i> 111, 349 (1996). Dideirgian, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (202). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Nove: Cytochrome P450 Species induced by Chemical Treatments in Cutured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Manicu, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicide. <i>Pesticide biochemistry and physiology</i> 69, 1-5 (2006). Simizaky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a sophan cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). Simizaky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a sophean cytochrome P450 monooxygenase	396 397	15	Xi, J., Xu, P. & Xiang, C. B. Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. <i>Plant Journal</i> 69 , 782-791,
 Lub, L. et al. PARACOM INCERVACES Is all as lagase that switches on Activated by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b. <i>PLOS Genetics</i> 12 (2016). Sipari, N., Lihavainen, J., Shapiguzov, A., Kangasjärvi, J. & Keinänen, M. Primary Metabolite Responses to Oxidative Stress in Early-Senescing and Paraquat Resistant Arabidopsis thaliana rotal (Radical-induced Cel Death1). <i>Frontiers in plant science</i> 11, 194 (2020). Schuler, M. A. & Werck-Reichhart, D. Functional genomics of P450s. <i>Annual review of plant biology</i> 54, 629-657 (2003). Kreuz, K., Tommasini, R. & Martinola, E. Old enzymes for a new job (herbicide detoxification in plants). <i>Plant physiology</i> 111, 349 (1996). Didierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (2002). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Mansuy, D. The great diversity of reactions cata yzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of su fonylurea herbicide. <i>Pesticide Biochemistry and Physiology</i> 45, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase CDNA in yeast and tobacco enhances the metabolism of phenyurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (398	16	aoi:10.1111/j.1365-313X.2011.04830.X (2012).
 Actor and the second second	400	10	Luo, C. <i>et al.</i> PARAQUAL TOLERANCES IS an ES Ligase That Switches Of Activated Oxidative
 11 12 (2006). 12 (Sipari, N., Uhavainen, J., Shapiguzov, A., Kangasjärvi, J. & Keinänen, M. Primary Metabolite Responses to Oxidative Stress in Early-Senescing and Paraquat Resistant Arabidopsis thaliana rod1 (Radical-induced Cell Death1). Frontiers in plant science 11, 194 (2020). 13 Schuler, M. A. & Werck-Reichhart, D. Functional genomics of P450s. Annual review of plant biology 54, 629-667 (2003). 14 Kreuz, K., Tormasini, R. & Martinola, E. Old enzymes for a new job (herbicide detoxification in plants). Plant physiology 111, 349 (1996). 20 Didierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiology 130, 179-189 (2002). 21 Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Nove' Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. Pesticide Biochemistry and Physiology 68, 11-25 (2000). 22 Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxical Endocrinol 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). 23 Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. Pesticide biochemistry and physiology 85, 1-6 (2006). 24 Siminszky, B., Corbin, F. T, Ward, E., Fleischmann, T.J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the United States of America 96, 1750-1755 (1999). 25 Baucom, R. S. The remarkable repeated evolution of herbicide resistance. Am J Bot 103, 181-183, doi:10.3732/ajb.1500510 (2016). 26 Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). 27 Clough, S. J.	400		12 (2016)
 Sirjari, N., Univariani, J., Sindpiguot, A., Kalgajavi, J. & Keinaleti, W. Primarel, Nethodopsis thalina Responses to Oxidative Stress in Early-Senescing and Paraquat Resistant Arabidopsis thaliana rod1 (Radicai-Induced Cell Death1). <i>Frontiers in plant science</i> 11, 194 (2020). Schuler, M. A. & Werck-Reichhart, D. Functional genomics of P450s. <i>Annual review of plant biology</i> 54, 629-667 (2003). Kreuz, K., Tommasini, R. & Martinola, E. Od enzymes for a new Job (herbicide detoxification in plants). <i>Plant physiology</i> 111, 349 (1996). Didierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CVP7681, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (2002). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Nove Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catayzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 51, 1-6 (2006). Siminszky, B., Corbin, F. T, Ward, E., Fleischmann, T.J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenyiurea herbicide. <i>Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 161-18-3. doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method	401	17	12 (2010). Sinari N. Libavainan I. Shaniguzov A. Kangasiänvi I. & Koinänan M. Brimany Matabalita
 Action Responses to Oxford Ve Stress in Fairy-Sentecing and Praduat Resistant Arabudops that and red (Radical-induced Cell Death1). Frontiers in plant science 11, 194 (2020). Schuler, M. A. & Werck-Reichhart, D. Functional genomics of P450s. Annual review of plant biology 54, 629-667 (2003). Kreuz, K., Tommasini, R. & Martinoia, E. Old enzymes for a new job (herbicide detoxification in plants). Plant physiology 111, 349 (1996). Didlerjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiology 130, 179-189 (2002). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. Pesticide Biochemistry and Physiology 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. Pesticide biochemistry and physiology 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the United States of America 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. Am J Bot 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). Ciough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998)	402	1/	Depresente Ovidative Stress in Early Senerging and Depresent Depistent Archidensis theliane
 Schuler, M. A. & Werck-Reichhart, D. Functional genomics of P450s. Annual review of plant biology 54, 629-667 (2003). Kreuz, K., Tommasini, R. & Martinoia, E. Old enzymes for a new job (herbicide detoxification in plants). Plant physiology 111, 349 (1996). Didierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP7681, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiology 130, 179-189 (2002). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochrome P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and Physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucon, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Lei, J. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Lei, J. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Lei, J. & Bent, A. F. Floral dip: A	405		red1 (Dedice) induced Cell Deeth1). Frontiers in plant science 11, 104 (2020)
 Schuler, M. A. & Weitzkeitinari, D. Pulctonia genomics of PP305. Annual review of plant biology 54, 629-667 (2003). Kreuz, K., Tommasini, R. & Martinoia, E. Old enzymes for a new job (herbicide detoxification in plants). <i>Plant physiology</i> 111, 349 (1996). Didlerjean, L. <i>et al.</i> Engineering, herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (2002). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco. <i>Cells. Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of suifonylurea herbicides. <i>Pesticide biochemistry and Physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	404	10	Schuler M. A. & Wersk Beichbert, D. Eurstianal genemics of P450s. Annual review of plant
 <i>biology</i> 34, 625-607 (2005). Kreuz, K., Tormasini, R. & Martinoia, E. Old enzymes for a new job (herbicide detoxification in plants). <i>Plant physiology</i> 111, 349 (1996). Didierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (2002). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	405	10	biology E4, 620, 667 (2002)
 19 Kreuz, K., Tommashi, K. & Warthola, E. Old enzymes for a new job (nerbicule detoxincation in plants). <i>Plant physiology</i> 111, 349 (1996). 20 Didierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (2002). 21 Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). 22 Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). 23 Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monoxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 55, 1-6 (2006). 24 Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). 25 Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). 26 Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). 27 Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 433 434 	400	10	biology 54, 629-667 (2003).
 In plants), <i>Plant physiology</i> 11, 349 (1996). Didierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (2002). Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	407	19	in plants). Plant physiclam 111, 240 (1995)
 20 bioierjean, L. <i>et al.</i> Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130, 179-189 (2002). 21 Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). 22 Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). 23 Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). 24 Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). 25 Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). 26 Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). 27 Clough, S. J. & Bent, A. F. Fioral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 433 434 	408	20	In plants). <i>Plant physiology</i> 111 , 349 (1996).
 410 CFP76B, a cytochrome P450 enzyme from Jerusalem artichole. <i>Plant Physiology</i> 130, 179-189 (2002). 411 179-189 (2002). 412 21 Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). 415 22 Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). 418 23 Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). 424 Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). 425 Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). 427 Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 433 434 	409	20	Didierjean, L. et al. Engineering nerbicide metabolism in tobacco and Arabidopsis with
 11 179-189 (2002). 12 Yamada, T., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). 12 Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). 23 Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). 24 Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). 25 Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). 26 Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). 27 Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thailana. <i>Plant Journal</i> 16, 735-743 (1998). 433 434 	410		CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. <i>Plant Physiology</i> 130,
 Yamada, I., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Clohing of Novel Cytochrome P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide Biochemistry and Physiology</i> 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. <i>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol</i> 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	411	24	
 P450 Species Induced by Chemical Treatments in Cultured Tobacco Cells. Pesticide Biochemistry and Physiology 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. Pesticide biochemistry and physiology 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the United States of America 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. Am J Bot 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998). 433 	412	21	Yamada, I., Kambara, Y., Imaishi, H. & Ohkawa, H. Molecular Cloning of Novel Cytochrome
 Biochemistry and Physiology 68, 11-25 (2000). Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. Pesticide biochemistry and physiology 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the United States of America 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. Am J Bot 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998). 	413		P450 Species induced by Chemical Treatments in Cultured Tobacco Cells. <i>Pesticide</i>
 Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121, 5-14, doi:10.1016/s0742-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and</i> <i>physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States</i> <i>of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of</i> <i>Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	414	~~	Biochemistry and Physiology 68 , 11-25 (2000).
 Physiol C Pharmacol Toxicol Endocrinol 121, 5-14, doi:10.1016/s0/42-8413(98)10026-9 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and</i> <i>physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States</i> <i>of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of</i> <i>Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	415	22	Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem
 (1998). Xiang, W., Wang, X. & Ren, T. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and</i> <i>physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States</i> <i>of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of</i> <i>Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	416		Physiol C Pharmacol Toxicol Endocrinol 121 , 5-14, doi:10.1016/s0742-8413(98)10026-9
 Xiang, W., Wang, X. & Ken, I. Expression of a Wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and</i> <i>physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States</i> <i>of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of</i> <i>Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	417	22	(1998). X. M. M. Y. & D. T. E. J. (1998).
 in yeast catalyzes the metabolism of suironylurea herbicides. <i>Pesticide biochemistry and physiology</i> 85, 1-6 (2006). 24 Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). 25 Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). 26 Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). 27 Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 431 432 433 434 	418	23	Xiang, W., Wang, X. & Ren, I. Expression of a wheat cytochrome P450 monooxygenase cDNA
 <i>physiology</i> 85, 1-6 (2006). Siminszky, B., Corbin, F. T., Ward, E., Fleischmann, T. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	419		In yeast catalyzes the metabolism of sulfonylurea herbicides. <i>Pesticide biochemistry and</i>
 Siminszky, B., Corbin, F. I., Ward, E., Heischmann, I. J. & Dewey, R. E. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 	420	~ .	physiology 85, 1-6 (2006).
 cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proceedings of the National Academy of Sciences of the United States of America 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. Am J Bot 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998). 	421	24	Siminszky, B., Cordin, F. I., Ward, E., Fleischmann, I. J. & Dewey, R. E. Expression of a soybean
 prenylurea herbicides. Proceedings of the National Academy of Sciences of the United States of America 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. Am J Bot 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998). 	422		cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of
 <i>dy America</i> 96, 1750-1755 (1999). Baucom, R. S. The remarkable repeated evolution of herbicide resistance. <i>Am J Bot</i> 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. <i>et al.</i> High-throughput Binary Vectors for Plant Gene Function Analysis. <i>Journal of Integrative Plant Biology</i> 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 431 432 433 434 435 436 	423		phenylurea herbicides. Proceedings of the National Academy of Sciences of the United States
 Baucom, R. S. The remarkable repeated evolution of herbicide resistance. Am J Bot 103, 181-183, doi:10.3732/ajb.1500510 (2016). Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998). 431 432 433 434 435 436 	424	25	of America 96, 1750-1755 (1999).
 Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of Integrative Plant Biology 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998). 431 432 433 434 435 436 	425	25	181-183, doi:10.3732/ajb.1500510 (2016).
 Integrative Plant Biology 49, 556-567 (2007). Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735-743 (1998). 431 432 433 434 435 436 	427	26	Lei, Z. et al. High-throughput Binary Vectors for Plant Gene Function Analysis. Journal of
 Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 431 432 433 434 435 436 	428		Integrative Plant Biology 49 , 556-567 (2007).
 430 transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16, 735-743 (1998). 431 432 433 434 435 436 	429	27	Clough, S. J. & Bent, A. F. Floral dip: A simplified method for Agrobacterium-mediated
431 432 433 434 435 436	430		transformation of Arabidopsis thaliana. <i>Plant Journal</i> 16 , 735-743 (1998).
432 433 434 435 436	431		
433 434 435 436	432		
434 435 436	433		
435 436	434		
436	435		
10 / 10	436		15 / 18

AtPQT11 by YJ Huang et al.

3	7	
-		
	3	37

438

439

AtPQT11 by YJ Huang et al.

440 Figure Legends

441

442	Figure 1. AtPQT11 confers paraquat resistance in Arabidopsis and E. coli when
443	overexpressed.

- (A) The seeds of wild type (WT), *AtPQT11* overexpression lines (OX1-4, OX3-1),
- and *pqt11* were germinated on MS medium with 0 or 2μ M paraquat (PQ) for 1 week
- before survival was recorded. 100 seeds were used for each genotype. 3 replicates
- 447 were performed for each treatment. Bar = 1 cm.
- (B) Survival % in germination as in (A). Values are mean \pm SD (n=3). The low case
- letters indicate significant differences (P < 0.05).
- 450 (C) Phenotypes of wild type (WT), *AtPQT11* overexpression lines (OX1-4, OX3-1),
- and *pqt11* grown in the soil. When plants grew to 8-rosette-leaf stage, they were
- 452 sprayed with 0 (control) or $10 \,\mu$ M paraquat and sprayed again 3 days later. Photos and
- 453 survival % were recorded 10 days after the first spray. 40 plants were used for each
- 454 genotype. 3 replicates were performed for each treatment.
- 455 (D) Survival % as in (C). Values are mean \pm SD (n=3). The low case letters indicate
- 456 significant differences (P < 0.05).
- 457 (E) Bacterial growth curves. Plasmids pET28a-AtPQT11 (pET28a-P450) with
- different changed residue: pET28-P450A (Gly309Ala), pET28-P450B (Cys461Ala)
- and pET28-P450C (Gly463Ala) were transferred into Rosetta, and cultured in LB
- 460 medium with 0 or 1 mM paraquat. The growth of the cultures with initial OD_{600}
- adjusted to 0.1 was monitored for 36 hours. 3 replicates were performed for each
- 462 treatment. Values are mean \pm SD (n=3).
- 463 (F) Bacterial growth on solid agar plates. Bacterial strains as in (E) were inoculated on
- solid LB medium with 0 or 1 mM paraquat and incubated overnight at 37°C.
- 465

466 Figure 2. In vitro kinetic parameters of AtPQT11

- (A) AtPQT11-dependent reaction. The enzyme assay was carried out as described in
- 468 Materials and Methods with 2 controls, no AtPQt11 (CYP684A) and inactivated
- 469 AtPQT11. NADPH consumption was only observed in the reaction containing

AtPQT11 by YJ Huang et al.

470	AtPQT11. Values are mean \pm SD (n=3).
471	(B) Michaelis-Menton plot for paraquat. 2 mM NADPH was added to ensure it is in
472	excess in the reaction while varying the concentration of paraquat. Values are mean
473	±SD (n=3).
474	(C) Michaelis-Menton plot for NADPH. 2 mM Paraquat was added to ensure it is in
475	excess in the reaction while varying the concentration of NADPH. Values are mean
476	±SD (n=3).
477	(D) The enzyme kinetics parameters. V_{max} and K_m were obtained from (B) and (C), K_m
478	and V_{max} values were estimated by using non-linear regression analysis.
479	
480	Figure 3. Identification of the reaction product by LC-MS/MS.
481	(A-D) The reaction was carried out with paraquat or ² H-paraquat as substrate as
482	described in Materials and Methods for 30 min. The reaction supernatant was
483	subjected to LC-MS/MS analysis by scanning product at M/Z 171 or 179. (A) and (B) $$
484	are the reaction for 0 or 30 min, (C) and (D) are the reaction for 30 min but without
485	NADPH or P450 enzyme.
486	(E-G) The MS/MS spectrum of substrate and product. (E) The MS/MS spectrum of
487	paraquat when the reaction was just started. (F) The MS/MS spectrum of product
488	when the reaction was completed (30 min). (G) The MS/MS spectrum of paraquat
489	standard and N-demethyl paraquat standard. MS/MS spectrum of the product closely
490	matches with that of N-demethyl paraquat (M/Z 171).
491	
492	Figure 4. N-demethyl paraquat is nontoxic to Arabidopsis.
493	(A) Germination assay. The seeds of wild type (WT), AtPQT11 overexpression lines
494	(OX1-4, OX3-1), and <i>pqt11</i> were germinated on MS medium with 0 (Mock), 2 μ M
495	paraquat (PQ), 2 μ M N-demethyl paraquat (N-methyl PQ), or 2 μ M bipyridine,
496	respectively for 1 week before survival was recorded. 100 seeds were used for each
497	genotype. 3 replicates were performed for each treatment. Bar = 1 cm .
498	(B) Survival % in germination as in (A). Values are mean \pm SD (n=3). The low case
499	letters indicate significant differences ($P < 0.05$).

Figure 1. AtPQT11 confers paraquat resistance in Arabidopsis and E. coli when overexpressed.

(A) The seeds of wild type (WT), *AtPQT11* overexpression lines (OX1-4, OX3-1), and *pqt11* were germinated on MS medium with 0 or 2 μ M paraquat (PQ) for 1 week before survival was recorded. 100 seeds were used for each genotype. 3 replicates were performed for each treatment. Bar = 1 cm.

(B) Survival % in germination as in (A). Values are mean \pm SD (n=3). The low case letters indicate significant differences (P < 0.05). (C) Phenotypes of wild type (WT), *AtPQT11* overexpression lines (OX1-4, OX3-1), and *pqt11* grown in the soil. When plants grew to 8-rosette-leaf stage, they were sprayed with 0 (control) or 10 µM paraquat and sprayed again 3 days later. Photos and survival % were recorded 10 days after the first spray. 40 plants were used for each genotype. 3 replicates were performed for each treatment. (D) Survival % as in (C). Values are mean \pm SD (n=3). The low case letters indicate significant differences (P < 0.05). (E) Bacterial growth curves. Plasmids pET28a-AtPQT11 (pET28a-P450) with different changed residue (pET28a-P450A, pET28a-P450B, pET28a-P450C) were transferred into Rosetta, and cultured in LB medium with 0 or 1 mM paraquat. The growth of the cultures with initial OD₆₀₀ adjusted to 0.1 was monitored for 36 hours. 3 replicates were performed for each treatment. Values are mean \pm SD (n=3). (F) Bacterial growth on solid agar plates. Bacterial strains as in (E) were inoculated on solid LB medium with 0 or 1 mM paraquat and incubated overnight at 37°C.

Figure 2. In vitro kinetic parameters of AtPQT11

(A) AtPQT11-dependent reaction. The enzyme assay was carried out as described in Materials and Methods with 2 controls, no AtPQt11 (CYP684A) and inactivated AtPQT11. NADPH consumption was only observed in the reaction containing AtPQT11. Values are mean \pm SD (n=3).

(B) Michaelis-Menton plot for paraquat. 2 mM NADPH was added to ensure it is in excess in the reaction while varying the concentration of paraquat. Values are mean \pm SD (n=3).

(C) Michaelis-Menton plot for NADPH. 2 mM Paraquat was added to ensure it is in excess in the reaction while varying the concentration of NADPH. Values are mean \pm SD (n=3).

(D) The enzyme kinetics parameters. V_{max} and K_m were obtained from (B) and (C), K_m and V_{max} values were estimated by using non-linear regression analysis.

Figure 3. Identification of the reaction product by LC-MS/MS.

(A-D) The reaction was carried out with paraquat or ²H-paraquat as substrate as described in Materials and Methods for 30 min. The reaction supernatant was subjected to LC-MS/MS analysis by scanning product at M/Z 171 or 179. (A) and (B) are the reaction for 0 or 30 min, (C) and (D) are the reaction for 30 min but without NADPH or P450 enzyme.

(E-G) The MS/MS spectrum of substrate and product. (E) The MS/MS spectrum of paraquat when the reaction was just started. (F) The MS/MS spectrum of product when the reaction was completed (30 min). (G) The MS/MS spectrum of paraquat standard and N-demethyl paraquat standard. MS/MS spectrum of the product closely matches with that of N-demethyl paraquat (M/Z 171).

(A) Germination assay. The seeds of wild type (WT), *AtPQT11* overexpression lines (OX1-4, OX3-1), and *pqt11* were germinated on MS medium with 0 (Mock), 2 μ M paraquat (PQ), 2 μ M N-demethyl paraquat (N-methyl PQ), or 2 μ M bipyridine, respectively for 1 week before survival was recorded. 100 seeds were used for each genotype. 3 replicates were performed for each treatment. Bar = 1 cm. (B) Survival % in germination as in (A). Values are mean ±SD (n=3). The low case letters indicate significant differences (P < 0.05).