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Abstract:  

Algae have the potential to be sources of renewable fuels and chemicals. One particular strain, 
Chromochloris zofingiensis, is of interest due to the co-production of triacylglycerols (TAGs) and 
astaxanthin, a valuable nutraceutical. To aid in future engineering efforts, we have developed the first 
genome-scale metabolic model on C. zofingiensis, iChr1925. This model includes 1925 genes, 3481 
metabolic reactions and 2778 metabolites. The model was used to predict flux distributions for three 
different growth conditions: autotrophic, mixotrophic and heterotrophic growth. The model predicted 
production of fermentation products for growth on glucose due to overflow metabolism and we confirmed 
this via metabolomics analysis of the spent medium. The metabolic network robustness of Chromochloris 
zofingiensis was also evaluated by conducting an in silico gene essentiality analysis. This work lays a 
foundation for future endeavors in the metabolic engineering of this unique organism.  
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Introduction 

Microalgae have the potential to serve as cellular factories, converting sunlight and carbon 

dioxide into a variety of valuable chemicals including lipids and fatty acids for fuel production. 

Rewiring metabolism for the overproduction of lipids or other metabolites is a difficult task 

which typically requires several changes in gene expression. Editing metabolic pathways while 

avoiding deleterious effects on the health of the cell requires extensive knowledge of the 

metabolic reaction network; specifically, how it functions and how it is regulated. One tool that 

can provide this critical information is a stoichiometric model of cellular metabolism. These 

models are relatively easy to generate and use and provide valuable insight into the metabolic 

network of a cell. Starting with a genome sequence, automated network annotation programs 

(Overbeek et al., 2004; Overbeek et al., 2014; Metcalf et al., 2020) can be used to create a high 

quality first draft model which enumerates all the metabolic reactions in the cell. After manual 

curation, the model can then be used to predict intracellular carbon flux distributions. Genome-

scale metabolic models (GSMs) have been used successfully in a number of engineering efforts 

to design gene editing strategies in algae (Hirokawa et al., 2017) and bacteria (Puchalka et al., 

2008; Rodriguez-Prados et al., 2009; Chua et al., 2015; Chen and Henson, 2016; Thompson et 

al., 2016; Wang et al., 2017; Emenike et al., 2018). Therefore, the logical first step in utilizing 

microalgae as cell factories is to develop the computational models necessary to interrogate 

metabolism and model the impact of genetic changes.  

Chromochloris zofingiensis has a fully sequenced genome (Roth et al., 2017) and has been 

identified as a lead candidate for the production of lipids for fuel production (Breuer et al., 

2012). C. zofingiensis has been reported to accumulate up to 40% of its cell dry weight as 
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triacylgylcerols (TAGs) (Breuer et al., 2012) and it can also accumulate high levels of 

astaxanthin (Orosa et al., 2000; Liu et al., 2014), a naturally occurring pigment with powerful 

antioxidant properties. Due to its stereospecificity and antioxidant capabilities, naturally 

produced astaxanthin is a high-value nutraceutical with an estimated value of $7,000/kg 

(Paniagua-Michel, 2015). The co-production of TAGs and a high-value product like astaxanthin 

make the economic feasibility of biofuels production from algae much more attainable. 

Numerous studies have explored growth conditions to maximize the production of lipids and 

astaxanthin in the cell. Stress conditions have been shown to increase expression of astaxanthin 

biosynthesis related genes in C. zofingiensis (Li Y, 2009) and indeed growth in stress conditions 

(high light, nitrogen deprivation, high salinity) results in elevated levels of astaxanthin (Orosa et 

al., 2001; Liu et al., 2016; Chen et al., 2017; Sun et al., 2020). Stress conditions have also been 

associated with higher lipid content (Liu et al., 2016), but this comes at the cost of a lower 

biomass productivity (Mulders et al., 2014). C. zofingiensis is capable of growing 

heterotrophically on various sugars, and heterotrophic growth is also associated with elevated 

levels of astaxanthin in the cell (Ip et al., 2004; Sun et al., 2008; Liu et al., 2011). Recent studies 

have shed light on the metabolic activities of C. zofingiensis when grown on glucose, by 

analyzing both the transcriptome response and physical changes to the cell that occur when 

glucose is introduced. It was found that C. zofingiensis is capable of a unique and reversible 

metabolic shift from autotrophic to purely heterotrophic growth when provided glucose (Roth et 

al., 2019). This trophic switch is characterized by the downregulation of chlorophyll production, 

loss of photosynthetic machinery and alterations in the thylakoid membrane structure, 

accompanied by the accumulation of energy storage compounds such as lipids and starch (Roth 

et al., 2019). The downregulation of chlorophyll synthesis leads to a decreased concentration of 
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primary photosynthetic pigments within the cell, even when grown under continuous 

illumination. Unlike nitrogen deprivation induced accumulation of lipids and astaxanthin, which 

suffers from decreased biomass productivity (Mulders et al., 2014), this reversible glucose 

initiated trophic switch results in an increase in biomass productivity (Roth et al., 2019).  In this 

work, we present the first genome-scale model of C. zofingiensis, and its use to predict growth 

and carbon flux distributions in three different growth conditions: autotrophic, heterotrophic and 

mixotrophic. We have performed a detailed biochemical analysis of cellular biomass 

composition for each of these growth conditions to formulate accurate biomass formation 

equations. The results from these simulations predicted the formation of fermentation products in 

cultures grown on glucose, a previously uncharacterized behavior in this alga that has since been 

confirmed through two different methods of analysis.  

Results 

Network Reconstruction and Curation 

The initial model draft was constructed using RAPS , an automated algorithm for building high 

quality genome scale metabolic models of new algal species. In this case, the donor models used 

to construct the model of C. zofingiensis were Chlamydomonas reinhardtii (Imam et al., 2015)  

and Nannochloropsis gaditana (Shah et al., 2017). The final curated model, iChr1925, includes 

1925 genes, and 3481 reactions (2969 metabolic reactions and 512 transport reactions). Figure 1 

summarizes model details, including reactions shared with donor models and 

compartmentalization of reactions and metabolites. Full lists of metabolites and reactions 

included in the model are included as supplemental files 2 and 3, respectively. The draft model 

created by RAPS was manually curated to ensure accuracy. Tables S1 and S2 in the 
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Supplemental Information (SI) provide a list of reactions that were manually added or removed 

from the RAPS output model during manual curation. Most notably, astaxanthin synthesis was 

added manually as neither donor model included these steps. 

 

Biomass Composition and the Biomass Objective Function 

 

Figure 1. Details of the Chromochloris zofingiensis genome-scale metabolic model. 
RAPS (Metcalf et al., 2020) was used to construct the genome scale metabolic model from 
two donor models. A) Contribution of reactions from donor models to the final genome-
scale metabolic model. The finalized model contained 3481 reactions, 2778 metabolites, and 
8 cellular compartments. B) Localization of reactions and metabolites. Reactions for 
biomass generation and spectral decomposition of light sources are included in the “other” 
category. 
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For each growth condition, we measured the biomass composition of cells in the exponential 

growth phase in continuous light (see Figure 2). This data, along with some key assumptions 

based on literature data on lipid and pigment compositions (Imam et al., 2015) were used to 

construct detailed biomass formation equations for each growth condition. It was assumed that 

the general profile of lipids and carotenoid pigments resembled that of Chlamydomonas 

reinhardtii, but with the inclusion of astaxanthin. A table of the full biomass formation equation 

for each growth condition is provided as Table S4 in the supplemental information.  
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Experimentally measured fluxes and rates used to constrain the model   

To simulate in vivo growth conditions accurately, we measured reduced carbon uptake rates as 

well as the growth rate for each condition experimentally (Table 1) and used these as constraints 

 

Figure 2. Average biomass composition measurements of Chromochloris zofingiensis in three different 
media conditions: minimal media (TP), mixotrophic growth with acetate (TAP) and heterotrophic growth 
with glucose (TGP). A) Biomass composition in terms of major macromolecules, B) Fatty acid composition 
and C) amino acid composition of hydrolyzed proteins. Error bars represent standard deviation of n = 3 samples. 
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for the pFBA simulation. As expected, growth in the presence of a reduced carbon source 

increases the growth rate; the doubling time in the presence of glucose is approximately 17.7 

hours compared to 22.3 hours in acetate and 31.5 hours for photoautotrophic growth. 

Table 1. Experimentally measured fluxes and rates used to constrain the metabolic model.  

Model Constraints 
Media Formulation 

TP TAP TGP 

Growth Rate (h-1) 0.024 ± 0.001 0.031 ± 0.0006 0.039 ± 0.0025 

Acetate (mmol/gDW-hr)  0.51 ± 0.08  

Glucose (mmol/gDW-hr)   2.9 ± 1.4 

 

Flux Distributions and Predicted Exchanges 

We simulated growth in three conditions: photoautotrophic (TP medium), mixotrophic with 

acetate (TAP medium) and heterotrophic with glucose (TGP medium). Although continuous 

light was used in all data collection experiments, it has been shown that Chromochloris 

zofingiensis degrades its photosynthetic apparatus in the presence of glucose, and this loss of 

photosynthetic activity is further evidenced by measured Fv/Fm values decreasing from 0.66 to 

0.01 upon the addition of glucose (Roth et al., 2019). Therefore, regardless of light conditions, 

cultures provisioned with glucose will grow heterotrophically. Interestingly, this is reinforced by 

parsimonious flux balance analysis (pFBA) predictions; when growth in TGP medium is 

simulated, the pFBA solution predicts no absorption of light despite the model allowing  it 

(Error! Reference source not found.). Simulations for growth on glucose also predict an array 

of fermentation products, including: acetate, lactate, succinate, ethanol, and formate while 

autotrophic and mixotrophic growth conditions are not predicted to have excretion products. The 
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flux map for autotrophic growth (Figure 3) shows that the majority of carbon flux is directed 

through the Calvin Benson Bassham (CBB) cycle in the chloroplast, as would be expected. There 

is also significant flux through malate valves to shuttle ATP and NAD(P)H into the different 

cellular compartments (Selinski and Scheibe, 2019). In mixotrophic growth (Error! Reference 

source not found.), far less flux is seen through the CBB cycle and instead triose phosphates are 

transported into the cytosol and are shuttled back and forth between the mitochondria to move 

energy and reducing equivalents around the cell. Acetate taken up by the cell is transported into 

the mitochondria and converted into acetyl-coA. In heterotrophic growth (Figure 5), the model 

correctly predicts no photosynthetic light harvesting (without constraints placed on the model to 

limit/eliminate it) (Roth et al., 2019). The intracellular flux of glucose in heterotrophic growth is 

shown in Figure 5 to be directed to the plastid despite there being a parallel pathway in the 

cytosol; we hypothesize this is due to the need for ATP and NADH in the plastid. The model 

also predicts that growth on glucose induces the excretion of several overflow metabolites, such 

as acetate, lactate, succinate and ethanol (Table 2). These flux maps indicate that there are 

significant differences between the growth conditions modeled and that these manifest as 

differences in biomass composition (Figure 2).  
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Table 2. Predicted Uptake and Excretion Fluxes. Negative values indicate uptake, while 
positive values indicate excretion. 

Predicted Exchanges (mmol/gDW-hr) TP TAP TGP 

Oxygen 1.14 0.611 -0.063 

Carbon Dioxide -0.973 -0.356 2.49 

Water -0.656 0.105 0.364 

Acetate 0 -0.505 0.781 

Lactate 0 0 0.271 

Succinate 0 0 0.982 

Ethanol 0 0 2.22 

Formate 0 0 0.001 

Photons -44.0 -44.0 0 
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Figure 3. Predicted fluxes for photoautotrophic growth of C. zofingiensis. The thickness of the arrows indicates the 
amount of flux through the given reaction on a linear scale as shown in the legend in the lower right. The model is 
compartmentalized, and this is reflected in the figure: cytosol is shown in white, plastid in green and mitochondria in 
orange. Arrows in gray indicate viable reactions that currently carry negligible flux. This figure was generated 
automatically by the mapping tool associated with RAPS(Metcalf et al., 2020). 
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Figure 4. Predicted fluxes for mixotrophic growth of C. zofingiensis on acetate. The thickness of the arrows indicates 
the amount of flux through the given reaction on a linear scale as shown in the legend in the lower right. The model is 
compartmentalized, and this is reflected in the figure: cytosol is shown in white, plastid in green and mitochondria in 
orange. Arrows in gray indicate viable reactions that currently carry negligible flux. This figure was generated 
automatically by the mapping tool associated with RAPS(Metcalf et al., 2020). 
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Figure 5.  Predicted fluxes for heterotrophic growth of C. zofingiensis on glucose. The thickness of the arrows 
indicates the amount of flux through the given reaction on a linear scale as shown in the legend in the lower right. The 
model is compartmentalized, and this is reflected in the figure: cytosol is shown in white, plastid in green and 
mitochondria in orange. Arrows in gray indicate viable reactions that currently carry negligible flux. This figure was 
generated automatically by the mapping tool associated with RAPS(Metcalf et al., 2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449518
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

Metabolomics Analysis 

As the model simulation of growth on glucose predicted the production of fermentation products, 

we performed untargeted metabolomics of spent media from cultures grown in TAP and TGP, 

sampled in late exponential phase, to identify metabolites excreted during growth. Results of this 

analysis are presented in Figure 6 showing the peak areas for select metabolites that are found at 

much higher concentrations in TGP than in TAP media. The full dataset is provided as 

Supplemental File 4. The most abundant metabolite found in the media was lactate, followed by 

the amino acid leucine. We also performed an enzymatic lactic acid assay on spent media from 

TP and TGP cultures to quantify lactic acid excretion. Cultures grown in the presence of glucose 

were found to have an approximate lactate excretion rate of 0.005 ± 0.0004 
���� 

� ���	

, while 

lactate production in autotrophic cultures was estimated to be 0.0004 ± 0.0001
���� 

� ���	

. The 

amount of lactate produced during heterotrophic growth is only a small fraction of the glucose 

uptake, 0.2%, so that indicates that there are other fermentation products produced.  
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Essential Gene Analysis  

An in silico gene essentiality analysis was performed on the genome-scale metabolic model of 

Chromochloris zofingiensis for growth in continuous light. The results of this analysis indicated 

that out of the 1914 genes included in the model, only 82 were essential for growth in both the 

autotrophic and mixotrophic cases (essential genes reduce growth to 10% or less when knocked 

out) while 93 genes were essential for growth in the heterotrophic case. Table 3 shows the 

summarized results of this analysis; the full list of essential genes for each growth condition is 

provided as Table S5 in the supplemental file.  

  

Figure 6. Peak areas for selected metabolites measured via ultra-performance liquid chromatography 
mass spectrometry in electrospray ionization (ESI) negative mode in TAP and TGP spent media. 
Extracellular media in TGP cultures was found to contain a mixture of organic acids, amino acids, and energy 
storage compounds in significantly higher amounts than that of TAP cultures. Lactic acid appears as the 
predominate metabolite being exported. 
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 Unsurprisingly, both autotrophic and mixotrophic growth both require genes associated with the  

light harvesting apparatus, while heterotrophic growth requires the genes associated with 

mitochondrial electron transport chain. Other than the examples listed above, there were 81 

genes essential for growth in all growth conditions. This list included transketolase genes 

associated with reactions in the pentose phosphate pathway and the gene for Mg2+ transporters. 

Other genes essential for all growth conditions were involved in the production of biomass. 

These genes can be grouped into amino acid and protein synthesis (35), nucleic acid synthesis 

(18), lipid synthesis (11), pigment synthesis (10), and energy molecule synthesis (5).  

Table 3. Results of the gene essentiality analysis for all three growth conditions. Genes which, when deleted, 
result in a simulated growth rate of >80%, 80-10%, and <10% of the wild type are categorized as non-essential, 
beneficial, and essential, respectively.  

  Autotrophic Mixotrophic Heterotrophic 

Essential 82 82 93 

Beneficial 14 16 15 

Non-essential 1818 1818 1806 
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Flux Variability Analysis  

As heterotrophic growth triggers accumulation of lipids and astaxanthin, examining the 

metabolic constraints of that may yield insights into possible targets of genetic manipulations.  

We used the model to evaluate flux variability in different growth conditions that may lead to 

increases in production of lipids or astaxanthin: heterotrophically. We simulated five different 

cases – TGP, TGP with lipid export at both full biomass production and no biomass production, 

and TGP with astaxanthin export at both full biomass production and no biomass production 

(Figure 7). The uppermost bar is the normal TGP biomass production case, where the growth 

rate is fixed to experimental values and there is no additional production of any desired products. 

The next two bars show the values for maximal production of triolein (a lipid composed of only 

oleic acid tails, chosen because of the high fraction of oleic acid produced by TGP) and 

astaxanthin, respectively, without any required biomass production. The last two represent the 

maximal production of triolein and astaxanthin with the TGP fixed growth rate. The increase in 

 

Figure 7. Example flux distributions and variabilities through several reactions in C. zofingiensis under 
TGP conditions. The “Biomass” case is the regular fixed TGP production case, while the “Lipid” and 
“Astaxanthin” cases represent the maximal production of triolein and astaxanthin, respectively, both with and 
without biomass growth. The black lines are the pFBA solutions for each case, while the bars are the FVA 
ranges. Unsurprisingly, astaxanthin production clearly increases flux through parts of the pentose phosphate 
pathway, while lipid production relies heavily on shuttling carbon through malonyl derivatives. 
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flux through lipid and carotenoid pathways is unsurprising, as these pathways represent the sole 

mechanisms for moving more carbon into the desired products. Moreover, the cell’s use of 

fermentation is clearly visible in these FVA results, as there is a wide range of potential flux 

values for the nominal TGP biomass production case, indicating that the cell is not limited by 

energy. A full set of FVA data for all reactions is available in supplemental files 5-9. 

Discussion 

Creation of the Genome Scale Metabolic Model  

The creation of a genome-scale model is often an iterative process; as more is learned about the 

organism of interest and genome annotation improves, the model improves as well. Typically, 

this means that each subsequent use of the model results in a more complete and/or more 

accurate model based on new discoveries. For the development of the Chromochloris model, we 

used RAPS RAPS , an automated algorithm specifically designed for the creation of algal GSMs, 

to create the first draft network in less than an hour. The first draft network was then subject to 

manual curation to remove duplicate or erroneous reactions, add missing reactions and fill gaps 

in pathways. The manual curation required is dependent on the quality of the donor models used 

in RAPS, and their similarity to the organism of interest. Presently, there are a limited number of 

genome scale metabolic models of algae to select from for use as RAPS donor models, so 

manual curation of the RAPS output was necessary. Manually added reactions included the two 

reactions required for astaxanthin synthesis from zeaxanthin (the production of adonixanthin 

from zeaxanthin and the production astaxanthin from adonixanthin), as those reactions are not 

included in the RAPS source models. Less than 2% of the reactions in the model required 
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manual annotation, greatly reducing the manual curation effort and time required to produce the 

final genome scale model.  

Biomass Composition  

Autotrophic and mixotrophic cultures supplemented with acetate were observed to have similar 

growth rates and phenotypes. This is also confirmed with the similarity in biomass composition. 

The biomass composition of heterotrophic cultures were significantly different than both 

autotrophic and mixotrophic cultures in biomass composition, growth characteristics, and 

physical appearance. This suggests that significant metabolic shifts occur in C. zofingiensis when 

grown heterotrophically. In terms of macromolecular composition, growth on glucose leads to 

higher lipid and starch content, and lower protein content (see Figure 2A). This tendency for C. 

zofingiensis to accumulate carbon storage compounds when grown in the presence of glucose is 

well documented in the literature (Liu et al., 2010; Liu et al., 2011; Liu et al., 2012; Liu et al., 

2013; Roth et al., 2019). Our average experimental value of lipid content in heterotrophic 

cultures of C. zofingiensis, expressed as percent dry weight, was 37.8% ± 1.7. This lies in 

agreement with values reported in the literature ranging from 30 - 52% lipid content on a cell dry 

weight basis, depending on the concentration of sugar provided in the medium (Liu et al., 2010; 

Liu et al., 2011; Liu et al., 2012; Liu et al., 2013).  Heterotrophic cultures grown on glucose were 

found to have lower protein content than cultures grown in other media conditions. It has been 

observed that C. zofingiensis cultures grown on glucose experience a loss of photosynthetic 

machinery (Roth et al., 2019). Additionally, the gene essentiality analysis conducted on C. 

zofingiensis presented in this work indicates that the gene encoding RubisCO is not essential for 

growth on glucose. In Chlamydomonas reinhardtii, the photosynthetic light harvesting apparatus 

and RubisCO combined account for 13.9% of total cellular protein content (Hammel et al., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449518
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

2018), so it is possible that the lower protein content observed in cultures grown on glucose is 

the result of the loss of photosynthetic proteins in these cultures. We also measured an increase 

in the oleic acid content of the lipid fraction (see Figure 2B), which agrees with previous studies 

(Liu et al., 2011; Liu et al., 2013). A study by Liu et al. reported that the introduction of glucose 

in C. zofingiensis cultures led to a dramatic increase in the expression of the genes encoding 

stearoyl-acyl carrier protein desaturase (SAD) and the BC subunit of acetyl-CoA carboxylase 

(ACCase) (Liu et al., 2012). ACCase catalyzes the first step in fatty acid synthesis, and SAD 

catalyzes the conversion of stearic acid to oleic acid, therefore, this change in gene expression is 

likely the reason for the high oleic acid content observed.  

Flux Maps 

FBA simulations were performed to quantify changes in flux distributions resulting from growth 

on different media formulations. The flux distribution for C. zofingiensis grown mixotrophically 

on acetate closely resembles the flux distribution found for autotrophically grown cultures. 

Despite the availability of acetate as a reduced carbon source, the flux map of mixotrophic 

cultures is similar to photoautotrophic cultures. This could be due to the low acetate uptake rate 

of 0.505 mmol/gDW hr compared to the carbon dioxide uptake rate of 0.97 mmol/gDW hr. The 

acetate that is taken up by the cell is directed to both lipid synthesis and energy production via 

the TCA cycle. Both autotrophic and mixotrophic growth have high flux through photosynthetic 

light reactions, carbon fixation, and the pentose phosphate pathway (See Error! Reference 

source not found. A&B). In autotrophic conditions, the  flux distribution is very similar to that 

calculated for Chlamydomonas reinhardtii (Boyle and Morgan, 2009). However, flux 

distributions calculated for mixotrophic growth on acetate differ from that in C. 

reinhardtii(Boyle and Morgan, 2009), with zero flux through the TCA cycle, and heavy carbon 
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fixation activity. Chromochloris zofingiensis is not capable of mixotrophic growth on glucose, 

due to the degradation of the photosynthetic apparatus upon the introduction of glucose to the 

cultures (Roth et al., 2019). The flux maps for heterotrophic growth show a high flux through 

glycolysis and have almost no flux through the pentose phosphate pathway; this agrees with 

another metabolic model of Eukaryotic algae, Chlorella vulgaris, which had no flux through the 

oxidative phase of the pentose phosphate pathway under heterotrophic conditions (Zuniga et al., 

2016). Interestingly, simulations for cultures grown heterotrophically on glucose predicted the 

formation of organic acid fermentation products. A large portion of the glucose flux (61%) is 

excreted as fermentation products instead of being utilized by the TCA cycle. Flux balance 

analysis (Broddrick et al., 2016) and metabolic flux analysis (Yang et al., 2002) on 

heterotrophically grown algae support the notion  that the full TCA cycle may not be used during 

heterotrophic growth. (Yang et al., 2002; Broddrick et al., 2016). The model is not limited in 

anyway by oxygen uptake, so this is not obligatorily anaerobic fermentation – given the large 

amount of protein required for the TCA cycle, it is likely that the cell ferments glucose as a way 

to reduce the amount of enzyme required for the cell to produce energy. 

Excess production capabilities were evaluated using flux variability analysis in Table 4. There 

are several critical points raised by this table. First, the presence of fermentation products in the 

“Measured Growth” result, and the corresponding lack of such in the “Maximum Growth” case. 

While ethanol is not the only fermentation product produced in this case, it is included as an 

example to highlight this switch. The cell’s fermentation is also predicted by the extremely low 

oxygen uptake in the “Measured Growth” model and the corresponding switch to high oxygen 

consumption in the “Maximum Growth” model. Fixed growth produces fermentation because the 

relatively low energy needs of the cell can be adequately met by the simple fermentative 
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pathways, and the pFBA formulation of the model optimization will always produce the simplest 

(lowest total flux) solution.  

Table 4. Comparison of measured and maximum growth exchanges 

Simulation 
Growth 

Rate 
Glucose 

Exchange 
CO2 

Exchange 
O2 

Exchange 
Ethanol 

Exchange 

(1/hr) (mmol/gDW-hr) 

experimentally determined 
growth rate and glucose uptake 0.039 -2.91 2.49 -0.06 2.22 

simulated maximum growth 
rate with experimentally 

determined glucose uptake   
0.230 -2.91 6.16 -4.05 0 

 

This large energy excess appears to come from the cell’s preference for fermentation. Table 4 

compares the growth of the cell in two cases. Both are simulated in TGP, and therefore have 

identical rates of glucose uptake, but the “Maximum Growth” case does not have growth fixed to 

a specific value. Instead, it is unbounded and optimized for. This case represents the cell’s 

production potential when glucose can be utilized as efficiently as possible. The striking changes 

in the oxygen, carbon dioxide, and ethanol exchanges reinforce that the cell resides in a majority-

fermentation mode under high glucose conditions. This large energy excess appears to come 

from the cell’s preference for fermentation. Table 4 compares the growth of the cell in two cases: 

both are simulated in TGP, and therefore have identical rates of glucose uptake, but the 

simulated maximum growth case allows the model to freely adjust growth rate. This case 

represents the cell’s biomass production potential when glucose can be utilized as efficiently as 

possible. The striking changes in the oxygen and carbon dioxide exchanges reinforce that the cell 

resides in a majority-fermentation mode under high glucose conditions – the fermentation 

products listed in Table 2 all vanish under maximal growth, as the cell can efficiently extract 

more energy by oxidizing the carbon into carbon dioxide, via the TCA cycle. These results 
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present two conclusions: First, glucose transporters are not limiting the growth rate of the cell, as 

otherwise the rate of glucose consumption would be low enough to require non-fermentative 

energy generation. Second, something is limiting the cell’s ability to respire and efficiently 

utilize glucose. It may be valuable to conduct studies on oxygen levels in the culture, to 

determine if there is sufficient oxygen available to respire, as well as experiments in cultures 

with low glucose, to determine the cell’s transition point between fermentation and respiration. 

Network Evaluation and Robustness 

An in silico gene essentiality analysis was performed to assess metabolic network robustness in 

C. zofingiensis. This was done by performing a series of continuous light single gene knockouts, 

simulating cell growth under these gene deletions, and finally comparing predicted growth rates 

to that of the wild type cells. Gene deletions which resulted in growth rates of >80%, 10-80%, 

and <10% of the wild type simulations enabled the genes to be classified as non-essential, 

beneficial, and essential. The genes encoding Ribulose- 1,5-bisphosphate carboxylase-oxygenase 

(RuBisCO) was categorized as essential for growth in autotrophic and mixotrophic cases, but not 

for the heterotrophic case. In the case of a RuBisCO knockout in mixotrophic growth, the 

maximum growth rate that can be achieved is only 41% of the wild type growth rate, even 

though acetate uptake made up roughly two-thirds of the total wild-type carbon uptake. 12 genes 

were found to be essential in heterotrophic growth, but not in the autotrophic or mixotrophic 

cases, and all of these related to the ATP synthase complex V in the mitochondria. The high 

number of non-essential genes in each growth condition (see Table 3) points towards a highly 

robust metabolic network. This analysis was modeled after an in silico gene essentiality analysis 

performed by Broddrick et.al. (Broddrick et al., 2016). In this study, the initial computational 

evaluation for the number of essential genes in Synechococcus elongatus was 134, which was 
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later increased based on in vivo data collected (Broddrick et al., 2016). It is likely that 

computational evaluations underestimate the number of essential genes for growth for several 

reasons (Broddrick et al., 2016), nonetheless, by comparing this data set to in vivo data on gene 

essentiality important knowledge gaps in the C. zofingiensis metabolic network may be 

identified.  

Metabolomics analysis 

The excretion of lactate to the medium was predicted by the model and validated by our 

metabolomics analysis. This has not been reported in the literature previously but is not 

completely unheard of.  Algae in the Chlamydomonas, Chlorogonium, and Chlorella genera 

have been shown to be capable of fermentation (Catalanotti et al., 2013), but this behavior is 

most often observed in anoxic conditions. In yeast, with high enough glucose concentrations, 

cells have been reported to preferentially ferment glucose even in the presence of oxygen (Van 

Dijken and Scheffers, 1986; Pronk et al., 1996). It has been postulated that this fermentation 

activity primarily occurs to re-generate NAD+/NADP+ used in glycolysis and balance the redox 

state of the cell (Catalanotti et al., 2013). To investigate the production of fermentation products, 

we performed an untargeted metabolomics experiment, analyzing spent media from 

heterotrophic cultures (TGP media) and mixotrophic cultures (TAP media). Lactate was 

identified in the extracellular media in significant quantities, seemingly verifying the model 

prediction of excreted fermentation products. The presence of lactate was also observed in a 

separate analysis using a lactic acid assay, with lactate concentrations reaching a maximum of 

0.3 mM. Amino acids were also found to be present in the extracellular media, in far higher 

concentrations in heterotrophic cultures than mixotrophic cultures. It is also possible that 

observed extracellular metabolites are the result of cell lysis induced in lipid accumulating 
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cultures. However, two metabolites that would be expected to increase in concentration from cell 

lysis, deoxyribose sugars and oleic acid, were found in lower levels in spent TGP media than 

TAP media. The high abundance of metabolites displayed, and lack of other intracellular 

metabolites is indicative that there is export of these compounds happening.  

Conclusion 

This work presents iChr1925, the first genome scale metabolic model for the emerging model 

species C. zofingiensis and demonstrates its usefulness in making predictions of phenotype under 

different growth conditions. This organism is of high promise for biofuel production when grown 

heterotrophically, with both high lipid productivities and a fatty acid profile acceptable for fuel 

production (Liu et al., 2011). We also present a detailed analysis of the biomass composition in 

C. zofingiensis in three different growth conditions, and an assessment of the metabolic network 

flexibility. Analysis and testing of the model indicated that C. zofingiensis preferentially 

ferments in the presence of glucose – and experimental evidence later confirmed this prediction. 

This successful validation means the model is useful for predicting cellular phenotypes under 

varying nutrient conditions. This model will be extremely useful in further understanding the 

metabolic implications of C. zofingiensis’s propensity to accumulate astaxanthin, and generating 

strategies to improve strain production. 

Materials and Methods 

Culture Growth Conditions 

Chromochloris zofingiensis cultures provided by Professor Niyogi’s lab at UC Berkeley were 

grown in 500 mL baffled flasks in culture volumes of 200 mL. Cultures were maintained under 
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constant light, with an average intensity of 90 µmol/ m2·s, a temperature of 25°C, and an 

agitation speed of 180 rpm. C. zofingiensis cultures were grown in three different media 

conditions, Tris-Phosphate (TP) minimal medium (adapted from (Gorman and Levine, 1965)), 

TP supplemented with 25 g/L glucose (TGP), and TAP medium (Gorman and Levine, 1965), 

each at a pH of 7. Specific growth rates for each set of culture conditions were measured in 

triplicate.  

Model Construction and Curation 

An automated tool, Rapid Annotation of Photosynthetic Systems (RAPS) (Metcalf et al., 2020), 

was used to build the initial draft metabolic network reconstruction. This tool compares the cell’s 

predicted proteins to known proteins in other previously published models. The donor models 

used were eukaryotic microalgae whose genomes had been previously annotated, as detailed by 

Metcalf (Metcalf et al., 2020).  

The major steps in model curation were the manual adjustments to the RAPS reactions, and the 

addition of the astaxanthin production reactions. There were several manual adjustments, as 

shown in Table S1 and Table S2. These modifications were generally performed to remove 

thermodynamically infeasible loops or redundant lumnial or intermitochondrial space reactions. 

Once RAPS had produced the draft model, the reactions for astaxanthin production were added. 

Biomass Composition Measurements 

Culture samples were collected during mid exponential growth phase (See supplementary 

information, figure S1) for dry weight determination and biomass composition analysis. Cell dry 

weight was determined by vacuum filtration of 15 mL culture samples through a pre-dried, 1.6 
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µm pore size glass microfiber filter. After filtration, cells were rinsed with TP medium and dried 

in an 80°C oven overnight.  For biomass composition analysis, culture volumes corresponding to 

approximately 5 mg cell dry weight were aliquoted and spun down to collect a cell pellet. Cell 

pellets were then ground with 5 mm diameter stainless steel balls in a Retsch cryomill to disrupt 

the tough cell wall observed in C. zofingiensis. 

For analysis of protein content, the pellet from chlorophyll extraction was solubilized by 

suspending in 0.2 N NaOH and heating to boiling for 1 hr. A 1:5 dilution of this protein solution 

was quantified using a Pierce BCA protein assay kit (Thermo scientific). For analysis of the 

relative composition of amino acids, proteins were hydrolyzed, and the resulting mixture of 

amino acids was converted to their tert-butyldimethylsilyl derivatives as described in work by 

Antoniewicz et. al. (Antoniewicz et al., 2007). The time allowed for the derivatization reaction 

was extended as described by Mawhinney et.al. (Mawhinney et al., 1986) to overcome steric 

hindrance involved in the addition of the tert-butyldimethylsilyl group on histidine, tryptophan, 

and threonine. After derivatization, the mixture was run on the GC/MS with a quadrupole FID 

detector. Due to the significant decrease in response for histidine after 6 h noted by Mawhinney 

et.al. (Mawhinney et al., 1986), it was ensured that all samples were run within 6 h of the 

completion of the derivatization reaction. A combination of amino acid standard solution 

(AAS18) from Sigma, and a prepared solution of 5 µM Tryptophan and Cysteine in 0.1 M HCl 

were used to generate standard curves for quantification. GC/MS conditions were as described 

by Antoniewicz et. al. (Antoniewicz et al., 2007). 

Lipid content was determined by gravimetric analysis, using a chloroform: methanol extraction 

of ground cells as described in Breuer et. al. (Breuer et al., 2013). Fatty Acid composition was 

determined by converting fatty acids present in lysed cell material to their methyl ester 
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derivatives (FAMEs) and analyzing the FAMEs on GC/MS. The procedure used for this analysis 

was outlined by Christie et.al. (Christie, 1998). The proportions of lipid existing as 

triacylglycerides, phospholipids, and sulfolipids was assumed to be relatively consistent with 

those values measured in Chlamydomonas reinhardtii. 

For starch and total carbohydrate analysis, pigments were extracted from a ground cell pellet 

with a 95% ethanol solution, which was then washed and re-suspended in 100 mM sodium 

acetate (pH 4.5). Samples were autoclaved to transform particulate starch to colloidal starches. 

For starch content determination, 100 µL of an 80 unit/mL solution of amyloglucosidase (Sigma 

Aldrich, S9144) was added to each autoclaved sample. Samples were then incubated at 55°C 

overnight to digest the starch into glucose, which was then quantified using a glucose assay 

(Sigma Aldrich, G3293). For determination of total carbohydrates, samples were heated to 

100°C in 75% H2SO4 containing 2 mg/mL Anthrone reagent for 15 minutes. A set of prepared 

starch standards was treated in the same manner in parallel to the samples. After cooling to room 

temperature, sample absorbance at 578 nm was used to construct a standard curve and calculate 

the concentration of the samples. 

For analysis of nucleic acid content, DNA was extracted from ground cells using a DNeasy Plant 

mini kit (Qiagen) and quantified using a Nanodrop UV spec. RNA content was assumed to be 

28-fold higher than DNA content (Valle et al., 1981). This ratio was measured in 

Chlamydomonas reinhardtii, but due to the phylogenetic similarity of the two species, and the 

lack of any such information for Chromochloris, this estimate is assumed to be sufficient. 

To determine chlorophyll and total carotenoid content, ground cells were extracted with acetone 

twice. The pellet was saved for protein analysis, and acetone supernatant from each extraction 
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was pooled and measured in a spectrophotometer to determine the concentrations of chlorophylls 

a and b, and the concentration of total carotenoids as described by Lichtenthaler and Buschmann 

(Lichtenthaler and Buschmann, 2001). 

Determination of Model Constraints 

Samples of TAP and TGP cultures were taken at various time points during growth for biomass 

and glucose/acetate measurements. Samples taken for glucose/acetate measurement were 

centrifuged at 5,000×g for three minutes, and the resulting supernatant was collected and filtered 

with a 0.2 μm pore size filter. This filtered supernatant was analyzed using a glucose assay kit 

(Sigma GAHK20) or acetate assay kit (Sigma MAK086). Average cell dry weight, and the 

change in extracellular glucose or acetate concentrations during exponential phase were used to 

calculate uptake rates to constrain the model. 

Metabolomics Analysis of Spent Media 

Model predictions were validated with an untargeted metabolomics analysis of extracellular 

culture media. Samples of TGP and TAP cultures were collected in triplicate in late-exponential 

phase and centrifuged at 5,000×g for three minutes. The resulting supernatant was collected and 

filtered with a 0.2 μm pore size filter. Media samples were frozen and shipped over dry ice for 

analysis. Upon arrival, samples were thawed and lyophilized, then re-suspended in 500 μL of 

80% methanol. Samples were then vortexed, followed by sonication for 30 min at 4 °C. Samples 

were incubated at -40 °C for 1 h, then vortexed and centrifuged again before 200 μL of the 

supernatant was collected. This sample was mixed with 5 µL of DL-o-Chlorophenylalanine (140 

μg/mL) and transferred to vial for LC-MS analysis. 
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Sample separation was performed by a Waters 2695 LC combined with Q Exactive MS 

(Thermo). The LC system was comprised of ACQUITY UPLC HSS T3 (100×2.1mm×1.8 μm) 

with Waters 2695 LC. The mobile phase is composed of solvent A (0.05% formic acid-water) 

and solvent B (acetonitrile) with a gradient elution (0-1.5 min, 95-70% A; 1.5-9.5 min, 70-5% A; 

9.5-13.5 min, 5% A; 13.5-13.6 min, 5-95% A; 13.6-16.0 min, 95% A). The flow rate of the 

mobile phase is 0.3 mL·min-1. The column temperature was maintained at 40°C, and the sample 

manager temperature was set at 4°C. Mass spectrometry parameters in ESI+ and ESI- mode are 

listed as follows: ESI+: Heater Temp 300 °C; Sheath Gas Flow rate, 45arb; Aux Gas Flow Rate, 

15arb; Sweep Gas Flow Rate, 1arb; spray voltage, 3.0KV; Capillary Temp, 350 °C; S-Lens RF 

Level, 30%. ESI-: Heater Temp 300 °C, Sheath Gas Flow rate, 45arb; Aux Gas Flow Rate, 

15arb; Sweep Gas Flow Rate, 1arb; spray voltage, 3.2KV; Capillary Temp,350 °C; S-Lens RF 

Level,60%. Sample peaks were identified by comparing MS spectra against the Yeast 

Metabolome Database (YMDB) and the Human Metabolome Database (HMDB).  

A lactate assay was also performed on samples of spent media. Samples of TGP and TP cultures 

were collected in triplicate in late-exponential phase for both OD measurements and lactate 

analysis. Samples for lactate analysis were centrifuged at 5,000×g for three minutes. The 

resulting supernatant was collected and filtered with a 0.2 μm pore size filter, and analyzed using 

a L-Lactate assay kit from Megazyme. Data on biomass and lactate production during growth 

was used to calculate the reported excretion rates.  

Model Robustness Analysis 

An in silico gene essentiality analysis was performed on the genome scale metabolic model of 

Chromochloris zofingiensis. This consisted of assessing the cells growth rate for single gene 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449518
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

deletions of every gene in the model, and assigning each gene as essential (achieve 0-50% of WT 

growth rate), beneficial (achieve 50- 99% of WT growth rate), or non-essential (achieve 99-

100% of WT growth rate). 

A Flux variability analysis was also performed on the model. Flux variability analysis 

(FVA)(Mahadevan R, 2003) is a computational technique to fully explore the solution space of a 

model, given a specific set of constraints. FVA produces a maximum and minimum flux for 

every reaction within the model, given a requirement to optimize the objective function to a 

certain fraction of the optimal solution. It is a key part of OptForce (Ranganathan et al., 2010), 

an algorithm that evaluates which reactions must be upregulated or downregulated in order to 

produce a certain amount of a desired product. 
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