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Abstract 28 

Evaluating the quality of metagenomic assemblies is important for constructing reliable metagenome-29 

assembled genomes and downstream analyses. Here, we present metaMIC (https://github.com/ZhaoXM-30 

Lab/metaMIC), a machine-learning based tool for identifying and correcting misassemblies in 31 

metagenomic assemblies. Benchmarking results on both simulated and real datasets demonstrate that 32 

metaMIC outperforms existing tools when identifying misassembled contigs. Furthermore, metaMIC is 33 

able to localize the misassembly breakpoints, and the correction of misassemblies by splitting at 34 

misassembly breakpoints can improve downstream scaffolding and binning results.  35 

Keywords 36 

Metagenomic assemblies, Misassembled contigs, Misassembly breakpoints, Metagenome-assembled 37 

genomes, Binning 38 

 39 

Background 40 

Constructing reliable metagenome-assembled genomes (MAGs) is of great importance for understanding 41 

microbial communities and downstream functional analysis, such as taxonomic annotations and 42 

reconstruction of metabolic processes [1-4]. MAGs are obtained by binning assembled contigs into bins, 43 

the quality of which can be significantly affected by the assembly errors in contigs. For example, the 44 

chimerical assemblies consisting of two or more genomes can introduce contamination for reconstructed 45 

MAGs, potentially resulting in misleading biological conclusions [5]. Despite the progress in assembly 46 

algorithms, errors are still prevalent in metagenomic-assembled contigs owing to the inherent complexity 47 

of metagenomic data. Assembly errors including inter- and intra-species misassemblies are caused by 48 
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repetitive genomic regions that occur within the same genome or conserved sequences shared among 49 

distinct organisms, which is especially likely to happen when multiple closely-related strains are present 50 

in the same environment [6, 7]. Therefore, the evaluation of metagenomic assemblies is critical for 51 

constructing high-quality and reliable MAGs. 52 

 Approaches that have been proposed for assessing the quality of metagenomic assemblies can be 53 

grouped into two categories: reference-based and reference-free approaches. Reference-based methods 54 

evaluate the de novo assemblies by aligning them against corresponding reference genomes. For example, 55 

MetaQUAST [8], the metagenomic-adapted version of QUAST [9], detects misassemblies such as 56 

translocation, inversion and relocation by mapping the metagenomic contigs to a set of closely-related 57 

reference genomes. However, it is difficult to distinguish errors from real structural variation. Moreover, 58 

reference genomes are available for only a small fraction of organisms found in real environments, which 59 

limits these approaches to previously-sequenced species [10]. Therefore, the evaluation of metagenomic 60 

assemblies would benefit from reference-free methods. Typically these methods exploit features such as 61 

the high variation in coverage depth or inconsistent insert distance of paired-end reads to indicate possible 62 

repeat collapse, misjoins or error insertions/deletions [11]. Popular reference-free methods include ALE 63 

[12], DeepMAsED [13], SuRankCo [14] and VALET [15]. ALE measures the quality of assemblies as 64 

the likelihood that the observed reads are generated from a given assembly by modeling the sequencing 65 

process. SuRankCo uses a machine learning approach to provide quality scores for contigs based on 66 

characteristics of contigs such as length and coverage. VALET detects misassemblies based on the 67 

combination of multiple metrics extracted from the alignment of reads to contigs. DeepMAsED employs 68 

a deep learning approach to identify misassembled contigs. Despite the great value of those approaches 69 
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for evaluating metagenomic assembly quality, only VALET and ALE predict the position where the 70 

misassembly errors are introduced and none of these methods have functionality for correcting 71 

metagenomic misassemblies. More importantly, VALET and SuRankCo are no longer maintained, and 72 

software incompatibilities hinder their use. 73 

Here, we present a novel tool called metaMIC which performs reference-free misassembly 74 

identification and correction in de novo metagenomic assemblies. metaMIC can identify misassembled 75 

contigs, localize misassembly breakpoints within misassembled contigs and then correct misassemblies 76 

by splitting misassembled contigs at breakpoints. Benchmarking results on both simulated and real 77 

metagenomics data show that metaMIC can identify misassembled contigs with higher accuracy than 78 

state-of-the-art tools, and precisely localize the misassembly error regions and recognize breakpoints in 79 

both single genomic and metagenomic assemblies. By comparing the scaffolding and binning results 80 

before and after metaMIC correction, we demonstrate that the correction of misassemblies by metaMIC 81 

can improve the scaffolding and binning results. 82 

 83 

Results 84 

Overview of the metaMIC pipeline 85 

metaMIC is a fully automated tool for identifying and correcting misassemblies in metagenomic contigs 86 

using the following three steps (Fig. 1). First, various types of features were extracted from the alignment 87 

between paired-end sequencing reads and each contig, including sequencing coverage, nucleotide 88 

variants, mate pair consistency, and k-mer abundance differences (KAD) [16] between mapped reads and 89 

the contig. The KAD method was previously developed for evaluating the accuracy of nucleotide base 90 
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quality in single genomic assemblies. Here, we extended KAD to metagenomic assemblies to measure 91 

the overall consistency between mapped reads and corresponding contigs (see Methods). Secondly, the 92 

features extracted in the first step are used as input to a random forest classifier for identifying 93 

misassembled contigs, where the classifier is trained with simulated bacterial metagenomic communities 94 

to discriminate misassembled contigs from correctly assembled ones. Thirdly, metaMIC will localize 95 

misassembly breakpoint(s) in each misassembled contig, namely the point at which the left and right 96 

flanking sequences are predicted to have originated from different genomes or locations. As most 97 

misassemblies are chimeras where two fragments from different locations or with different orientations 98 

are mistakenly connected and not just random sequences being generated [9], misassemblies can be 99 

corrected by breaking up the contigs into two (or more) correctly assembled contigs. 100 

 101 

Identifying misassembled contigs in simulated metagenomic datasets 102 

To evaluate metaMIC, we tested it on simulated metagenomic datasets obtained from CAMI (the Critical 103 

Assessment of Metagenome Interpretation) [2] that comprise a known mixture of organisms. We first 104 

evaluated metaMIC on the Medium (CAMI1-Medium) and High-diversity communities (CAMI1-High) 105 

to see how dataset complexity will influence the accuracy of metaMIC. We noticed that the types of 106 

misassemblies identified in these two datasets were slightly different, and the CAMI1-High dataset 107 

contains more inter-species translocations and higher proportion of misassemblies while the CAMI1-108 

Medium dataset contains more relocations (see Figs. S1, S2), which is consistent with previous 109 

conclusion that datasets with higher intra-species diversity tend to have more inter-species translocation 110 

misassemblies [13]. Compared with CAMI1-High metaMIC performed better on (Fig. 2a; although still 111 
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significantly better than existing tools) CAMI1-Medium, implying that the higher microbial diversity 112 

increases the challenge of identifying misassembled contigs. We further compared metaMIC on these 113 

datasets against ALE [12] and DeepMAsED [13] (See Methods). As shown in Fig. 2a, metaMIC 114 

significantly outperforms both ALE and DeepMAsED on the two datasets, as MetaMIC achieved 4-fold 115 

higher AUPRC (area under the precision-recall curve).  116 

We also evaluated metaMIC and other tools on simulated metagenomic datasets from three different 117 

human body sites: gastrointestinal tract (CAMI2-Gut), skin (CAMI2-Skin) and oral cavity (CAMI2-Oral). 118 

As shown in Figs. 2b, c and Fig. S3, metaMIC has the highest precision when identifying misassembled 119 

contigs at any recall threshold. Additionally, we tested metaMIC on a simulated virome datasets (Sim-120 

Virome), which were simulated based on 1,000 complete viral genomes randomly selected from NCBI 121 

RefSeq collection [17] (See Methods). The Sim-Virome contains mainly translocations and relocations 122 

but few inter-species translocations and inversions. We found that metaMIC still significantly 123 

outperforms both ALE and DeepMAsED on Sim-Virome dataset as shown in Fig. 2d, indicating that 124 

metaMIC can also be used for virome assemblies besides bacterial metagenomic assemblies. 125 

As metaMIC can be trained on contigs assembled by different assemblers, we further investigated 126 

the impact of different assemblers on the performance of metaMIC when identifying misassembled 127 

contigs. Here, two popular assemblers, i.e. MEGAHIT and IDBA_UD, used for metagenomic data were 128 

considered. As shown in Fig. 2e, we found that metaMIC performed best when it was trained on the same 129 

assembler as it was later evaluated. Therefore, we recommend to use metaMIC trained on the contigs 130 

generated by the same assembler. For version 1.0, metaMIC provides builtin models supporting 131 
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MEGAHIT and IDBA_UD as well as the ability to generate new models based on the assembler specified 132 

by users. 133 

 134 

metaMIC can identify breakpoints with higher accuracy in misassembled contigs 135 

Beyond identifying misassembled contigs, metaMIC is able to accurately recognize the misassembly 136 

breakpoints, at which the misassembled contigs can be split into shorter ones. From the distribution, we 137 

can clearly see that the error regions containing any misassembly type generally have significantly higher 138 

anomaly scores than error-free regions, and the inter-species translocation error is most prevalent in the 139 

dataset. In the CAMI datasets, it is indeed the inter-species translocation error that occurs most often 140 

(Fig. S2). The differential distribution of anomaly scores between error and error-free regions implies 141 

that the anomaly score has the potential to recognize the error regions. We also noticed that the 142 

misassembly sites are usually read breakpoints (locations at which the boundaries of aligned read 143 

fragments do not coincide with the ends of corresponding reads) [18]. Similar to anomaly scores, we 144 

found that the read breakpoint ratio was significantly different between error regions and error-free 145 

regions (Fig. 3b, see also Figs. S7, S8). 146 

 Due to the potential of read breakpoint ratio and anomaly score to localize the error regions, we 147 

want to see whether metaMIC can use these two features to separate the erroneous regions from error-148 

free regions. From the receiver operation curves shown in Fig. 3c, we can see that with either anomaly 149 

score or read breakpoint ratio, metaMIC can classify the error regions containing misassembly 150 

breakpoints with error-free regions more accurately than ALE. To combine the usages of these two 151 
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features, metaMIC first localizes the error regions in a misassembled contigs with the help of anomaly 152 

score, and then identifies the exact breakpoints in an error region based on the read breakpoint ratio. 153 

 We evaluated the performance of both metaMIC and ALE on the five datasets from CAMI as shown 154 

in Fig. 3d. We observed that approximately 71-86% of the metaMIC-predicted breakpoints were within 155 

500bp compared to 26-48% of those by ALE. More importantly, metaMIC could predict the exact 156 

locations for ~25% of the breakpoints with the use of read breakpoints. Again, inter-species 157 

translocations or inversions can be detected with higher accuracy relative to other misassembly types 158 

(Fig. 3e), consistent with previous results that they were supported by more fragmentally aligned reads 159 

and had higher anomaly scores as compared with other error types (see Figs. 3a, b; Fig. S8). Given the 160 

possible influence of contig length on the prediction error size, we normalized the error size by the contig 161 

length, and compared the results of metaMIC with those of ALE. As shown in Fig. 3f, metaMIC still 162 

significantly outperforms ALE with respect to the normalized error size (Wilcoxon test, p-value <2.22e-163 

16), where the median and mean of the metaMIC’s normalized error size were 0.01 and 0.11, respectively, 164 

compared to 0.39 and 0.34 for ALE (see also Fig. S9).  165 

 166 

Splitting misassembled contigs improves downstream binning performance 167 

As metaMIC can identify breakpoints in misassembled contigs, it can split misassembled contigs at 168 

breakpoints and reduce the number of misassemblies (see Methods); although the contiguity could be 169 

slightly decreased due to more fragmented contigs [19]. To see how the correction of splitting 170 

misassembled contigs at breakpoints employed by metaMIC will influence downstream analyses, we 171 

binned the contigs in the simulated datasets. We then assessed the binning performance over the original 172 
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and metaMIC-corrected contigs by counting the number of obtained high-quality bins. We can see in Fig. 173 

4a that metaMIC correction increases the number of near-complete reconstructed bins (completeness 174 

above 90%, contamination below 5% [3]) by 10-20% (see also Fig. S13a, Table S1), showing that the 175 

correction of metagenomic miassemblies has significant impact on downstream binning. We noticed that 176 

most of the misassemblies corrected by metaMIC were inter-species translocations that were also the 177 

main sources of chimeras and assembly errors in CAMI datasets (Fig. S2, Table S2). From Fig. 4b and 178 

also those shown in Fig. S13b, we can see that bin-wise F1 scores of those bins constructed from 179 

corrected contigs are significantly improved compared with the results over original contigs, indicating 180 

that the reconstructed bins can better represent the reference genomes after metaMIC correction. The 181 

above results clearly demonstrate that the correction of metagenomic misassemblies by metaMIC can 182 

significantly improve the resulting bins in term of both completeness and contaminations, which is 183 

important for understanding the complex microbiota communities. 184 

 185 

Application of metaMIC to real metagenomic datasets 186 

To better evaluate the performance of metaMIC, we applied metaMIC to two recent human gut 187 

metagenomics datasets from Ethiopian [20] and Madagascar [21] cohorts that consist of 50 and 112 188 

samples, respectively. In total, metaMIC respectively identified 5,905 and 18,436 misassembled contigs 189 

in Ethiopian and Madagascar datasets, which represents 2.59% and 4.53% of all contigs in the two 190 

datasets. We then separately binned the original and corrected contigs into bins. Strikingly, we found 191 

that ~20% of the resulting original-bins contained misassemblies, although the latter accounted for less 192 

than 5% of all contigs (See Table S3). As previous results have demonstrated that metaMIC correction 193 
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can improve the binning results in simulated datasets, we further explored whether the correction step 194 

employed by metaMIC can improve downstream results in real datasets. As shown in Fig. 5, in addition 195 

to obtaining more bins of high quality (Completeness >90 and Contamination <5) (Fig. 5a, Table S3), 196 

the corrected bins had an equal or higher F1 score compared to the corresponding original bins (Fig. 5b). 197 

The results indicate that the misassembled contigs identified by metaMIC in these two real datasets are 198 

really misassembled, the correction of which can significantly improve downstream analysis results. 199 

As these contamination metrics are based on in silico evaluation, we further tested the ability of 200 

identifying misassemblies using another metagenomic dataset (a combined rumen fluid and solid sample) 201 

where both short and long reads are available. Since the long reads from PacBio platforms are able to 202 

span repeats [22, 23], which are the main contributor to misassemblies, we can therefore use the long-203 

read assemblies as gold standards to validate our predicted misassembled contigs from the short-read 204 

assemblies. In total, metaMIC identified 692 misassembled contigs (approximately 2.5%) in the short-205 

read assemblies. By manual inspection of the alignments between PacBio assemblies and short-read 206 

assemblies, we can validate a subset of metaMIC predictions (Fig. 5c and Fig. S14). For instance, there 207 

exist two peaks at positions of 1200bp and 6920bp in the contig of “k141_847840” according to the 208 

anomaly scores by metaMIC, and both peaks, especially the one at 6920bp, contain higher read 209 

breakpoint counts implying possible misassembly breakpoints at these two locations. When aligning this 210 

contig against the long-read assemblies, we found that two regions in this contig (1201-6738bp and 6920-211 

8700bp) were indeed aligned to two different long-read assembled contigs, and a change-point in the 212 

read coverage at 6920bp can be observed (see Fig. 5c), indicating that there are actually two contigs 213 
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wrongly assembled into one contig at position of 6920bp. We also found that only a few reads can be 214 

aligned to the region of 0-1200bp, suggesting this region may be extended mistakenly by the assembler.  215 

 216 

Application of metaMIC to isolate genomes 217 

Since metaMIC can identify and correct intra-species misassemblies such as inversions and relocations, 218 

metaMIC can also be applied to isolate genomes. We tested metaMIC on four real datasets from GAGE-219 

B project [24], which aimed to evaluate assembly algorithms on isolate genomes. We tested metaMIC 220 

on B. cereus, M. abscessus, R. sphaeroides and V. cholerae, where the raw reads, assembled contigs [25] 221 

and curated reference genomes are available for these four species. metaMIC was ran on the assemblies 222 

downloaded from GAGE-B project and its performance was evaluated with the results by QUAST [9] as 223 

gold standard. These four datasets contain mainly relocations but a few translocations (Table S4). We 224 

noticed that similar to metagenomes, the error regions in isolate genomes also have higher anomaly 225 

scores and more read breakpoints than error-free regions (Fig. S15). We then compared metaMIC against 226 

MEC [26], a recently-developed misassembly correction tool, when identifying misassembly breakpoints 227 

on the four isolate genomes. As shown in Table 2, metaMIC identified more true misassemblies than 228 

MEC, where approximately 80% misassemblies can be corrected compared to ~30% of MEC; and after 229 

the correction by metaMIC, the total number of bases of uncorrected misassembled contigs (i.e. 230 

misassembled contig length in Table 2) was significantly reduced compared with that by MEC.  231 

 To further see influence of misassembly correction on isolate genomes, we scaffolded original and 232 

corrected contigs separately with popular scaffolders including BESST [27] and ScaffMatch [28], and 233 

then used QUAST to evaluate the scaffolding results. As seen in Table 3 and supplementary Table 6, the 234 
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number of misassemblies in the scaffolding results based on metaMIC’s corrected contigs was much 235 

lower than that based on the original uncorrected contigs, and metaMIC significantly outperforms MEC 236 

in terms of misassembled contig length. Moreover, metaMIC performs comparably well or better 237 

compared against MEC in terms of NA50 and total aligned length, and performs better especially for 238 

R.sphaeroides. The above results clearly show the effectiveness of metaMIC when identifying and 239 

correcting misassembled contigs on isolate genomes, and also the capability of maintaining or improving 240 

the contiguity of downstream scaffolding after correction.  241 

 242 

Discussion 243 

We present a novel tool named metaMIC to identify and correct misassembled contigs from de novo 244 

metagenomic assemblies and demonstrate its effectiveness on both simulated and real metagenomic 245 

datasets of varying complexity. Unlike most existing metagenomic assembly evaluation methods that 246 

only evaluate individual contigs or overall assemblies, metaMIC is capable of localizing the misassembly 247 

breakpoints and then corrects the misassembled contigs at breakpoints. By integrating various types of 248 

features extracted from both reads and assemblies, including read coverage, mate pair consistency, 249 

nucleotide variants and k-mer abundance consistency, metaMIC is able to detect intra- and inter-species 250 

misassemblies. Additionally, metaMIC can also be applied on isolate genomes given its ability in 251 

identifying intra-species misassemblies. After the correction of misassemblies, metaMIC can 252 

significantly help improve the performance of downstream analysis including binning and scaffolding.  253 

In this study, the performance of metaMIC is mainly shown on the metagenomic assemblies 254 

assembled by MEGAHIT due to its high memory efficiency [29]. As different assemblers tend to be 255 
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biased to certain types of misassemblies, the models trained on the outputs of one assembler may not 256 

transfer well to other assemblers. Note that metaMIC can be easily extended to work on the metagenomic 257 

assemblies by other assembler tools if the training datasets generated by the corresponding assemblers 258 

are available. We suggest to use metaMIC on the datasets from the same assembler as the one it is trained 259 

on.  260 

 metaMIC scans each contig with a sliding window of 100bp to localize the candidate error regions. 261 

Generally, a shorter window size can have a higher resolution to pinpoint error regions but require more 262 

computation resources while the longer window size can be robust to noise but are more likely to cover 263 

multiple errors. In addition, metaMIC currently cannot distinguish the types of assembly errors. In the 264 

future, more work is needed to determine the error types which in turn can help to correct misassemblies 265 

more accurately.  266 

 metaMIC correction mainly relies on splitting contigs at misassembly breakpoints. However, 267 

caution should be needed here as more fragmented sequences will be generated and mistakenly splitting 268 

may result in disrupted gene structure, which can have adverse influence on downstream functional 269 

genomic analysis. Although we have showed that metaMIC correction can improve the downstream 270 

binning results, the quality of reconstructed draft bins can be further improved if the broken contigs can 271 

be joined into scaffolds correctly. Thus, the combination of metaMIC and scaffolding algorithms will be 272 

a promising direction for future research, leading to effective approaches for reconstructing genomes 273 

from sequencing data with higher quality and completeness. 274 

 Several directions hold promise for further improvements to metaMIC. Firstly, metagenomic read 275 

mapping can be evaluated in more robust manner by aligning multi-assigned reads in a probabilistic 276 
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manner to their contig of origin [30] or using base-level quality metrics such as CIGAR strings [31]. 277 

Secondly, increasing the amount of training data and integrating other assemblers such as metaSPAdes 278 

[32] are also potential directions for the improvement of metaMIC. Thirdly, the factors that may result 279 

in false positive predictions, such as structural variation within species of high similarity and G-C bias 280 

in sequencing coverage could be taken into account in future work. Finally, as reference genomes of 281 

many bacterium are available, a better performance can be achieved by the combination of reference-282 

free and reference-based approaches. 283 

 284 

Conclusions 285 

Here, a novel tool named metaMIC is developed for identifying and correcting misassemblies in de novo 286 

metagenomic assemblies without the use of reference genomes. Benchmarking on both simulated and 287 

real datasets, we show that metaMIC is able to pinpoint misassemblies in both single and metagenomic 288 

assemblies. We also demonstrate that metaMIC is able to improve the scaffolding or binning results by 289 

splitting misassembled contigs at misassembly breakpoints. As none of current assemblers can achieve 290 

a completely accurate assembly and misassemblies in contigs have negative influence on downstream 291 

analysis, we expect metaMIC can serve as a guide in optimizing metagenomic assemblies and help 292 

researchers be aware of problematic regions in assembled contigs, so as to avoid misleading downstream 293 

biological analysis.  294 

 295 

Methods 296 

metaMIC workflow 297 
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metaMIC is implemented in Python3 (Python ≥ 3.6). It requires assembled contigs in FASTA format 298 

and paired-end reads in FASTA or FASTQ format as input. Alternatively, the user can provide a BAM 299 

file with read pairs mapping to contigs. Given the contigs, metaMIC will first identify the misassemblies 300 

by employing a random forest classifier trained on the features extracted from reads and contigs. Next, 301 

metaMIC will identify the regions containing misassembly breakpoints in the misassembled contigs 302 

based on the anomaly scores, and then recognize the exact positions of the breakpoints in the error regions. 303 

Then metaMIC will correct the misassemblies by splitting the contigs at the breakpoints. The details will 304 

be given below.  305 

 306 

Features extracted from reads and contigs 307 

BWA-MEM (v.0.7.17) [33] is used to map paired-end reads to assemblies, followed by using samtools 308 

(v1.9) [34] to filter low quality mappings and sorting the alignments. Then four types of features will be 309 

extracted from the sorted BAM file, including read coverage, mate-pair consistency, nucleotide variants 310 

and k-mer abundance difference.  311 

For each paired-end reads with left and right mate reads, the insert size corresponding to the distance 312 

between two mates is assumed to follow normal distribution [26]. A read is regarded as a proper read if 313 

the insert size belongs to [𝜇 − 3𝜎, 𝜇 + 3𝜎] and the orientation is consistent with its mate, and is a 314 

discordant read otherwise. A read is regarded as a clipped read if it contains at least 20 unaligned bases 315 

at either end of the read, and a read is regarded as a supplementary read if different parts of the read are 316 

aligned to different regions of contigs.  317 
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 The coverage-based features include standardized read coverage, fragment coverage and their 318 

deviation. The read coverage per base represents the number of reads that are mapped over that base, and 319 

the fragment coverage is the number of proper paired-end reads spanning that base. The read coverage 320 

and fragment coverage are further standardized as the ones divided by the means of the corresponding 321 

coverages of all bases across the contig or a given region.  322 

 The nucleotide variants information is extracted from BAM file with the help of samtools. metaMIC 323 

counts the number of discordant, ambiguous and correct alignments separately at each position. For each 324 

type of alignment in a contig, metaMIC will calculate the proportion of the alignment by dividing the 325 

number of this type of alignments to the total number of mapped bases across the contig, and the same 326 

for a given region.  327 

 metaMIC calculates the k-mer abundance difference (KAD) at each base based on the alignment of 328 

paired-end reads to contigs. The KAD value, proposed by He et al [16], measures the consistency 329 

between the abundance of a k-mer from short reads and the occurrence of the k-mer in the genome. A k-330 

mer with KAD value not belonging to [-0.5, +0.5] will be regarded as an error k-mer, and a base is 331 

regarded as an error base if an error k-mer covers that base. For a given contig, metaMIC will count the 332 

number of error bases across the contig and divide it by the contig length. The proportion of error bases 333 

within a given region from a contig will be calculated in the same way.  334 

 In summary, the above these four types of features will be extracted for the whole contig (contig-335 

based features) or a window of 100bp (window-based features). The contig-based features will be used 336 

to train a random forest to identify misassembled contigs, while the window-based features will be used 337 

as input of isolate forests to recognize the error regions containing breakpoints. 338 
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Identification of misassembled contigs 339 

With the above contig-based features, metaMIC trains a random forest [35] implemented in Scikit-Learn 340 

[36] to discriminate misassembled contigs from those correctly assembled ones, where an ensemble of 341 

1,000 trees are used. For each contig, a probability score representing the likelihood that the contig is 342 

misassembled will be output by metaMIC. The random forest model was trained on a training dataset 343 

containing contigs assembled from simulated bacterial metagenomes, whereas the ground truth 344 

misassembly labels of contigs provided MetaQUAST are used as a target for training the model. Due to 345 

the existence of strong class imbalance, we down-sampled the training dataset to obtain the same number 346 

of correct contigs paired with the misassembled contigs. 347 

 348 

Localizing breakpoints in misassembled contigs 349 

After identifying misassembled contigs, metaMIC is able to localize the misassembly breakpoints in 350 

those misassembled contigs. Firstly, metaMIC scans each contig with a sliding window of 100bp, and 351 

calculates an anomaly score for each window by employing isolation forest [37] based on window-based 352 

features to localize the error regions containing misassembly breakpoints, where the region with a higher 353 

anomaly score may be an error region; Secondly, metaMIC uses the read breakpoint ratio to recognize 354 

the exact misassembly breakpoint in an error region. Specifically, for a given predicted misassembled 355 

contig, metaMIC identifies a 100bp region with the highest anomaly score as an error region and then 356 

the position with the highest read breakpoint ratio within this window as the misassemly breakpoint. For 357 

those error regions without read breakpoints, the central position of the error region is regarded as the 358 

misassembly breakpoint. 359 
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Evaluation of binning results 360 

When evaluating a set of bins reconstructed from simulated microbial datasets, we use BLASTn to map 361 

each bin against the ground truth genomes used for each dataset. A representative genome of each bin is 362 

determined based on the genome which can be covered by the highest fraction of nucleotides from that 363 

bin. Then for each bin, we define the number of nucleotides in the bin that belong to the representative 364 

genome as true positives (TP). The total number of nucleotides from the bin not covered by the 365 

representative genome corresponds to the false positives (FP), and the number of nucleotides in the 366 

representative genome not covered by any contigs from that bin represents the false negatives (FN). Then 367 

the completeness, contamination and F1 score of each bin can be calculated as follows. 368 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 369 

𝑝𝑢𝑟𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 370 

𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 1 − 𝑝𝑢𝑟𝑖𝑡𝑦 371 

𝐹1	𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 ∗ 𝑝𝑢𝑟𝑖𝑡𝑦
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 + 𝑝𝑢𝑟𝑖𝑡𝑦  372 

 For the real metagenomics data sets where the ground truth genomes are inaccessible, we employ 373 

CheckM [38] to estimate the completeness and contamination of each bin. 374 

 375 

Abbreviations 376 

MAG: metagenome-assembled genomes 377 

bp: base pair 378 

AUPRC: area under the precision-recall curve 379 

KAD: k-mer abundance difference 380 
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Figures 491 

Fig. 1 Overall framework of metaMIC. a metaMIC extracts four types of features from the alignment of 492 

paired end reads to contigs: read coverage, nucleotide variants, mate pair consistency, and k-mer 493 

abundance consistency. b Misassembled contigs are identified by metaMIC based on the four features. c 494 

metaMIC first identifies the error regions containing misassembly breakpoints, and then recognizes the 495 

exact positions of breakpoints and corrects misassemblies by splitting misassembled contigs at 496 

breakpoints. 497 

Fig. 2 metaMIC outperforms ALE and DeepMAsED in identifying misassembled contigs in simulated 498 

metagenomic datasets. a-d The performance of the three tools on the CAMI-medium (M) and high-499 

complexity (H) communities (a), CAMI2-Skin (b), CAMI2-Gut (c), and simulated virome dataset (Sim-500 

Virome) (d). e The AUPRC scores of metaMIC on test datasets assembled by MEGAHIT or IDBA_UD 501 

(Test assembler), where metaMIC were trained on contigs from training datasets assembled by 502 

MEGAHIT, IDBA_UD, or jointly by MEGAHIT and IDBA_UD (MEGAHIT+IDBA_UD).  503 

Fig. 3 The performance of metaMIC in localizing misassembly breakpoints on CAMI datasets. a, b The 504 

distribution of anomaly scores (a) and read breakpoint ratios (b) of different misassembly types across 505 

contigs from CAMI1-Medium. c The receiver operation curves by ALE, anomaly scores and read 506 

breakpoint ratios when discriminating error regions from error-free regions in CAMI1-Medium, 507 

respectively. d, e The distribution of error size of misassembly breakpoints recognized by metaMIC on 508 

CAMI1-Medium (Medium), CAMI1-High (High), CAMI2-Skin (Skin), CAMI2-Gut (Gut) and CAMI2-509 

Oral (Oral) (d), and different misassembly types in CAMI1-Medium (e). f The distribution of normalized 510 

error size of misassembly breakpoints recognized by metaMIC and ALE on CAMI1-Medium.  511 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

23 

Fig. 4 Splitting misassembled contigs at breakpoints improves the downstream binning results over Sim-512 

Virome and CAMI1-Medium datasets. a The number of high-quality bins with low contamination (<5%) 513 

of different completeness reconstructed from original and corrected contigs. b The distribution of F1 514 

scores for bins reconstructed based on contigs before and after correction, where only those bins whose 515 

results change before and after correction were shown for clearness.  516 

Fig. 5 The performance of metaMIC on real metagenomic datasets. a The number of bins of different 517 

completeness with low contamination (<5%) reconstructed from original and corrected assemblies of 518 

‘Ethiopian’ (left) and ‘Madagascar’ (right) cohorts. b Comparison of F1 scores for reconstructed bins 519 

before and after correction of contigs from ‘Ethiopian’ (top) and ‘Madagascar’ (bottom) cohorts. c An 520 

example of a predicted misassembled contig “k141_847840” assembled from combined rumen fluid and 521 

solid sample. The top plot shows the alignment result of Illumina short-read assembled contig 522 

“k141_847840” and PacBio long-read assembled contigs (“contig_982” and “contig_158”), where two 523 

regions in the “k141_84780” (1201-6738bp and 6920-8700bp) were aligned to “contig_982” and 524 

“contig_158”, respectively. The middle figure shows a snapshot of Integrative Genomics Viewer for 525 

contig “k141_847840”. The bottom plot shows the anomaly score (blue) and read breakpoint ratio (green) 526 

across contig “k141_847840”.  527 

 528 

 529 

 530 

 531 

 532 
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Tables 533 

Table 1 Performance comparison of metaMIC and MEC on four real datasets from the GAGE-B project. 534 

Species Correction tool Misassembled 
contig length FN TP FP 

M. abscessus 
raw 1,189,973 20 \ \ 

MEC 982,986 14 6 2 
metaMIC 593,741 6 14 2 

V. cholerae 
raw 597,777 7 \ \ 

MEC 597,183 6 1 0 
metaMIC 205,644 3 4 1 

R. sphaeroides 
raw 135,153 2 \ \ 

MEC 64,489 1 1 0 
metaMIC 0 0 2 7 

B. cereus 
raw 117,830 5 \ \ 

MEC 56,086 4 1 0 
metaMIC 28,068 1 4 3 

Misassembled contig length denotes the total number of bases in the raw misassembled contigs or the 535 

misassembled contigs that cannot be corrected by MEC or metaMIC; True positive (TP) is the number 536 

of true misassemblies identified by the error correction tool; False positive (FP) is the number of 537 

misassemblies which are actually correct but mistakenly identified as misassemblies; False negative (FN) 538 

denotes the number of true misassemblies that are not identified. 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 
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Table 2 Comparison of BESST scaffolding results of contigs before and after correction.  548 

Species Correction 
tool #Contigs 

#Total 
aligned 
length 

Total 
length(>=0bp) 

Total 
length(>=1000bp) 

Misassembled 
contig length NA50 #Mis 

M.abscessus 
raw 262 5,045,398 5,160,404 5,129,190 1,303,084 45,957 27 

MEC 268 5,045,445 5,160,476 5,129,015 982,986 40,129 24 
metaMIC 274 5,045,398 5,160,404 5,129,190 755,186 47,488 17 

V.cholerae 
raw 201 3,936,390 3,958,533 3,921,645 597,777 43,122 10 

MEC 202 3,935,796 3,958,533 3,921,645 597,183 43,122 9 
metaMIC 205 3,936,390 3,958,533 3,921,645 205,644 43,123 7 

R.sphaeroides 
raw 231 4,492,687 4,519,491 4,486,060 359,217 75,728 5 

MEC 230 4,492,749 4,519,550 4,486,119 168,646 78,611 4 
metaMIC 232 4,493,107 4,520,061 4,486,630 51,809 78,920 3 

B.cereus 
raw 141 5,310,597 5,381,347 5,369,165 332,560 104,970 7 

MEC 140 5,310,816 5,381,940 5,369,758 332,001 104,970 7 
metaMIC 140 5,311,395 5,382,650 5,370,789 175,743 104,970 5 

#Mis denotes the number of scaffolds that contain misassemblies; Total aligned length denotes the 549 

length of total number of bases from contigs that can be aligned to the assembly. 550 

 551 
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