1 metaMIC: reference-free Misassembly Identification and Correction

2 of *de novo* metagenomic assemblies

3 Senying Lai¹, Shaojun Pan¹, Luis Pedro Coelho^{1,4,§}, Wei-Hua Chen^{2,3,§}, Xing-Ming Zhao^{1,4,5,§}

4 Affiliations

- ⁵ ¹Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433,
- 6 China.
- 7 ²Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of
- 8 Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of
- 9 Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of
- 10 Science and Technology, Wuhan, Hubei 430074, China.
- ¹¹ ³College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
- 12 ⁴MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE
- 13 Frontiers Center for Brain Science, Shanghai 200433, China.
- ¹⁴ ⁵Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China.
- 15
- ¹⁶ To whom correspondence should be addressed.
- 17

18 Emails

- 19 Senying Lai: <u>19110850024@fudan.edu.cn</u>
- 20 Shaojun Pan: <u>19110850020@fudan.edu.cn</u>
- 21 Luis Pedro Coelho: <u>luis@luispedro.org</u>
- 22 Wei-Hua Chen: weihuachen@hust.edu.cn
- 23 Xing-Ming Zhao: <u>xmzhao@fudan.edu.cn</u>

24

- 25
- 26
- 27

28 Abstract

29	Evaluating the	e quality c	of metagenomic	assemblies is im	portant for con	nstructing reliable	e metagenome-

- 30 assembled genomes and downstream analyses. Here, we present metaMIC (https://github.com/ZhaoXM-
- 31 Lab/metaMIC), a machine-learning based tool for identifying and correcting misassemblies in
- 32 metagenomic assemblies. Benchmarking results on both simulated and real datasets demonstrate that
- 33 metaMIC outperforms existing tools when identifying misassembled contigs. Furthermore, metaMIC is
- 34 able to localize the misassembly breakpoints, and the correction of misassemblies by splitting at
- 35 misassembly breakpoints can improve downstream scaffolding and binning results.

36 Keywords

- 37 Metagenomic assemblies, Misassembled contigs, Misassembly breakpoints, Metagenome-assembled
 38 genomes, Binning
- 39

40 Background

41 Constructing reliable metagenome-assembled genomes (MAGs) is of great importance for understanding 42 microbial communities and downstream functional analysis, such as taxonomic annotations and 43 reconstruction of metabolic processes [1-4]. MAGs are obtained by binning assembled contigs into bins, 44 the quality of which can be significantly affected by the assembly errors in contigs. For example, the 45 chimerical assemblies consisting of two or more genomes can introduce contamination for reconstructed 46 MAGs, potentially resulting in misleading biological conclusions [5]. Despite the progress in assembly 47 algorithms, errors are still prevalent in metagenomic-assembled contigs owing to the inherent complexity 48 of metagenomic data. Assembly errors including inter- and intra-species misassemblies are caused by

49 repetitive genomic regions that occur within the same genome or conserved sequences shared among 50 distinct organisms, which is especially likely to happen when multiple closely-related strains are present 51 in the same environment [6, 7]. Therefore, the evaluation of metagenomic assemblies is critical for 52 constructing high-quality and reliable MAGs. 53 Approaches that have been proposed for assessing the quality of metagenomic assemblies can be 54grouped into two categories: reference-based and reference-free approaches. Reference-based methods 55 evaluate the *de novo* assemblies by aligning them against corresponding reference genomes. For example, 56 MetaQUAST [8], the metagenomic-adapted version of QUAST [9], detects misassemblies such as 57 translocation, inversion and relocation by mapping the metagenomic contigs to a set of closely-related 58 reference genomes. However, it is difficult to distinguish errors from real structural variation. Moreover, 59 reference genomes are available for only a small fraction of organisms found in real environments, which 60 limits these approaches to previously-sequenced species [10]. Therefore, the evaluation of metagenomic 61 assemblies would benefit from reference-free methods. Typically these methods exploit features such as 62 the high variation in coverage depth or inconsistent insert distance of paired-end reads to indicate possible 63 repeat collapse, misjoins or error insertions/deletions [11]. Popular reference-free methods include ALE 64 [12], DeepMASED [13], SuRankCo [14] and VALET [15]. ALE measures the quality of assemblies as 65 the likelihood that the observed reads are generated from a given assembly by modeling the sequencing 66 process. SuRankCo uses a machine learning approach to provide quality scores for contigs based on 67 characteristics of contigs such as length and coverage. VALET detects misassemblies based on the 68 combination of multiple metrics extracted from the alignment of reads to contigs. DeepMAsED employs 69 a deep learning approach to identify misassembled contigs. Despite the great value of those approaches

70 for evaluating metagenomic assembly quality, only VALET and ALE predict the position where the 71misassembly errors are introduced and none of these methods have functionality for correcting 72 metagenomic misassemblies. More importantly, VALET and SuRankCo are no longer maintained, and 73 software incompatibilities hinder their use. 74 Here, we present a novel tool called metaMIC which performs reference-free misassembly 75 identification and correction in *de novo* metagenomic assemblies. metaMIC can identify misassembled 76 contigs, localize misassembly breakpoints within misassembled contigs and then correct misassemblies 77 by splitting misassembled contigs at breakpoints. Benchmarking results on both simulated and real 78 metagenomics data show that metaMIC can identify misassembled contigs with higher accuracy than 79 state-of-the-art tools, and precisely localize the misassembly error regions and recognize breakpoints in 80 both single genomic and metagenomic assemblies. By comparing the scaffolding and binning results 81 before and after metaMIC correction, we demonstrate that the correction of misassemblies by metaMIC 82 can improve the scaffolding and binning results. 83

84 **Results**

85 **Overview of the metaMIC pipeline**

metaMIC is a fully automated tool for identifying and correcting misassemblies in metagenomic contigs using the following three steps (Fig. 1). First, various types of features were extracted from the alignment between paired-end sequencing reads and each contig, including sequencing coverage, nucleotide variants, mate pair consistency, and *k*-mer abundance differences (KAD) [16] between mapped reads and the contig. The KAD method was previously developed for evaluating the accuracy of nucleotide base

91 quality in single genomic assemblies. Here, we extended KAD to metagenomic assemblies to measure 92 the overall consistency between mapped reads and corresponding contigs (see Methods). Secondly, the 93 features extracted in the first step are used as input to a random forest classifier for identifying 94 misassembled contigs, where the classifier is trained with simulated bacterial metagenomic communities 95 to discriminate misassembled contigs from correctly assembled ones. Thirdly, metaMIC will localize 96 misassembly breakpoint(s) in each misassembled contig, namely the point at which the left and right 97 flanking sequences are predicted to have originated from different genomes or locations. As most 98 misassemblies are chimeras where two fragments from different locations or with different orientations 99 are mistakenly connected and not just random sequences being generated [9], misassemblies can be 100 corrected by breaking up the contigs into two (or more) correctly assembled contigs.

101

102 Identifying misassembled contigs in simulated metagenomic datasets

103 To evaluate metaMIC, we tested it on simulated metagenomic datasets obtained from CAMI (the Critical 104 Assessment of Metagenome Interpretation) [2] that comprise a known mixture of organisms. We first 105 evaluated metaMIC on the Medium (CAMI1-Medium) and High-diversity communities (CAMI1-High) 106 to see how dataset complexity will influence the accuracy of metaMIC. We noticed that the types of 107 misassemblies identified in these two datasets were slightly different, and the CAMI1-High dataset 108 contains more inter-species translocations and higher proportion of misassemblies while the CAMI1-109 Medium dataset contains more relocations (see Figs. S1, S2), which is consistent with previous 110 conclusion that datasets with higher intra-species diversity tend to have more inter-species translocation 111 misassemblies [13]. Compared with CAMI1-High metaMIC performed better on (Fig. 2a; although still

112	significantly better than existing tools) CAMI1-Medium, implying that the higher microbial diversity
113	increases the challenge of identifying misassembled contigs. We further compared metaMIC on these
114	datasets against ALE [12] and DeepMAsED [13] (See Methods). As shown in Fig. 2a, metaMIC
115	significantly outperforms both ALE and DeepMAsED on the two datasets, as MetaMIC achieved 4-fold
116	higher AUPRC (area under the precision-recall curve).
117	We also evaluated metaMIC and other tools on simulated metagenomic datasets from three different
118	human body sites: gastrointestinal tract (CAMI2-Gut), skin (CAMI2-Skin) and oral cavity (CAMI2-Oral).
119	As shown in Figs. 2b, c and Fig. S3, metaMIC has the highest precision when identifying misassembled
120	contigs at any recall threshold. Additionally, we tested metaMIC on a simulated virome datasets (Sim-
121	Virome), which were simulated based on 1,000 complete viral genomes randomly selected from NCBI
122	RefSeq collection [17] (See Methods). The Sim-Virome contains mainly translocations and relocations
123	but few inter-species translocations and inversions. We found that metaMIC still significantly
124	outperforms both ALE and DeepMAsED on Sim-Virome dataset as shown in Fig. 2d, indicating that
125	metaMIC can also be used for virome assemblies besides bacterial metagenomic assemblies.
126	As metaMIC can be trained on contigs assembled by different assemblers, we further investigated
127	the impact of different assemblers on the performance of metaMIC when identifying misassembled
128	contigs. Here, two popular assemblers, i.e. MEGAHIT and IDBA_UD, used for metagenomic data were
129	considered. As shown in Fig. 2e, we found that metaMIC performed best when it was trained on the same
130	assembler as it was later evaluated. Therefore, we recommend to use metaMIC trained on the contigs
131	generated by the same assembler. For version 1.0 metaMIC provides builtin models supporting

131 generated by the same assembler. For version 1.0, metaMIC provides builtin models supporting

- 132 MEGAHIT and IDBA UD as well as the ability to generate new models based on the assembler specified
- 133 by users.
- 134

135 metaMIC can identify breakpoints with higher accuracy in misassembled contigs

136 Beyond identifying misassembled contigs, metaMIC is able to accurately recognize the misassembly 137 breakpoints, at which the misassembled contigs can be split into shorter ones. From the distribution, we 138 can clearly see that the error regions containing any misassembly type generally have significantly higher 139 anomaly scores than error-free regions, and the inter-species translocation error is most prevalent in the 140 dataset. In the CAMI datasets, it is indeed the inter-species translocation error that occurs most often 141 (Fig. S2). The differential distribution of anomaly scores between error and error-free regions implies 142 that the anomaly score has the potential to recognize the error regions. We also noticed that the 143 misassembly sites are usually read breakpoints (locations at which the boundaries of aligned read 144 fragments do not coincide with the ends of corresponding reads) [18]. Similar to anomaly scores, we 145 found that the read breakpoint ratio was significantly different between error regions and error-free 146 regions (Fig. 3b, see also Figs. S7, S8).

Due to the potential of read breakpoint ratio and anomaly score to localize the error regions, we want to see whether metaMIC can use these two features to separate the erroneous regions from errorfree regions. From the receiver operation curves shown in Fig. 3c, we can see that with either anomaly score or read breakpoint ratio, metaMIC can classify the error regions containing misassembly breakpoints with error-free regions more accurately than ALE. To combine the usages of these two 152 features, metaMIC first localizes the error regions in a misassembled contigs with the help of anomaly

153 score, and then identifies the exact breakpoints in an error region based on the read breakpoint ratio.

154	We evaluated the performance of both metaMIC and ALE on the five datasets from CAMI as shown
155	in Fig. 3d. We observed that approximately 71-86% of the metaMIC-predicted breakpoints were within
156	500bp compared to 26-48% of those by ALE. More importantly, metaMIC could predict the exact
157	locations for $\sim 25\%$ of the breakpoints with the use of read breakpoints. Again, inter-species
158	translocations or inversions can be detected with higher accuracy relative to other misassembly types
159	(Fig. 3e), consistent with previous results that they were supported by more fragmentally aligned reads
160	and had higher anomaly scores as compared with other error types (see Figs. 3a, b; Fig. S8). Given the
161	possible influence of contig length on the prediction error size, we normalized the error size by the contig
162	length, and compared the results of metaMIC with those of ALE. As shown in Fig. 3f, metaMIC still
163	significantly outperforms ALE with respect to the normalized error size (Wilcoxon test, p-value <2.22e-
164	16), where the median and mean of the metaMIC's normalized error size were 0.01 and 0.11, respectively,
165	compared to 0.39 and 0.34 for ALE (see also Fig. S9).

166

167 Splitting misassembled contigs improves downstream binning performance

As metaMIC can identify breakpoints in misassembled contigs, it can split misassembled contigs at breakpoints and reduce the number of misassemblies (see Methods); although the contiguity could be slightly decreased due to more fragmented contigs [19]. To see how the correction of splitting misassembled contigs at breakpoints employed by metaMIC will influence downstream analyses, we binned the contigs in the simulated datasets. We then assessed the binning performance over the original

173	and metaMIC-corrected contigs by counting the number of obtained high-quality bins. We can see in Fig.
174	4a that metaMIC correction increases the number of near-complete reconstructed bins (completeness
175	above 90%, contamination below 5% [3]) by 10-20% (see also Fig. S13a, Table S1), showing that the
176	correction of metagenomic miassemblies has significant impact on downstream binning. We noticed that
177	most of the misassemblies corrected by metaMIC were inter-species translocations that were also the
178	main sources of chimeras and assembly errors in CAMI datasets (Fig. S2, Table S2). From Fig. 4b and
179	also those shown in Fig. S13b, we can see that bin-wise F1 scores of those bins constructed from
180	corrected contigs are significantly improved compared with the results over original contigs, indicating
181	that the reconstructed bins can better represent the reference genomes after metaMIC correction. The
182	above results clearly demonstrate that the correction of metagenomic misassemblies by metaMIC can
183	significantly improve the resulting bins in term of both completeness and contaminations, which is
184	important for understanding the complex microbiota communities.

185

186 Application of metaMIC to real metagenomic datasets

To better evaluate the performance of metaMIC, we applied metaMIC to two recent human gut metagenomics datasets from Ethiopian [20] and Madagascar [21] cohorts that consist of 50 and 112 samples, respectively. In total, metaMIC respectively identified 5,905 and 18,436 misassembled contigs in *Ethiopian* and *Madagascar* datasets, which represents 2.59% and 4.53% of all contigs in the two datasets. We then separately binned the original and corrected contigs into bins. Strikingly, we found that ~20% of the resulting original-bins contained misassemblies, although the latter accounted for less than 5% of all contigs (See Table S3). As previous results have demonstrated that metaMIC correction

194	can improve the binning results in simulated datasets, we further explored whether the correction step
195	employed by metaMIC can improve downstream results in real datasets. As shown in Fig. 5, in addition
196	to obtaining more bins of high quality (Completeness >90 and Contamination <5) (Fig. 5a, Table S3),
197	the corrected bins had an equal or higher F1 score compared to the corresponding original bins (Fig. 5b).
198	The results indicate that the misassembled contigs identified by metaMIC in these two real datasets are
199	really misassembled, the correction of which can significantly improve downstream analysis results.
200	As these contamination metrics are based on <i>in silico</i> evaluation, we further tested the ability of
201	identifying misassemblies using another metagenomic dataset (a combined rumen fluid and solid sample)
202	where both short and long reads are available. Since the long reads from PacBio platforms are able to
203	span repeats [22, 23], which are the main contributor to misassemblies, we can therefore use the long-
204	read assemblies as gold standards to validate our predicted misassembled contigs from the short-read
205	assemblies. In total, metaMIC identified 692 misassembled contigs (approximately 2.5%) in the short-
206	read assemblies. By manual inspection of the alignments between PacBio assemblies and short-read
207	assemblies, we can validate a subset of metaMIC predictions (Fig. 5c and Fig. S14). For instance, there
208	exist two peaks at positions of 1200bp and 6920bp in the contig of "k141_847840" according to the
209	anomaly scores by metaMIC, and both peaks, especially the one at 6920bp, contain higher read
210	breakpoint counts implying possible misassembly breakpoints at these two locations. When aligning this
211	contig against the long-read assemblies, we found that two regions in this contig (1201-6738bp and 6920-
212	8700bp) were indeed aligned to two different long-read assembled contigs, and a change-point in the
213	read coverage at 6920bp can be observed (see Fig. 5c), indicating that there are actually two contigs

wrongly assembled into one contig at position of 6920bp. We also found that only a few reads can be aligned to the region of 0-1200bp, suggesting this region may be extended mistakenly by the assembler.

216

217 Application of metaMIC to isolate genomes

218	Since metaMIC can identify and correct intra-species misassemblies such as inversions and relocations,
219	metaMIC can also be applied to isolate genomes. We tested metaMIC on four real datasets from GAGE-
220	B project [24], which aimed to evaluate assembly algorithms on isolate genomes. We tested metaMIC
221	on <i>B. cereus</i> , <i>M. abscessus</i> , <i>R. sphaeroides</i> and <i>V. cholerae</i> , where the raw reads, assembled contigs [25]
222	and curated reference genomes are available for these four species. metaMIC was ran on the assemblies
223	downloaded from GAGE-B project and its performance was evaluated with the results by QUAST [9] as
224	gold standard. These four datasets contain mainly relocations but a few translocations (Table S4). We
225	noticed that similar to metagenomes, the error regions in isolate genomes also have higher anomaly
226	scores and more read breakpoints than error-free regions (Fig. S15). We then compared metaMIC against
227	MEC [26], a recently-developed misassembly correction tool, when identifying misassembly breakpoints
228	on the four isolate genomes. As shown in Table 2, metaMIC identified more true misassemblies than
229	MEC, where approximately 80% misassemblies can be corrected compared to ~30% of MEC; and after
230	the correction by metaMIC, the total number of bases of uncorrected misassembled contigs (i.e.
231	misassembled contig length in Table 2) was significantly reduced compared with that by MEC.
232	To further see influence of misassembly correction on isolate genomes, we scaffolded original and
233	corrected contigs separately with popular scaffolders including BESST [27] and ScaffMatch [28], and
234	then used QUAST to evaluate the scaffolding results. As seen in Table 3 and supplementary Table 6, the

235	number of misassemblies in the scaffolding results based on metaMIC's corrected contigs was much
236	lower than that based on the original uncorrected contigs, and metaMIC significantly outperforms MEC
237	in terms of misassembled contig length. Moreover, metaMIC performs comparably well or better
238	compared against MEC in terms of NA50 and total aligned length, and performs better especially for
239	R.sphaeroides. The above results clearly show the effectiveness of metaMIC when identifying and
240	correcting misassembled contigs on isolate genomes, and also the capability of maintaining or improving
241	the contiguity of downstream scaffolding after correction.

242

243 Discussion

244 We present a novel tool named metaMIC to identify and correct misassembled contigs from *de novo* 245 metagenomic assemblies and demonstrate its effectiveness on both simulated and real metagenomic 246 datasets of varying complexity. Unlike most existing metagenomic assembly evaluation methods that 247 only evaluate individual contigs or overall assemblies, metaMIC is capable of localizing the misassembly 248 breakpoints and then corrects the misassembled contigs at breakpoints. By integrating various types of 249 features extracted from both reads and assemblies, including read coverage, mate pair consistency, 250 nucleotide variants and k-mer abundance consistency, metaMIC is able to detect intra- and inter-species 251misassemblies. Additionally, metaMIC can also be applied on isolate genomes given its ability in 252 identifying intra-species misassemblies. After the correction of misassemblies, metaMIC can 253 significantly help improve the performance of downstream analysis including binning and scaffolding. 254In this study, the performance of metaMIC is mainly shown on the metagenomic assemblies 255assembled by MEGAHIT due to its high memory efficiency [29]. As different assemblers tend to be

256	biased to certain types of misassemblies, the models trained on the outputs of one assembler may not
257	transfer well to other assemblers. Note that metaMIC can be easily extended to work on the metagenomic
258	assemblies by other assembler tools if the training datasets generated by the corresponding assemblers
259	are available. We suggest to use metaMIC on the datasets from the same assembler as the one it is trained
260	on.
261	metaMIC scans each contig with a sliding window of 100bp to localize the candidate error regions.
262	Generally, a shorter window size can have a higher resolution to pinpoint error regions but require more
263	computation resources while the longer window size can be robust to noise but are more likely to cover
264	multiple errors. In addition, metaMIC currently cannot distinguish the types of assembly errors. In the
265	future, more work is needed to determine the error types which in turn can help to correct misassemblies
266	more accurately.
267	metaMIC correction mainly relies on splitting contigs at misassembly breakpoints. However,
268	caution should be needed here as more fragmented sequences will be generated and mistakenly splitting
269	may result in disrupted gene structure, which can have adverse influence on downstream functional
270	genomic analysis. Although we have showed that metaMIC correction can improve the downstream
271	binning results, the quality of reconstructed draft bins can be further improved if the broken contigs can
272	be joined into scaffolds correctly. Thus, the combination of metaMIC and scaffolding algorithms will be
273	a promising direction for future research, leading to effective approaches for reconstructing genomes
274	from sequencing data with higher quality and completeness.
275	Several directions hold promise for further improvements to metaMIC. Firstly, metagenomic read

276 mapping can be evaluated in more robust manner by aligning multi-assigned reads in a probabilistic

277	manner to their contig of origin [30] or using base-level quality metrics such as CIGAR strings [31].
278	Secondly, increasing the amount of training data and integrating other assemblers such as metaSPAdes
279	[32] are also potential directions for the improvement of metaMIC. Thirdly, the factors that may result
280	in false positive predictions, such as structural variation within species of high similarity and G-C bias
281	in sequencing coverage could be taken into account in future work. Finally, as reference genomes of
282	many bacterium are available, a better performance can be achieved by the combination of reference-
283	free and reference-based approaches.

284

277

285 **Conclusions**

286 Here, a novel tool named metaMIC is developed for identifying and correcting misassemblies in de novo 287 metagenomic assemblies without the use of reference genomes. Benchmarking on both simulated and 288 real datasets, we show that metaMIC is able to pinpoint misassemblies in both single and metagenomic 289 assemblies. We also demonstrate that metaMIC is able to improve the scaffolding or binning results by 290 splitting misassembled contigs at misassembly breakpoints. As none of current assemblers can achieve 291 a completely accurate assembly and misassemblies in contigs have negative influence on downstream 292 analysis, we expect metaMIC can serve as a guide in optimizing metagenomic assemblies and help 293 researchers be aware of problematic regions in assembled contigs, so as to avoid misleading downstream 294 biological analysis. 295

296 **Methods**

297 metaMIC workflow

298	metaMIC is implemented in Python3 (Python \geq 3.6). It requires assembled contigs in FASTA format
299	and paired-end reads in FASTA or FASTQ format as input. Alternatively, the user can provide a BAM
300	file with read pairs mapping to contigs. Given the contigs, metaMIC will first identify the misassemblies
301	by employing a random forest classifier trained on the features extracted from reads and contigs. Next,
302	metaMIC will identify the regions containing misassembly breakpoints in the misassembled contigs
303	based on the anomaly scores, and then recognize the exact positions of the breakpoints in the error regions.
304	Then metaMIC will correct the misassemblies by splitting the contigs at the breakpoints. The details will
305	be given below.
306	
307	Features extracted from reads and contigs
308	BWA-MEM (v.0.7.17) [33] is used to map paired-end reads to assemblies, followed by using samtools
309	(v1.9) [34] to filter low quality mappings and sorting the alignments. Then four types of features will be
310	extracted from the sorted BAM file, including read coverage, mate-pair consistency, nucleotide variants
311	and <i>k</i> -mer abundance difference.
312	For each paired-end reads with left and right mate reads, the insert size corresponding to the distance
313	between two mates is assumed to follow normal distribution [26]. A read is regarded as a proper read if
314	the insert size belongs to $[\mu - 3\sigma, \mu + 3\sigma]$ and the orientation is consistent with its mate, and is a
315	discordant read otherwise. A read is regarded as a clipped read if it contains at least 20 unaligned bases
316	at either end of the read, and a read is regarded as a supplementary read if different parts of the read are
317	aligned to different regions of contigs.

318 The coverage-based features include standardized read coverage, fragment coverage and their 319 deviation. The read coverage per base represents the number of reads that are mapped over that base, and 320 the fragment coverage is the number of proper paired-end reads spanning that base. The read coverage 321 and fragment coverage are further standardized as the ones divided by the means of the corresponding 322 coverages of all bases across the contig or a given region. 323 The nucleotide variants information is extracted from BAM file with the help of samtools. metaMIC 324 counts the number of discordant, ambiguous and correct alignments separately at each position. For each 325 type of alignment in a contig, metaMIC will calculate the proportion of the alignment by dividing the 326 number of this type of alignments to the total number of mapped bases across the contig, and the same 327 for a given region. 328 metaMIC calculates the k-mer abundance difference (KAD) at each base based on the alignment of 329 paired-end reads to contigs. The KAD value, proposed by He et al [16], measures the consistency 330 between the abundance of a k-mer from short reads and the occurrence of the k-mer in the genome. A k-331 mer with KAD value not belonging to [-0.5, +0.5] will be regarded as an error k-mer, and a base is 332 regarded as an error base if an error k-mer covers that base. For a given contig, metaMIC will count the 333 number of error bases across the contig and divide it by the contig length. The proportion of error bases 334 within a given region from a contig will be calculated in the same way. 335 In summary, the above these four types of features will be extracted for the whole contig (contig-336 based features) or a window of 100bp (window-based features). The contig-based features will be used 337 to train a random forest to identify misassembled contigs, while the window-based features will be used 338 as input of isolate forests to recognize the error regions containing breakpoints.

339 Identification of misassembled contigs

340	With the above contig-based features, metaMIC trains a random forest [35] implemented in Scikit-Learn
341	[36] to discriminate misassembled contigs from those correctly assembled ones, where an ensemble of
342	1,000 trees are used. For each contig, a probability score representing the likelihood that the contig is
343	misassembled will be output by metaMIC. The random forest model was trained on a training dataset
344	containing contigs assembled from simulated bacterial metagenomes, whereas the ground truth
345	misassembly labels of contigs provided MetaQUAST are used as a target for training the model. Due to
346	the existence of strong class imbalance, we down-sampled the training dataset to obtain the same number
347	of correct contigs paired with the misassembled contigs.
348	

349 Localizing breakpoints in misassembled contigs

350 After identifying misassembled contigs, metaMIC is able to localize the misassembly breakpoints in 351 those misassembled contigs. Firstly, metaMIC scans each contig with a sliding window of 100bp, and 352 calculates an anomaly score for each window by employing isolation forest [37] based on window-based 353 features to localize the error regions containing misassembly breakpoints, where the region with a higher 354 anomaly score may be an error region; Secondly, metaMIC uses the read breakpoint ratio to recognize 355 the exact misassembly breakpoint in an error region. Specifically, for a given predicted misassembled 356 contig, metaMIC identifies a 100bp region with the highest anomaly score as an error region and then 357 the position with the highest read breakpoint ratio within this window as the misassemly breakpoint. For 358 those error regions without read breakpoints, the central position of the error region is regarded as the 359 misassembly breakpoint.

360 Evaluation of binning results

- 361 When evaluating a set of bins reconstructed from simulated microbial datasets, we use BLASTn to map
- 362 each bin against the ground truth genomes used for each dataset. A representative genome of each bin is
- 363 determined based on the genome which can be covered by the highest fraction of nucleotides from that
- 364 bin. Then for each bin, we define the number of nucleotides in the bin that belong to the representative
- 365 genome as true positives (TP). The total number of nucleotides from the bin not covered by the
- 366 representative genome corresponds to the false positives (FP), and the number of nucleotides in the
- 367 representative genome not covered by any contigs from that bin represents the false negatives (FN). Then

368 the completeness, contamination and F1 score of each bin can be calculated as follows.

$$369 \qquad \qquad completeness = \frac{TP}{TP + FN}$$

$$370 \qquad \qquad purity = \frac{TP}{TP + FP}$$

$$371$$
 contamination = 1 – purity

372
$$F1 \ score = \frac{2 \ * \ completeness \ * \ purity}{completeness \ + \ purity}$$

For the real metagenomics data sets where the ground truth genomes are inaccessible, we employ

374 CheckM [38] to estimate the completeness and contamination of each bin.

375

376 Abbreviations

377 MAG: metagenome-assembled genomes

378 **bp**: base pair

- 379 **AUPRC**: area under the precision-recall curve
- 380 **KAD:** *k*-mer abundance difference

381 **References**

- Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ, Schatz MC,
 Delcher AL, Roberts M, et al: GAGE: A critical evaluation of genome assemblies and
 assembly algorithms. *Genome Res* 2012, 22:557-567.
- Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, Gregor I, Majda S, Fiedler
 J, Dahms E, et al: Critical Assessment of Metagenome Interpretation-a benchmark of
 metagenomics software. Nat Methods 2017, 14:1063-1071.
- Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz
 F, Jarett J, Rivers AR, Eloe-Fadrosh EA, et al: Minimum information about a single
 amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of
 bacteria and archaea. Nat Biotechnol 2017, 35:725-731.
- 3924.Shaiber A, Eren AM: Composite Metagenome-Assembled Genomes Reduce the393Quality of Public Genome Repositories. mBio 2019, 10.
- 3945.Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF: Accurate and complete395genomes from metagenomes. Genome Res 2020, 30:315-333.
- Kingsford C, Schatz MC, Pop M: Assembly complexity of prokaryotic genomes using
 short reads. *BMC Bioinformatics* 2010, 11:21.
- 3987.Nagarajan N, Pop M: Parametric complexity of sequence assembly: theory and399applications to next generation sequencing. J Comput Biol 2009, 16:897-908.
- 4008.Mikheenko A, Saveliev V, Gurevich A: MetaQUAST: evaluation of metagenome401assemblies. *Bioinformatics* 2016, **32:**1088-1090.
- 402 9. Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: quality assessment tool for genome
 403 assemblies. *Bioinformatics* 2013, 29:1072-1075.
- Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA,
 Hoffman JM, Remington K, et al: The Sorcerer II Global Ocean Sampling expedition:
 northwest Atlantic through eastern tropical Pacific. *PLoS Biol* 2007, 5:e77.
- 407 11. Zhu X, Leung HC, Wang R, Chin FY, Yiu SM, Quan G, Li Y, Zhang R, Jiang Q, Liu B, et al:
 408 misFinder: identify mis-assemblies in an unbiased manner using reference and
 409 paired-end reads. *BMC Bioinformatics* 2015, 16:386.
- 410 12. Clark SC, Egan R, Frazier PI, Wang Z: ALE: a generic assembly likelihood evaluation
 411 framework for assessing the accuracy of genome and metagenome assemblies.
 412 *Bioinformatics* 2013, 29:435-443.
- 413 13. Mineeva O, Rojas-Carulla M, Ley RE, Scholkopf B, Youngblut ND: DeepMAsED:
 414 evaluating the quality of metagenomic assemblies. *Bioinformatics* 2020, 36:3011-3017.
- 415 14. Kuhring M, Dabrowski PW, Piro VC, Nitsche A, Renard BY: SuRankCo: supervised ranking
 416 of contigs in de novo assemblies. *BMC Bioinformatics* 2015, 16:240.
- 417 15. Olson ND, Treangen TJ, Hill CM, Cepeda-Espinoza V, Ghurye J, Koren S, Pop M:
 418 Metagenomic assembly through the lens of validation: recent advances in assessing
 419 and improving the quality of genomes assembled from metagenomes. *Brief Bioinform*420 2019, 20:1140-1150.
- 421 16. He C, Lin G, Wei H, Tang H, White FF, Valent B, Liu S: Factorial estimating assembly base

422		errors using k-mer abundance difference (KAD) between short reads and genome
423		assembled sequences. NAR Genom Bioinform 2020, 2:Iqaa075.
424	17.	Pruitt KD, Tatusova T, Maglott DR: NCBI reference sequences (RefSeq): a curated non-
425		redundant sequence database of genomes, transcripts and proteins. Nucleic Acids
426		<i>Res</i> 2007, 35: D61-65.
427	18.	Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the elusive mis-
428		assembly. Genome Biol 2008, 9: R55.
429	19.	Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD: REAPR: a universal tool
430		for genome assembly evaluation. <i>Genome Biol</i> 2013, 14: R47.
431	20.	Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett
432		A, Ghensi P, et al: Extensive Unexplored Human Microbiome Diversity Revealed by
433		Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle.
434		<i>Cell</i> 2019, 176: 649-662 e620.
435	21.	Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RD:
436		A new genomic blueprint of the human gut microbiota. <i>Nature</i> 2019, 568: 499-504.
437	22.	Miller JR, Zhou P, Mudge J, Gurtowski J, Lee H, Ramaraj T, Walenz BP, Liu J, Stupar RM,
438		Denny R, et al: Hybrid assembly with long and short reads improves discovery of gene
439		family expansions. <i>BMC Genomics</i> 2017, 18 :541.
440	23.	Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q: Opportunities and
441		challenges in long-read sequencing data analysis. <i>Genome Biol</i> 2020, 21: 30.
442	24.	Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL: GAGE-B: an
443		evaluation of genome assemblers for bacterial organisms. <i>Bioinformatics</i> 2013,
444		29: 1718-1725.
445	25.	Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de
446		Bruijn graphs. <i>Genome Res</i> 2008, 18: 821-829.
447	26.	Wu B, Li M, Liao X, Luo J, Wu F, Pan Y, Wang J: MEC: Misassembly Error Correction in
448		contigs based on distribution of paired-end reads and statistics of GC-contents.
449		IEEE/ACM Trans Comput Biol Bioinform 2018.
450	27.	Sahlin K, Vezzi F, Nystedt B, Lundeberg J, Arvestad L: BESSTefficient scaffolding of
451		large fragmented assemblies. BMC Bioinformatics 2014, 15:281.
452	28.	Mandric I, Zelikovsky A: ScaffMatch: scaffolding algorithm based on maximum weight
453		matching. <i>Bioinformatics</i> 2015, 31: 2632-2638.
454	29.	van der Walt AJ, van Goethem MW, Ramond JB, Makhalanyane TP, Reva O, Cowan DA:
455		Assembling metagenomes, one community at a time. <i>BMC Genomics</i> 2017, 18: 521.
456	30.	Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S: TransRate: reference-free
457		quality assessment of de novo transcriptome assemblies. Genome Res 2016, 26:1134-
458		1144.
459	31.	Reppell M, Novembre J: Using pseudoalignment and base quality to accurately
460		quantify microbial community composition. <i>PLoS Comput Biol</i> 2018, 14: e1006096.
461	32.	Nurk S, Meleshko D, Korobeynikov A, Pevzner PA: metaSPAdes: a new versatile
462		metagenomic assembler. Genome Res 2017, 27:824-834.
463	33.	H L: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
		20

20

464		preprint at <u>https://arxivorg/abs/13033997?upload=1</u> 2013.
465	34.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
466		R, Genome Project Data Processing S: The Sequence Alignment/Map format and
467		SAMtools. Bioinformatics 2009, 25:2078-2079.
468	35.	Breiman L: Random forests. Mach Learn 2001, 45:5-32.
469	36.	Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
470		Prettenhofer P, Weiss R, Dubourg V, et al: Scikit-learn: Machine Learning in Python.
471		Journal of Machine Learning Research 2011, 12: 2825-2830.
472	37.	Liu FT, Ting KM, Zhou Z-HJAToKDfD: Isolation-based anomaly detection. 2012, 6:1-39.
473	38.	Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW: CheckM: assessing the
474		quality of microbial genomes recovered from isolates, single cells, and metagenomes.
475		<i>Genome Res</i> 2015, 25: 1043-1055.
476		
477		
478		
479		
480		
101		
481		
482		
102		
483		
484		
485		
486		
487		
488		
100		
489		
-		
490		

491 Figures

492	Fig. 1 Overall framework of metaMIC. a metaMIC extracts four types of features from the alignment of
493	paired end reads to contigs: read coverage, nucleotide variants, mate pair consistency, and k-mer
494	abundance consistency. b Misassembled contigs are identified by metaMIC based on the four features. c
495	metaMIC first identifies the error regions containing misassembly breakpoints, and then recognizes the
496	exact positions of breakpoints and corrects misassemblies by splitting misassembled contigs at
497	breakpoints.
498	Fig. 2 metaMIC outperforms ALE and DeepMAsED in identifying misassembled contigs in simulated
499	metagenomic datasets. a-d The performance of the three tools on the CAMI-medium (M) and high-
500	complexity (H) communities (a), CAMI2-Skin (b), CAMI2-Gut (c), and simulated virome dataset (Sim-
501	<i>Virome</i>) (d). e The AUPRC scores of metaMIC on test datasets assembled by MEGAHIT or IDBA_UD
502	(Test assembler), where metaMIC were trained on contigs from training datasets assembled by
503	MEGAHIT, IDBA_UD, or jointly by MEGAHIT and IDBA_UD (MEGAHIT+IDBA_UD).
504	Fig. 3 The performance of metaMIC in localizing misassembly breakpoints on CAMI datasets. a, b The
505	distribution of anomaly scores (a) and read breakpoint ratios (b) of different misassembly types across
506	contigs from CAMI1-Medium. c The receiver operation curves by ALE, anomaly scores and read
507	breakpoint ratios when discriminating error regions from error-free regions in CAMI1-Medium,
508	respectively. d, e The distribution of error size of misassembly breakpoints recognized by metaMIC on
509	CAMI1-Medium (Medium), CAMI1-High (High), CAMI2-Skin (Skin), CAMI2-Gut (Gut) and CAMI2-
510	Oral (Oral) (d), and different misassembly types in CAMI1-Medium (e). f The distribution of normalized
511	error size of misassembly breakpoints recognized by metaMIC and ALE on CAMI1-Medium.

512 Fig. 4 Splitting misassembled contigs at breakpoints improves the downstream binning results over Sim-513 Virome and CAMI1-Medium datasets. a The number of high-quality bins with low contamination (<5%) 514 of different completeness reconstructed from original and corrected contigs. b The distribution of F1 515scores for bins reconstructed based on contigs before and after correction, where only those bins whose 516 results change before and after correction were shown for clearness. 517 Fig. 5 The performance of metaMIC on real metagenomic datasets. a The number of bins of different 518 completeness with low contamination (<5%) reconstructed from original and corrected assemblies of 519 'Ethiopian' (left) and 'Madagascar' (right) cohorts. b Comparison of F1 scores for reconstructed bins 520 before and after correction of contigs from 'Ethiopian' (top) and 'Madagascar' (bottom) cohorts. c An 521 example of a predicted misassembled contig "k141 847840" assembled from combined rumen fluid and 522 solid sample. The top plot shows the alignment result of Illumina short-read assembled contig 523 "k141 847840" and PacBio long-read assembled contigs ("contig 982" and "contig 158"), where two 524 regions in the "k141 84780" (1201-6738bp and 6920-8700bp) were aligned to "contig 982" and 525 "contig 158", respectively. The middle figure shows a snapshot of Integrative Genomics Viewer for 526 contig "k141 847840". The bottom plot shows the anomaly score (blue) and read breakpoint ratio (green) 527 across contig "k141 847840". 528

- 529
- 530
- 531
- 532

533 Tables

Species	Correction tool	Misassembled contig length	FN	TP	FP
	raw 1,189,973		20	\	/
M. abscessus	MEC 982,986		14	6	2
	metaMIC	593,741	6	14	2
	raw	597,777	7	\	/
V. cholerae	MEC	597,183	6	1	0
	metaMIC	205,644	3	4	1
	raw	135,153	2	\	/
R. sphaeroides	MEC	64,489	1	1	0
-	metaMIC	0	0	2	7
	raw	117,830	5	\	/
B. cereus	MEC	56,086	4	1	0
	metaMIC	28,068	1	4	3

534 **Table 1** Performance comparison of metaMIC and MEC on four real datasets from the GAGE-B project.

535	Misassembled contig length denotes the total number of bases in the raw misassembled contigs or the
536	misassembled contigs that cannot be corrected by MEC or metaMIC; True positive (TP) is the number
537	of true misassemblies identified by the error correction tool; False positive (FP) is the number of
538	misassemblies which are actually correct but mistakenly identified as misassemblies; False negative (FN)
539	denotes the number of true misassemblies that are not identified.
540	
541	
542	
543	
544	
545	
546	
547	

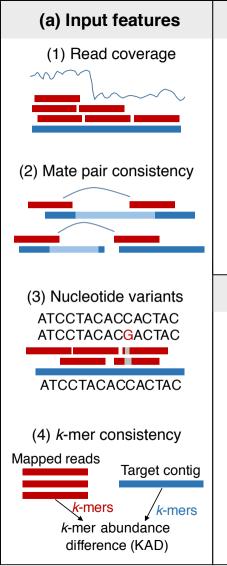
Species	Correction tool	#Contigs	#Total aligned length	Total length(>=0bp)	Total length(>=1000bp)	Misassembled contig length	NA50	#Mis
	raw	262	5,045,398	5,160,404	5,129,190	1,303,084	45,957	27
M.abscessus	MEC	268	5,045,445	5,160,476	5,129,015	982,986	40,129	24
	metaMIC	274	5,045,398	5,160,404	5,129,190	755,186	47,488	17
	raw	201	3,936,390	3,958,533	3,921,645	597,777	43,122	10
V.cholerae	MEC	202	3,935,796	3,958,533	3,921,645	597,183	43,122	9
	metaMIC	205	3,936,390	3,958,533	3,921,645	205,644	43,123	7
	raw	231	4,492,687	4,519,491	4,486,060	359,217	75,728	5
R.sphaeroides	MEC	230	4,492,749	4,519,550	4,486,119	168,646	78,611	4
	metaMIC	232	4,493,107	4,520,061	4,486,630	51,809	78,920	3
	raw	141	5,310,597	5,381,347	5,369,165	332,560	104,970	7
B.cereus	MEC	140	5,310,816	5,381,940	5,369,758	332,001	104,970	7
	metaMIC	140	5,311,395	5,382,650	5,370,789	175,743	104,970	5

548 **Table 2** Comparison of BESST scaffolding results of contigs before and after correction.

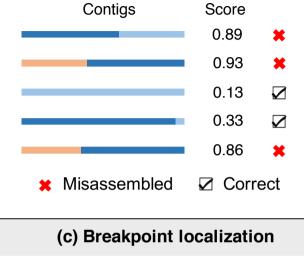
549 #Mis denotes the number of scaffolds that contain misassemblies; Total aligned length denotes the

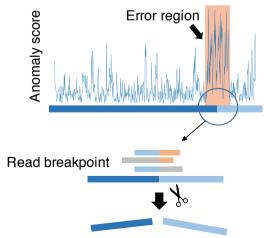
550 length of total number of bases from contigs that can be aligned to the assembly.

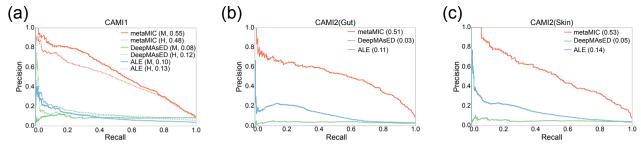
551

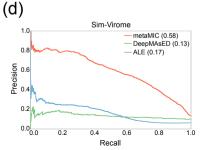


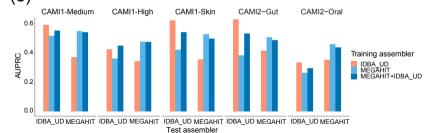
(b) Misassembled contig identification

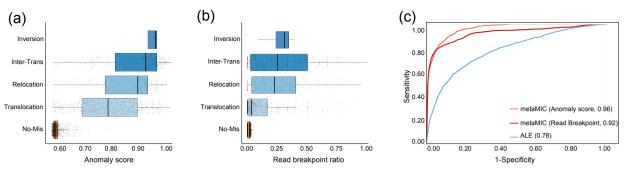


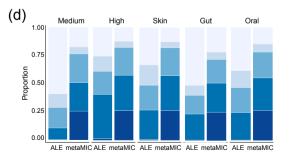


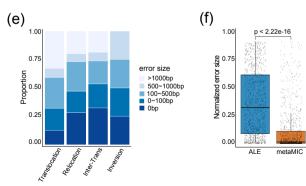




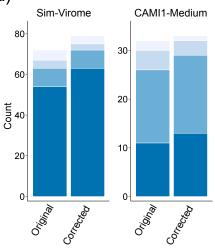








(a)



Completeness

>60% >70% >80% >90%

