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Abstract

We present a fluorescence fluctuation image correlation analysis method that can rapidly and

simultaneously measure the diffusion coefficient, photoblinking rates, and fraction of diffusing par-

ticles of fluorescent molecules in cells. Unlike other image correlation techniques, we demonstrated

that our method could be applied irrespective of a non-uniformly distributed, immobile blinking

fluorophore population. This allows us to measure blinking and transport dynamics in complex

cell morphologies, a benefit for a range of super-resolution fluorescence imaging approaches that

rely on probe emission blinking. Furthermore, we showed that our technique could be applied

without directly accounting for photobleaching. We successfully employed our technique on sev-

eral simulations with realistic EMCCD noise and photobleaching models, as well as on Dronpa-C12

labeled beta-actin in living NIH/3T3 and HeLa cells. We found that the diffusion coefficients mea-

sured using our method were consistent with previous literature values. We further found that

photoblinking rates measured in the live HeLa cells varied as expected with changing excitation

power.

INTRODUCTION

The past decade has seen a revolution in optical microscopy with the advent of far-

field super-resolution approaches. Fluorescence super-resolution microscopy has become an

invaluable tool for furthering our understanding of biological systems by allowing one to

circumvent the diffraction limited resolution of traditional fluorescence microscopy tech-

niques, leading to important insights in cell biology, neuroscience and cellular biophysics.[1–

5] Among the super-resolution imaging techniques, single-molecule localization microscopy

(SMLM) methods are one of the most commonly used. These methods rely on photophysical

processes to localize the position of single fluorophores with a spatial uncertainty much lower

than the wavelength diffraction limit of light. Some popular examples of such techniques

are stochastic optical reconstruction microscopy (STORM)[6] and photoactivated localiza-

tion microscopy (PALM).[7] Super-resolution optical fluctuation imaging (SOFI)[8] also re-

lies on the stochastic photoswitching nature of fluorophores, but builds super-resolution
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images using the cumulants of the fluorescence fluctuations. Many applications of super-

resolution, however, have so far been limited to studying immobile components in cells, or

static molecules in chemically fixed cells, without examining their dynamic counterparts.

While super-resolution has also been coupled with quantitative methods to investigate these

dynamics, there are currently only a limited number of approaches that combine super-

resolution imaging and measurement of dynamics. Notably, stimulated emission deple-

tion (STED) microscopy was combined with fluorescence correlation spectroscopy (FCS)

in STED-FCS,[9] which was shown to better characterize heterogeneous diffusive behavior

of membrane biomolecules than traditional FCS by reducing the beam spot size. Scanning

versions of this technique exist, as well.[10, 11] Single-particle tracking (SPT) and PALM

were also combined in sptPALM.[12] Minimal photon fluxes (MINFLUX)[13] is also capa-

ble of super-resolved SPT. Another example is fcsSOFI, which combines FCS and SOFI

techniques to form super-resolved diffusion maps.[14]

Many methods currently exist for measuring the dynamics in biological systems and a sig-

nificant subset rely on measurement of fluorescence fluctuations to compute autocorrelations

that are then fit with specific models to measure transport parameters, such as biomolecule

diffusion coefficients and directed flow rates. Conventional FCS[15–17] is a widely used ex-

ample that analyzes fluorescence fluctuation time series collected from a single fixed laser

focal spot. Imaging FCS[18] was developed to allow for multiplexed FCS analysis of pixels

forming a fluorescence image. Similarly, image correlation spectroscopy (ICS) methods[19–

22] also analyze fluorescence fluctuations in images, but utilize both spatial and temporal

information when computing the autocorrelation. One advantage of ICS techniques is that

the use of spatial information increases statistical sampling; however, the inherent spatiotem-

poral heterogeneity in biological systems makes it difficult to simply average over different

pixels and frames. ICS techniques usually handle spatiotemporal heterogeneity by analyzing

many smaller local regions of interest (ROIs), and then correlating over a chosen time of

interest (TOI). This is the approach for generating flow maps when using spatiotemporal

image correlation spectroscopy (STICS).[21] The most challenging example of heterogeneity

in time in fluorescence microscopy is the issue of photobleaching, which has been addressed

using both pre-[23–25] and post-processing[26–30] methods. Another example is anomalous

diffusion, which has been investigated in multiple FCS studies.[31–36]

As super-resolution aims to better resolve complex cell processes in space and time, a tech-
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nique that can analyze dynamics in the presence of spatially and temporally heterogeneous

structures is required. Here we present an image correlation method that can successfully

and rapidly analyze heterogeneous systems for accurate measurement of biomolecule diffu-

sion coefficients, probe photoblinking rates and determine the fraction of particles undergo-

ing diffusion (see Figure 1). Along with measuring dynamic parameters in a complex cell

environment, we anticipate that the measurement of probe photoblinking rates will be useful

for optimal fluorescent probe development and optimization for methods like STORM and

SOFI. The ability of our method to analyze spatially heterogeneous systems further allows

us to significantly increase the spatial sampling used in our autocorrelation computation.

Our method is based on k-space image correlation spectroscopy (kICS),[19] which was orig-

inally developed for measuring transport parameters independently from the fluorophore

photophysics. Similar to other ICS techniques, one of the underlying assumptions behind

kICS is uniformity in space and time in the data being analyzed.[20] Non-uniformity in

space caused by the presence of immobile structures were commonly filtered out by either

subtracting the time average, or equivalently, applying a Fourier filter. This solution does

not work, however, when the fluorophores labeling these structures are undergoing photo-

physical processes e.g. photoblinking and photobleaching on timescales comparable to the

imaging, thus making them difficult to analyze with traditional ICS methods. This is es-

pecially relevant in the context of SMLM and SOFI methods. Therefore, this significant

extension of kICS is important for dealing with real heterogenities in space and time in the

complex cellular environment.

We begin by showing that our definition of the autocorrelation is approximately indepen-

dent of immobile particle positions. We then derive the autocorrelation for a mixed system

of photoblinking immobile and diffusing particles that is independent of any direct imaging

parameters in 2D, such as the point spread function (PSF). We proceed to demonstrate the

accurate measurement of diffusion and photophysical parameters, when applying our tech-

nique on simulations. We then employ our method on Dronpa-labeled beta-actin (β-actin)

imaged in live 3T3 and HeLa cells. Our measured diffusion coefficients for β-actin from

these experiments are consistent with previously reported values. Furthermore, we observed

that the photoblinking follows the expected dependence on excitation power in our HeLa

cell experiments.
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FIG. 1: Schematic illustrating extended kICS method application. (A) An ROI and slid-
ing time-window are first chosen from an image series. Intensity fluctuations are computed
locally in time, according to the chosen time-window size, to mitigate the effects of pho-
tobleaching. (B) The 2D spatial Fourier transforms of the intensity fluctuations are first
computed in each frame, then this k-space ROI frame stack is autocorrelated in time. A
circular averaging of the autocorrelation is also calculated when the dynamics of the system
are isotropic. Non-uniformly distributed, immobile blinking fluorophore populations do not
systematically affect the fluctuation defined autocorrelation. (C) Computed ACF (points)
and simultaneous fits (lines) over five time-lags. (D) The process of computing the ACF and
fitting is rapid (order of seconds for 64 × 64 pixel image series) and outputs: the diffusion
coefficient (D), the sum of the photoblinking rates (K), the fraction of time spent in the
on-state (ρon), and the fraction of diffusing particles relative to all particles (fD).
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THEORY

In the development of the original kICS technique by Kolin et al. (2006),[19] it was

shown that diffusion and flow dynamics could be recovered regardless of the photophysical

properties of the flurophores (e.g. photoblinking and photobleaching). However, the origi-

nal method did not consider the presence of immobile particle populations also undergoing

photophysical processes. We show here that with the presence of such populations, one

cannot simply apply the original kICS analysis technique. We further derive an expression

for the autocorrelation function (ACF) that we simultaneously fit for transport and photo-

physical parameters. This expression is independent of any direct imaging parameters in

2D (e.g. PSF size, amplitude, etc.), as well as the immobile particle positions, allowing us

to probe systems with complex immobile particle spatial arrangements and non-uniform cell

morphologies. Furthermore, this enables us to maximize statistical spatial sampling when

computing the ACF. This is in contrast with other image correlation techniques, which

require spatially uniform regions for analysis.[20] Consequently, previous image correlation

techniques would not be able to include cell boundaries and narrow projections, such as

dendritic spines and narrow cellular lamellae, such as dendritic projections, when choosing

ROIs for analysis. The 2D model presented here can be used to model membrane dynamics

sampled using TIRF microscopy, for example. We later extend this to the 3D case when

analyzing the live 3T3 and HeLa cell data. We will refer to the developed technique as an

extended kICS method.

We begin with the definition of a fluorescence microscopy image series of intensities in

2D, i(r, t):

i(r, t) =
∑
α

i(α)
s (r, t) + ε(r, t) =

∑
α

I(r) ~r ρ
(α)(r, t) + ε(r, t), (1)

where i
(α)
s (r, t) is the fluorescence intensity from the labeled particles at position r and time

t, belonging to population α with common transport parameters; I(r) is the PSF; ~r is a

spatial convolution; ε(r, t) is an additive noise term, which is assumed to be independent

from itself for any (r, t) 6= (r′, t′); and ρ(α)(r, t) is the apparent particle density of population

α i.e. the density of particles in population α that are emitting and detectable. Note we

only consider dependence of population α on particle position in this work. The apparent
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density of particles belonging to population α is given by:

ρ(α)(r, t) =
∑
m

qm,tΘm,tδ(r − u
(α)
m,t). (2)

In this last equation, δ(·) is the 2-dimensional Dirac delta function; m is an index denoting

the fluorophores (which we also refer to as “particles”); qm,t is the instantaneous rate of

detector counts for the mth fluorophore at time t, which depends on several factors, including

the photon budget, quantum efficiency of the detector, and camera detector gain; u
(α)
m,t is

the position of the mth fluorophore at time t (belonging to population α), and Θm,t is its

photo-emissive state, expressed as:

Θm,t =

 1 mth particle is fluorescing at time t

0 not emitting
. (3)

Note we do not consider photophysical transitions between singlet states (i.e. absorp-

tion/emission and quenching), as these are far beyond the time-resolution capabilities of

electron multiplying charge-coupled device (EMCCD) camera detectors.

Since we developed this approach for widefield fluorescence microscopy, we account for

faster processes by also considering the effects of camera detector integration time by

substituting:[30]

i(r, t)→
∫ t+τi

t

ds i(r, s), (4)

with τi being the integration time (in this work, we consider τi = 1); however, we leave the

integration out of the notation, as it is straightforward to redo the derivation with it.

Defining the spatial Fourier transform as f̃(k) ≡
∫

dr exp(−ik · r)f(r), we have the

Fourier counterparts of Eqs. (1) and (2); respectively,

ĩ(k, t) = Ĩ(k)
∑
α

ρ̃(α)(k, t) + ε̃(k, t), (5)

and,

ρ̃(α)(k, t) =
∑
m

qm,tΘm,t exp
(
−ik · u(α)

m,t

)
. (6)

In this work, we calculate the autocorrelation as:

φ̃(k, τ) ≡ 〈δtĩ(k, t)δtĩ∗(k, t+ τ)〉t. (7)
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Practically, the above autocorrelation is realized by computing a time-average, therefore we

use the notation 〈. . .〉t to denote an expectation value that only considers random variables

that depend on time to be random. We also define δt as a fluctuation with respect to the

time average, i.e.

δtĩ(k, t) ≡ ĩ(k, t)− 〈̃i(k, t)〉t. (8)

Note in the original kICS work,[19] the autocorrelation was defined without the fluctuations.

In the Supporting Information (SI), we show that the original definition leads to noisy

autocorrelations affected by the immobile blinking particle positions (see SI:Comparison

with original kICS method). Using the Fourier transform of an image series in Eq. (5), we

can express the autocorrelation in Eq. (7) as:

φ̃(k, τ) = |Ĩ(k)|2
∑
α,β

〈δtρ̃(α)(k, t)δtρ̃
∗(β)(k, t+ τ)〉t + 〈δtε̃(k, t)δtε̃∗(k, t+ τ)〉t

+

{
Ĩ(k)

∑
α

〈δtρ̃(α)(k, t)δtε̃
∗(k, t+ τ)〉t + Ĩ∗(k)

∑
α

〈δtρ̃∗(α)(k, t+ τ)δtε̃(k, t)〉t

}
.

(9)

The terms in the curly brackets are 0, assuming noise and particle positions are independent.

We show in the SI (see SI:Noise autocorrelation) that the autocorrelation of the noise (i.e. the

second term) only affects τ = 0 by a constant offset, which we will denote by φ̃ε. Note

|k|2 = 0 is also affected by the noise, but is omitted from the analysis.

Using Eq. (6), for immobile populations we have:

δtρ̃
(α)
imm(k, t) = q

∑
m

δtΘm,t exp
(
−ik · u(α)

m

)
, (10)

where we have assumed all fluorophores have equal quantal brightness (i.e. qm,t = q). Note

further that the time indexing is dropped for immobile particle positions so that they are

unaffected by the time averaging. Conversely, for mobile populations:

δtρ̃
(α)
mob(k, t) = q

∑
m

Θm.t exp
(
−ik · u(α)

m,t

)
, (11)

since
〈

exp
(
−ik · u(α)

m,t

)〉
t

= 0 for |k| 6= 0, assuming the mobile particle positions are uni-

formly distributed in space within the chosen ROI.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449491doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449491
http://creativecommons.org/licenses/by-nc-nd/4.0/


Using Eqs. (10) and (11), Eq. (9) for one mobile and one immobile population becomes:

φ̃(k, τ) = q2|Ĩ(k)|2×{
Nimm∑
m=n

〈δtΘm,tδtΘn,t+τ 〉t +

Nimm∑
m6=n

〈δtΘm,t〉t〈δtΘn,t+τ 〉t exp (−ik · (um − un))︸ ︷︷ ︸
immobile

+

Nmob∑
m=n

〈Θm,tΘn,t+τ 〉t 〈exp (−ik · (um,t − un,t+τ ))〉t︸ ︷︷ ︸
mobile

}
+ φ̃εδτ,0, (12)

where we have assumed non-identical particles are mutually independent, so that we can sum

their individual autocorrelations, and δτ,0 is the Kronecker delta function. Note the fluctu-

ations are not necessarily expected to vanish in the second term since, in practice, they are

computed by subtracting the sample time average, which does not converge to the ensemble

average in non-ergodic systems. Furthermore, subtraction by the spatial average only affects

the autocorrelation at |k| = 0. Notice also the second term is affected by the immobile par-

ticle positions, which is why we need to define conditions when it is approximately zero. It is

clear that without photobleaching (or any other non-stationary photophysical process) the

photophysical fluctuations are indeed zero on average; however, in the presence of bleaching

the fluctuations need to be properly defined to make sure the second term in Eq. (12) is ap-

proximately zero. For this reason, we use local time-averaging over a subset time-window to

compute Eq. (8) in practice (see “Autocorrelation computation” in Materials and Methods),

i.e.

δtĩ(k, t) = ĩ(k, t)− 1

Tw

t+Tw−1∑
s=t

ĩ(k, s), (13)

where Tw is the window size chosen for the local time-average. If the photobleaching is slow

and Tw is large enough, then Eq. (8) is a good approximation of Eq. (13). On the other

hand, if the photobleaching is significant one must account for Tw in the autocorrelation (see

SI: Time-windowed correction, where we provide an expression for this correction). Eq. (8)

will also not hold when the dynamics in the system are slow and resemble immobility; in

this case, the effects of time-windowing should again be accounted for (for example, see

Figure 2 (C)). Note that if the second term in Eq. (12) is zero, then the autocorrelation is

independent of any assumptions on immobile particle positions, making it a powerful tool to

study previously inaccessible systems using image correlation. Time-windowed, or moving-
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average subtraction, has been previously used in raster ICS (RICS) as a way to filter out

slow-moving fluorescent objects.

In order to obtain a quantity that is independent of PSF, we define the autocorrelation

function (ACF) as:

Φ̃(|k|2, τ) ≡ φ̃(|k|2, τ)

φ̃(|k|2, τ = 0)− lim|k|2→∞ φ̃(|k|2, τ = 0)
. (14)

The second term in the denominator removes dependence of the ACF on the noise; prac-

tically, it is computed as the large |k|2 offset in the autocorrelation. Furthermore, if the

mobile components of the system being analyzed are isotropic, one can circularly average

the autocorrelations for statistical sampling purposes.[19, 20, 37] Since the focus of this work

will be on such systems, the dependence of the ACF in this last equation is on |k|2. It should

also be mentioned that this definition of the ACF leads to division by zero after sufficient

decay of the PSF, so that the ACF must be appropriately trimmed in |k|2 prior to fitting.

For a 2D mixture of diffusing and immobile particles, Eq. (14) can be written explicitly

as:[19, 30, 38]

Φ̃(|k|2, τ) =
fD
(
ρon + (1− ρon)e−Kτ

)
e−|k|

2Dτ + (1− fD)(1− ρon)e−Kτ

1− (1− fD)ρon

, (15)

whereD is the diffusion coefficient; K ≡ kon+koff is the sum of the photoblinking rates, where

kon and koff are the on- and off-blinking rates, respectively; ρon is the fraction of time spent in

the fluorescent on-state; and fD is the fraction of particles diffusing. Note that the blinking in

this last expression is assumed to follow a two-state on-off model, without photobleaching.

In the SI, we include a derivation considering the effects of bleaching and detector time-

integration, as well as a derivation for the 3D effects on the ACF (see SI:Autocorrelation

function derivation).

RESULTS AND DISCUSSION

Computer simulations

We first apply our extended kICS method on 2D computer simulations of immobile fila-

mentous structures, composed of fixed emitting particles, with a second simulated population

of freely diffusing particles, as shown in Figure 2. The fit results from this figure are tabu-
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lated in Table I. The fitted parameters demonstrate the wide range of diffusion coefficients

that are measurable in heterogeneous morphologies using our extended technique.

The simulations assumed both immobile and diffusing particle populations to have the

same photoblinking and photobleaching rates. Each simulation also contained simulated

EMCCD noise (see Sehayek et al. (2019)[30] for noise model details). Note the non-

uniformity in the immobile particle positions placed along the simulated filaments in Fig-

ure 2, which confirms that the technique can be successfully applied in non-homogeneous

systems. Conversely, previous image correlation techniques required ROIs to be selected

where the spatial distribution of particles was homogeneous e.g. avoiding cell boundaries

(see the SI where we compare our extended kICS technique to the original one).[20] It would

be impossible to select such an ROI with both diffusing and immobile particles in the simula-

tions shown in Figure 2. The ability to analyze larger ROIs further enables us to increase the

spatial sampling in our analyses; however, we assume that all the particles within this ROI

have transport and photophysical parameters that are drawn from common distributions

i.e. we assume a single diffusing population and a single photophysical population (while

the extension to multiple populations with different dynamic parameters is possible, one

must be mindful of the possibility of overfitting). Thus, our analysis offers a coarse-grained

approach for quickly measuring these parameters within regions. SPT is beneficial when

a common distribution cannot be assumed for such parameters. However, the fluorescence

correlation approach can be applied to cell expression systems where high density labeling

might not permit SPT. SPT is also limited by factors such as photoblinking in transport

populations.

In Figure 2 (B), the shape of the ACF is characterized by a decay at low |k|2, and a

convergence to a non-zero value at higher |k|2. The former is attributed to the diffusion

coefficient, while the latter is due to the presence of an immobile particle population, as can

be seen from Eq. (15) (note that these fits use the time-integrated version of this equation;

see SI:Autocorrelation function derivation for details). The decrease in the ACF amplitude

and offset with increasing time-lag is due to the photophysical processes in the system

i.e. photoblinking and photobleaching.

When the ACF is characterized by an initial increase along |k|2, as is the case in Figure 2

(C), one needs to account for the effect of the sliding time-window (see SI:Time-windowed

correction). This type of behavior occurs when the diffusion is relatively slow, or when the
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chosen time-window is relatively short.

In Figure 2 (D), we show sample images from a simulation with more noise. Specifically,

we increased the simulated autofluorescence background, while decreasing the photon budget

of the simulated fluorophores. To accurately analyze such an image series, we required

larger ROIs than the ones used in the previous analyses. Consequently, we generated this

simulation on a 256× 256 pixel grid.
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...
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D

0.1 0.2 0.3 0.4 0.5
0
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𝐷 = 5

𝐷 = 0.01

𝐷 = 1

FIG. 2: Example ACFs and fits computed from simulations of filamentous structures, com-
posed of static blinking particles, with a second population of freely diffusing particles. Both
populations are set to have the same photophysical properties. Each simulation also con-
tained simulated EMCCD noise. The ACF fits were all done over the first 10 time-lags;
only the first 5 are shown. Time windowing was done with Tw = 200 frames in each case.
Simulation and fit details are shown in Table I. (A) Example of simulated intensity images in
time. (B, C) Computed ACFs (points) and corresponding simultaneous fits (lines) for sim-
ulations with D = 5 and 0.01 pixels2/frame, respectively. In (C), we utilize a fit model that
corrects for the chosen sliding time-window. (D) Sample simulation with higher simulated
autofluorescence background and lower photon budget than simulation shown in (A). (E)
Corresponding computed ACF and fit of simulation shown in (D) with D = 1 pixels2/frame.

Note that photobleaching was not considered in the fits shown in Table I. A derivation

considering the effects of bleaching on the ACF is included in SI:Time-windowed correction.

Although one can consider these effects, we have demonstrated that we can still obtain

accurate parameters in the presence of photobleaching, without having to incorporate it
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into our fit model (given appropriate choice of time-window). This is beneficial as bleaching

pathways of a fluorescent label are not often known.

We also note that the fraction of time spent in the on-state, ρon, cannot be measured

for a purely immobile population i.e. fD = 0. This can be seen by the lack of dependence

on ρon in Eq. (15) in this limit. Previous techniques have described how to measure the

photoblinking rates for immobile emitters.[30, 39–42]

To perform our analysis, it is essential to choose a time-window, an ROI, a range of

time-lags to fit simultaneously, and cutoff values for |k|2. As discussed in the Theory section

above, the choice of time-window will mainly depend on the photobleaching rate. A value

of Tw that is too small results in loss of information, but a smoother ACF. A value of Tw

that is too large will result in a noisier ACF that is more influenced by the photobleaching,

which may lead to poorer fits. With a simulated bleaching rate of kp = 10−4 frames−1 (with

a frame acquisition time of 50 ms, this corresponds to a characteristic bleaching time of

500 s), we find a suitable choice of time-window to be Tw = 200 frames. We will use this

value consistently throughout this work for the same value of kp. The same value of Tw can

be used for smaller bleaching rates. In general, we found from our simulations that Tw can

be chosen to be about 2–5% of the characteristic bleaching time.

As mentioned above, when choosing an ROI it is necessary to select a relatively large

region, in order to avoid aliasing of the ACF along |k|2. This is especially important when

dealing with larger diffusion coefficients, as the decay will appear in a short range of small

|k|2.

Similarly, when choosing a range of time-lags to fit, it is best to choose a wide range,

in order to capture slower dynamics. If the range is too large, the simultaneous fitting will

be visibly biased and a smaller range should then be used. Trying to fit a larger time-lag

range can be complicated by the presence of photobleaching, for example (we show how to

account for these effects in SI:Time-windowed correction). We also remark that the ACF is

noisier for higher time-lags, so that it is informative to compare them with their fits to gauge

whether the fitted time-lag range is too wide. We showed that we can achieve reasonable

fits for our simulated parameters by fitting the 10 first time-lags in our analyses in Table I.

Systematic errors were reduced when including more time-lags in the fit, and/or by choosing

larger ROIs, but in non-simulated data, it may be difficult to make such adjustments.

Finally, we discuss choosing cutoff values for |k|2. We discard the value of the ACF
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at |k|2 = 0, as it is affected by the noise in the system, as was mentioned in the Theory

section. Excluding a few small |k|2 is also beneficial for avoiding the autocorrelation from

the time-windowing, when not using the time-window correction (see SI:Time-windowed

correction for details). The maximum value for |k|2 can be selected by examining where

the ACF begins to diverge due to the normalization in Eq. (14). It is optimal to choose

the largest possible range of |k|2 to fit, while avoiding points that are too noisy due to the

normalization. Choice of the maximum cutoff will depend on PSF size, as well as the noise

in the system. As was previously mentioned, this is to avoid division by zero that occurs due

to our definition of the ACF in Eq. (14). This occurs because the noise is subtracted from

the denominator, which is then effectively zero after the PSF has sufficiently decayed. In

Figure 2 (E), due to the higher noise in the simulation, the fit has a smaller chosen maximum

cutoff of |k|2, since higher values result in a divergence of the ACF.

Fig. 2 (B) Fig. 2 (C)
Fit Simulation Fit Simulation

D (pixels2·frame-1) 4.66± 0.06 5 0.0113± 0.0001 0.01

K (frame-1) 1.02± 0.02 1 1.68± 0.01 1.7

ρon 0.095± 0.006 0.1 0.59± 0.01 0.59

fD 0.68± 0.03 0.7 0.59± 0.02 0.65

Fig. 2 (E)

Fit Simulation

D (pixels2·frame-1) 1.12± 0.07 1

K (frame-1) 0.284± 0.006 0.3

ρon 0.36± 0.03 0.33

fD 0.36± 0.06 0.35

TABLE I: Comparison of fitted and simulated parameters for fits shown in Figure 2.

Each simulation had photobleaching rate kp = 10−4 frame−1 over T = 2048 frames. Simulations (B) and

(C) were generated on 128 × 128 pixel grids, while (E) was on a 256 × 256 pixel grid. The simulations

were assigned 8130, 8411, 9048 total particles, respectively. In each case, fitted parameters and errors

were obtained by splitting the simulation spatially into 4 equally sized and independent ROIs, and then

calculating the mean and its standard error from their analyses.

In Figure 3, we perform the same analysis on a simulated dendritic morphology. A

comparison of the simulated and fitted parameters recovered using our analysis is shown in

Table II. This further demonstrates the ability of the technique to be applied independently

of immobile particle distribution. In this case, it would again be impossible to select an ROI
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containing a uniform distribution of both diffusing and immobile populations for analysis

using previous image correlation techniques. As mentioned previously, with the extended

kICS technique developed in this work, we are no longer restricted by this requirement and

can further benefit from large ROIs to increase the spatial sampling in our analysis.

0.5 1 1.5
0

0.2

0.4

0.6

0.8A

...
𝑡

...

B

FIG. 3: Example ACF computed from simulation of dendritic structures and fit. (A) Sample
simulated intensity images in time. Simulations contain immobile particles on the dendrites,
along with a background of freely diffusing particles. Both populations are assumed to have
equal photophysical properties. (B) Computed ACF (points) and corresponding simulta-
neous fit (lines). The fit is done over the first 10 time-lags; only first 5 are shown. Time
windowing was done with Tw = 200 frames. Fit details are shown in Table II.

Fit Simulation

D (pixels2·frame-1) 2.80± 0.08 3

K (frame-1) 0.86± 0.01 0.9

ρon 0.38± 0.03 0.44

fD 0.26± 0.02 0.3

TABLE II: Comparison of fitted and simulated parameters for fits shown in Figure 3.

Simulation had photobleaching rate kp = 10−4 frame−1 and was generated on 128 × 128 pixel grid with

10744 total particles and T = 2048 frames. Fitted parameters and errors were obtained by splitting the

simulation spatially into 5 64 × 64 ROIs, with some overlap between different parts, and then calculating

the mean and its standard error from their analyses. The ROIs were chosen so that a significant portion of

the simulated dendritic structure was encompassed, overall.

Live NIH/3T3 cell data

Using widefield fluorescence microscope equipped with an EMCCD camera detector, we

imaged β-actin labled with Dronpa-C12 in an NIH/3T3 fibroblast cell line expression system.
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The Dronpa-C12 exhibited blinking and photobleaching during image aquisition and the β-

actin pool was both diffusively mobile within the cell and immobile in actin filaments. A

sample of our analysis from the data is shown in Figure 4.

In Figure 4 (C), we reconfirm that the blinking of immobile fluorophores can be used

to obtain a SOFI[8] image using SOFI 2.0[43, 44] (see GitHub code for SOFI 2.0). Along

with our dynamic analysis of this data, we demonstrate that we can extract both static

and dynamic information from our system with careful selection of correlation analysis

approaches.

Since the data was acquired using a widefield fluorescence microscope with actin monomers

diffusing in the cytoplasm, we needed to employ a 3D model for the ACF fit (see SI:Diffusing

and immobile populations (3D) for more details). The extension to a 3D model (without

considering integration time effects) is achieved through a scaling factor that depends on

τ , and consequently, does not affect the behavior of the ACF along |k|2. Using the 2D fit

model for the ACF yielded visibly inconsistent fits to the data. Notably, our reported value

for the apparent diffusion coefficient (9.2±0.4 µm2 ·s−1) is within range of the simulated and

experimentally verified diffusion coefficient of globular actin (G-actin) in the cytoplasm of

∼ 3–30 µm2·s-1.[45–49] This is also in reasonable agreement with the diffusion coefficient of

Dronpa-labeled actin in an MCF-7 cell of 13.7 µm2· s-1, reported by Kiuchi et al. (2011)[48]

Our measurement of a relatively rapid diffusion coefficient is further confirmed by the behav-

ior of the ACF, which exhibits a characteristic initial decay in |k|2, as in Figure 2 (B). This

is in contrast to systems with lower diffusion coefficients, which exhibit an initial increase

in |k|2, as in Figure 2 (C). As can also be seen from Figure 4, our assumption of a single

diffusing population provides a reasonable fit to the data. Therefore, we argue that it would

not be advantageous to include further diffusing components in our fit model, since it would

risk overfitting our data.

In order to account for 3D effects, we needed to first estimate the e−2 radius along the

axial direction from the data. To this end, we used the Abbe resolution criterion to determine

the full width at half maximum of the PSF in z, i.e. 2λ/NA2, which was then converted to

an e−2 radius.

McGrath et al. (1998)[45] demonstrated that they can simultaneously measure actin

filament turnover rate, fraction of actin in filaments and actin diffusion using either fluores-

cence recovery after photobleaching (FRAP) or photoactivation of fluorescence (PAF). In
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their model, the filamentous actin is not necessarily immobile, but not diffusing. We show

that on the time and spatial scales we considered in our analysis, the actin flow is negligible.

Furthermore, filament turnover rate is an important parameter at filament ends, but we

chose ROIs away from these ends, so that we would not have to consider such effects.

Since flow appears as an imaginary component in the autocorrelation,[19] we compared

the magnitude of the imaginary part to that of the modulus of the autocorrelation, i.e.∣∣∣=(φ̃(k, τ)
)∣∣∣∣∣∣φ̃(k, τ)
∣∣∣ . (16)

This quantity was determined to be very small (close to machine precision), confirming that

the flow is negligible relative to other dynamics over the timescales examined.
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...
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FIG. 4: ACF computed from Dronpa-C12 labeled actin in a live NIH/3T3 cell and fit. (A)
Fluorescence image of Dronpa-C12 labeled actin in a live NIH/3T3 cell, with ROI used in
analysis highlighted. (B) Sample fluorescence images in time of ROI shown in (A). (C) SOFI
image generated from immobile blinking fluorophores (see GitHub code for SOFI 2.0). (D)
Computed ACF from ROI shown in (A) (points) and corresponding simultaneous fit (lines).
The fit was done over the first 5 time-lags. Time-windowing was done with Tw = 100 frames.
Fitted parameters: D = 9.2 ± 0.4 µm2 · s−1, K = 7.6 ± 0.4 s−1 and fD = 0.58 ± 0.03. Fit
for ρon omitted due to inconsistent values between different ROIs and TOIs. Pixel size:
177.78 µm. Frame time: 50 ms. Analysis details: Two spatially independent ROIs (each
about 30× 30 µm2) over two temporally independent TOIs (each about 50 s in length) were
considered in the analysis. The reported fitted parameters and errors are given as the mean
and its standard error from these analyses.
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From our analysis of the data shown in Figure 4, we also found a diffusing fraction of

fD = 0.58 ± 0.03. Gasilina et al. (2019)[50] reported a percentage of filamentous actin (F-

actin) of 48± 4% from their immunoblotting-based analysis of wild type NIH/3T3 fibroblast

cells. If we assume F-actin to be immobile and G-actin to be diffusing, then this value

corresponds to fD = 0.52± 0.04.

We further tested whether the G-actin was undergoing anomalous subdiffusion in the

cell. This can approximately be done by replacing the dependence of the ACF from τ → τα

(ignoring detector time integration), where α is the degree of subdiffusion.[34] A fit including

α as a free parameter yields a fitted value of α ∼ 1, indicating that the diffusion of the G-

actin within this non-migrating cell was mainly free diffusion.

Live HeLa cell data

We proceeded to analyze Dronpa-C12 labeled β-actin in live HeLa cells imaged under

different excitation intensities. Our analyses are shown in Figure 5, with results given in

Table III below.

Measurements of the apparent diffusion coefficient from the HeLa cells are again within

the range of ∼ 3–30 µm2·s-1 for G-actin diffusion in cytoplasm. Furthermore, the diffusion

coefficients are about the same as we measured in the 3T3 fibroblast cell. The diffusion

coefficient measured from the low power dataset, however, is lower than the ones measured

at higher powers. One possible explanation for this observation is the lower excitation power

would lead to lower excitation probabilities, especially outside of the focal plane. As such,

the signal-to-noise ratio (SNR) may not be sufficient to detect as many of the fluorescent

proteins diffusing in 3D away from the focal plane, thus reducing the measured apparent

diffusion coefficient (these events might be characterized by our analysis as photoblinking,

for instance).

We also observed that the sum of the photoblinking rates, K, and on-time fraction, ρon,

consistently increase with decreasing excitation intensity. Computing the mean on-time resi-

dency from Table III we obtain ton = 81± 3 ms at full excitation power and ton = 118± 1 ms

at medium excitation power (note, we use the convention koff ≡ 1/ton). We also calcu-

lated the mean off-time to be toff = 99± 6 ms at full excitation and toff = 113± 7 ms at

medium excitation. The increasing on-time with decreasing excitation intensity, as well as
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the roughly constant off-time, is characteristic behavior of any fluorophore because of the

long-lived triplet state (or any similar dark state that depletes the ground singlet state).[51]

This effect on the photoblinking rates as a function of excitation power was also observed

in wild type Dronpa.[52]

We point out that Dronpa is expected to have a non-emissive state with a longer off-

time,[52] while we found ton ' toff. In fact, Habuchi et al. (2005)[52] found that wild type

Dronpa has three distinct dark states, of which one is significantly longer than the others.

The toff values we measured can, therefore, depend on the residency times of multiple off-

states. We make a simplifying argument to illustrate why our measurement may not be able

to detect a much longer off-time. In our technique, we explicitly have ρon ≡ kon/K. If we

now assume that kon is a sum of two rates, say kslow
on and kfast

on , such that kslow
on � kfast

on , then

we have ρon ' kfast
on /K. In other words, the rate corresponding to the longer time does not

contribute to ρon, and is thus, not detected by our analysis.
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FIG. 5: Example ACF analyses of independent HeLa cells irradiated at different excitation
powers. Fluorescence images of Dronpa-C12 labeled actin in live HeLa cells, with ROI used
in analyses highlighted, are shown on top part of figure. Corresponding computed ACFs
from ROIs (points) and respective simultaneous fits (lines) are shown on bottom part of
figure. The time lag ranges for the fits varied from τ = 2 to either τ = 10 or τ = 20. Time-
windowing was done with Tw = 100 frames. Pixel size: 177.78 nm. Frame time: 10 ms.
Image series length: 50 s.
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At low power, the measured K is consistent with a longer on-time, assuming ton is the

only characteristic time that is a function of excitation intensity. Note we could not properly

measure ρon and fD for the low-power data, as different fitting ranges of τ and |k|2 would

significantly affect these fitted parameters. This is, once more, likely due to the lower

SNR, causing the ACF to be noisier. In general, ρon and fD varied most among the fitted

parameters when fitting the ACF over different ranges.

We also found a mean value for the diffusing fraction of fD = 0.30± 0.02. Blikstad and

Carlsson (1982)[53] have previously reported values of unpolymerized actin measured from

HeLa cell homogenates between 35–45%.

Note the time-integrated 3D diffusion model did not fit our HeLa cell data well. This

is possibly due to the non-negligible dead time (∼ 1 ms) of the EMCCD camera detector

relative to the shorter frame times used for imaging this data (10 ms). Instead of accounting

for this effect in our model, we found that simply excluding the first time-lag from our

analyses gave reasonable fits.

D (µm2·s-1) K (s−1) ρon fD

Excitation Power

Full (∼ 24 mW)
10.9 23.6 0.490 0.252

8.89 21.4 0.451 0.376

12.8 22.8 0.416 0.322

Medium (∼ 19 mW)
12.8 18.5 0.545 0.230

10.9 16.6 0.495 0.323

7.39 17.2 0.501 0.290

Low (∼ 14 mW) 5.31 10.9 — —

TABLE III: Fit parameters measured from independent HeLa cells at different excitation
powers.

Different rows are ROI analyses of independent cells. Fits for ρon and fD at low power were omitted due to

inconsistent fitted values when using different τ and |k|2 fitting ranges.

CONCLUSION

We have presented an extended kICS fluorescence fluctuation rapid analysis method that

simultaneously fits for the diffusion coefficient, photoblinking rates and fraction of diffusing

particles from a fluorescence image series. This is done independently from any other pa-

rameters. Unlike other image correlation techniques, our current approach can be applied
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to regions with non-uniform fluorophore distributions, including complex cellular morpholo-

gies. This enables us to increase spatial sampling across areas of the cell, which improves

the statistical precision of the ACF and extends the dynamic range for transport coefficient

measurement. Furthermore, we have shown through physically realistic simulations that we

can obtain accurate fit results in the presence of photobleaching, without having to consider

its effects. We also demonstrated that our method can measure an apparent diffusion coef-

ficient of Dronpa-C12 labeled actin in live NIH/3T3 and HeLa cell data that is consistent

with previous literature values. We further observed that the fitted photoblinking parame-

ters, measured from several independent HeLa cells, gave the expected trend as a function

of excitation power. Lastly, our reported values for the diffusing fractions in both 3T3 and

HeLa cells agree well with literature values. We anticipate that our technique will be useful

in the study of dynamics in super-resolution, due to its ability to analyze more intricate

systems than previous image correlation methods.

In the future, we plan to apply our method to measure biomolecular binding kinetics since

photoblinking and mean-field binding/unbinding are virtually analogous processes mathe-

matically (under certain assumptions). Another potential application could be to use the

measured photoblinking rates as probes for sensing changes in a cellular environment.

MATERIALS AND METHODS

Live cell imaging

The NIH/3T3 fibroblast and Hela cells were transfected with plasmids containing either

the Dronpa-C12 β-actin fusion protein or with Lipofectamine 2000 using the standard pro-

tocol. Prior to imaging, cell culture media was gently replaced into 1x PBS buffer warmed

to 37◦C. The cells with prominent actin stress fibers were empirically identified for imaging.

The NIH/3T3 fibroblast cell data was imaged with acquisition time of 50 ms per frame and

we observed slow detaching of its focal adhesion sites during the imaging time course. The

same data appeared in previous work.[43] The HeLa cells were imaged at 10 ms per frame

under excitation powers of ∼ 14, ∼ 19 and ∼ 24 mW.

Imaging was performed with an inverted fluorescence microscope using widefield imaging

mode (Nikon Eclipse Ti, Tokyo) equipped with an EMCCD camera (Andor iXon, model
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no. DU-897E-CSO-#BV) and a standard EGFP filter cube (460/60 nm band pass excitation

filter, 495 nm long pass dichroic and 520/40 nm band pass emission filter). Excitation

of 485/25 nm was used (cyan option, AURA light engine, ©Lumencor, Inc., Beaverton,

OR, UCA). A 60x oil immersion objective (NA=1.4) was combined with an extra 1.5x

magnification module integrated into the microscope body.

Computer simulations

Simulations were created and analyzed using MATLAB R2020a on a Dell XPS 9530

(Intel(R) Core� i7 @ 2.3 GHz, 16 GB RAM) running Windows 10. Simulations were also

created using MATLAB R2020a on a dedicated research server (Intel(R) Core� i7 @ 3.2

GHz, 64 GB RAM) running Ubuntu version 18.04.

To simulate fluorophores on filaments, we first drew angles from a normal distribution

with specified mean and standard deviation. This determined the direction of each fila-

ment in the synthetic image series. Then, starting from a filament’s endpoint (randomly

distributed along simulated image edges), particles were iteratively placed along the fila-

ments with incremental distance (in pixels) drawn from a uniform distribution on (0, 1).

This process was repeated until the edge of the synthetic image was reached. Each time a

simulated emitter was placed, a predefined probability determined whether the position was

occupied by an aggregate. Each simulated aggregate had an assigned mean number of fluo-

rophores following a Poisson distribution, as well as a random distance from the aggregate

center (mean position) following a normal distribution with a chosen standard deviation.

Simulated diffusing particles were initialized randomly within the pixel grid and allowed to

diffuse with periodic boundaries.

To simulate photoblinking, synthetic emitters were subject to stochastic switching be-

tween on- and off-states, at specified rates. Photobleaching was assumed to be equal from

the on/off-states in all simulations. Both populations of immobile and diffusing particles

were simulated to have the same photoblinking and photobleaching rates.

We then convolved the simulated image series with a 2D Gaussian function (integrated

over pixel dimensions) to simulate the optical PSF. To emulate the effect of the detector

integration time, we split each frame into 50 “subframes”, so that a single frame was com-

prised of a sum of its constituent “subframes”. For more simulation details, we refer the
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reader to SI:Simulation details.

Synthetic pixel intensity values were assigned using the EMCCD model presented by

Hirsch et al.,[54] as was previously described in Sehayek et al.[30]

The ACF was fitted to Eq. (S7), unless otherwise stated. The fitting model assumed one

diffusing and one immobile population. The global fitting of the ACF was done using the

built-in Matlab object GlobalSearch with fmincon as a local solver. The fitted parameters

were chosen according to the least-squares method across the specified domain of the ACF.

All fitted parameters were constrained to be greater than zero, with the added conditions

ρon, pD ≤ 1. We used uniformly drawn random numbers in the interval (0, 1) as initial guess

for all fitted parameters, in order to demonstrate the robustness of our method. In the case

where the fit did not visually match the data, we repeated the fitting process until reasonable

agreement was achieved. The fits always excluded the points |k|2 = 0, as they are affected

by the noise in the system. The τ = 0 curve was also excluded from our fits, as it does

not contain any useful information when using the definition in Eq. (14). Our analyses were

performed on several ROIs and/or TOIs. The reported fitted parameters and their errors

were then taken to be the mean and the standard error on the mean from these analyses.

Autocorrelation computation

The autocorrelation was calculated as,

φ̃(k, τ) =
1

T − τ
F−1
t

(∣∣Ft(δt,Tw ĩ(k, t))∣∣2) , (17)

where Ft is the fast Fourier transform in time, and δt,Tw denotes the time-windowed fluctu-

ation, as in Eq. (13); that is, at pixel (x, y) and frame t, we subtract the mean intensity of

Tw subsequent frames, including frame t (we used Matlab movmean function to do this).

Defining the fluctuations in this way diminishes the oscillations caused by photobleaching

(see “Comparison with original kICS method” in the SI). The choice of Tw should, ulti-

mately, depend on the photobleaching rate. Note that the Wiener-Khinchin theorem is used

in Eq. (17) to minimize autocorrelation computation time via Fourier (reciprocal) space

calculations.

The autocorrelation in Eq. (17) was then circularly averaged. This was done by averaging

all autocorrelation points with the same value of |k|2. Finally, the ACF was computed as
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shown in Eq. (14). To determine the “large” |k|2 offset in the denominator of the equation,

a range of |k|2 values were chosen after the τ = 0 autocorrelation had sufficiently decayed

and averaged over.

SUPPORTING MATERIAL

� Comparison with original kICS method; autocorrelation function derivation: 2D, 3D,

with time-windowed correction; simulation details; noise autocorrelation.

� kICS GitHub repository: https://github.com/ssehayek/kics-project.git

� SOFI 2.0 GitHub repository: https://github.com/xiyuyi-at-LLNL/pysofi.git
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