

1

Super.Complex: A supervised machine learning pipeline for molecular complex

detection in protein-interaction networks

Short title- Supervised ML pipeline for molecular complex detection in PPI networks

Meghana V. Palukuri1* and Edward M. Marcotte2*

1Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas,

USA
2Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at

Austin, Austin, Texas, USA

ORCIDs: M.V.P., orcid.org/0000-0002-6529-6127; E.M.M., orcid.org/0000-0001-8808-180X

*Correspondence to meghana.palukuri@utexas.edu (M.V.P.), marcotte@utexas.edu (E.M.M.)

Abstract

Protein complexes can be computationally identified from protein-interaction networks with community

detection methods, suggesting new multi-protein assemblies. Most community detection algorithms tend to be

un- or semi-supervised and assume that communities are dense network subgraphs, which is not always true, as

protein complexes can exhibit diverse network topologies. The few existing supervised machine learning

methods are serial and can potentially be improved in terms of accuracy and scalability by using better-suited

machine learning models and by using parallel algorithms, respectively. Here, we present Super.Complex, a

distributed supervised machine learning pipeline for community detection in networks. Super.Complex learns a

community fitness function from known communities using an AutoML method and applies this fitness

function to detect new communities. A heuristic local search algorithm finds maximally scoring communities

with epsilon-greedy and pseudo-metropolis criteria, and an embarrassingly parallel implementation can be run

on a computer cluster for scaling to large networks. In order to evaluate Super.Complex, we propose three new

measures for the still outstanding issue of comparing sets of learned and known communities. On a yeast

protein-interaction network, Super.Complex outperforms 6 other supervised and 4 unsupervised methods.

Application of Super.Complex to a human protein-interaction network with ~8k nodes and ~60k edges yields

1,028 protein complexes, with 234 complexes linked to SARS-CoV-2, with 111 uncharacterized proteins

present in 103 learned complexes. Super.Complex is generalizable and can be used in different applications of

community detection, with the ability to improve results by incorporating domain-specific features. Learned

community characteristics can also be transferred from existing applications to detect communities in a new

application with no known communities. Code and interactive visualizations of learned human protein

complexes are freely available at: https://sites.google.com/view/supercomplex/super-complex-v3-0.

Author summary

Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical

entity, is important, as such assemblies play many essential roles in cells, ranging from gene regulation (as for

the elaborate multiprotein complexes of mRNA transcription and elongation) to establishing the major

structural elements of cells (as for key cytoskeletal protein complexes, such as microtubules and their

trafficking proteins). Disruption of protein-protein interactions often leads to disease, therefore identifying a

complete list of protein complexes allows us to better understand the association of protein and disease. From

networks of protein-protein interactions, potential protein complexes can be identified computationally through

the application of community detection methods, which flag groups of entities interacting with each other in

certain patterns. In this work, we present Super.Complex, a generalizable and scalable supervised machine

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

mailto:meghana.palukuri@utexas.edu
mailto:marcotte@icmb.utexas.edu
https://sites.google.com/view/supercomplex/super-complex-v3-0
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

2

learning-based community detection algorithm that outperforms existing methods by accurately learning and

using patterns from known communities. We propose 3 novel evaluation measures to compare learned and

known communities, an outstanding issue. We use Super.Complex to identify 1028 human protein complexes,

including 234 complexes linked to SARS-CoV-2, the virus causing COVID-19, and 103 complexes containing

111 uncharacterized proteins.

Keywords

protein complex, overlapping community detection, supervised machine learning, protein-interaction network,

graph mining

Introduction

A protein complex is a group of proteins that interact with each other to perform a particular function in

a cell, the basic biological unit of all living organisms. Extensive biological experiments have investigated the

physical interactions between proteins, and these have been modeled via weighted protein-protein interaction

(PPI) networks, where a protein-protein edge weight corresponds to the strength of evidence for the protein-

protein interaction. All experimental protocols for detecting complexes (such as AP/MS, affinity purification

with mass spectrometry, and CF/MS, co-fractionation with mass spectrometry) have a tendency to miss

interactions (false negatives) and may also predict extra interactions (false positives). Proteins may also

participate in more than one complex, potentially blurring the boundaries of otherwise unrelated protein

communities. Computational analysis of protein-protein interaction networks can therefore be very useful in

identifying accurate protein complexes and will help augment and direct experimental methods.

The weighted PPI network or graph G can be represented as pairs of nodes and edges (V, E), where the

set of nodes or vertices V represents the proteins, and the set of weighted edges E represents the strengths of

evidence for interactions between proteins. Any group of nodes and edges that can be characterized as a protein

complex can be referred to as a community; community detection methods can be used in turn to identify

protein complexes.

A standard guideline for defining communities [1] is that a community should have more interactions or

connectivity among the community than with the rest of the network. This can be modeled for example by the

community fitness function in Equation 1, mapping a subgraph, C, i.e. a group of nodes and edges from the full

graph, to a scalar value representing a score, where a higher score indicates more community resemblance.

f(C) = δint (C) - δext (C) (1)

The intra-cluster density 𝛿𝑖𝑛𝑡 (𝐶) and inter-cluster density𝛿𝑒𝑥𝑡 (𝐶) are given by

 𝛿𝑖𝑛𝑡 (𝐶) =
𝑖𝑛𝑡𝑟𝑎−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠

𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
=

𝑚𝑐

𝑛𝑐(𝑛𝑐−1)/2
 (2)

𝛿𝑒𝑥𝑡 (𝐶) =
𝑖𝑛𝑡𝑒𝑟−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠

𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑟−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠
=

𝑖𝑛𝑡𝑒𝑟−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠

𝑛𝑐(𝑛−𝑛𝑐)
 (3)

Here, 𝑛𝑐 and 𝑚𝑐 are the numbers of nodes and edges in subgraph C, respectively, and n is the number of nodes

in graph G.

However, there exist many communities that do not follow this criterion but can be identified by

different properties they exhibit. One such example is a star-like topology, where one central node interacts with

several nodes in yeast protein-interaction networks [2], as, for example, in the case of a molecular chaperone

that acts on a number of separate protein clients. In the case of human protein complexes, we also observe

different topologies such as clique, linear, and hybrid between linear and clique, as shown Fig 1. These human

protein complexes represent proteins known to belong to experimentally characterized gold-standard protein

complexes from CORUM 3.0 (the comprehensive resource of mammalian protein complexes) [3] with edge

weights taken from hu.MAP [4], a human protein interaction network with interactions derived from over 9,000

published mass spectrometry experiments.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

3

Fig 1. Different topologies are exhibited by human protein complexes. a. Clique (Commander/CCC

complex), b. Hybrid with different edge-weights (BLOC-1 (biogenesis of lysosome-related organelles complex

1)), c. Hybrid (NRD complex (Nucleosome remodeling and deacetylation complex), d. Linear (Ubiquitin E3

ligase (CUL3, KLHL9, KLHL13, RBX1)). These are experimentally characterized complexes from CORUM

[3] with protein interaction evidence obtained from hu.MAP [4].

Existing community detection methods have primarily tried to optimize for high scores of community

fitness functions, such as that of equation 1 [5]. These include unsupervised methods, such as implemented by

MCL- Markov Clustering [6], MCODE - Molecular COmplex DEtection [7], CFinder [8], SCAN- Structural

Clustering Algorithm for Networks [9], CMC - Clustering based on Maximal Cliques [10], COACH - COre-

AttaCHment based method [11], GCE - Greedy Clique Expansion [5], and ClusterONE - clustering with

overlapping neighborhood expansion [12], as well as semi-supervised machine learning algorithms such as

COCDM - Constrained Overlapping Complex Detection Model [13].

When there are sufficient data available on known communities, rather than applying a generic

community fitness function to the problem, it can be more accurate to learn a community fitness function

directly from known communities. Then, new communities detected with the learned community fitness

function can be expected to better resemble known communities in the field. Supervised machine learning

methods are well suited for this purpose, and a few methods have been used to learn a community fitness

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://meghanapalukuri.github.io/Complexes/CORUM/Complex112.html
https://meghanapalukuri.github.io/Complexes/CORUM/Complex112.html
https://meghanapalukuri.github.io/Complexes/CORUM/Complex22.html
https://meghanapalukuri.github.io/Complexes/CORUM/Complex119.html
https://meghanapalukuri.github.io/Complexes/CORUM/Complex96.html
https://meghanapalukuri.github.io/Complexes/CORUM/Complex96.html
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

4

function from constructed community embeddings, i.e., community representations in vector space, obtained by

extracting topological and domain-specific features from communities. The community fitness function learned

can then be used to select candidate communities from the network and evaluate them. Since finding maximally

scoring communities in a network is an NP-hard (non-deterministic polynomial-time hard) problem [2],

heuristic algorithms have been used to find candidate communities. A common strategy is to select a seed (such

as a node or a clique) and grow it into a candidate community by iteratively selecting neighbors to add to the

current subgraph using heuristics such as iterative simulated annealing until a defined stopping criterion is met

for the growth process. This process is repeated with different seeds to generate a set of candidate communities.

Existing supervised methods use different machine learning methods to learn the community fitness

function after extracting different features and use different heuristic algorithms to select candidate

communities. The first supervised method [2] used a support vector machine (SCI-SVM) and a Bayesian

network (SCI-BN) with 33 features with a greedy heuristic, followed by iterative simulated annealing. Stopping

criteria for the growth of a seed include limiting the rounds of growth, checking for score improvement over

multiple iterations, and checking for overlap with learned candidate communities so far. A second approach

[14] recursively trained a two-layer feed-forward neural network model, NN for the classifier using 43 features.

This greedy heuristic sequentially grows seeds of the highest degree with similar stopping criteria as [2].

Supervised learning protein complex detection SLPC [15] uses a regression model (RM) with 10 topological

features, solved by gradient descent. A modified cliques algorithm finds and grows maximal cliques using a

random but exhaustive neighbor selection followed by a greedy growth heuristic. The algorithm stops when no

node addition can yield a higher score, after which they merge some pairs of overlapping complexes with an

overlap greater than a threshold. ClusterEPs, short for cluster emerging patterns [10] uses a score function based

on noise-tolerant emerging patterns (NEPs) which are minimal discriminatory feature sets using 22 features,

along with an average node degree term. Like [14], the heuristic for this method also grows the highest degree

seed nodes sequentially. The neighboring node that shares the maximum number of edges with the current

subgraph is selected as a candidate for growth in each iteration and a greedy growth heuristic is used, stopping

when the score is greater than 0.5. ClusterSS, short for clustering with supervised and structural information

[16] uses a neural network with one hidden layer and 17 features, along with a traditional structural score

function from [12]. A greedy heuristic grows seed nodes, also considering deletion of any existing subgraph

nodes, with an optimization step of considering only the top k nodes by degree. The stopping criterion is when

the new score is less than a factor times the old score. Both ClusterEPs and ClusterSS merge pairs of

communities with overlap greater than a threshold at the end.

Regarding scalability, the above methods have generally only been implemented on small yeast protein

complex datasets, except for ClusterEPs, which trains on yeast data and tests on human PPIs. [17] implement

the regression model of [15] on a human PPI network re-weighted by breast-cancer specific PPIs extracted from

biomedical literature to detect disease-specific complexes. However, these methods employ serial candidate

community sampling, negatively impacting their scalability to large networks such as hu.MAP [4], a human

protein-interaction network with ~8k nodes and ~60k edges.

In this work, we present Super.Complex (short for Supervised Complex detection algorithm), an end-to-

end highly scalable, distributed, and efficient community detection pipeline that explores multiple supervised

learning methods with AutoML (Automated Machine Learning) to learn the most accurate community fitness

function from known communities. Super.Complex then samples candidate subgraphs in parallel by seeding

nodes or starting with maximal cliques and growing them with an epsilon-greedy heuristic, followed by an

additional heuristic such as iterative simulated annealing or pseudo-metropolis using the learned community

fitness function. On a yeast PPI network, Super.Complex outperforms all 6 existing supervised methods, as well

as 4 unsupervised methods. Three novel evaluation measures are proposed to overcome certain shortcomings of

existing metrics. We apply Super.Complex to hu.MAP to yield 1028 protein complexes, including high-scoring

previously unknown protein complexes, potentially contributing to new biology, and make all data, code, and

visualizations openly available.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

5

Results and Discussion

Super.Complex - a scalable, distributed supervised ML-based community detection method

The pipeline Super.Complex comprises two main tasks, first, learning a community fitness function with

AutoML methods, and second, using the community fitness function to intelligently sample overlapping

communities from a network in parallel, as shown in Fig 2. For the first task, we first perform (i) Data

Preparation, where known communities are cleaned and split into non-overlapping training and testing sets,

followed by construction of training and testing negative community data. Next, in (ii) Feature Extraction,

topological characteristics for all communities are computed to construct training and testing feature matrices.

AutoML (iii) then compares different ML (Machine Learning) pipelines to select the best one, followed by

training and testing the best ML pipeline, thus learning the community fitness function as the binary classifier

distinguishing positive communities from negatives. Having learned the community fitness function,

Super.Complex then uses it in its heuristic algorithm for the second task of (iv) Candidate Community Search.

The algorithm can start with either single nodes or maximal cliques as seeds. These seeds are grown, i.e.

neighbors are added iteratively to form the final set of candidate communities. Four options for heuristics are

provided to decide which neighboring node to add in each iteration of growth, including greedy edge weight, 𝜖-

greedy, 𝜖-greedy + pseudo metropolis, and 𝜖-greedy + iterative simulated annealing. Finally, in the last step (v)

evaluation, the learned communities are compared with known communities. The steps of the pipeline are fairly

independent and can be improved on their own with methods to test the accuracy/performance of each of the

steps.

Fig 2. Super.Complex identifies likely protein complexes within a PPI network using a distributed

supervised AutoML method.

Task 1: Learning a community fitness function:

(i) Topological features are extracted from known communities to build community embeddings (feature

vectors, which are representations of communities in vector space)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

6

 (ii) A score function for communities, the community fitness function, is learned from the community

embeddings as the decision function to classify a network subgraph as a community or a random walk. The best

score function is selected after training multiple machine learning models with tpot [18], an AutoML pipeline.

Task 2: Selecting candidate communities from the network:

(iii) Multiple communities are sampled in parallel from the network. To build each candidate community, a seed

edge is selected and grown using a 2-stage heuristic. First, we use an epsilon-greedy heuristic to select a

candidate neighbor, and then we use a pseudo-metropolis (constant probability) or iterative simulated annealing

heuristic to accept or reject the candidate neighbor for growing the current community. The figure shows an

iteration of neighbor selection using a greedy heuristic, starting from a seed edge.

(iv) The candidate communities are merged such that the maximum overlap between any 2 communities is not

greater than a specified threshold.

Although the pipeline broadly follows the same major steps as other supervised techniques, each step

has been further optimized as follows: Unlike some existing methods that remove nodes in the process of

growth (e.g. such as Louvain [19] and ClusterSS), we show that our method guarantees properties such as

internal connectivity of communities. Further, the merging algorithm we employ guarantees that no two

communities overlap more than a specified threshold, and provides an additional guarantee that no two

communities can be merged to yield a higher scoring community when the specified threshold is 0 overlap, i.e.

in the case of obtaining non-overlapping communities. Super.Complex implements an original distributed

architecture and software design, scaling to large networks such as hu.MAP with ~8k nodes and ~60k edges. To

our knowledge, epsilon-greedy heuristics in conjunction with other heuristics such as iterative simulated

annealing have not been applied in the past for community detection. Super.Complex has a cross-validation

pipeline to select the heuristic and the parameters that work best for the application at hand. Minimal hyper-

parameter selection is required in our algorithm with default parameters provided when smart hyperparameters

cannot be inferred.

Since the number of known communities can be limited, we emphasize the preservation of known

communities when splitting them into train-test sets while ensuring independence - i.e., no edge overlap

between a train and test community on the network, similar size distributions for both sets, and 70-30 ratios in

train-test sets. Similarly, a minimal number of merges is attempted in the merging algorithms devised to

maintain a high number of learned protein complexes. We perform manual feature selection to demonstrate the

merit of this step and include automated feature selection in the pipeline. Further, unlike existing supervised

methods, which evaluate the performance of their algorithms on a reduced network with only nodes present in

known communities, we evaluate our algorithm on the full network for more accurate evaluation. Finally, we

note that our methods are also applicable in domains with limited or no knowledge by transferring community

fitness functions from other domains, such as the defaults we provide for human protein complex detection.

Three novel evaluation measures to compare learned communities with known communities

Comparing sets of learned and known communities accurately is an outstanding issue. Poor evaluation

measures do not satisfactorily identify the quality of learned communities and make it difficult to evaluate a

community detection algorithm. Sets of learned communities achieving high scores with existing evaluation

measures have been observed to have a lot of redundancies, e.g. multiple learned communities are very similar

with high overlaps [20]. Known big communities were also observed to be split into several learned

communities while still achieving good scores on evaluation measures. While it is undesirable to have many

false negatives, having many false positives is more hurtful, as wet-lab experiments for biological validation

tend to be quite expensive and time-consuming to perform. Therefore, we concentrate on including precision-

like measures that compute false positives. Further, evaluation measures that are not sensitive to changes in the

sets of learned communities limit our abilities to iterate successfully over algorithm modifications to improve

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

7

algorithms. We examine the specific shortcomings of different evaluation measures and propose new measures

to help overcome the issues discussed and construct robust yet sensitive measures.

F-similarity-based Maximal Matching F-score (FMMF). An issue with many measures such as Qi et al F1

score (equation 13) and SPA (equation 14) is that they don’t penalize redundancy, i.e. if we learn multiple same

or very similar communities which are each individually high scoring, we will get a high value of precision-like

measures. This is because in many cases, many to one matches are being made between learned communities

and known communities. To deal with such issues, it is best to make one-to-one matches. The MMR (Maximal

Matching Ratio) is one such good measure, however, it only calculates a recall-like measure by dividing the

sum of the weights of edges (in a maximal sum of one-to-one edge weights) by the total number of known

communities. Taken alone this cannot account for precision, for instance, if we learn a series of random

subgraphs, these have low weights and will be ignored, while a high MMR score can be obtained from only a

small number of high quality learned communities. Therefore, we define the precision equivalent for MMR,

𝑃𝐹𝐹𝑀 in Fig 3c.

Fig 3. Proposed evaluation measures - FMMF, CMFF, and UnSPA are sensitive metrics. a. Bipartite

graph, where each edge weight corresponds to the F-similarity (𝑠𝑖𝑚𝐹(𝐶
𝑘
, 𝐶𝑙)) between 𝐶𝑘, a known community

from 𝐾 , the set of known communities and 𝐶𝑙, a learned community from 𝐿 , the set of learned communities.

b. The F-similarity score combines precision (P(C
k
, Cl)) and recall (𝑅(𝐶

𝑘
, 𝐶𝑙)) measures, computed as fractions

of the number of common nodes w.r.t the number of nodes in a community. |𝐶|is the number of nodes in

community C and | 𝐶1 ∩ 𝐶2 | is the number of nodes common to both communities. c. F-similarity-based

Maximal Matching F-score (FMMF) combines precision (𝑃𝐹𝐹𝑀) and recall (𝑅𝐹𝐹𝑀) measures computed for a

maximal matching, 𝑀 of the bipartite graph in Fig 3a d. Community-wise Maximum F-similarity based F-score

(CMFF) combines precision (𝑃𝐶𝑀𝐹) and recall (𝑅𝐶𝑀𝐹) measures, averaging over the maximum F-similarity

score for a community in a particular set (e.g. known communities) w.r.t to a community of the other set (e.g.

learned communities) e. UnSPA is an unbiased version of Sn-PPV accuracy (SPA), computed as the geometric

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

8

mean of unbiased PPV (𝑃𝑃𝑉𝑢) and unbiased Sensitivity (𝑆𝑛𝑢), computed similar to precision and recall

measures in CMFF, only, instead of the F-similarity score, precision and recall similarity scores are used

respectively f. Sensitivity of different evaluation measures w.r.t. (maximum pairwise Jaccard coefficient)

overlap between communities shows that FMMF, CMFF, UnSPA, and existing measures Qi et al F1 score

(equation 13), and SPA (equation 14) are sensitive metrics, with FMMF, CMFF, and Qi et al F1 score following

the desired trend. Here, each data point on the plot corresponds to a measure evaluating an individual run of

Super.Complex’s merging algorithm with a maximum Jaccard overlap threshold set to the x-axis value.

In Fig 3c, M is a set of weights of a set of maximal one-to-one matches, found using Karp’s algorithm [21]. The

weight w that we use is the F-similarity score (Fig 3b), also described in the next section, Community-wise

Maximum F-similarity based F-score (CMFF), unlike the neighborhood affinity used in the original MMR.

Correspondingly we can define an F-score, FMMF, as the harmonic mean of the precision 𝑃𝐹𝐹𝑀 and recall

𝑅𝐹𝐹𝑀, also shown in Fig 3c.

By doing a one-to-one match, we are also indirectly penalizing cases where the benchmark community

is split into multiple smaller communities in the learned set of communities, since the measure considers the

weight of only one of the smaller learned communities that comprise the known community, ignoring the rest.

Thus only the small weight of the matched community is considered, penalizing this case, unlike one-to-many

measures that aggregate the contributions from each of the smaller communities to finally achieve a high score.

Community-wise Maximum F-similarity-based F-score (CMFF). The authors of [5] compute F1 scores at

the individual known community-learned community match level and look at the histograms of these scores for

all known communities. While their work does not state the exact formulation of their F1 score, we are inspired

by them to define an F1 score at the match level, i.e. an F-similarity score, by comparing the nodes of a learned

and a known community. Our F-similarity score is a combination of the recall (of the nodes of the known

community) and the precision (of the nodes of the learned community), as shown in Fig 3b.

Our F-similarity score can be used in a thresholding scenario to determine a match, and then the overall

precision, recall, and F1 scores for the set of predictions can be computed as in equation 12. Alternatively, our

F-similarity score can be used to determine the best matches for communities and overall measures can be

defined that can be investigated to reveal the contributions at the individual match level as well. For

interpretability at the match level, similar to the unbiased sensitivity and PPV metrics (as discussed in the next

section, Unbiased Sn-PPV Accuracy (UnSPA)), we can define precision and recall measures that evaluate, for

each community, the closest matching community in the other set using a similarity metric. Using the F-

similarity score as the similarity metric here, we define precision and recall-like measures, and combine them

into the F1-like measure, CMFF - Community-wise Maximum F-similarity based F-score, as shown in Fig 3d.

We detail a general framework to construct similar measures in the next paragraph, drawing inspiration from

modifications to the Qi et al F1 score. This framework also gives another method of constructing the CMFF.

In the Qi et al measures from [2], (equations 11, 12 and 13), a binary indication of a possible match is

used, i.e. as long as there exists a possible match, it is used as a 1 or 0 count towards the aggregate precision or

recall measures. Having a measure that provides matches between learned and known communities allows easy

identification of previously unknown communities. One to many matches such as Qi et al precision-recall (PR)

measures that do not use an explicit matching between learned and known communities can be modified to

obtain a matching. In the modified measure, for each community, we choose the most similar community in the

other set in order to give the matching. While thresholding measures such as Qi et al F1 score (equation 13)

have the advantage of being robust measures, until a match crosses a threshold, the measure will not change,

making it unchanging to small variations in predictions. Measures with low sensitivity make it difficult to

compare algorithms and select parameters. Weighted measures are more sensitive, giving different values based

on the quality of matches, and are more precise when compared to summing binary values of match existence.

Accordingly, a more sensitive and precise version of the Qi et al F1 score can be obtained by summing up

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

9

weights indicating the similarity scores. For instance, instead of the thresholding measure in equation 10, the

neighborhood affinity similarity measure (also obtained by multiplying the L.H.S of equation 10) can be used to

construct a more precise and sensitive measure, i.e,

 𝑠𝑖𝑚(𝐶1, 𝐶2) = 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 =
| 𝐶1 ∩ 𝐶2 |

2

| 𝐶1 |∗|𝐶2|
 (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑𝐶𝑘 𝜖 𝐾 𝑚𝑎𝑥

𝐶𝑙𝜖 𝐿
 𝑠𝑖𝑚 (𝐶𝑙,𝐶𝑘)

| 𝐾 |
, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑𝐶𝑙 𝜖 𝐿 𝑚𝑎𝑥
𝐶𝑘𝜖 𝐾

 𝑠𝑖𝑚 (𝐶𝑙,𝐶𝑘)

| 𝐿|
 and 𝐹1 =

2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (5)

Here, 𝑠𝑖𝑚(𝐶1, 𝐶2)is a similarity measure between communities 𝐶1and 𝐶2, with |𝐶1|is the number of

nodes in 𝐶1and | 𝐶1 ∩ 𝐶2 | is the number of nodes common to both communities 𝐶1and 𝐶2. 𝐶𝑘 is a known

community from 𝐾, the set of known communities and 𝐶𝑙is a learned community from 𝐿, the set of learned

communities.

 Different similarity measures, such as the Jaccard coefficient from equation 6 can be used to construct

different F1 measures. We recommend the F-similarity measure in Fig 3b, as it can be broken down into a

precision-based and recall-based measure at the level of comparing a known and learned community, and use it

to construct the CMFF score.

Unbiased Sn-PPV Accuracy (UnSPA). Consider the precision-like positive-predictive value (PPV), recall-like

Sensitivity (Sn), and their combined Sn-PPV accuracy (which we term as SPA) [22], also given in equation 14.

In Sensitivity, the numerator is a sum of the maximal number of recalled nodes for each community and the

denominator is a sum of the number of nodes in each community. Measures like these do not give equal

importance to each of the known communities and assign higher values for recalling larger communities when

compared to recalling smaller communities. For instance, an algorithm that perfectly recalls numerous smaller

communities and does not recall much of a few bigger communities can get a worse sensitivity score when

compared to an algorithm that does the opposite, i.e. recalls most of the big community and does not recall

much of any of the smaller communities. Rather than inducing bias into a measure that decides which

communities should be weighted higher, it may be a better idea to have a measure that gives equal weights to all

communities. We define an unbiased sensitivity 𝑆𝑛𝑢 in Fig 3e, by dividing by the total number of known

communities.

In PPV, the denominator sums, for each learned community, the sum of the subset of nodes in the

learned community shared by all known communities. This does not contribute accurately to a precision-like

measure, as nodes that are absent in known communities are ignored. For instance, a learned community that

has all the nodes in a known community, but also includes a lot of possibly spurious nodes will be scored in the

same way as a learned community which is an exact match to the known community. Further, in PPV, nodes in

a learned community shared by multiple known communities get counted an extra number of times in the

denominator. So if we share a set of nodes with multiple known communities we get penalized more than if we

share the set with only a few known communities, or if nodes of our community are shared disjointly with

different known communities. The reasoning for allowing such behavior is again biased and does not support

the detection of overlapping known communities. For example, a learned community that has a high overlap

with 2 known communities (ex: a learned community with 10 nodes that shares all of its nodes with each of the

known communities) will contribute lesser (0.5) to a PPV score than a learned community which overlaps lesser

with one known community (ex: 6 nodes in a learned community with 10 nodes overlapping with only one

known community, giving a 0.6 contribution to the PPV). To overcome these issues, we propose an unbiased

PPV, 𝑃𝑃𝑉𝑢 in Fig 3e, where we divide by the total number of learned communities. The corresponding

unbiased accuracy is obtained by taking the geometric mean of the 𝑃𝑃𝑉𝑢 and 𝑆𝑛𝑢 as shown in Fig 3e.

From the sensitivity of measures plot in Fig 3f, we find that the FMMF score, the Qi et al F1 score

(equation 13), and CMFF score are most sensitive to the pairwise overlap between communities, giving high

values at the overlap coefficient yielding the best results, determined via visual inspection of the learned results,

as follows. We observed highly overlapping, repetitive, and large numbers of similar learned protein complexes

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

10

in our experiment on hu.MAP, such as several resembling the ribosome complexes at the high overlap threshold

of 0.5 Jaccard coefficient, whereas, at low overlaps, we obtain a total small number of learned complexes, 84

learned complexes after removing proteins absent from known complexes. As we would like a high number of

good quality complexes, we find that intermediate values of overlap Jaccard coefficient yield satisfactory

results, for instance, at 0.25 Jaccard coefficient, we obtain 121 complexes after removing proteins absent from

known complexes, with a high recall of known complexes and good observed quality, i.e. low numbers of very

similar overlapping learned complexes. The clique-based measures from [4] - F-grand K-clique and F-weighted

K-clique do not vary much with overlap, and the UnSPA, like the SPA, increases with increasing overlap

threshold. However, the rate of increase of SPA w.r.t increasing overlap values is greater than UnSPA, yielding

comparatively higher scores at undesirable high overlaps. In other words, instead of the desired decreasing trend

from 0.25 to 0.5 Jaccard coefficient overlap, we have a highly increasing trend for SPA, compared to the almost

constant trend for UnSPA - an improvement over SPA that can possibly be attributed to the unbiasing

modification we have introduced. Therefore, for accurate evaluation in which redundancy (high overlap) is

penalized, we recommend unSPA over SPA, and primarily recommend the FMMF score, CMFF score, and the

existing Qi et al F1 score (equation 13).

Super.Complex applied to a human protein interaction network to detect protein complexes

Experiment details. We first test and ensure that the pipeline achieves perfect results on a toy dataset we

construct comprising disconnected cliques of varying sizes, each corresponding to a known community, where

we use all nodes as seeds for growth during the prediction step.

To learn potentially new human protein complexes, we apply Super.Complex on the human PPI network

hu.MAP [4] using a community fitness function that is learned from known complexes in CORUM [3]. The

network available on the website (http://hu1.proteincomplexes.org/static/downloads/pairsWprob.txt) has 7778

nodes and 56,712 edges, after an edge weight cutoff of 0.0025 was applied to the original 64,048 edges. There

are 188 complexes after data cleaning, a set we term as ‘refined CORUM’, out of the original 2916 human

CORUM complexes, which underscores the importance of minimizing any losses in the merging and splitting

steps of the pipeline. Note that of the complexes from CORUM that were removed, there were over 1000

complexes that had fewer than 3 members, and the remaining removed complexes consisted of duplicates and

disconnected complexes with edges from hu.MAP. Note, however, that hu.MAP was the highest confidence

human protein interaction network integrating 3 large previous human protein-interaction networks, all built

using high confidence data from large-scale (~9000) laboratory experiments. The edge weights of hu.MAP were

trained using an SVM based on features obtained from experiments.

Experiment results. The best results, following different parameter sweeps from the experiment on hu.MAP

are given in Fig 4. The best-case corresponds to using 10 times the number of positives while sampling

negatives with a uniform size (number of nodes) distribution, 𝜖 as 0.01 in the 𝜖- greedy + iterative simulated

annealing with 𝑇0 as 1.75 and 𝛼as 0.005, and using the merging algorithm with a Qi overlap measure (equation

10) of 0.375. From Fig 4e, we verify that the size distributions of the train and test sets are similar. In Fig 4a,

we can see that we get a good precision-recall curve on the test set for the subgraph classification task as a

positive or negative community, achieving an average precision score of 0.88 with a logistic regression model

(which is the final ML model stacked on a set of other ML models and processors, output as the best model

trained on the training set with 5-fold cross-validation and achieving a cross-validation score of 0.978).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

http://hu1.proteincomplexes.org/static/downloads/pairsWprob.txt
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

11

Fig 4. Learned human protein complexes with Super.Complex achieve good PR curves and follow similar

size distributions as known complexes. a. PR curve for the best model (community fitness function) from the

AutoML pipeline on the test dataset, for the task of classifying a subgraph as a community or not. b. Co-

complex edge classification PR curve for final learned complexes. c & d. Best F-similarity score distributions

per known complex and per learned complex. e. The size distributions of train, test, and all known complexes,

learned complexes, and learned complexes after removing known complex proteins.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

12

We use Fig 4e to set the maximum number of steps taken in the candidate complex growth stage as 20

and learn a total of 1028 complexes. On removal of non-gold standard proteins from these complexes for

evaluation purposes, we obtain 131 complexes We get a good PR curve for the prediction of co-complex edges

in comparison with known complex edges, as shown in Fig 4b. From Fig 4c, we can see that the best learned

complex matches for known complexes have high F-similarity scores. Also, from Fig 4d, we can see that the

best known complex matches for learned complexes have high F-similarity scores. Note that there may be

unknown but true complexes that are learned by the algorithm that contribute to false positives.

In Fig 4e, we can see that learned complexes have a similar size distribution as known complexes. The

small peak at size 20 is an artifact of our threshold on the maximum number of steps that can be taken in

growing the complex. This means that either of our stopping criteria was not reached for these complexes, i.e.

the criteria of a score less than 0.5 or no observed score improvement over a specified number of steps (here,

10).

Evaluation measures comparing learned complexes on hu.MAP by Super.Complex w.r.t known

complexes from CORUM are given in Table 1, along with the measures computed on the protein complexes

comprising hu.MAP obtained from a 2 stage clustering method with the unsupervised ClusterOne algorithm

applied first, followed by the unsupervised MCL algorithm. We observe that Super.Complex does better in

terms of precision, as can be seen with the higher FMM precision value, while ClusterOne+MCL does better in

terms of recall. This can be attributed to more number of complexes learned by ClusterOne+MCL (~4000

compared to ~1000 by Super.Complex) including a few highly overlapping complexes (the maximum pairwise

overlap observed was 0.97 Jaccard coefficient), compared to the strict low overlap among complexes learned by

Super.Complex (the maximum pairwise overlap observed was 0.36 Jaccard coefficient). We observe 4152 pairs

of complexes learned by ClusterOne + MCL having an overlap greater than 0.36 Jaccard coefficient, the

maximum pairwise overlap observed in learned complexes from Super.Complex. Note that while the values of

F1 evaluation measures are similar, the results from ClusterOne+MCL were achieved by the authors after

significant cross-validation, while Super.Complex was faster as detailed in the performance section.

Table 1. Evaluating learned complexes on hu.MAP w.r.t ‘refined CORUM’ complexes. Refined CORUM

comprises 188 complexes after cleaning original CORUM complexes.

Method

FMM

CMF

F1 score

Unbiased

Sn-PPV

accuracy

Qi et al

F1 Score

(t=0.5)

F-Grand

k-Clique

F-

weighted

k-Clique

Precisio

n

Recal

l

F1

score

Super.Complex 0.767 0.534 0.63 0.783 0.888 0.739 0.785 0.972

hu.MAP

(ClusterOne + MCL) 0.471 0.686 0.559 0.797 0.911 0.764 0.77 0.967

Performance. The current problem of learning the best community fitness function and growing multiple seeds

on a network into candidate communities poses an interesting design challenge. Multiple architectures are valid

and can be the best based on the constraints of the computing systems. Our design performs well and is capable

of giving results in an order of minutes for a network with a similar scale (~10k nodes, ~100k edges) as

hu.MAP. With default parameters, a single run of the pipeline on hu.MAP gave reasonably good results in

around 30 minutes, on 4 skylake nodes (each with 48 cores @2GHz clock rate). In more detail, it averages

~10min per parameter set of the candidate community sampling part of the pipeline using 4 skylake nodes. For

the best results, we ran multiple parameter sweeps for a few hours (a total of around 100 sets), achieving only a

minor improvement in results. The AutoML model can yield good models in an order of minutes as well,

however, we ran it for a few hours on a single node to obtain the best model. For accessibility to run on non-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

13

HPC (high-performance computing) systems as well, using the optimizations provided and setting low

thresholds, it is possible to run the pipeline serially in a matter of hours, even on a personal laptop.

State of the art comparison: Super.Complex achieves good evaluation measures and performance

To compare our method with published results from existing methods, we perform experiments on the

data used by these methods in their experiments - a yeast PPI network, DIP -Database of Interacting Proteins

[23] with known protein complexes from MIPS - Munich Information Center for Protein Sequence [24] and

TAP- Tandem Affinity Purification [25]. Specifically, for an accurate comparison, we use the same PPI network

(projection of DIP yeast PPI network on MIPS + TAP proteins) and known protein complexes, available from

the ClusterEPs software website. The results from Table 2 show that our method outperforms all 6 supervised

as well as 4 unsupervised methods (by achieving the highest F1 score) in these experiments. We note that like in

the experiments with hu.MAP, we obtain high precision values, suggesting that many of the learned protein

complexes are of high quality. Further, the whole pipeline (including the AutoML part run on a single skylake

node, along with parameter-sweeps for the candidate community sampling part of the pipeline run on 4 skylake

nodes - each with 48 cores @2GHz clock rate) was completed in an order of minutes with Super.Complex. We

attempted to run other algorithms on hu.MAP as well, but were unsuccessful due to unavailability of code or

limited scalability, as detailed below.

Table 2. Comparing our method with 6 supervised and 4 unsupervised methods on a yeast PPI network.

Precision, recall, and F-measures are from Qi et al. In experiment 1, for training on TAP and testing on MIPS,

in Super.Complex, the best results were obtained when all nodes were used as seeds, with iterative simulated

annealing for growth with parameters 𝑇0 as 0.88, 𝛼 as 1.8 and number of steps as 4, using all neighbors for

growth, and overlap Qi measure threshold as 0.1. In experiment 2, for training on MIPS and testing on TAP, in

Super.Complex, the best results were obtained when all nodes were used as seeds, with pseudo-metropolis for

growth with a probability of 0.1 and number of steps as 9, using all neighbors for growth, and overlap Qi

measure threshold as 0.3. In experiment 3, for training on MIPS and testing on MIPS itself, in Super.Complex,

the best results were obtained when all nodes were used as seeds, with iterative simulated annealing for growth

with parameters 𝑇0as 0.88, 𝛼 as 1.8 and number of steps as 10, using all neighbors for growth, and overlap Qi

measure threshold as 0.9. Evaluation precision, recall, and F-measure are from Qi et al.

 Train Test Precision Recall F-measure

Super.Complex TAP MIPS 0.841 0.629 0.72

ClusterSS TAP MIPS 0.526 0.807 0.636

ClusterEPs TAP MIPS 0.606 0.664 0.633

RM TAP MIPS 0.489 0.525 0.506

SCI-BN TAP MIPS 0.219 0.537 0.312

SCI-SVM TAP MIPS 0.176 0.379 0.240

ClusterOne MIPS 0.428 0.435 0.431

COACH MIPS 0.364 0.495 0.419

CMC MIPS 0.46 0.38 0.416

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

14

MCODE MIPS 0.4 0.1 0.16

Super.Complex MIPS TAP 0.718 0.581 0.642

ClusterSS MIPS TAP 0.477 0.864

0.614

ClusterEPs MIPS TAP 0.424 0.782 0.548

RM MIPS TAP 0.424 0.433 0.429

SCI-BN MIPS TAP 0.312 0.489 0.381

SCI-SVM MIPS TAP 0.247 0.377 0.298

ClusterOne TAP 0.480 0.46 0.47

COACH TAP 0.387 0.533 0.449

CMC TAP 0.447 0.353 0.395

MCODE TAP 0.422 0.127 0.195

Super.Complex MIPS MIPS 0.552 0.733 0.63

NN MIPS MIPS 0.333 0.491 0.397

We performed experiments with the implementation of the state-of-the-art method SCI-SVM on

hu.MAP whose code was available and which we were able to run on a single core of a skylake node (2GHz

clock rate). The implementation with the default parameters on a toy dataset and a human dataset resulted in the

identification of a large number of small complexes and a very few big complexes, despite sufficient training

with big complexes. As big complexes were only a few, the results have low precision and recall. Computed

precision, recall, and F1 scores as per equation 10 for even a low threshold t of 0.2 are 0.016, 0.0075, and

0.0103 respectively for hu.MAP. A single run of SCI-SVM took around 3 hours to complete and yield these

results, unlike better results yielded by Super.Complex in around 30min. Additional runs tuning different

parameters in SCI-SVM did not improve results.

In our experiments, we were unable to get the UI (User Interface) for the ClusterEPs software to

complete execution on a personal laptop for hu.MAP. Note that Super.Complex on the other hand finishes

running on the same personal laptop and provides results after a few hours. Code was not available for other

supervised methods.

Learned human protein complexes from Super.Complex, and applications to COVID-19 and

characterizing unknown proteins

We provide interactive lists and visualizations of the 1028 learned human protein complexes by

Super.Complex, along with refined and original CORUM complexes as a resource on

https://sites.google.com/view/supercomplex/super-complex-v3-0. The high precision values obtained by

Super.Complex in Table 1 suggest that many of the learned complexes are of high quality, since the ones with

proteins from known complexes match individual known complexes closely. We provide individual community

fitness function scores for each of the learned complexes, and rank the list of learned complexes by this score to

help identify good candidates for investigation for various applications. In one application, we construct a map

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://meghanapalukuri.github.io/Complexes/Complex2proteins.html
https://meghanapalukuri.github.io/Complexes/CORUM_Complex2proteins.html
https://meghanapalukuri.github.io/Complexes/originalCORUM_Complex2proteins.html
https://sites.google.com/view/supercomplex/super-complex-v3-0
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

15

of SARS-CoV-2 interactions with learned complexes. In another, we highlight complexes with uncharacterized

proteins to provide experimental candidates for functional characterization. These applications are discussed in

detail in the next two sections.

Application 1: SARS-CoV-2 affected protein complexes. SARS-CoV-2 is the novel coronavirus that resulted

in the pandemic which started at the end of 2019. The virus infects human cells through a spike protein and

enters the cell, and subsequently, the proteins of the virus have the potential to interact with multiple human

proteins. We preliminarily investigated the human protein complexes that may be affected by the virus, and thus

contribute, directly or indirectly to COVID-19, the disease caused by SARS-CoV-2. This study was made

possible by the timely work of [26] who identified 332 human proteins that physically interact with SARS-

CoV-2 proteins, discovered using AP-MS experiments.

We consider a protein complex to be linked to COVID-19 if any of the proteins in the human complex

interact with a SARS-CoV-2 protein, i.e., if the human protein complex contains one or more of the above

mentioned 332 human proteins. Super.Complex learns 234 complexes linked to COVID-19, all except one new,

i.e. not perfectly matching a known CORUM complex. While CORUM contains 430 complexes linked to

COVID-19 (‘original CORUM’), we obtain 214 complexes after cleaning (‘refined CORUM’), i.e. removing

complexes with sizes lesser than or equal to 2 and using the merging algorithm described in the Materials and

Methods section to ensure no more than 50% Jaccard overlap between any two SARS-CoV-2 complexes. All

SARS-COV2 linked protein complexes from Super.Complex, scored based on the number of proteins in a

complex interacting with a SARS-CoV-2 protein, along with lists of refined CORUM and original CORUM

complexes linked to SARS-COV2 are available on the website (https://meghanapalukuri.github.io/Complexes/*

where * is Complex2proteins_covid.html, CORUM_Complex2proteins.html, and

originalCORUM_Complex2proteins_covid.html respectively). Fig 5 shows examples of human protein

complexes likely especially relevant to the SARS-CoV-2 life cycle, as they involve multiple interactions from

SARS-CoV-2 proteins and members of the same (or a functionally related) complex. Further biological analysis

on the top-scoring protein complexes learned can perhaps contribute to fighting COVID-19.

Application 2: Uncharacterized proteins and their complexes. 111 uncharacterized proteins (Uniprot [27]

annotation score unknown or less than 3) and their corresponding learned 103 complexes are presented on the

website (https://meghanapalukuri.github.io/Complexes/* where * is Protein2complex_annotated.html and

Complex2proteins_annotated.html). Three examples of uncharacterized proteins (C11orf42, C18orf21, and

C16orf91) along with their corresponding complexes are highlighted in Fig 6. C11orf42 could potentially be

related to trafficking, as it is a part of a complex with 30% similarity to the retromer complex, (i.e. with 0.3

Jaccard similarity to the known CORUM retromer complex), with additional evidence available from the

Human Protein Atlas (HPA) [28] (available from http://www.proteinatlas.org) showing subcellular localization

to vesicles, similar to other proteins of the complex. C18orf21 also has evidence from HPA, localized to the

nucleoli and interacting with other proteins of a complex with 50% similarity to the Rnase/Mrp complex with

most members in the nucleoli/nucleoplasm. Further evidence from [29] also independently supports C18orf21

as a cellular component of the ribonuclease MRP complex and a participant in ribonuclease P RNA binding as it

exhibits significant co-essentiality across cancer cell lines with the POP4, POP5, POP7, RPP30, RPP38, and

RPP40 proteins. C16orf91 could potentially be localized to mitochondria like other proteins of the COX 20-

C16orf91-UQCC1 complex, with independent experimental evidence from [30].

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://meghanapalukuri.github.io/Complexes/Complex2proteins_covid.html
https://meghanapalukuri.github.io/Complexes/CORUM_Complex2proteins.html
https://meghanapalukuri.github.io/Complexes/originalCORUM_Complex2proteins_covid.html
https://meghanapalukuri.github.io/Complexes/Protein2complex_annotated.html
https://meghanapalukuri.github.io/Complexes/Complex2proteins_annotated.html
http://www.proteinatlas.org/
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

16

Fig 5. SARS-CoV-2 - human protein complex map showing complexes identified by Super.Complex. a. A

section of the full map, featuring SARS-CoV-2 nsp4 and orf6 and their interacting human protein complexes b.

A protein complex with a 30% match to the Nup 107-160 subcomplex interacts with both SARS-CoV-2 nsp4

and orf6 c. Map of SARS-CoV-2 nsp2 interactions with human proteins and their corresponding complexes d.

A complex with a 20% match to the Endosomal targeting complex, and e. A complex with a 40% match to the

retromer complex, both of which interact with SARS-CoV-2 nsp2. An interactive map is available at

https://meghanapalukuri.github.io/Complexes/SARS_COV2_Map_only_mapped_complexes_names.html.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://meghanapalukuri.github.io/Complexes/SARS_COV2_Map_only_mapped_complexes_names.html
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

17

Fig 6. Examples of complexes with proteins having low annotation scores. a. C11orf42 constitutes the

Retromer complex (SNX1, SNX2, VPS35, VPS29, VPS26A), potentially related to trafficking, with C11orf42

localized in cells to vesicles, similar to the other proteins of the complex (SNX1, SNX5, and VPS29) b.

C16orf91 constitutes the COX 20-C16orf91-UQCC1 complex, potentially localized to mitochondria like

COX20. c. C18orf21 constitutes the Rnase/Mrp complex, with C18orf21, localized to nucleoli, closely

interacting with nucleoplasm proteins of the complex such as RPP25, POP5, RPP14, NEPRO, RPP30, IBTK,

RPP25L, and NPM1. The images of subcellular localization are available from v20.1 of proteinatlas.org, as

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://meghanapalukuri.github.io/Complexes/Predicted/Complex692.html
https://meghanapalukuri.github.io/Complexes/Predicted/Complex692.html
https://www.proteinatlas.org/ENSG00000180878-C11orf42/cell
https://www.proteinatlas.org/ENSG00000028528-SNX1/cell
https://www.proteinatlas.org/ENSG00000089006-SNX5/cell
https://www.proteinatlas.org/ENSG00000111237-VPS29/cell
https://meghanapalukuri.github.io/Complexes/Predicted/Complex334.html
https://www.proteinatlas.org/ENSG00000203667-COX20/cell
https://meghanapalukuri.github.io/Complexes/Predicted/Complex1012.html
https://www.proteinatlas.org/ENSG00000141428-C18orf21/cell
https://www.proteinatlas.org/ENSG00000178718-RPP25/cell
https://www.proteinatlas.org/ENSG00000167272-POP5/cell
https://www.proteinatlas.org/ENSG00000163684-RPP14/cell
https://www.proteinatlas.org/ENSG00000163608-NEPRO/cell
https://www.proteinatlas.org/ENSG00000148688-RPP30/cell
https://www.proteinatlas.org/ENSG00000005700-IBTK/cell
https://www.proteinatlas.org/ENSG00000164967-RPP25L/cell
https://www.proteinatlas.org/ENSG00000181163-NPM1/cell
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

18

https://v20.proteinatlas.org/ENSG00000*/cell, where * is 180878-C11orf42, 028528-SNX1, 089006-SNX5,

111237-VPS29, 167272-POP5, 163608-NEPRO, 148688-RPP30, and 181163-NPM1. Note that localizations

were measured in varying cell types, including HeLa, HEL, U2OS, and U-251 MG cells, across the highlighted

proteins.

In conclusion, we present Super.Complex, a distributed supervised learning-based community detection

algorithm, capable of scaling to large networks that fit on a disk. The pipeline accurately learns communities

having different topological structures found in true communities, unlike traditional unsupervised methods that

primarily assume and find dense communities. We propose 3 novel, sensitive evaluation measures to compare

learned and known communities, addressing different issues with existing evaluation measures. Further analysis

of the merits and shortcomings of different evaluation measures, considering various cases of known and

learned communities, along with empirical evaluations on different data can help assess and improve evaluation

measure formulations. We perform experiments on hu.MAP, a human protein-protein interaction network with

~8k nodes and ~60k edges, identifying 1028 multi-protein complexes, with 234 potentially linked to COVID-19

and 103 complexes with 111 uncharacterized proteins. We hope some of these candidates will serve as

candidates for wet-lab experiments for further biological investigation. Our method also outperforms all 6

existing supervised methods, as well as 4 unsupervised methods. The pipeline of Super.Complex is

generalizable and can be applied to community detection on networks from various fields, with the possibility

of including domain-specific features to learn more accurate domain-specific community fitness functions.

Further, learned community fitness functions can be transferred from one field to another where sufficient data

on known communities is unavailable. Application of Super.Complex on more datasets, especially in other

fields can help demonstrate its generalizability. Open source code along with interactive visualizations of

learned human protein complexes are freely available at: https://sites.google.com/view/supercomplex/super-

complex-v3-0.

Materials and Methods

Data Preparation

First, the weighted network under consideration is cleaned by removing self-loops, as we do not consider

interactions with oneself as a feature of communities. The graph is stored on disk as a set of files, each

corresponding to a node and containing a list of the node’s neighbors via weighted edges.

Positive communities. Super.Complex takes sets of nodes comprising known communities and obtains their

edge information from the induced subgraph of these nodes on the weighted network. Nodes in communities

that are absent from the network are removed. Communities with fewer than 3 nodes, communities that are

internally disconnected, and duplicate communities are also removed. Constructing the final set of positive

communities involves 2 main steps: (i) merging similar communities, and (ii) splitting them into non-

overlapping train and test sets.

In the first step, using a merging algorithm we devised, we merge highly similar communities to yield a final

list of communities, where no pair of communities have a Jaccard score (equation 6) greater than or equal to j,

which we set to 0.6.

Jaccard similarity(𝐶1, 𝐶2)=
| 𝐶1 ∩ 𝐶2 |

| 𝐶1∪ 𝐶2 |
 (6)

Here, |𝐶| is the number of nodes in community C, | 𝐶1 ∩ 𝐶2 | is the number of nodes common to both

communities, and | 𝐶1 ∪ 𝐶2 | is their union, i.e. the total number of nodes in the two communities with each

node counted once.

Multiple solutions exist that achieve this goal, however, we want a solution with a large number of

communities, i.e., with only a small number of merges performed on the original set of known communities.

This is especially important in applications with limited data, such as the human and yeast protein complex

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://sites.google.com/view/supercomplex/super-complex-v3-0
https://sites.google.com/view/supercomplex/super-complex-v3-0
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

19

experiments in this work. Our algorithm was designed with this objective in mind, and works as follows. The

iterative algorithm makes multiple passes through the list of communities performing the merging operation

until the specified criterion is achieved. In a single pass of the list of communities, each community is

considered in order and merged with the community with which it has the highest overlap (if greater than or

equal to 0.6) and the list is updated immediately by removing the original 2 communities and adding the merged

community to the end of the list, so that the updated list is available for the next community in consideration.

This merging algorithm achieves a lesser number of merges than a trivial merging solution which would merge

random pairs of communities that do not satisfy the required criteria until convergence. In practice, the

proposed algorithm quickly converges to a solution (i.e. the final set has no communities that overlap more than

the specified value j).

In the second step, the communities are split into non-overlapping training and testing datasets, to

emphasize their independence. We obtain sets with equal size distributions and a 70-30 train-test split, as

recommended for machine learning algorithms with a small amount of data. Previous algorithms such as [4] and

Super.Complex v2.0 [31] discard test communities with sizes greater than a threshold, thus losing out on

information from some known communities and which also, in practice, do not yield train-test splits that are

close to the recommended 70-30 split. Therefore, we propose the following algorithm. Here, we first make the

recommended 70-30 random split into train and test communities. Then we perform iterations of transfers

between the two sets until they become independent. In each iteration, we perform two directions of transfers,

from train to test and vice-versa, and if the 70-30 split is disturbed, we remove the communities at the end of the

list which have extra communities and add them to the other list. In each direction of transfer, for instance, from

train to test, we go through the training communities in one pass and if a training community has an overlap (at

least one edge) with any of the test communities, it is immediately transferred to the test set, making the

updated test set available for comparison with subsequent training set communities. In practice, for many

random splits, the algorithm converges fast enough to a solution that is non-overlapping. If for an initial random

split, convergence is not achieved after a few iterations, we recommend restarting the algorithm with a different

random split.

Negative communities. Negative communities, or non-communities are represented by random walks sampled

from the network by growing random seeds, adding a random neighbor at each step. The number of steps ranges

from the minimum size to the maximum size of positive communities, with a total number of random walks

equal to the number of positive communities multiplied by a scale factor > 1. The random walks are split almost

equally across all the sizes, by splitting equally across the different number of steps to be taken for a random

walk, to yield an almost uniform size distribution for negative communities. We say almost uniform size

distribution, as random walks with the same number of steps need not yield the same sizes, given that the

random walk as defined here can revisit edges it has already visited. To achieve random walks of the same size,

the algorithm attempts an extra number of random walks and an extra number of steps to achieve the desired

random walk size.

The size distribution of positive communities is taken into consideration while training the machine

learning model when using a uniform distribution for negatives. We also explore using almost the same size

distribution as the positive communities to construct the negative communities. For this, for each size of the

positive communities, we construct the negatives by sampling a number of random walks equal to the scale

factor times the number of positive communities of this size. However, in this case, we find that there are quite

a few missing sizes due to limited positives which may affect the scoring of subgraphs of the missing sizes.

Using a uniform distribution would provide more information to learn a more accurate community fitness

function that can recognize negatives at sizes missing for positives. In the following feature extraction step,

random walks resembling communities are removed. The final number of negative communities is close to the

number of positive communities, as we have sampled a slightly higher number of random walks via the scale

factor.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

20

Feature Extraction

As communities exhibit different topological structures on the graph, these can be learned by

considering useful topological features of communities. Based on graph theory, we extract 18 topological

features for each of the positive/negative communities to construct the final train and test data feature matrices,

i.e. the positive and negative community embeddings. These features include 5 subgraph specific features - the

no. of nodes in the subgraph, the 1st 3 singular values of the adjacency matrix of the subgraph, and the weighted

intra-cluster density, obtained by using the weighted sum of edges instead of the number of edges in the

numerator of the intra-cluster density defined in equation 2. The remaining 13 features are statistical measures

of the combinations of features defined for individual nodes of the subgraph. We use the median, mean,

variance, and maximum value of the degree 𝑑𝑣 of a vertex v, which is the sum of the weights of the edges

connecting the node to its immediate neighbors. Next, we use the mean, variance, and maximum value of the

clustering coefficient of a vertex, 𝑐𝑣, which gives the ratio of the number of triangles it is a part of considering

only its first nearest neighbors and the number of all such possible triangles, i.e.,

𝑐𝑣 =
𝑁𝑜.𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑣

𝑁𝑜.𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑣
=

|{(𝑣′,𝑣′′) | 𝑣′,𝑣′′ 𝜖 𝑁(𝑣),𝑣′ 𝜖 𝑁(𝑣′′) }|/2

| 𝑁(𝑣) |∗ (| 𝑁(𝑣) | − 1)/2
 (7)

Where, N(v) is the set of neighbors of vertex v. We use the mean, variance, and maximum value of the degree

correlation of a node v, which is the average degree of all neighbors of node v, i.e.,

 𝐷𝐶𝑣 =
∑𝑣′ 𝜖 𝑁(𝑣) 𝑑𝑣′

|𝑁(𝑣)|
 (8)

The last 3 features are the mean, variance, and maximum value of the weights of edges of the subgraph.

Learning the community fitness function with AutoML

A community fitness function is learned as the decision function of a binary machine learning classifier trained

to distinguish the community and non-community embeddings constructed in the previous feature extraction

step. For this, we use an AutoML algorithm, tpot [18], a genetic algorithm that yields the best model and

parameters. It evaluates several preprocessors along with ML models and yields cross-validation scores on the

training dataset for each pipeline, which itself is usually a combination of several preprocessors followed by the

machine learning model. We configure the algorithm to run in a distributed setting, exploring several

combinations of several preprocessors and ML models.

We specify 6 pre-processors that scale the feature matrix. These are - (i) Binarizer, which sets a feature

to 0 or 1 based on a threshold, (ii) MaxAbsScaler, which divides the feature by the maximum absolute value of

the feature, (iii) MinMaxScaler, which subtracts the minimum of the feature from the feature vector and divides

by the range of the feature, (iv) Normalizer, which divides the feature vector by its norm to get a unit norm, (v)

RobustScaler, which makes a feature robust to outliers by scaling using the interquartile range and (vi)

StandardScaler, which standardizes to the Z-score by subtracting the mean and dividing by the standard

deviation of the feature.

We include four feature selecting pre-processors, which are additionally important as we incorporate 6

additional preprocessors that construct combined features. The additional preprocessors include - (i)

Decomposition: PCA (Principal Component Analysis), FastICA (Independent Component Analysis), (ii)

Feature Agglomeration, (iii) Kernel Approximation methods: Nystroem, Radial Basis Function RBFSampler,

(iv) Adding Polynomial Features, (v) Zero counts: Adds the count of zeros and non-zeros per sample as features

and (vi) OneHotEncoder for numeric categorical variables. The feature selecting preprocessors include - (i)

SelectPercentile, which selects the highest-scoring percentage of features based on 3 univariate statistical tests,

FPR - False Positive Rate, FDR - False Discovery Rate and FWE - Family-wise error rate; (ii)

VarianceThreshold which removes low variance features, (iii) RFE (recursive feature elimination) using

ExtraTrees and (iv) SelectFromModel using ExtraTrees based on importance weights. The ML models included

are - (i) Naive Bayes methods using Gaussian, Bernoulli, and Multinomial distributions (ii) Decision Trees, (iii)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

21

Ensemble methods of ExtraTrees, Random Forest, Gradient Boosting and XGB (XGBoost), (iv) K-nearest

neighbors, (v) Linear SVMs and (vi) Linear models for Logistic Regression.

The population size and number of generations are provided as parameters for the genetic algorithm of

the AutoML pipeline. In practice for our application, giving a value of 50 for each yielded good results. There is

an option for a warm start, where you can run additional generations and with additional population sizes

starting from the latest results, if the results are unsatisfactory. Additionally, several other machine learning

models and preprocessors can also be incorporated into this pipeline, including neural networks. Note that in

our experiments, we also obtained pipelines that stack different ML models. We run the pipeline in a distributed

manner, setting the number of jobs as the number of processes that run parallelly on a single computer. All the

processes on the computer can be used for maximum utilization, however, the documentation notes that

memory issues may arise for large datasets. In practice, we set the number of jobs as 20 on a skylake compute

node (Intel Xeon Platinum 8160 with 48 cores @2GHz clock rate).

Evaluation. By default 5-fold cross-validation is performed, although this can be modified by a parameter. The

pipelines with high cross-validation average precision scores (area under the PR curve) are evaluated on the test

dataset to find the best pipeline for our data, to use this for the community fitness function. A one hidden-layer

perceptron is also available for training, and comparison with the autoML output to select the best model. We

evaluate the performance of the ML binary classifier using accuracies, precision-recall-f1 score measures,

average precision score, and PR curves for the test sets while also evaluating these measures for the training set

to compare with the test measures and check the bias and variance of the algorithm to make sure it is not

underfitting or overfitting the data. We also plot and analyze the size-wise accuracies of the model to

understand how the model performs w.r.t to the size of the subgraph it is evaluating.

Candidate community search

Finding a set of maximally scoring candidate communities in a network is an NP-hard problem, as proved by

[2]. The proof involves reducing the problem to the problem of finding maximal cliques, which is an NP-hard

problem. This is done by using only density as a feature and defining a community fitness function that detects

cliques by being equal to 0 unless the density is 1, in which case it is equal to a score 𝑛/(𝑛 + 1) that increases

with the size of the clique (n). Since this is an NP-hard problem, algorithms based on heuristics are required to

solve it. We explore seeding and growth strategies.

Design and distributed architecture. First, we need to select seeds. Options for seeds include specifying all

the nodes of the graph (recommended for best accuracy), all the nodes of the graph present in known

communities, a specified number of nodes that will be selected randomly from the graph, or maximal cliques. In

the distributed setting using multiple compute nodes, the specified seeds are partitioned equally across compute

nodes, and each compute node deals only with the task of growing the seeds assigned to it. In practice, the

partitioning is done by a main compute node which partitions the list of seeds and stores the partitioned lists as

separate files on the file server. Then it launches one task per compute node (including itself) using the launcher

module [32], where a task instructs a compute node to read its respective file containing the seed nodes and run

the sampling algorithm starting with each of the seed nodes. On each compute node, we take advantage of all

the cores by employing multiprocessing with the joblib python library. Each process grows a single seed node

into a candidate community and writes it to the compute node’s temporary storage. For this process, the graph

and the community fitness function are needed. To optimize RAM and as it is impractical to store large

networks and machine learning models in memory, we store the graph and the parameters of the community

fitness function on disk for each compute node. For this, we copy the graph node files and the trained machine

learning model that gives the community fitness function from the file server onto each compute node’s

temporary storage. Each process reads the model into its memory and uses it to evaluate the neighbors, to pick

the neighbor to add to the current subgraph in the growth process from the seed node. The neighbors of the

subgraph under consideration at each step of the growth are read from disk on-demand and stored in memory

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

22

only until they have been evaluated by the fitness function. In this way, we ensure that the processes have a low

memory footprint, which can otherwise quickly become a bottleneck for large graphs. We also minimize disk

storage by storing each resulting candidate community compactly using only its nodes, as its edges can be

inferred if/when necessary by inducing the nodes on the graph. After all the child processes of growing seeds

complete on a compute node, the compute node reads the set of learned community files it had stored on its disk

and compiles them into a list of candidate communities before writing the list to the file server. The same code

also runs in a distributed setting with only one multi-core compute node. There also exists a serial option to run

the code without invoking parallel constructs, useful for running on a single core.

Heuristics. Only for the first step of growth, we add the neighbor connected with the highest edge-weight. We

provide 2 options for growing the subgraph at each step- an exhaustive neighbor search that is suitable for

graphs that are not very large, and an option that optimizes performance by evaluating only a subset of

neighbors. In the latter, using a large user-defined threshold 𝑡1, if the number of neighbors of the current

subgraph is greater than the threshold, a random sample of the neighbors equal to the provided threshold is

chosen for evaluation. Now, of the neighbors, first, an 𝜖-greedy heuristic is used to select the neighbor to add to

the subgraph. In an 𝜖- greedy heuristic, with 𝜖 probability, a random neighbor is added instead of the maximum

scoring neighbor.

In the non-exhaustive search case, in the event of 1-𝜖 probability, if the number of neighbors is greater

than a 2nd user-defined threshold 𝑡2, a 2nd optimization of cutting down the number of neighbors is applied

before evaluating each of the neighbors for choosing the greedy neighbor, as follows. Here, the 𝑡2highest

neighbors are chosen for evaluation, where the order is decided by sorting the neighbors in descending order

based on their maximum edge weight (i.e. the highest edge weight among all the edges connecting a neighbor to

the subgraph). Note how the first threshold 𝑡1ensures that the sorting complexity 𝑂(𝑡1𝑙𝑜𝑔(𝑡1))does not blow

up.

Note that for efficient constant-time (O(1)) lookup of the maximum edge weight of a neighbor, we store

the neighbors of the subgraph as a hash map, where looking up a neighbor yields its maximum edge weight.

This hash map also stores, for each neighbor, a list of edges connecting it to the subgraph and was constructed

efficiently when the neighbors of each of the subgraph nodes were read from the corresponding file. After

selecting the neighbor to add to the subgraph in the current iteration, this hash map is also used to efficiently

add the neighbor to the subgraph by providing constant-time lookup to the edges that need to be added.

Instead of the base 𝜖-greedy heuristic, we also have a simple base heuristic option, termed greedy edge

weight, where we add the neighbor with the highest maximum weight edge at each step of the iteration. Note

that since the ML model is not used at each stage of the growth, this is fast enough and does not require the

optimization steps used in the 𝜖- greedy approach where subsets of neighbors were selected for evaluation by

the community fitness function.

For both base heuristics, in any iteration, if no neighbors for the subgraph exist, the growth process

terminates. If the community score of the subgraph in any iteration is less than 0.5, the node last added is

removed and the growth process terminates. We provide additional heuristics that can be applied on top of the

base 𝜖-greedy heuristic. Based on the scores of the current and previous iterations of the subgraph, we accept or

reject the latest node addition using the user-defined heuristic - iterative simulated annealing (ISA), or a variant

of ISA, termed pseudo-metropolis in which the acceptance probability (equation 9) is a constant, i.e.

𝑃(𝑆𝑛𝑒𝑤 , 𝑆𝑜𝑙𝑑) = 𝑘. In ISA, at each stage of growth of the current subgraph, its maximum scoring neighbor is

added, except in the case when the new community score of the subgraph 𝑆𝑛𝑒𝑤is lesser than 𝑆𝑜𝑙𝑑, the value

before adding the new node (i.e. 𝑆𝑛𝑒𝑤 < 𝑆𝑜𝑙𝑑). In this case, the new node addition is accepted with a probability

of,

 𝑃(𝑆𝑜𝑙𝑑,𝑆𝑛𝑒𝑤,𝑇) = 𝑒
(𝑆𝑛𝑒𝑤 − 𝑆𝑜𝑙𝑑)

𝑇 (9)

here, starting with hyperparameters 𝑇0 and 𝛼, we update the temperature as 𝑇 ← 𝛼𝑇after every iteration.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

23

When ISA or pseudo-metropolis heuristics are applied, we also evaluate an additional heuristic where

the algorithm terminates if it has been 10 (or can be user-defined) number of iterations since the score of the

subgraph has increased.

In the implementation, we provide four options to the user - greedy edge weight,𝜖-greedy, 𝜖-greedy +

ISA and 𝜖-greedy + pseudo-metropolis. In all options, the algorithm terminates after a number of steps equal to

a user-specified threshold. The default threshold provided is the maximum size of the known communities, and

we also provide a smart option for when a few communities have a large number of nodes, where it is set to

choose the maximum size after ignoring outliers. This number can also be improved by visual inspection of a

boxplot of community sizes that is generated. Future work can also explore greedy edge weight + ISA and

greedy edge weight + pseudo-metropolis heuristic algorithms and observe their performance. Note how there

are 2 possibilities for exploration in the 3 algorithms other than the greedy edge weight heuristic algorithm. In

the 1st stage, we pick a neighbor at random with low probability. In the 2nd stage, we accept the neighbor we

picked in the 1st stage with low probability, if it yields a lower score than the original subgraph.

Post-processing and cross-validation. Communities with only 2 nodes are removed. We then merge

communities that have a Jaccard similarity greater than a specified overlap threshold employing the merging

algorithm discussed in the data cleaning section. The only difference is while merging, for two overlapping

communities, the final community retained out of the 2 communities or the merged variant is the one that

obtains the highest score with the community fitness function. In another variant of the merging algorithm,

instead of the Jaccard similarity threshold, we use equation 10 as the threshold and call this the Qi overlap

measure.

The parameters 𝜖in the 𝜖-greedy heuristic, k in pseudo-metropolis, 𝑇0and 𝛼in iterative simulated

annealing, and the overlapping threshold in the post-processing step are varied in parameter sweeps to select the

best ones that work using the Qi et al F1 score from equation 13.

For evaluation, a similarity measure is used to compare two communities 𝐶1and 𝐶2and they are

determined to be a match if the similarity measure value for the two communities is above a threshold, i.e.

Qi overlap measure:
| 𝐶1 ∩ 𝐶2 |

| 𝐶1 |
> t and

| 𝐶1 ∩ 𝐶2 |

| 𝐶2 |
> t, where t is a set threshold (10)

Here,|𝐶|is the number of nodes in community C, and | 𝐶1 ∩ 𝐶2 | is the number of nodes common to

both communities. Once we have a way to match a learned community to a known community or vice-versa as

described above, standard machine learning metrics such as precision, recall, and F1 scores can be computed.

Qi et al Precision p =
𝑁𝑜.𝑜𝑓 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑚𝑎𝑡𝑐ℎ 𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠
 (11)

Qi et al Recall r =
𝑁𝑜.𝑜𝑓 𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑚𝑎𝑡𝑐ℎ 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠
 (12)

Qi et al F1 score =
2𝑝𝑟

(𝑝+𝑟)
 (13)

After parameter sweeps, the results of different heuristics are examined and the one that yields the best

F1 score is chosen.

Evaluation

To compare the set of learned communities with known communities, we first construct a set of reduced

communities containing nodes only present in known communities. We retain communities with 3 or more

nodes only. We use a plethora of evaluation measures, including the proposed measures detailed in the results

section, along with existing measures such as equation 10 based precision, recall and F1 score, sensitivity. PPV,

their associated accuracy, and MMR. The equation 10 based precision, recall, and F1 score consider one-to-

many associations, i.e. a learned community can be matched to multiple known communities and vice versa.

One-to-one matches are made by measures such as the MMR - maximum matching ratio which calculates the

weighted recall (the weights here are neighborhood affinity similarity scores) after selecting a set of one to one

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

24

matches such that the sum of their similarity scores is maximal. Implicit one-to-one associations are made by

measures such as sensitivity (Sn) and positive predictive value (PPV) which resemble a recall-like measure and

a precision-like measure respectively. The implicit one-to-one associations made here correspond to picking

the community that best matches another community in terms of the number of common nodes. The Sn-PPV

accuracy (SPA) combines sensitivity and PPV, resembling a composite measure like the F1 score that combines

Precision and Recall. Note that this measure makes one-to-many matches. Letting the set of learned

communities be L and the set of known communities be K, we have,

Sn =

∑𝐶𝑘 𝜖 𝐾 𝑚𝑎𝑥
𝐶𝑙 𝜖 𝐿

| 𝐶𝑙 ∩ 𝐶𝑘 |

∑𝐶𝑘 𝜖 𝐾 | 𝐶𝑘 |
 , PPV =

∑𝐶𝑙 𝜖 𝐿 𝑚𝑎𝑥
𝐶𝑘 𝜖 𝐾

| 𝐶𝑙 ∩ 𝐶𝑘 |

∑𝐶𝑙 𝜖 𝐿 ∑𝐶𝑘 𝜖 𝐾 | 𝐶𝑙 ∩ 𝐶𝑘 |
, 𝑆𝑃𝐴 = √ (𝑆𝑛∗𝑃𝑃𝑉) (14)

We also plot PR curves for edges learned. The learned communities are evaluated against all known

communities, only training communities, and only testing communities. We report the results on the test

communities for the yeast experiment in Table 2.

Algorithm Guarantees

The train and test communities are guaranteed to be independent by the proposed splitting algorithm. Due to the

seeding and growth heuristics we employed, the learned communities are guaranteed to be internally connected

at every step of the iteration. With an overlap threshold t, the merging algorithm guarantees that no 2 learned

communities have an overlap greater than or equal to t. If an overlap threshold of 0 is provided, the merging

algorithm yields disjoint, non-overlapping learned communities which guarantee separation, i.e. no pair of

learned communities can be merged to yield a community of higher community score. The number of

maximum iterations provided guarantees that the seeding and growth converge to a solution.

Data and Code Availability

We make interactive visualizations of our learned protein complexes available as a resource at

https://sites.google.com/view/supercomplex/super-complex-v3-0, which includes downloadable sets of

interactions and complexes, including the 234 complexes that are potentially linked to COVID-19 and SARS-

CoV-2 infection, and the set of 111 uncharacterized proteins implicated in 103 complexes. Our code is available

at https://github.com/marcottelab/super.complex. To simplify reanalysis, the full interactome datasets are

additionally deposited in Zenodo, DOI: http://doi.org/10.5281/zenodo.4814944

Acknowledgments

The authors gratefully acknowledge Benjamin Liebeskind for a tpot code wrapper, Kevin Drew for

computing some previous evaluation measures, Claire McWhite for critical reading of the manuscript, and

funding from the Welch Foundation (F-1515) and National Institutes of Health (R35 GM122480, R01

HD085901, R21 HD103588) to E.M.M..

References

1. Fortunato S. Community detection in graphs. Phys Rep. 2010 Feb 1;486(3):75–174.
2. Qi Y, Balem F, Faloutsos C, Klein-Seetharaman J, Bar-Joseph Z. Protein complex identification by supervised

graph local clustering. Bioinformatics. 2008 Jul 1;24(13):i250–68.
3. Giurgiu M, Reinhard J, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, et al. CORUM: the comprehensive

resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019 Jan 8;47(D1):D559–63.
4. Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of over 9,000 mass spectrometry

experiments builds a global map of human protein complexes. Mol Syst Biol. 2017 08;13(6):932.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://sites.google.com/view/supercomplex/super-complex-v3-0
https://github.com/marcottelab/super.complex
http://doi.org/10.5281/zenodo.4814944
https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

25

5. Lee C, Reid F, McDaid A, Hurley N. Detecting highly overlapping community structure by greedy clique

expansion. ArXiv10021827 Phys [Internet]. 2010 Jun 15 [cited 2020 Oct 28]; Available from:

http://arxiv.org/abs/1002.1827
6. Dongen SM van. Graph clustering by flow simulation [Internet]. 2000 [cited 2019 Dec 9]. Available from:

http://dspace.library.uu.nl/handle/1874/848
7. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction

networks. BMC Bioinformatics. 2003 Jan 13;4(1):2.
8. Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T. CFinder: locating cliques and overlapping modules in

biological networks. Bioinforma Oxf Engl. 2006 Apr 15;22(8):1021–3.
9. Mete M, Tang F, Xu X, Yuruk N. A structural approach for finding functional modules from large biological

networks. BMC Bioinformatics. 2008 Aug 12;9(Suppl 9):S19.
10. Liu G, Wong L, Chua HN. Complex discovery from weighted PPI networks. Bioinformatics. 2009 Aug

1;25(15):1891–7.
11. Wu M, Li X, Kwoh C-K, Ng S-K. A core-attachment based method to detect protein complexes in PPI networks.

BMC Bioinformatics. 2009 Jun 2;10(1):169.
12. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks.

Nat Methods. 2012 Mar 18;9(5):471–2.
13. Wu J, Lin M. Protein Complex Detection Based on Semi-Supervised Matrix Factorization. In: 2018 37th Chinese

Control Conference (CCC) [Internet]. Wuhan: IEEE; 2018 [cited 2020 Dec 9]. p. 8205–8. Available from:

https://ieeexplore.ieee.org/document/8484055/
14. Shi L, Lei X, Zhang A. Protein complex detection with semi-supervised learning in protein interaction networks.

Proteome Sci. 2011;9(Suppl 1):S5.
15. Yu F, Yang Z, Tang N, Lin H, Wang J, Yang Z. Predicting protein complex in protein interaction network - a

supervised learning based method. BMC Syst Biol. 2014;8(Suppl 3):S4.
16. Dong Y, Sun Y, Qin C. Predicting protein complexes using a supervised learning method combined with local

structural information. Keskin O, editor. PLOS ONE. 2018 Mar 19;13(3):e0194124.
17. Ziwei Zhou, Yingyi Gui, Yang Z, Xiaoxia Liu, Lei Wang, Yin Zhang, et al. Disease-specific protein complex

detection in the human protein interaction network with a supervised learning method. In: 2016 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM) [Internet]. Shenzhen, China: IEEE; 2016 [cited 2019 Dec

8]. p. 1296–301. Available from: http://ieeexplore.ieee.org/document/7822705/
18. Randy Olson, Weixuan Fu, Nathan, PGijsbers, Grishma Jena, Tom Augspurger, et al. EpistasisLab/tpot: v0.10.1

minor release [Internet]. Zenodo; 2019 [cited 2019 Dec 9]. Available from:

https://zenodo.org/record/2647523#.Xe7Q5Px7nv9
19. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep.

2019 Mar 26;9(1):5233.
20. Borgeson BC. All-by-all discovery of conserved protein complexes by deep proteome fractionation [Internet]

[Thesis]. 2016 [cited 2020 Dec 9]. Available from: https://repositories.lib.utexas.edu/handle/2152/46875
21. Karp RM. An algorithm to solve the m × n assignment problem in expected time O(mn log n). Networks.

1980;10(2):143–52.
22. Brohée S, van Helden J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC

Bioinformatics. 2006 Dec;7(1):488.
23. Xenarios I, Salwínski L, Duan XJ, Higney P, Kim S-M, Eisenberg D. DIP, the Database of Interacting Proteins: a

research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002 Jan 1;30(1):303–5.
24. Mewes HW, Amid C, Arnold R, Frishman D, Güldener U, Mannhaupt G, et al. MIPS: analysis and annotation of

proteins from whole genomes. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D41-44.
25. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al. Proteome survey reveals modularity of the

yeast cell machinery. Nature. 2006 Mar 30;440(7084):631–6.
26. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map

reveals targets for drug repurposing. Nature. 2020 Jul;583(7816):459–68.
27. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 Jan

8;49(D1):D480–9.
28. Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Blal HA, et al. A subcellular map of the human

proteome. Science [Internet]. 2017 May 26 [cited 2021 Apr 16];356(6340). Available from:

https://science.sciencemag.org/content/356/6340/eaal3321

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

26

29. Wainberg M, Kamber RA, Balsubramani A, Meyers RM, Sinnott-Armstrong N, Hornburg D, et al. A genome-wide

atlas of co-essential modules assigns function to uncharacterized genes. Nat Genet. 2021 Apr 15;1–12.
30. Li H, Rukina D, David FPA, Li TY, Oh C-M, Gao AW, et al. Identifying gene function and module connections by

the integration of multispecies expression compendia. Genome Res. 2019 Dec 1;29(12):2034–45.
31. Palukuri M, Marcotte E. Supervised Community Detection in Protein-interaction Networks. TACCSTER 2019 Proc

[Internet]. 2019 [cited 2020 Oct 29]; Available from: https://repositories.lib.utexas.edu/handle/2152/79826
32. Wilson LA, Fonner JM. Launcher: A Shell-based Framework for Rapid Development of Parallel Parametric Studies.

In: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment

[Internet]. New York, NY, USA: Association for Computing Machinery; 2014 [cited 2020 Dec 5]. p. 1–8. (XSEDE

’14). Available from: https://doi.org/10.1145/2616498.2616534

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449395doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.22.449395
http://creativecommons.org/licenses/by/4.0/

