
 1 

Gut Microbiota predicts Healthy Late-life Aging in Male Mice  1 

Shanlin Ke1,2, Sarah J. Mitchell3,4, Michael R. MacArthur3,4, Alice E. Kane5, David A. 2 

Sinclair5, Emily M. Venable6, Katia S. Chadaideh6, Rachel N. Carmody6, Francine 3 

Grodstein1,7, James R. Mitchell4, Yang-Yu Liu1 4 

 5 
1Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical 6 

School, Boston, Massachusetts 02115, USA. 7 
2State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural 8 

University 330045, China. 9 
3Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 10 

02115, USA. 11 
4Department of Health Sciences and Technology, ETH Zurich, Zurich 8005 Switzerland. 12 
5Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at 13 

Harvard Medical School, Boston, MA 02115 USA. 14 
6Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. 15 
7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA. 16 

 17 

#To whom correspondence should be addressed: Y.-Y.L. (yyl@channing.harvard.edu) and 18 

S.J.M. (sarahjayne.mitchell@hest.ethz.ch) 19 

 20 

Calorie restriction (CR) extends lifespan and retards age-related chronic diseases in most 21 

species. There is growing evidence that the gut microbiota has a pivotal role in host health 22 

and age-related pathological conditions. Yet, it is still unclear how CR and the gut microbiota 23 

are related to healthy aging. Here we report findings from a small longitudinal study of male 24 

C57BL/6 mice maintained on either ad libitum or mild (15%) CR diets from 21 months of 25 

age and tracked until natural death. We demonstrate that CR results in a significant reduction 26 

in frailty index (FI), a well-established indicator of aging. We observed significant alterations 27 

in bacterial load, diversity, and compositional patterns of the mouse gut microbiota during the 28 

aging process. Interrogating the FI-related microbial features using machine learning 29 

techniques, we show that gut microbial signatures from 21-month-old mice can predict the 30 

healthy aging of 30-month-old mice with reasonable accuracy. This study deepens our 31 

understanding of the links between CR, gut microbiota, and frailty in the aging process of 32 

mice. 33 
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Introduction 38 

The proportional population of older persons is growing across the globe1. This demographic 39 

shift will increase the prevalence of age-related disease and place a significant burden on 40 

health costs and social care. Moreover, increased longevity (i.e., lifespan) does not necessarily 41 

translate to better quality of life (i.e., healthspan)2. Thus, it is imperative to improve our 42 

understanding of mechanisms underlying aging processes and develop practical interventions 43 

to promote healthy aging and delay age-related diseases. 44 

Aging is one of the most complex biological processes that affects a wide array of 45 

physiological, genomic, metabolic, and immunological functions9,10. These age-related 46 

functional changes can lead to organ and systemic decline, which ultimately results in death. 47 

There is now growing evidence that the gut microbiota interacts with these physiological 48 

functions, and thereby plays a pivotal role in host health and age-related pathological 49 

conditions3-5. The gut microbiota is regulated by a complex interplay between host and 50 

environmental factors, including age, diet, antibiotics, genetics, and lifestyle7,8. In turn, 51 

changes in the gut microbiota can alter host physiology, increasing the incidence and/or 52 

severity of many diseases that contribute to morbidity and mortality in later life, such as 53 

inflammatory bowel disease17, type 2 diabetes19, obesity20, cardiovascular disease21, and 54 

neurodegenerative disease22. During host aging, the gut microbiota undergoes dramatic 55 

changes in composition and function12-16. The gut microbiota of elderly people is different 56 

from that of adults14,23,24, and microbial compositions in the elderly correlate with measures 57 

of frailty, barrier dysfunction, gut motility, and inflammation25. Nevertheless, the extent to 58 

which these changes result from host aging or contribute to it remains unclear. Unlike other 59 

organs, the gut microbiota might not be expected to follow the same general trajectory of 60 

somatic senescence11.  61 

Calorie restriction (CR), a dietary regimen that reduces the consumption of food without 62 

resulting in malnutrition, has been shown in animal models to retard development of 63 

age-related chronic diseases and extend the lifespan26-29. In addition to effects on host 64 

physiology, CR can also reshape the gut microbial community in both humans30,31 and animal 65 

models32-34. CR-induced alterations to the gut microbiome might play a role in extending 66 

lifespan and healthspan and delaying the onset of age-related disorders. In this study, we 67 

evaluate how the gut microbiota changes during the aging process in mice and test whether 68 

gut microbial features can predict healthy aging. To do this, we performed quantitative PCR 69 

(qPCR) targeting the 16S rRNA gene and 16S rRNA gene sequencing of bacterial DNA 70 

extracted from fecal samples from a cohort of aging male mice tracked from 21 months of 71 

age. We investigated associations between these microbial signatures and biomarkers of host 72 

condition, including weight, food intake, hematological markers, and frailty index (FI), a 73 

validated biomarker of biological age that is a strong predictor of mortality, morbidity, and 74 

other age-related outcomes35. Examining how signatures in the gut microbiota predict future 75 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449472doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449472


 3 

aging status can illuminate the utility of the gut microbiota as an early indicator of healthy 76 

aging. 77 

 78 

Results 79 

Experimental design 80 

The experimental design is shown in Fig. 1. Following baseline phenotypic measurements 81 

(body weight, food intake, frailty index, grip strength, and fecal collection), adult male 82 

C57BL/6 mice were randomized at 21 months of age into ad libitum diet (AL, n=14) or mild 83 

calorie restriction diet (CR, 15% fewer calories than their peers consuming an ad libitum diet, 84 

n=8) groups and followed longitudinally until death. From each birth cohort that we received, 85 

we randomized the mice equally into groups to avoid a strong birth-cohort effect. We 86 

repeated phenotypic measurements after 9 months (30 months of age) and recorded survival. 87 

We performed qPCR targeting the 16S rRNA gene as well as 16S rRNA gene sequencing on 88 

44 stool samples, collected at 21 and 30 months of age, from 22 mice. 89 

 90 

The association of the physiological characteristics with chronological age 91 

The mouse clinical frailty index (FI) is based on established clinical signs of deterioration in 92 

mice36,37. Briefly, the clinical assessment includes evaluation of the integument, the 93 

musculoskeletal system, the vestibulocochlear/auditory systems, ocular and nasal systems, 94 

digestive system, urogenital system, respiratory system, signs of discomfort, body weight, 95 

and body surface temperature. FI score is continuous from 0-1, with higher values indicating 96 

worse frailty. A cutoff of 0.21 has been previously used in rodents38 to stratify frailty as 97 

either high (frail: FI�0.21) or low (not frail: FI�0.21). But as mice reaches 30 months old, 98 

they all become frail with higher FI score (FI�0.21) in our study. Indeed, as shown in Fig. 2a 99 

and Fig. S1a, FI score significantly increased with chronological age from 21 to 30 months at 100 

the population level (P-value = 4.8e-06, Wilcoxon signed-rank test). Hence, instead of using 101 

a fixed FI score cutoff, in this work we used the median value of FI change (denoted as ∆FI) 102 

to delineate healthy versus normal aging. Specifically, we calculated ∆FI between month 21 103 

and 30 for each mouse, and then we dichotomized those mice at month 30 into two groups 104 

based on the medium value of their ∆FI: ‘healthy aging’ (age in weeks: mean 121.78�± 105 

standard deviation 3.88; ∆FI: 0.088�±�0.038; FI: 0.342�±�0.048; n=11); and ‘normal 106 

aging’ (age in weeks: 121.42�±�4.07; ∆FI: 0.179�±�0.034; FI: 0.398�±�0.055; n=11). 107 

CR diet was associated with a lower level of ∆FI at month 30 than AL diet (Fig. 2b, P-value 108 

= 0.029, Wilcoxon–Mann–Whitney test). In particular, 87.5% (7/8) of mice with CR diet 109 

belonged to the healthy aging group compared to just 36.4% (4/11) of mice fed ad libitum. 110 

These results suggest that CR had a beneficial effect on aging, consistent with previous 111 

studies27.  112 
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 We found that the body mass (BM) of mice generally decreased during aging (Fig. 2c, 113 

P-value = 0.0011, Wilcoxon signed-rank test), which was contributed by healthy aging mice 114 

due to the fact that most of them (63.64%) were from the CR group (Fig. S1b). At 30 months 115 

of age, the BM of the healthy aging mice was significantly lower than the normal aging (Fig. 116 

2c, P-value = 0.028, Wilcoxon–Mann–Whitney test) and baseline mice (Fig. S1b, P-value = 117 

0.0049, Wilcoxon signed-rank test). To better understand this finding, we calculated delta 118 

change of BM (∆BM) between month 21 and 30 for each mouse. The ∆FI was positively 119 

associated with ∆BM (Fig. 2d, ρ = 0.3888, Spearman correlation), suggesting that a normal 120 

aging mouse (with large ∆FI) is associated with an increasing level of BM. In addition, we 121 

found that the BM in healthy aging mice gradually decreased over time (Fig. S2a), especially 122 

in those mice with CR diet (Fig. S2b). Additionally, normal aging mice showed rapid loss of 123 

BM after some time points (Fig. S2). Using Kaplan–Meier survival analysis, the differences 124 

in cumulative survival rates were not statistically significant between healthy and normal 125 

aging mice (Fig. S3, P-value = 0.23, log-rank test). However, the healthy aging mice showed 126 

qualitatively longer lifespan (134.36 ± 9.43) than normal aging (131.06 ± 7.53) mice (P-value 127 

= 0.313, Wilcoxon–Mann–Whitney test), as some mice from the healthy aging group lived 128 

substantially longer. 129 

 130 

Aging-related changes in gut microbial community 131 

Using universal 16S qPCR, we first measured the total bacterial load (BL) in the stool 132 

samples (Fig. 2e and Fig S1c). The results showed the total BL detected in these healthy 133 

aging mice was higher than the BL present in the normal aging mice (Fig. 2e). For the 134 

changes of total BL over time (∆BL), we found ∆FI was inversely associated with ∆BL (Fig. 135 

2f, ρ = -0.2107, Spearman correlation), suggesting that a normal aging mouse (larger ∆FI) is 136 

associated with a decreasing total BL. 137 

 We then measured the gut microbial community compositions of those stool samples 138 

using 16S rRNA gene sequencing (see Methods, Table S1). Phylum-level taxonomic profiles 139 

of the gut microbiome samples of those mice are shown in Fig. 3a. Consistent with previous 140 

studies39,40, we found that Bacteroidetes, Firmicutes and Verrucomicrobia were the most 141 

dominant phyla in the murine gut microbiota. Notable age-related compositional shifts 142 

included an enrichment in Firmicutes, and reduction in Bacteroidetes and Verrucomicrobia, 143 

although such trade-offs among dominant phyla are expected a priori in relative abundance 144 

data. Moreover, the Firmicutes/Bacteroidetes ratio of the gut microbiota increased with age 145 

(Fig. 3b, P-value = 0.0025, Wilcoxon signed-rank test). Both healthy aging and normal aging 146 

mice showed higher values for this ratio compared with baseline mice (Fig. S4a).  147 

Using the Shannon diversity and Simpson index as alpha diversity measures, we found 148 

that alpha diversity increased with age (Fig. 3c,d and Fig. S4b,c), consistent with a previous 149 

mouse study41. Interestingly, we found that the Shannon diversity was only significantly 150 

higher in healthy aging mice compared to baseline mice (Fig. S4b, P-value = 0.019, 151 
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Wilcoxon signed-rank test). In addition, a clear separation (permutational multivariate 152 

analysis of variance (PERMANOVA) test, P-value = 0.0001, Bray-Curtis dissimilarity) could 153 

be seen between mice at 21 and 30 months of age in the principal coordinate analysis (PCoA) 154 

plot based on Bray-Curtis dissimilarity (Fig. 3e). Indeed, PERMANOVA test indicated 155 

significantly altered microbial compositions for both healthy aging (P-value = 0.0004) and 156 

normal (P-value = 0.0086) aging mice between baseline and 30 months of age (Fig. S4d). 157 

However, we found no significant difference between healthy aging and normal aging mice 158 

at both 21 (P-value = 0.8747) and 30 (P-value = 0.3536) months of age. Bray-Curtis 159 

dissimilarity was higher among individuals within normal aging mice compared to baseline 160 

mice (Fig. S4e, P-value = 4e-08, Wilcoxon signed-rank test) or healthy aging mice (Fig. 3f, 161 

P-value = 0.015, Wilcoxon–Mann–Whitney test). This suggests that normal aging is 162 

characterized by high variations in gut microbiota between individuals.  163 

 164 

The effect of aging on hematology and associations between gut microbiota and blood 165 

markers 166 

Aging is associated with a decline in immune system function at multiple levels42. To explore 167 

aging-related immune system modifications, we measured hematological parameters over 168 

time (Table S2). We found that the mice at 30 months of age tended to have higher level 169 

(with P value <0.05) of neutrophils percentage, neutrophil to lymphocyte ratio (NLR), 170 

monocytes percentage (MOp, % of leukocytes), red cell distribution width (RDW, % 171 

variation), and mean platelet volume (MPV, fL), but lower level (with P value <0.05) of 172 

white blood cell (WBC, k/uL), lymphocytes (LY, k/uL), lymphocytes percentage (LYp, % of 173 

leukocytes), red blood cell (RBC, M/uL), hemoglobin (Hb, g/dL), Mean corpuscular volume 174 

(MCV, fL) and hematocrit (HCT, % volume) when compared with mice at 21 months of age. 175 

Specifically, higher NLR (an important biomarker of systemic inflammation43) levels on 176 

30-month-old mice were mainly observed in normal aging mice (P value = 0.016). Here P 177 

values were all calculated from the Wilcoxon–Mann–Whitney test, adjusted with the 178 

Benjamini–Hochberg FDR method. These results confirm prior observations that high levels 179 

of inflammation are not an inevitable consequence of aging, but rather associated with 180 

normal or unhealthy aging. Moreover, at 30 months of age, we found that normal aging mice 181 

had significantly higher MPV but normal PLT. 182 

 Given the effects of aging process on hematology, we next used MaAsLin2 (multivariate 183 

analysis by linear models44) to evaluate the associations between microbial taxa and blood 184 

markers. These linear mixed models accounted for within-individual correlation from the 185 

study’s repeated sampling design, as well as occasional missing observations at some time 186 

points. To control for potential confounding variables, we added four covariates into the 187 

model as fixed effects, including diet treatment, cohort, cage, and body mass. In addition, 188 

each mouse’s identifier treated as random effect. A total of 24 ASVs (amplicon sequence 189 

variant) features were significantly associated with at least one blood marker (Fig. 4, q-value 190 
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≤ 0.2, Table S3). In general, blood markers correlating most with microbial taxa included 191 

MCV, LY and NLR. For example, MCV was inversely associated with the abundance of 192 

ASV 3949 (Anaerotruncus, q-value = 2.38e-14) and ASV3729 (Clostridium aldenense, 193 

q-value = 1.52e-6), and LY was positively associated with ASV890 (Ruminococcaceae, 194 

q-value = 0.0004), ASV2868 (Oscillibacter, q-value = 0.015), and ASV2973 (Intestinimonas 195 

butyriciproducens, q-value = 0.035). NLR was positively associated with ASV5690 196 

(Flavonifractor plautii, q-value = 0.04) and ASV555 (Acetatifactor muris, q-value = 0.048), 197 

and negatively associated with ASV2878 (Lachnospiraceae, q-value = 0.028), ASV4558 198 

(Bacteroidales, q-value = 0.146), and ASV1970 (Clostridium XlVa, q-value = 0.189). 199 

 200 

Microbial taxa related to frailty index and healthy aging  201 

We next investigated the FI in relation to the microbial features using MaAsLin2 in which 202 

diet, cohort, cage, and body mass were included as fixed effects and each mouse’s identifier 203 

was included as a random effect. We observed a set of 14 microbial features that were 204 

strongly linked to FI (Fig. 5, q-value ≤ 0.2, Table S4). Consistent with previous reports that 205 

the abundance of the Clostridium sensu stricto genus increases with aging45-47, ASV3100 206 

(Clostridium sensu stricto: q-value = 0.021) was positively associated with the FI. 207 

Clostridium XlVa48 (ASV2882, q-value = 0.048 and ASV1101: q-value = 0.112) and 208 

Subdoligranulum variabile49 (ASV157, q-value = 0.153), known as important producers of 209 

butyrate, were found to be negatively associated with FI. We also found inverse associations 210 

of the FI with taxa such as ASV847 (Phocea massiliensis, q-value = 0.069), ASV 1726 211 

(Parabacteroides goldsteinii, q-value = 0.083), and ASV1123 (Enterorhabdus, q-value = 212 

0.090). A previous study linked Parabacteroides goldsteinii with reduction of intestinal 213 

inflammation and enhancement of cellular mitochondrial and ribosomal activities in the 214 

colon50. 215 

 To examine potential gut microbial signatures of late-life aging, we performed 216 

differential abundance analysis using ANCOM51 (analysis of composition of microbiomes). 217 

ANCOM identified multiple gut microbiota signature that were significantly different 218 

between baseline and 30 months of age in healthy aging (Fig. S5a and Table S5) and normal 219 

aging (Fig. S5b and Table S6) mice. Most of these features were also identified when 220 

comparing all mice between 21 and 30 months of age as a group (Fig. S6 and Table S7). 221 

Intriguingly, we found 7 ASVs that significantly and concordantly increased with age in both 222 

healthy aging and normal aging groups (Fig. S5), including ASV5550 (Lachnospiraceae), 223 

ASV5652 (Lachnospiraceae), ASV806 (Lachnospiraceae), ASV5435 (Muribaculum 224 

intestinale), ASV3224 (Clostridium cocleatum), ASV5628 (Muribaculum intestinale), and 225 

ASV3370 (Muribaculum intestinale), hinting at a universal murine microbial signature of 226 

aging. To assess how the microbial features links with healthy aging, we calculated the 227 

differential abundance of features between healthy aging and normal aging groups at both 21 228 

and 30 months of age (Fig. S7). Our data found 6 (Fig. S7a, Table S8) and 9 (Fig. S7b, Table 229 
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S9) ASVs were significantly associated with aging status at baseline and 30 months of ages, 230 

respectively. In particular, a set of microbial features were significantly enriched in healthy 231 

aging mice at 30 months of age, for example ASV648 (Akkermansia muciniphila), ASV73 232 

(Ruminococcaceae), and ASV2756 (Acetatifactor muris). A. muciniphila has been observed 233 

previously to prevent the age-related decline in thickness of the colonic mucus layer and 234 

attenuate inflammation in old age52. Here, this microbial feature was detected and shown to 235 

be positively associated with healthy aging. Normal aging mice showed increased ASV3370 236 

(Muribaculum intestinale), ASV3100 (Clostridium sensu stricto), ASV3939 (Turicibacter 237 

sanguinis), and ASV1123 (Enterorhabdus) compared with healthy aging mice. Consistent 238 

with positive relationship between FI and ASV3100 (Clostridium sensu stricto), we found 239 

that this feature was significantly higher in the normal aging group. 240 

 241 

Gut microbiota-based machine learning model to predict healthy aging 242 

As microbial compositions were associated with aging status, we sought to determine 243 

whether the microbial features observed in mid-life could predict healthy aging in later life. 244 

To achieve that, we employed an Elastic-net (ENET) logistic regression model to predict 245 

healthy aging. Specifically, the ENET model trained with ASVs (present in at least 10% 246 

samples) achieved an accuracy of 0.5 (11/22) with leave-one-out cross-validation (LOOCV) 247 

(Fig. 6a). In principle, we can apply feature selection techniques to choose a subset of 248 

features from the dataset. However, to improve the biological meaning of the model, we then 249 

only selected the microbial features that significantly associated with FI. This approach 250 

included a microbial signature comprised of 14 ASVs (Fig. 6b) from the gut microbiota of 251 

21-month old mice that exhibited power in predicting the healthy aging status of 30-month 252 

old mice with a LOOCV accuracy of 0.773 (17/22) (Fig. 6a). Notably, we also observed that 253 

Clostridium sensu stricto and Enterorhabdus were significantly overrepresented in normal 254 

aging mice at 30 months of age. A previous study found that Clostridium sensu stricto was 255 

significantly enriched in early onset necrotizing enterocolitis subjects53. Enterorhabdus, a 256 

member of the family Coriobacteriaceae, has been isolated from a mouse model of 257 

spontaneous colitis54. These findings were consistent with higher level of NLR in normal 258 

aging mice, which was used as a marker of systemic inflammation. This may partially 259 

explain the ability of these features to predict healthy aging over the subsequent 9 months. 260 

Finally, we validated our model by generating a null model with randomly selected features 261 

(number of features=14, times=100), which yielded a mean LOOCV accuracy of 0.443 (Fig. 262 

6a).  263 

 264 

Discussion 265 

Over the last few decades, global average life expectancy has increased dramatically, 266 

resulting in a proportionately larger aging population. Currently, chronological age is the 267 
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most widely used indictor of aging, yet it provides limited information on the quality of life 268 

during the aging process. Understanding how to promote healthy aging will be key to 269 

increasing healthspan. Evidence is emerging that the gut microbiota is intrinsically linked 270 

with energy metabolism and the aging process55-58. In this study, we observed that the mouse 271 

gut microbiota is associated with healthy aging on late-life aged mice. And we identified a 272 

specific stool-microbiota-derived signature of aging that yielded a reasonable accuracy for 273 

the prediction of healthy aging. 274 

 A better predictor of mortality and morbidity in humans than chronological age is the  275 

Frailty index (FI)61. The FI has been reverse translated into a tool for mice which includes 31 276 

non-invasive parameters across a range of systems37,62. Previous studies applied 0.21 as a 277 

cut-off point of FI to stratify between high frailty (≥0.21) or low frailty (<0.21)38,63,64. Given 278 

this specific threshold provides limited insight into the aging process, we instead employed 279 

the ∆FI (FI changes between 30 and 21 months of age) to quantify the ability to maintain 280 

health conditions during aging. Indeed, those mice with higher ∆FI (based on median value) 281 

were more vulnerable and frail. In our study, we only included the mice with basic 282 

measurements and biological samples at both 21 and 30 months, resulting 22 male mice that 283 

were fed either AL (n=14) or CR (n=8) diets. To avoid the issue arising from imbalanced 284 

sample size, we stratified the mice to healthy and normal aging mice based on the ∆FI. As 285 

expected, 87.5% (7/8) of mice with CR diet belonged to the healthy aging group compared to 286 

just 36.4% (4/11) of mice fed AL. 287 

Although several previous studies demonstrated the links between gut microbiota and 288 

aging in mice, these studies mainly focused on the comparison between different growth 289 

stages65-67. In this study, we examined the gut microbiota collected at 21 and 30 months of 290 

age from 22 mice and measured the aging status. Concordant with previous reports, we found 291 

that aging was associated with increased alpha diversity67. In particular, only healthy aging 292 

mice showed significantly increased Shannon diversity with age. Consistent with previous 293 

work68, our study also linked aging to an increase in interindividual variation in gut microbial 294 

community composition, with interindividual variation being especially high in the normal 295 

aging group. This suggested that the unhealthy aging related changes in the gut microbiota 296 

are likely stochastic, leading to community instability. Our study also linked FI to several 297 

microbial features such as ASVs from Clostridium sensu stricto, Clostridium XlVa, 298 

Enterorhabdus, and Phocea massiliensis. Importantly, we constructed a machine learning 299 

model that can predict healthy aging with LOOCV accuracy of 0.773 (17/22) based on these 300 

FI related microbial features. And these microbial features may be further driven by CR after 301 

21 months of age. Indeed, we found that some predictive features (e.g., ASVs from 302 

Clostridium sensu stricto and Enterorhabdus) were only identified as differentially abundant 303 

taxa at 30 months of age. These findings suggest that key microbial taxa could potentially 304 

serve as biomarkers of aging and might contribute to the pathophysiology of aging, although 305 

the latter possibility remains to be determined. 306 
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We acknowledge the following limitations of this study. First, the sample size of the 307 

experimental cohort is relatively small and limited to male mice. Second, 16S rRNA gene 308 

sequencing limits our ability to establish associations at the strain level, suggesting that future 309 

studies with shotgun metagenomics sequencing will increase resolution. Third, the 310 

association between healthy aging and microbial taxa identified in this study does not 311 

demonstrate causality. Thus, additional research is needed to validate the mechanism behind 312 

these essential findings. Finally, the generalization of the machine learning-based gut 313 

microbial signature of aging to other murine cohorts and to humans remains unknown. 314 

However, the strengths of the study include a prospective study design, detailed phenotyping 315 

of mice, and assessment of accuracy using gut microbial features to predict healthy aging by 316 

machine learning model. 317 

In conclusion, we evaluated the impact of age-related changes in gut microbiota on the 318 

course of aging in late-life male mice to assess a microbiota signature associated with healthy 319 

aging. Our study suggests the possible interaction between specific gut microbiota and aging 320 

status, and motivates future work that could establish causality and the potential of future 321 

microbiota-targeted interventions to increase healthy aging.  322 

 323 

Methods 324 

Study population and sample collection 325 

In our study, we only included the mice with basic measurements and biological samples at 326 

both 21 and 30 months, resulting 22 C57BL/6 male mice (NIA Aging Colony). Following 327 

baseline measurements (body mass, food intake, frailty index and fecal collection), we 328 

randomly divided these mice into two diet groups, fed either ad libitum (AL, n=14) with 329 

standard chow or under mild (15%) calorie restriction (CR, n=8) and followed longitudinally 330 

until death. Mice were fed a standard chow based upon AIN-93G (Custom diet #A17101101, 331 

Research Diets, New Brunswick, NJ). CR was initiated over a period of two-weeks in a 332 

step-down fashion (10% CR, 15% CR) to ensure no loss on mice as they transition to the 333 

restricted feeding paradigm. Fecal samples (non-fasted) were collected in the morning 334 

(8.30am-11.30am) into sterile tubes and frozen at -80 °C until future analysis.   335 

 336 

The measurement of frailty index 337 

Frailty was measured using the validated 31-parameter mouse clinical frailty index as 338 

described previously36,37. Briefly, the clinical assessment includes evaluation of the 339 

integument, the musculoskeletal system, the vestibulocochlear/auditory systems, ocular and 340 

nasal systems, digestive system, urogenital system, respiratory system, signs of discomfort, 341 

body mass, and body surface temperature. FI score is continuous from 0-1, with higher values 342 

indicating worse frailty37. 343 

 344 
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Hematology analysis 345 

25µL of whole blood obtained via submandibular bleeding was combined with 1µL of EDTA 346 

to prevent clotting. The sample was analyzed using a Hemavet 950 veterinary (Drew 347 

Scientific, Miami Lakes, FL) multi-species hematology system using standard settings. 348 

 349 

Estimation of bacterial load by quantitative PCR 350 
To estimate gut bacterial load in our 44 fecal samples, we performed quantitative PCR (qPCR) 351 
targeting the 16S rRNA gene using the same primers employed for 16S rRNA gene 352 
sequencing (515F and 806R). Briefly, 2�µl of template DNA was combined with 12.5�µl 353 
PerfeCTa SYBR Green SuperMix Reaction Mix (QuantaBio, Beverly, MA), 6�µl 354 
nuclease-free H2O, and 2.25�µl of each primer. Amplification was performed on a Bio-Rad 355 
CFX384 Touch (Bio-Rad, Hercules, CA) in the Bauer Core Facility at Harvard University 356 
using the following cycle settings: 95�°C for 10�min, followed by 40 cycles of 95�°C for 357 
15�s, 60�°C for 40�s and 72�°C for 30�s. Reactions were performed in triplicate with the 358 
mean value used in statistical analyses. Cycle-threshold values were standardized against a 359 
dilution curve of Escherichia coli genomic DNA at the following concentrations (ng/µL): 360 
100, 50, 25, 10, 5, 1, 0.5, plus a no-template (negative) control. Bacterial DNA 361 
concentrations were normalized to 16S copies/µL, then multiplied by the total extracted DNA 362 
volume (50 µL) and divided by the grams of fecal matter utilized in the extraction of template 363 
DNA (varied), allowing us to report gut bacterial load as 16S rRNA gene copies per gram of 364 
feces. 365 

 366 

DNA isolation and 16S rRNA gene sequencing 367 
Gut microbial DNA was isolated using the DNeasy PowerSoil Pro Kit (Qiagen) and 368 
PCR-amplified using barcoded primers targeting the V4 region of the bacterial 16S rRNA 369 
gene [515F (GTGYCAGCMGCCGCGGTAA) and 806R 370 
(GGACTACNVGGGTWTCTAAT); Integrated DNA Technologies]. The following 371 
thermocycler protocol was used: 94°C for 3 min, 35 cycles of 94ºC for 45 s, 50°C for 30 s, 372 
and 72°C for 90 s, with a final extension at 72°C for 10 min. Triplicate PCR reactions for 373 
each sample were pooled and amplification was confirmed by 1.5% gel electrophoresis. 16S 374 
rDNA amplicons were cleaned with AmpureXP beads (Agencourt) on a per-sample basis, 375 
then quantified using the Quant-iT Picogreen dsDNA Assay Kit (Invitrogen). Amplicons 376 
were pooled evenly by DNA content and sequenced on an Illumina HiSeq (1 x 150 bp) at the 377 
Bauer Core Facility at Harvard University, generating 234,631 ± 110,737 (mean ± SD) 378 
sequences per sample passing filter (range: 75,898 to 391,101) (Table S1). 379 
 380 
Microbiota composition by 16S rRNA gene amplicon analysis 381 
Raw sequencing data was processed and analyzed using Quantitative Insights into Microbial 382 

Ecology 2 (QIIME2) pipeline70. Single-end sequences were first demultiplexed using the 383 

barcode sequences. The sequencing reads were then quality filtered, denoised, and merged 384 

using DADA271 to generate the ASV feature table. For taxonomy classification, ASV feature 385 

sequences were aligned against SILVA reference database72. Additional species level 386 
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assignment to the NCBI RefSeq73 16S rRNA database supplemented by RDP74 was 387 

accomplished using the assignTaxonomy and addSpecies functions of DADA2 R package.  388 

 389 

Statistical analysis 390 

Microbial alpha and beta diversity measures were calculated at the ASV level using the 391 

vegan package in R. Principal coordinates analysis (PCoA) plot was generated with 392 

Bray-Curtis dissimilarity. The difference in microbiome compositions by different groups 393 

were tested by the permutational multivariate analysis of variance (PERMANOVA) using the 394 

“adonis” function in the R’s vegan package. All PERMANOVA tests were performed with 395 

the 9999 permutations based on the Bray-Curtis dissimilarity. Differences between groups 396 

were analyzed using a Wilcoxon–Mann–Whitney test (unpaired) or Wilcoxon signed rank 397 

test (paired). The survival probability was computed by the Kaplan-Meier method. 398 

 MaAsLin244 (multivariate association with linear model) was used for adjustment of 399 

covariates when determining the significance of ASVs contributing to specific hematological 400 

variables and FI, while accounting for potentially confounding covariates. The linear mixed 401 

models included each mouse’s identifier as random effects and other potential confounders as 402 

fixed effects. To be qualified for downstream analyses, a ASV feature needed to be detected 403 

at least 10% of samples. The P values were then adjusted using the Benjamini–Hochberg 404 

FDR method. The microbial features with corrected q�value <�0.2 were presented. For 405 

differential abundance analysis, we used ANCOM51 (analysis of composition of 406 

microbiomes), with a Benjamini–Hochberg correction at 5% level of significance, and 407 

adjusted for cage, cohort, body mass, and diet. Only the ASVs presented at least 10% of 408 

samples were included. To develop a model capable of predicting healthy aging, we 409 

implemented Elastic-net (ENET) using R’s caret package. Custom machine learning process 410 

was conducted using microbial features at 21 months of age to predict aging status at 30 411 

months of age. We first trained our model with all of microbial features. To further improve 412 

the biological plausibility, we then only included the microbial features significantly 413 

associated with FI. A total of 14 ASVs were selected based on the q value (q�<�0.2) from 414 

the MaAsLin2 model. Leave-one-out cross-validation (LOOCV) was applied with the 415 

trainControl function. To further validate our model, a null model was generated with 416 

random selected feature (number of features=14, times=100). All statistical analyses were 417 

performed using R. 418 

 419 

Data availability. Raw sequencing reads have been deposited in NCBI under accession 420 

number PRJNA739980. 421 

 422 
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 652 

Fig. 1. Schematic diagram showing the experimental design. The study cohort was 653 

comprised of 22 adult male C57BL/6 mice, which were recruited into the study at 21 months 654 

of age after having been maintained since birth under standard husbandry conditions (see 655 

Methods). We collected blood and fecal samples and measured frailty using a compound 656 

index at 21 months (baseline) and 30 months of age. Following baseline measurements, we 657 

randomly divided these mice into two diet groups, fed either ad libitum (AL, n=14) with 658 

standard chow or under mild (15%) calorie restriction (CR, n=8). Mice were then followed 659 

longitudinally until death. We performed universal 16S quantitative PCR (qPCR) to quantify 660 

absolute bacterial abundance and used QIIME2 to obtain the ASV microbial features. Blood 661 

markers were measured using standard methods. We then used the median FI change 662 

(denoted as ∆FI) between 21 and 30 months of age to delineate healthy versus normal aging.  663 
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 665 
Fig. 2. Frailty index associates with chronological age in mice. a, Frailty index changes 666 

with age. Mice at 30 months of age were grouped into healthy and normal aging based on the 667 

median ∆FI. b, The effect of caloric restriction on the ∆FI between 21 and 30 months of age.  668 

c, Comparison of body mass (BM) for different groups. d, The association between ∆FI and 669 

∆BM in all mice. e, Comparison of total bacterial load for different groups. f, The association 670 

between ∆FI and ∆BL in all mice. Points obtained for the same subject from 21 and 30 671 

months of age are joined by solid (AL diet) and dotted (CR diet) lines. P value shown in a-c 672 

and e are the result of Wilcoxon–Mann–Whitney test (unpaired) and Wilcoxon signed rank 673 

test (paired). The correlation coefficient shown in d and f is the result of Spearman 674 

correlation. The lines show lm fit for the data, and shaded areas show 95% confidence 675 

intervals for the fit.  676 
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 688 
Fig. 3. Impact of aging on gut microbial communities. a, Relative abundance of bacterial 689 

phyla. b, The ratio of Firmicutes to Bacteroidetes. Alpha diversity using Shannon (c) and 690 

Simpson (d) index. e, Beta diversity using Principal Coordinate Analysis (PCoA) of 691 

Bray–Curtis dissimilarity. The dotted ellipse borders with color represent the 95% confidence 692 

interval. f, Boxplot of gut microbiota Bray–Curtis dissimilarity between subjects within each 693 

group. Points obtained for the same subject from 21 and 30 months of age in b-e are joined 694 

by solid (AL diet) and dotted (CR diet) lines. Points obtained for the same subject pairs from 695 

21 and 30 months of age in f are joined by solid line. P value shown in b-d, and f are the 696 

result of Wilcoxon–Mann–Whitney test (unpaired) and Wilcoxon signed rank test (paired).  697 
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 711 

Fig. 4. Identification of associations between blood cell and gut microbial features. Dot 712 

plot showing the links between the blood markers and gut microbial taxa identified using 713 

MaAsLin2. The sizes of dots represent the q values from MaAsLin2. The greater the size, the 714 

more significant the association. Symbols indicate the directions of associations in a given 715 

model: plus, significant positive associations; minus, significant negative associations. 716 

Threshold for FDR corrected q-value was set at 0.2. Linear mixed effects models were 717 

applied to the association with subject set as random-effect. 718 
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 731 

Fig. 5. The significant associations between FI and gut microbial features. a, ASV3100 732 

(Clostridium sensu stricto). b, ASV2882 (Clostridium XlVa). c, ASV847 (Phocea 733 

massiliensis). d, ASV338 (Lachnospiraceae). e, ASV1726 (Parabacteroides goldsteinii). f, 734 

ASV5389 (Lachnospiraceae). g, ASV1123 (Enterorhabdus). h, ASV1101(Clostridium XlVa). 735 

i, ASV807 (Unclassified Bacteria). j, ASV742 (Lachnospiraceae). k, ASV157 736 

(Subdoligranulum variabile). l, ASV232 (Ruminococcaceae). m, ASV2980 737 

(Lachnospiraceae). n, ASV466 (Lachnospiraceae). Data shown are the relative abundance 738 

versus FI for ASVs that were significantly associated with FI in MaAsLin2. Threshold for 739 

FDR corrected q-value was set at 0.2. Linear mixed-effects models (LMMs) were applied to 740 

the association with subject set as random effect. The lines show lm fit for the data, and 741 

shaded areas show 95% confidence intervals for the fit. 742 
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 754 

Fig. 6. A gut microbiota-based signature moderately predicts healthy aging. a, 755 

Leave-one-out (LOOCV) accuracy evaluating ability to predict healthy aging using 756 

Elastic-net (ENET). Each bar represents the performance based on different microbial feature 757 

combination: all ASVs, 14 FI-associated ASVs, and null model with 14 randomly selected 758 

features run 100 times. b, The mean relative abundance of 14 FI-related ASVs across 759 

different groups. The healthy aging status at 21 months of age was determined by the aging 760 

status at 30 months of age. Relative abundances are plotted on log10 scale. Error bars 761 

represent the standard errors of the means (SEM) in null model. 762 
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Supplementary information 777 

Fig. S1 The effects of healthy aging on FI, body mass and total bacterial load. 778 

Fig. S2 The changes of body mass over time. 779 

Fig. S3 The survival probability was computed by the Kaplan-Meier method. 780 

Fig. S4 Impact of healthy aging on gut microbial communities. 781 

Fig. S5 Relative abundance of aging related microbial features in both normal and 782 

healthy aging mice. 783 

Fig. S6 Relative abundance of aging related microbial features. 784 

Fig. S7 Relative abundance of healthy aging related microbial features. 785 

Table S1 16S rRNA gene sequencing metadata. 786 

Table S2 The effect of aging process on blood cells in circulation. 787 

Table S3 The microbial features associated with blood markers identified by 788 

MaAsLin2. 789 

Table S4 The microbial features associated with Frailty index identified by MaAsLin2. 790 

Table S5 Differentially abundant taxa between 21 and 30 months of age in healthy aging 791 

mice detected by ANCOM, adjusted for cage, cohort and diet.  792 

Table S6 Differentially abundant taxa between 21 and 30 months of age in normal aging 793 

mice detected by ANCOM, adjusted for cage, cohort and diet. 794 

Table S7 Differentially abundant taxa between 21 and 30 months of age detected by 795 

ANCOM, adjusted for cage, cohort and diet. 796 

Table S8 Differentially abundant taxa between healthy and normal aging mice at 21 797 

months of age detected by ANCOM, adjusted for cage, cohort and diet. 798 

Table S9 Differentially abundant taxa between healthy and normal aging mice at 30 799 

months of age detected by ANCOM, adjusted for cage, cohort and diet. 800 
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 810 
Fig. S1. The effects of healthy aging on FI, body mass and total bacterial load. a, Frailty 811 
index changes with age. Mice were grouped into healthy and normal aging based on the 812 
median ∆FI at 30 months of age. b, Body mass changes with age. c, Total bacterial load 813 
changes with age. Points obtained for the same subject from 21 and 30 months of age are 814 
joined by solid (AL diet) and dotted (CR diet) lines. P value shown the results of 815 
Wilcoxon–Mann–Whitney test (unpaired) and Wilcoxon signed rank test (paired).  816 
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 839 
Fig. S2. The changes of body mass over time. a, Healthy aging versus Normal aging mice. 840 
b, AL diet versus CR diet. Curves show LOESS fit for the data per category, and shaded areas 841 
show 95% confidence intervals for the fit. 842 
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 867 
Fig. S3. The survival probability was computed by the Kaplan-Meier method. P value is 868 

the result of log-rank test.  869 
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 891 
Fig. S4. Impact of healthy aging on gut microbial communities. a, The ratio of Firmicutes 892 

to Bacteroidetes. Alpha diversity using Shannon (b) and Simpson (c) index. d, Beta diversity 893 

using Principal Coordinate Analysis (PCoA) of Bray–Curtis dissimilarity. The dotted ellipse 894 

borders with color represent the 95% confidence interval. e, Boxplot of gut microbiome 895 

Bray–Curtis dissimilarity between subjects within each group. Mice were grouped into 896 

healthy and normal aging based on the median ∆FI at 30 months of age. Points obtained for 897 

the same subject from 21 and 30 months of age in a-d are joined by solid (AL diet) and 898 

dotted (CR diet) lines. Points obtained for the same subject pairs from 21 and 30 months of 899 

age in e are joined by solid line. P value shown are the result of Wilcoxon–Mann–Whitney 900 

test (unpaired) and Wilcoxon signed rank test (paired).  901 
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 915 

Fig. S5. Relative abundance of aging related microbial features in both normal and 916 
healthy aging mice. The differential abundant ASVs that differed significantly between 21 917 
and 30months of age for healthy (a) and normal (b) aging mice identified by analysis of 918 
composition of microbiomes (ANCOM). The model was simultaneously adjusted for 919 
potential confounders including cage, cohort, diet, and body mass. Mice were grouped into 920 
healthy and normal aging based on the median ∆FI at 30 months of age. The top 921 
differentially abundant taxa were ranked based on their W statistics (a high “w score” 922 
generated by this test indicates the greater likelihood that the null hypothesis can be rejected, 923 
indicating the number of times a parameter is significantly different between groups) (from 924 
left to right). The relative abundance (%) are plotted on log10 scale. The notches in the 925 
boxplots show the 95% confidence interval around the median. 926 
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 941 
Fig. S6. Relative abundance of aging related microbial features. The differential abundant 942 
ASVs that differed significantly between 21 and 30months of age identified by ANCOM. 943 
The model was simultaneously adjusted for potential confounders including cage, cohort, diet, 944 
and body mass. The top differentially abundant taxa were ranked based on their W statistics 945 
(a high “w score” generated by this test indicates the greater likelihood that the null 946 
hypothesis can be rejected, indicating the number of times a parameter is significantly 947 
different between groups) (from left to right). The relative abundance (%) are plotted on 948 
log10 scale. The notches in the boxplots show the 95% confidence interval around the 949 
median. 950 
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 967 

Fig. S7 Relative abundance of healthy aging related microbial features. The differential 968 
abundant ASVs that differed significantly between healthy and normal aging mice at 21 (a) 969 
and 30 (b) months of ages identified by ANCOM. The model was simultaneously adjusted 970 
for potential confounders including cage, cohort, diet, and body mass. Mice were grouped 971 
into healthy and normal aging based on the median ∆FI at 30 months of age. The top 972 
differentially abundant taxa were ranked based on their W statistics (a high “w score” 973 
generated by this test indicates the greater likelihood that the null hypothesis can be rejected, 974 
indicating the number of times a parameter is significantly different between groups) (from 975 
left to right). The relative abundance (%) are plotted on log10 scale. The notches in the 976 
boxplots show the 95% confidence interval around the median. 977 
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Table S1. 16S rRNA gene sequencing metadata. 993 

 994 

Sample 

ID 

Mouse 

ID 

Time 

point 
Diet Barcode-sequence 

Raw sequence 

count 

Final sequence 

count 

Number 

of ASVs 
Aging Status 

YY001 A-1 M21 AL GGATACTCGCAT 154570 135037 106 Normal aging 

YY004 A-1 M30 AL ACTAGACGACTA 415374 352401 157 Normal aging 

YY010 A-21 M21 AL CTTGTGCGACAA 439383 373296 216 Normal aging 

YY012 A-21 M30 AL AGGTTAAGTGCT 422939 338440 250 Normal aging 

YY013 A-23 M21 AL ATGCTCTAGAGA 390427 324117 239 Healthy aging 

YY015 A-23 M30 AL CGATTTAGGCCA 299124 248027 240 Healthy aging 

YY016 A-24 M21 AL GGTACAATGATC 449154 380134 288 Normal aging 

YY018 A-24 M30 AL AGAGTAAGCCGG 382718 313578 229 Normal aging 

YY019 A-26 M21 CR GACACTCACCGT 371088 310319 300 Healthy aging 

YY021 A-26 M30 CR AGCTAGCGTTCA 353458 290435 292 Healthy aging 

YY022 A-27 M21 CR TCTTCTGCCCTA 371714 306639 293 Normal aging 

YY024 A-27 M30 CR ACTGTCGCAGTA 465584 388876 214 Normal aging 

YY025 A-28 M21 CR CTGATGTACACG 424321 351496 311 Healthy aging 

YY027 A-28 M30 CR TCAGAGTAGACT 393168 311260 305 Healthy aging 

YY045 A-81 M21 AL GTTCAGACTAGC 338153 269337 176 Normal aging 

YY053 A-101 M21 AL ACTAATACGCGA 435557 391101 160 Healthy aging 

YY063 A-281 M21 AL ACGAGGAGTCGA 415094 335968 226 Normal aging 

YY066 A-284 M21 AL ACATCCCTACTT 394919 322213 235 Healthy aging 

YY067 A-289 M21 CR CCTTAAGGGCAT 438364 364232 177 Healthy aging 

YY068 A-290 M21 CR TTCGTGAGGATA 418761 348879 156 Healthy aging 

YY071 A-297 M21 AL GCGGTACTACTA 376527 320687 208 Normal aging 

YY072 A-298 M21 AL TCGTTCAGGACC 441041 365541 195 Normal aging 

YY073 A-300 M21 AL CTTCTTCGCCCT 419897 352836 219 Normal aging 

YY079 A-306 M21 CR TCAGCTGACTAG 414372 337781 229 Healthy aging 

YY097 A-81 M30 AL AGTCGAACGAGG 125864 113019 149 Normal aging 

YY099 A-101 M30 AL TGCAGTCCTCGA 143687 128409 157 Healthy aging 

YY101 A-161 M21 AL GTGGAGTCTCAT 164126 160052 150 Normal aging 

YY103 A-161 M30 AL GCGTTCTAGCTG 152005 126296 148 Normal aging 

YY104 A-164 M21 AL GCTGTACGGATT 113804 110673 128 Healthy aging 

YY106 A-164 M30 AL AGTCGTGCACAT 123834 110799 116 Healthy aging 

YY107 A-165 M21 CR ACCATAGCTCCG 132298 124562 152 Healthy aging 

YY109 A-165 M30 CR GCTCGAAGATTC 156099 141296 131 Healthy aging 

YY110 A-166 M21 CR TAGGCATGCTTG 179628 174312 153 Healthy aging 
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YY112 A-166 M30 CR ATCACCAGGTGT 109369 101016 118 Healthy aging 

YY118 A-184 M21 AL GAGATCGCCTAT 147393 142804 137 Normal aging 

YY120 A-184 M30 AL TGGTCAACGATA 91525 83645 95 Normal aging 

YY126 A-281 M30 AL ATTCTGCCGAAG 126405 98450 201 Normal aging 

YY130 A-284 M30 AL CAAATTCGGGAT 83711 75898 202 Healthy aging 

YY133 A-289 M30 CR ACTTCCAACTTC 111893 96359 134 Healthy aging 

YY136 A-290 M30 CR GTCGTGTAGCCT 117763 114010 176 Healthy aging 

YY142 A-297 M30 AL GTACGATATGAC 199365 179853 161 Normal aging 

YY145 A-298 M30 AL CCAATACGCCTG 122230 113580 146 Normal aging 

YY148 A-300 M30 AL TGTCGCAAATAG 151897 136678 141 Normal aging 

YY151 A-306 M30 CR TGTAACGCCGAT 178578 159425 211 Healthy aging 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 

 1008 

 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

Table S2. The effect of aging process on blood cells in circulation. The data was shown as 1020 

mean ± standard deviation. P value shown the results of Wilcoxon–Mann–Whitney test 1021 
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(unpaired) and Wilcoxon signed rank test (paired) adjusted using the Benjamini–Hochberg 1022 

FDR method. WBC: White blood cell, NE: Neutrophils count, LY: Lymphocytes count, MO: 1023 

Monocytes count, EO: Eosinophils count, BA: Basophils count, NEp: Neutrophils percentage, 1024 

LYp: Lymphocytes percentage, MOp: Monocytes percentage, EOp: Eosinophils percentage, 1025 

BA: Basophils percentage, RBC: Red blood cell count, Hb: Hemoglobin, HCT: Hematocrit, 1026 

MCV: Mean corpuscular volume, MCH: Mean corpuscular hemoglobin, MCHC: Mean 1027 

corpuscular hemoglobin concentration, RDW: Red cell distribution width, PLT: Platelet 1028 

count, MPV: Mean platelet volume, NLR: Neutrophils to Lymphocytes ratio. 1029 

 1030 

  M21   M30  Wilcoxon 

test  

 Wilcoxon–Mann–Whitney test 

Blood 

markers 

M21 

(n=22) 

M21_H 

(n=11) 

M21_N 

(n=11) 

M30 

(n=19) 

M30_H 

(n=10) 

M30_N 

(n=9) 

M21_H 

vs 

M21_N 

M21 

vs 

M30 

M21_H 

vs 

M30_H 

M21_N 

vs 

M30_N 

M30_H 

vs 

M30_N 

M21 vs 

M30_H 

M21 vs 

M30_N 

WBC 

9.830 ± 

2.413 

10.273 ± 

2.034 

9.387 ± 

2.768 

6.441 ± 

4.273 

6.814 ± 

4.291 

6.027 ± 

4.472 0.966 0.022 0.177 0.157 0.746 0.123 0.046 

NE 

1.831 ± 

0.63 

2.021 ± 

0.645 

1.641 ± 

0.581 

2.183 ± 

1.936 

2.076 ± 

1.438 

2.301 ± 

2.465 0.839 0.699 0.578 0.97 0.941 0.871 0.792 

LY 

7.756 ± 

1.953 

7.993 ± 

1.565 

7.52 ± 

2.332 

4.328 ± 

2.691 

5.135 ± 

2.518 

3.432 ± 

2.729 0.943 0.001 0.059 0.017 0.469 0.033 0.004 

MO 

0.234 ± 

0.082 

0.25 ± 

0.099 

0.218 ± 

0.061 

0.271 ± 

0.199 

0.261 ± 

0.162 

0.282 ± 

0.243 0.839 0.917 0.874 0.873 0.967 0.871 1 

EO 

0.008 ± 

0.014 

0.005 ± 

0.009 

0.011 ± 

0.018 

0.026 ± 

0.071 

0.041 ± 

0.096 

0.01 ± 

0.019 0.839 0.443 0.42 0.97 0.709 0.348 0.866 

BA 

0.001 ± 

0.003 0 ± 0 

0.002 ± 

0.004 

0.001 ± 

0.002 0 ± 0 

0.001 ± 

0.003 0.839 0.699 NA 0.873 0.6 0.441 0.944 

NEp 

18.582 ± 

3.969 

19.552 ± 

4.005 

17.613 ± 

3.87 

33.034 ± 

15.552 

27.383 

± 8.807 

39.312 ± 

19.305 0.839 0.001 0.059 0.016 0.51 0.009 0.005 

LYp 

78.881 ± 

4.36 

77.948 ± 

4.609 

79.814 ± 

4.093 

61.905 ± 

17.272 

68.685 

± 9.708 

54.372 ± 

21.069 0.839 0.001 0.059 0.016 0.51 0.009 0.005 

MOp 

2.439 ± 

0.804 

2.422 ± 

0.775 

2.456 ± 

0.87 

4.69 ± 

3.031 

3.467 ± 

1.208 

6.049 ± 

3.884 0.843 0.002 0.12 0.016 0.414 0.07 0.004 

EOp 

0.081 ± 

0.113 

0.063 ± 

0.08 

0.099 ± 

0.14 

0.312 ± 

0.593 

0.432 ± 

0.784 

0.179 ± 

0.247 0.839 0.339 0.474 0.777 0.967 0.378 0.56 

BAp 

0.015 ± 

0.019 

0.012 ± 

0.011 

0.018 ± 

0.024 

0.046 ± 

0.062 

0.032 ± 

0.045 

0.061 ± 

0.077 0.843 0.502 0.874 0.542 0.709 0.871 0.391 

RBC 8.808 ± 9.08 ± 8.535 ± 7.608 ± 7.935 ± 7.246 ± 0.839 0.002 0.012 0.196 0.6 0.009 0.053 
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1.217 0.438 1.66 1.697 0.742 2.361 

Hb 

10.855 ± 

1.698 

11.273 ± 

1.07 

10.436 ± 

2.128 

9.837 ± 

1.649 

10.29 ± 

0.61 

9.333 ± 

2.27 0.843 0.023 0.059 0.18 0.429 0.123 0.053 

HCT 

37.518 ± 

5.18 

38.882 ± 

1.982 

36.155 ± 

6.952 

35.304 ± 

6.621 

35.647 

± 3.047 

34.922 ± 

9.374 0.839 0.039 0.059 0.542 0.709 0.07 0.236 

MCV 

59.432 ± 

79.046 

76.473 ± 

111.721 

42.391 ± 

0.89 

47.111 ± 

5.321 

45.17 ± 

4.29 

49.267 ± 

5.75 0.839 0.005 0.316 0.016 0.467 0.084 0.009 

MCH 

12.332 ± 

0.978 

12.409 ± 

0.836 

12.255 ± 

1.139 

13.126 ± 

1.163 

13.04 ± 

0.9 

13.222 ± 

1.453 0.881 0.064 0.263 0.24 0.967 0.123 0.236 

MCHC 

28.932 ± 

2.096 

28.973 ± 

1.826 

28.891 ± 

2.427 

28.053 ± 

2.756 

29.01 ± 

2.87 

26.989 ± 

2.323 0.919 0.396 0.874 0.18 0.383 0.871 0.083 

RDW 

17.532 ± 

0.764 

17.655 ± 

0.636 

17.409 ± 

0.888 

19.621 ± 

2.842 

18.93 ± 

2.155 

20.389 ± 

3.42 0.839 0.037 0.459 0.065 0.668 0.189 0.053 

PLT 

1390.455 

± 

254.416 

1470.727 

± 

253.589 

1310.182 

± 

239.676 

1561.263 

± 

418.144 

1777.1 

± 

314.232 

1321.444 

± 

399.227 0.839 0.234 0.063 0.873 0.226 0.009 0.56 

MPV 

5.182 ± 

0.168 

5.2 ± 

0.126 

5.164 ± 

0.206 

5.537 ± 

0.527 

5.26 ± 

0.19 

5.844 ± 

0.619 0.843 0.02 0.578 0.017 0.226 0.348 0.005 

NLR 

0.239 ± 

0.065 

0.255 ± 

0.068 

0.224 ± 

0.061 

0.693 ± 

0.646 

0.425 ± 

0.205 

0.991 ± 

0.837 0.839 0.001 0.059 0.016 0.51 0.009 0.005 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 
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Table S3. The microbial features associated with blood markers identified by 1048 

MaAsLin2. The relative abundance (%) was shown as mean ± standard deviation. 1049 

 1050 

ASVs Taxonomy Relative abundance (%) 

ASV890 Ruminococcaceae 0.004 ± 0.011 

ASV806 Lachnospiraceae 0.166 ± 0.394 

ASV5690 Flavonifractor plautii 0.242 ± 0.397 

ASV5652 Lachnospiraceae 0.153 ± 0.355 

ASV5625 Unclassified Firmicutes 0.054 ± 0.234 

ASV5550 Lachnospiraceae 0.292 ± 0.671 

ASV555 Acetatifactor muris 0.002 ± 0.005 

ASV5396 Acetatifactor muris 0.025 ± 0.079 

ASV5138 Unclassified Proteobacteria 0.108 ± 0.321 

ASV4558 Bacteroidales 0.355 ± 1.284 

ASV3949 Anaerotruncus 0.010 ± 0.018 

ASV3897 Unclassified Bacteria 0.019 ± 0.056 

ASV3729 Clostridium aldenense 0.003 ± 0.010 

ASV3535 Muribaculum intestinale 0.084 ± 0.226 

ASV2973 Intestinimonas butyriciproducens 0.006 ± 0.016 

ASV2878 Lachnospiraceae 0.020 ± 0.064 

ASV2868 Oscillibacter 0.007 ± 0.024 

ASV2733 Clostridium XlVa 0.048 ± 0.154 

ASV2710 Unclassified Firmicutes 0.001 ± 0.002 

ASV2261 Ruminococcaceae 0.001 ± 0.003 

ASV1983 Ruminococcaceae 0.043 ± 0.085 

ASV1970 Clostridium XlVa 0.036 ± 0.077 

ASV1513 Lachnospiraceae 0.002 ± 0.002 

ASV1466 Unclassified Firmicutes 0.005 ± 0.018 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 
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Table S4. The microbial features associated with Frailty index identified by MaAsLin2. 1061 

The relative abundance (%) was shown as mean ± standard deviation. 1062 

 1063 

ASVs Taxonomy Relative abundance (%) 

ASV3100 Clostridium sensu stricto 4.148 ± 5.608 

ASV2882 Clostridium XlVa 0.108 ± 0.133 

ASV847 Phocea massiliensis 0.004 ± 0.008 

ASV338 Lachnospiraceae 0.011 ± 0.039 

ASV1726 Parabacteroides goldsteinii 13.017 ± 13.852 

ASV5389 Lachnospiraceae 1.061 ± 1.702 

ASV1123 Enterorhabdus 0.018 ± 0.025 

ASV1101 Clostridium XlVa 0.025 ± 0.025 

ASV807 Bacteria 0.001 ± 0.003 

ASV742 Lachnospiraceae 0.010 ± 0.033 

ASV157 Subdoligranulum variabile 0.131 ± 0.243 

ASV232 Ruminococcaceae 0.009 ± 0.014 

ASV2980 Lachnospiraceae 0.101 ± 0.220 

ASV466 Lachnospiraceae 0.028 ± 0.080 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 
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Table S5. Differentially abundant taxa between 21 and 30 months of age in healthy 1084 

aging mice detected by ANCOM, adjusted for cage, cohort and diet. For each ASV, the 1085 

first column represents its taxonomy information, the second column represents its W score 1086 

and subsequent four columns represent logical indicators of whether it is differentially 1087 

abundant under a series of cutoffs (0.9, 0.8, 0.7, and 0.6, a prevalence cutoff on the entire set 1088 

of ASVs). The last two columns denote its relative abundance (%) in each group shown as 1089 

mean ± standard deviation. 1090 

ASVs Taxonomy 

W_sc

ore 

detected_

0.9 

detected_

0.8 

detected_

0.7 

detected_

0.6 

M21H M30H 

ASV4247 Unclassified Firmicutes 368 TRUE TRUE TRUE TRUE 0 ± 0 1.357 ± 1.883 

ASV1060 Enterorhabdus muris 352 TRUE TRUE TRUE TRUE 0 ± 0 0.039 ± 0.023 

ASV5550 Lachnospiraceae 350 TRUE TRUE TRUE TRUE 0 ± 0 0.631 ± 0.797 

ASV5652 Lachnospiraceae 345 TRUE TRUE TRUE TRUE 0 ± 0 0.331 ± 0.44 

ASV4147 Eubacterium coprostanoligenes 331 FALSE TRUE TRUE TRUE 0.622 ± 0.836 0.174 ± 0.414 

ASV5435 Muribaculum intestinale 330 FALSE TRUE TRUE TRUE 0.275 ± 0.906 7.51 ± 8.01 

ASV806 Lachnospiraceae 326 FALSE TRUE TRUE TRUE 0 ± 0 0.345 ± 0.446 

ASV608 Unclassified Firmicutes 324 FALSE TRUE TRUE TRUE 0.196 ± 0.648 5.741 ± 7.033 

ASV3361 Clostridiales 277 FALSE FALSE TRUE TRUE 0.027 ± 0.032 0.002 ± 0.006 

ASV2776 Unclassified Firmicutes 275 FALSE FALSE TRUE TRUE 0.054 ± 0.123 0.74 ± 1.023 

ASV2756 Acetatifactor muris 261 FALSE FALSE FALSE TRUE 0.017 ± 0.024 0.069 ± 0.042 

ASV2609 Ruminococcaceae 256 FALSE FALSE FALSE TRUE 0.018 ± 0.046 0.085 ± 0.1 

ASV5628 Muribaculum intestinale 254 FALSE FALSE FALSE TRUE 0.145 ± 0.258 1.845 ± 2.288 

ASV16 Clostridium bolteae 253 FALSE FALSE FALSE TRUE 0.034 ± 0.049 0.001 ± 0.002 

ASV3370 Muribaculum intestinale 250 FALSE FALSE FALSE TRUE 1.013 ± 3.359 1.042 ± 2.593 

ASV1726 Parabacteroides goldsteinii 248 FALSE FALSE FALSE TRUE 20.989 ± 20.721 5.247 ± 4.615 

ASV3224 Clostridium cocleatum 246 FALSE FALSE FALSE TRUE 0.275 ± 0.555 0.558 ± 0.461 

ASV4595 Clostridium leptum 234 FALSE FALSE FALSE TRUE 0.121 ± 0.169 0.024 ± 0.04 

ASV5389 Lachnospiraceae 229 FALSE FALSE FALSE TRUE 0.369 ± 0.731 1.192 ± 1.241 

 1091 

 1092 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 
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Table S6. Differentially abundant taxa between 21 and 30 months of age in normal 1102 

aging mice detected by ANCOM, adjusted for cage, cohort and diet. For each ASV, the 1103 

first column represents its taxonomy information, the second column represents its W score 1104 

and subsequent four columns represent logical indicators of whether it is differentially 1105 

abundant under a series of cutoffs (0.9, 0.8, 0.7, and 0.6, a prevalence cutoff on the entire set 1106 

of ASVs). The last two columns denote its relative abundance (%) in each group shown as 1107 

mean ± standard deviation. 1108 

 1109 

ASVs Taxonomy 

W_sc

ore 

detected_

0.9 

detected_

0.8 

detected_

0.7 

detected

_0.6 

M21N M30N 

ASV5550 Lachnospiraceae 334 TRUE TRUE TRUE TRUE 0 ± 0 0.477 ± 0.938 

ASV806 Lachnospiraceae 327 TRUE TRUE TRUE TRUE 0 ± 0 0.283 ± 0.576 

ASV3224 Clostridium cocleatum 327 TRUE TRUE TRUE TRUE 0.48 ± 1.005 0.955 ± 0.931 

ASV5652 Lachnospiraceae 326 TRUE TRUE TRUE TRUE 0 ± 0 0.248 ± 0.481 

ASV5435 Muribaculum intestinale 316 FALSE TRUE TRUE TRUE 0.001 ± 0.002 4.381 ± 7.109 

ASV3100 Clostridium sensu stricto 296 FALSE TRUE TRUE TRUE 1.222 ± 2.458 8.285 ± 6.248 

ASV3370 Muribaculum intestinale 285 FALSE FALSE TRUE TRUE 1.091 ± 2.427 2.785 ± 3.561 

ASV1053 Unclassified Bacteria 278 FALSE FALSE TRUE TRUE 0.331 ± 0.39 0.001 ± 0.004 

ASV1812 Anaerotruncus rubiinfantis 263 FALSE FALSE TRUE TRUE 0.025 ± 0.017 0.004 ± 0.004 

ASV570 Muribaculum intestinale 258 FALSE FALSE TRUE TRUE 0.665 ± 1.52 1.999 ± 3.191 

ASV5628 Muribaculum intestinale 254 FALSE FALSE TRUE TRUE 0.03 ± 0.077 1 ± 1.592 

ASV3550 Erysipelotrichaceae 250 FALSE FALSE FALSE TRUE 0.052 ± 0.079 0 ± 0 

ASV1101 Clostridium XlVa 238 FALSE FALSE FALSE TRUE 0.038 ± 0.023 0.007 ± 0.006 

ASV360 Streptococcus danieliae 220 FALSE FALSE FALSE TRUE 0 ± 0 0.008 ± 0.01 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

 1117 

 1118 

 1119 

 1120 

 1121 

 1122 

 1123 

 1124 
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Table S7. Differentially abundant taxa between 21 and 30 months of age detected by 1125 

ANCOM, adjusted for cage, cohort and diet. For each ASV, the first column represents its 1126 

taxonomy information, the second column represents its W score and subsequent four 1127 

columns represent logical indicators of whether it is differentially abundant under a series of 1128 

cutoffs (0.9, 0.8, 0.7, and 0.6, a prevalence cutoff on the entire set of ASVs). The last two 1129 

columns denote its relative abundance (%) in each group shown as mean ± standard 1130 

deviation. 1131 

 1132 

ASVs Taxonomy 

W_sc

ore 

detected_

0.9 

detected_

0.8 

detected_

0.7 

detected_

0.6 

M21 M30 

ASV5550 Lachnospiraceae 375 TRUE TRUE TRUE TRUE 0 ± 0 0.554 ± 0.853 

ASV4147 

Eubacterium 

coprostanoligenes 372 TRUE TRUE TRUE TRUE 0.55 ± 0.661 0.178 ± 0.332 

ASV4247 Unclassified Firmicutes 369 TRUE TRUE TRUE TRUE 0.189 ± 0.886 1.879 ± 5.061 

ASV5435 Muribaculum intestinale 369 TRUE TRUE TRUE TRUE 0.138 ± 0.641 5.946 ± 7.562 

ASV3224 Clostridium cocleatum 366 TRUE TRUE TRUE TRUE 0.377 ± 0.798 0.756 ± 0.745 

ASV5652 Lachnospiraceae 366 TRUE TRUE TRUE TRUE 0 ± 0 0.29 ± 0.452 

ASV806 Lachnospiraceae 365 TRUE TRUE TRUE TRUE 0 ± 0 0.314 ± 0.504 

ASV608 Unclassified Firmicutes 360 TRUE TRUE TRUE TRUE 0.123 ± 0.466 4.633 ± 8.181 

ASV3370 Muribaculum intestinale 357 TRUE TRUE TRUE TRUE 1.052 ± 2.86 1.914 ± 3.168 

ASV5628 Muribaculum intestinale 354 TRUE TRUE TRUE TRUE 0.087 ± 0.195 1.422 ± 1.971 

ASV5266 Clostridium XlVa 342 FALSE TRUE TRUE TRUE 0 ± 0 1.084 ± 2.245 

ASV2776 Unclassified Firmicutes 341 FALSE TRUE TRUE TRUE 0.05 ± 0.125 0.534 ± 0.842 

ASV1060 Enterorhabdus muris 340 FALSE TRUE TRUE TRUE 0.003 ± 0.007 0.025 ± 0.023 

ASV3550 Erysipelotrichaceae 332 FALSE TRUE TRUE TRUE 0.056 ± 0.093 0 ± 0 

ASV5389 Lachnospiraceae 327 FALSE TRUE TRUE TRUE 0.432 ± 0.738 1.69 ± 2.134 

ASV1053 Unclassified Bacteria 324 FALSE TRUE TRUE TRUE 0.224 ± 0.348 0.09 ± 0.417 

ASV157 

Subdoligranulum 

variabile 318 FALSE TRUE TRUE TRUE 0.196 ± 0.284 0.066 ± 0.176 

ASV1101 Clostridium XlVa 318 FALSE TRUE TRUE TRUE 0.039 ± 0.027 0.012 ± 0.013 

ASV3100 Clostridium sensu stricto 318 FALSE TRUE TRUE TRUE 1.776 ± 3.757 6.518 ± 6.203 

ASV3306 

Clostridium 

lactatifermentans 316 FALSE TRUE TRUE TRUE 0.098 ± 0.112 0.261 ± 0.154 

ASV1970 Clostridium XlVa 312 FALSE TRUE TRUE TRUE 0.005 ± 0.013 0.071 ± 0.103 

ASV4595 Clostridium leptum 310 FALSE TRUE TRUE TRUE 0.102 ± 0.126 0.055 ± 0.129 

ASV5149 Lachnospiraceae 310 FALSE TRUE TRUE TRUE 0.004 ± 0.017 0.046 ± 0.109 

ASV2609 Ruminococcaceae 308 FALSE TRUE TRUE TRUE 0.02 ± 0.043 0.058 ± 0.078 

ASV3260 Longibaculum muris 308 FALSE TRUE TRUE TRUE 0.068 ± 0.07 0.025 ± 0.033 

ASV360 Streptococcus danieliae 305 FALSE FALSE TRUE TRUE 0 ± 0 0.006 ± 0.009 

ASV3447 Erysipelotrichaceae 300 FALSE FALSE TRUE TRUE 0.058 ± 0.096 0.002 ± 0.005 

ASV1726 Parabacteroides 299 FALSE FALSE TRUE TRUE 19.963 ± 6.07 ± 4.97 
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goldsteinii 16.342 

ASV570 Muribaculum intestinale 292 FALSE FALSE TRUE TRUE 1.52 ± 3.134 1.592 ± 2.524 

ASV4275 Proteus 284 FALSE FALSE TRUE TRUE 0 ± 0 0.01 ± 0.025 

ASV2075 Lachnospiraceae 283 FALSE FALSE TRUE TRUE 0.131 ± 0.492 0.097 ± 0.154 

ASV2066 

Clostridium 

saccharogumia 280 FALSE FALSE TRUE TRUE 0.05 ± 0.084 0 ± 0 

ASV2904 Lachnospiraceae 278 FALSE FALSE TRUE TRUE 0 ± 0 0.174 ± 0.52 

ASV3361 Clostridiales 274 FALSE FALSE TRUE TRUE 0.021 ± 0.025 0.004 ± 0.007 

ASV3840 Eubacterium siraeum 272 FALSE FALSE TRUE TRUE 0.023 ± 0.033 0 ± 0.002 

ASV3141 

Clostridium 

methylpentosum 270 FALSE FALSE TRUE TRUE 0.012 ± 0.013 0.003 ± 0.008 

ASV4737 Lachnospiraceae 267 FALSE FALSE FALSE TRUE 0.059 ± 0.173 0.159 ± 0.275 

ASV16 Clostridium bolteae 253 FALSE FALSE FALSE TRUE 0.02 ± 0.037 0.002 ± 0.005 

ASV3400 Clostridium XlVb 253 FALSE FALSE FALSE TRUE 0.068 ± 0.098 0.017 ± 0.026 

ASV1762 Clostridium scindens 249 FALSE FALSE FALSE TRUE 0 ± 0 0.022 ± 0.047 

ASV5225 Unclassified Firmicutes 244 FALSE FALSE FALSE TRUE 0.001 ± 0.002 0.006 ± 0.007 

ASV613 Flintibacter butyricus 232 FALSE FALSE FALSE TRUE 0.002 ± 0.007 0.015 ± 0.036 
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Table S8. Differentially abundant taxa between healthy and normal aging mice at 21 1154 

months of age detected by ANCOM, adjusted for cage, cohort and diet. For each ASV, 1155 
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the first column represents its taxonomy information, the second column represents its W 1156 

score and subsequent four columns represent logical indicators of whether it is differentially 1157 

abundant under a series of cutoffs (0.9, 0.8, 0.7, and 0.6, a prevalence cutoff on the entire set 1158 

of ASVs). The last two columns denote its relative abundance (%) in each group shown as 1159 

mean ± standard deviation. 1160 

 1161 

ASVs Taxonomy W_score 

detected_

0.9 

detected_

0.8 

detected_

0.7 

detected_

0.6 

Healthy aging 

(M21H)  

Normal aging 

(M21N) 

ASV2048 Muribaculum intestinale 366 TRUE TRUE TRUE TRUE 5.129 ± 7.579 1.2 ± 3.98 

ASV570 Muribaculum intestinale 289 FALSE FALSE TRUE TRUE 2.375 ± 4.087 0.665 ± 1.52 

ASV1959 Porphyromonadaceae 268 FALSE FALSE TRUE TRUE 0.982 ± 1.702 0.513 ± 1.483 

ASV3256 Porphyromonadaceae 260 FALSE FALSE FALSE TRUE 0.841 ± 1.441 0.44 ± 1.258 

ASV1791 Porphyromonadaceae 238 FALSE FALSE FALSE TRUE 0.395 ± 0.688 0.202 ± 0.58 

ASV4558 Bacteroidales 232 FALSE FALSE FALSE TRUE 1.063 ± 2.401 0.156 ± 0.452 
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Table S9. Differentially abundant taxa between healthy and normal aging mice at 30 1184 

months of age detected by ANCOM, adjusted for cage, cohort and diet. For each ASV, 1185 

the first column represents its taxonomy information, the second column represents its W 1186 
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score and subsequent four columns represent logical indicators of whether it is differentially 1187 

abundant under a series of cutoffs (0.9, 0.8, 0.7, and 0.6, a prevalence cutoff on the entire set 1188 

of ASVs). The last two columns denote its relative abundance (%) in each group shown as 1189 

mean ± standard deviation. 1190 

 1191 

ASVs Taxonomy 

W_sc

ore 

detected_

0.9 

detected_

0.8 

detected_

0.7 

detected_

0.6 

Healthy aging 

(M30H)  

Normal aging 

(M30N) 

ASV648 Akkermansia muciniphila 323 TRUE TRUE TRUE TRUE 15.487 ± 18.623 3.812 ± 6.979 

ASV73 Ruminococcaceae 300 FALSE TRUE TRUE TRUE 0.298 ± 0.566 0 ± 0 

ASV2756 Acetatifactor muris 270 FALSE FALSE TRUE TRUE 0.069 ± 0.042 0.02 ± 0.033 

ASV3370 Muribaculum intestinale 258 FALSE FALSE TRUE TRUE 1.042 ± 2.593 2.785 ± 3.561 

ASV698 Unclassified Bacteria 253 FALSE FALSE TRUE TRUE 0.935 ± 1.527 1.547 ± 2.031 

ASV3100 Clostridium sensu stricto 248 FALSE FALSE TRUE TRUE 4.75 ± 5.907 8.285 ± 6.248 

ASV2776 Unclassified Firmicutes 228 FALSE FALSE FALSE TRUE 0.74 ± 1.023 0.329 ± 0.591 

ASV3939 Turicibacter sanguinis 218 FALSE FALSE FALSE TRUE 2.442 ± 3.116 2.59 ± 3.045 

ASV1123 Enterorhabdus 216 FALSE FALSE FALSE TRUE 0.003 ± 0.006 0.011 ± 0.009 
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