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Abstract

We develop an approach to characterise the effects of gating by a multi-conformation
protein consisting of macrostate conformations that are either accessible or inaccessible
to ligand binding. We first construct a Markov state model of the apo-protein from
atomistic molecular dynamics simulations from which we identify macrostates and their
conformations, compute their relative macrostate populations and interchange kinetics,
and structurally characterise them in terms of ligand accessibility. We insert the calcu-
lated first-order rate constants for conformational transitions into a multi-state gating
theory from which we derive a gating factor γ that quantifies the degree of conforma-
tional gating. Applied to HIV-1 protease, our approach yields a kinetic network of
three accessible (semi-open, open and wide-open) and two inaccessible (closed and a
newly identified, ‘parted’) macrostate conformations. The ‘parted’ conformation steri-
cally partitions the active site, suggesting a possible role in product release. We find
that the binding kinetics of drugs and drug-like inhibitors to HIV-1 protease falls in
the slow gating regime. However, because γ=0.75, conformational gating only modestly
slows ligand binding. Brownian dynamics simulations of the diffusional association of
eight inhibitors to the protease - that have a wide range of experimental association
constants (∼104 - 1010 M−1s−1) - yields gated rate constants in the range ∼0.5-5.7 ×
108 M−1s−1. This indicates that, whereas the association rate of some inhibitors is
described by the model, for most inhibitors the subsequent induced fit step leads to
slower association rates. For systems known to be modulated by conformational gating,
the approach could be scaled computationally efficiently to screen association kinetics
for a large number of ligands.
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Introduction 1

Molecular association is central to virtually all biomolecular processes from regulation 2

of metabolic networks and signal transduction to macromolecular assembly and drug 3

efficacy in pharmacology. Extensive effort over several decades has led to the develop- 4

ment of many computational methods to characterize molecular binding affinities [1]. 5

Increasingly, though, the role of binding kinetics, not just affinity, is becoming more 6

widely appreciated in determining the behaviour of biomolecular interaction networks 7

and especially in vivo drug efficacy [2, 3]. 8

The binding of two molecules - such as a ligand to a protein - first requires them to en- 9

counter each other through a diffusional process, imposing an upper, diffusion-controlled 10

limit - on the association rate [4–6]. Factors such as steric specificity, hydrodynamic 11

interactions and binding site accessibility can all cause reductions from this limit, whilst 12

ligand-protein interaction energies can either enhance or further impede the association 13

rate - for example, through electrostatic steering [5, 7–12]. Dynamic conformational 14

changes in the protein can also alter binding site accessibility by introducing a gating 15

step in the ligand binding process [13–15]. Conformational selection, where the lig- 16

and selects a binding site accessible receptor conformation (binding when the gate is 17

open) and induced fit, where the ligand binds a non-accessible conformation and then 18

changes it to an accessible one (opening the gate), may both play a role in the binding 19

process [16–18] and in turn limit the association kinetics. 20

Gating theory for the interchange between two conformations, open and closed 21

[15, 19–22], suggests the timescale of interchange (τc) can play a significant role in 22

conformational selection that depends on whether it is faster (τc << τd) or slower 23

(τc >> τd) than the characteristic timescale of protein-ligand diffusional encounter (τd), 24

or in between. For fast gating, the ligand effectively always encounters the protein in 25

an accessible (open) state - thus the gated (kg) and ungated (kug) association rate con- 26

stants are equal. For slow gating, kg = γkug, where γ, the gating factor, represents the 27

probability of finding the protein in a ligand-accessible state. 28

Brownian dynamics (BD) simulation methods offer a computationally inexpensive 29

route for calculating ungated diffusional association kinetics [23], in part due to fre- 30

quent use of rigid bodies, simplified forcefields and implicit solvent models. They are 31

well-established for protein-protein association rate constants [24, 25] and applied to 32

protein-ligand systems [26, 27]. However, use of rigid structures poses challenges, espe- 33

cially becuase many biomolecular systems exhibit considerable flexibility and where con- 34

formational selection and/or induced fit can be a significant contributor to the binding 35

kinetics. Rigid-body BD alone may therefore be applicable to mainly diffusional-limited 36

binders. Multiscale methods that combine BD with molecular dynamics (MD) simula- 37

tion methods may offer a possible solution to such limitations [26]. A method, known 38

as SEEKR, has been proposed where BD simulations are performed to reach the first 39

milestone, followed by spawning of MD simulations at subsequent milestones [28–31]. 40

Such methods have yet to be tested on proteins with large conformational flexibility. 41

Furthermore, a plethora of methods have emerged that aim to compute ligand- 42

receptor binding kinetics [32, 33]. Approaches based on molecular dynamics (MD) sim- 43

ulations have become a focal point in this development process [34]. Unbiased high- 44

throughput all-atom MD simulations coupled to Markov state models (MSMs) have 45

proven a rigorous route to extract the kinetics and thermodynamics of biomolecular 46

processes, as well as a detailed description of their respective pathways, including phe- 47

nomena such as receptor-ligand [17,35–38], and receptor-receptor binding [39], protein- 48

folding [40–43], conformational changes [37,44–47] and macromolecular assembly [48]. 49

MSMs usually involve the projection of the high-dimensional conformational space 50

of atomistic features into a lower-dimensional manifold of collective variables (CVs), 51

followed by discretization of the resulting space into non-overlapping microstates. As- 52
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signment of the underlying MD simulation ensemble in terms of a sequence of these 53

microstates allows inter-state transition probabilities to be calculated at time intervals 54

chosen to ensure a memoryless jump process, the condition of ‘Markovianity’ [49]. The 55

resulting transition matrix, together with methods for further coarse-graining the MSM 56

can then be used to probabilistically group together microstates into a smaller set of 57

macrostates, that represent kinetically distinct interpretable conformations of the sys- 58

tem as well as the corresponding coarse-grained equilibrium distribution and transition 59

kinetics [50]. 60

Advantageously, MSMs can account for detailed changes across complex degrees of 61

freedom, such as ligand-receptor binding pathways and therefore quantify the degree of 62

conformational gating and/or induced fit involved [39]. Disadvantageously, they impose 63

a huge computational demand in order to resolve such kinetics accurately. Estimation 64

of association rate constants may require simulating up to ∼103-fold longer than the 65

timescale of the binding process [3] due to the dilute solute concentration in a typical MD 66

simulation box. Furthermore, the choice of initial features, the process of dimensionality 67

reduction to obtain CVs and clustering methods for discretisation can all affect the qual- 68

ity of the model [51]. Significant developments have been made in each of these aspects 69

over the last decade [52], including the derivation of a variational principle [53] that en- 70

ables selection of CVs to be systematized based on maximizing the decorrelation time 71

of linear combinations of atomistic metrics, an approach known as time-independent 72

component analysis, tICA [54–56]. Furthermore, adaptive sampling techniques [57–59] 73

that explore the conformational space more efficiently and neural network approaches 74

that learn optimal CVs [60] can result in orders-of-magnitude reductions in required 75

sampling. 76

Despite these major developments, application of MSMs remains prohibitive when 77

scaled to multiple numbers of receptor-ligand systems, especially when typical associa- 78

ton rate constants (kexpon ) for many clinically relevant compounds are kexpon ∼ 106 M−1s−1
79

or slower [3]. The high computational demand of unbiased MD has motivated a number 80

of enhanced sampling methods that introduce biasing potentials and/or biased explo- 81

ration, allowing faster exploration of rarely accessible regions of the conformational 82

space. Recent developments in methods such as metadynamics [61,62], bias-exchanged 83

metadynamics [63], Gaussian-accelerated molecular dynamics (GAMD) [64], weighted 84

ensemble sampling [65], scaled MD [66] and adaptive multilevel splitting [67] have been 85

applied to rate constant calculations. Unfortunately, such methods either require pre- 86

defined CVs - which are not always known - or the use of biasing potentials makes 87

recovering the original kinetics challenging [68]. 88

For the class of proteins that exhibit multiple conformational states that may gate 89

ligand binding, we seek here to combine the advantages of MSMs for rigorously comput- 90

ing conformational kinetics with the advantages of BD approaches for rapidly computing 91

ungated rate constants. HIV-1 protease is a suitably flexible, multi-conformation pro- 92

tein on which to develop such an approach and where the relative population, kinetic 93

interchange and functional relevance of different conformations still remain incompletely 94

understood as does the role of such conformations in gating ligand binding. The pro- 95

tease consists of a C2-symmetric homodimer with a pair of flexible β-hairpin structures, 96

termed ‘flaps’ that gate access to an active site [69] that structurally recognises [70,71] 97

and cleaves a number of sequence specific peptidic junctions in viral Gag and GagPol 98

polyproteins [72–74]. Most crystal structures of HIV-1 protease are of ligand-bound 99

complexes - such structures are invariably characterised by a ‘closed’ flap conforma- 100

tion [75, 76] where the flaps extend beyond but curl towards each other (Figure 1). A 101

handful of apo-protein conformations exist. These include the well-characterised semi- 102

open conformation [77] differentiated by a reversal of flap handedness with respect to 103

the symmetry axis of the dimer - with flaps extending beyond but curling away from 104
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Fig 1. Characteristic conformations of the HIV-1 protease, illustrating a semi-open
apo-state (PDB:1HHP) [77] and a closed state (PDB: 1KJ7) [71], required for both
substrate cleavage and observed for inhibitor binding. For clarity, the substrate is
omitted from the closed state structure depicted here. The homodimeric protein is
shown in ribbon representation with the gating flaps in cyan.

each other (Figure 1). A spectrum of more open flap structures [78] exist, marked by 105

an absence of interflap interactions as well as the characteristic closed conformation. 106

Structurally asymmetric conformations and flap dynamics have also been reported [79]. 107

Natural substrate recognition, transition state stabilisation and peptide cleavage 108

occur in the closed conformation [70]. Solution NMR experiments on the apo protein 109

have reported both a fast (<10 ns) and slow (∼100µs) flap transition suggested to 110

be flap tip curling and wide opening, respectively, as well as a dynamic equilibrium 111

between three states of which the semi-open state is the dominant population [80, 81]. 112

More recent NMR studies are inconsistent with this view, reporting a mixture of states 113

where the closed conformation is favoured [82]. Although lateral binding or unbinding 114

of inhibitors, small peptide substrates or auto-associating peptides to either the closed 115

or semi-open conformations may be possible [44,63,83,84], steric considerations require 116

an open state to admit peptidic cleavage sites within Gag or GagPol polyproteins or 117

natural subtrate analogs. MD simulations have also reversibly captured a mixture of 118

closed, semi-open, open and wide-open states in the apo protein - open, characterised 119

by the flaps curling back from semi-open to expose the active site and wide-open, by a 120

significantly larger flap-tip separation [15,85–87] - with a range of estimated timescales 121

for flap opening (∼10 ns), wide-opening (∼500 ns) and closing (∼50 ns) from a semi- 122

open state. 123

BD simulations in a coarse-grained model of a two state open-closed system suggested 124

a slow gating regime and showed good agreement with experimental rate constants for 125

a number of inhibitors in the 105-106 M−1s−1 range [15]. However, surface plasmon 126

resonance (SPR) measurements association rate constants for a large array of inhibitors 127

of HIV-1 protease, including the 9 FDA-approved drugs in clinical use [88], showed kexpon 128

values ranging widely from 102-1010 M−1s−1. This suggests that a significant degree of 129

conformational selection, induced fit or both may be at work during ligand binding and 130

possibly in a ligand-dependent way. Furthermore, as more than two states exist and 131

the open state is an intermediate state, then gated binding to an open state would still 132

only be the first step of the process. A second step, requiring some degree of induced- 133

fit-type structural rearrangement is subsequently necessary to arrive at the final bound 134

closed state 2. Simulations have suggested this second induced-fit step may be rate 135

limiting [89] and support the idea that different ligands may vary in their preferred 136

pathway of conformational selection versus induced fit along the first step [90,91]. 137

Here, using HIV-1 protease as a model system, we report a novel method that com- 138

bines BD and MSMs built from all-atom MD simulations to calculate the extent of con- 139
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formation gated ligand binding. This is done by combining the two approaches within 140

a theoretical multi-state gating framework for conformational selection. We build on 141

previous gating theory [13–15] to determine a gating factor in terms of the accessible 142

and inaccessible ensemble of conformational macrostates of a MSM. Next we recon- 143

struct the full apo-protein conformational kinetics of HIV-1 PR from a MSM based on 144

all-atom MD simulations, identify accessible and inaccessible states - including a previ- 145

ously unidentified state - from which we obtain the resulting gating factor. Finally, we 146

compute the ungated association kinetics for several ligands binding to each of the set of 147

determined accessible states using BD simulations, applying the theoretical framework 148

to arrive at final gated rate constants. This results in fast and scalable calculations of 149

absolute values of protein-ligand biomolecular association rate constants that approach 150

experimental values, where conformational selection is the dominant factor in limiting 151

binding and allows us to dissect the additional contribution of induced-fit when it is 152

not. 153

Theory 154

We build on the theoretical formalism of MSMs [92] and gating theory [13–15], in order 155

to derive a term for the required gating factor to modulate ligand binding association 156

kinetics in terms of the transition kinetics between conformational macrostates exhibited 157

by the unbound target receptor. 158

Let us consider a Markov state model (MSM) of a stochastic process {Xn} which
is sufficiently described by a transition matrix T. The elements of the matrix are the
conditional probabilities

Pij(τ) = P(Xt0+τ = j|Xt0 = i), (1)

describing the probability of a transition from a current state i to the next state j within
the lag time τ . A MSM fulfilling the Chapman-Kolomogrov equation T(n · τ) = T(τ)n,
in other words a vector holding the description of the state distribution at any time
t = t0 + nτ , can be calculated from an initial distribution p(t0) by

p(t)T = p(t0)
TT(τ)n. (2)

After sufficient time the probability distribution approaches the stationary distribution
π = p(t → ∞), which contains the probabilities of the single states in equilibrium.
Further application of the transition matrix on π has no effect

πT = πTT(τ), (3)

which forms an eigenvector equation. When such a stationary distribution exists a
property, the detailed balance, can be derived from Eq.3 and 1.

πi · Pij = πj · Pji. (4)

This property is physically important and describes the reversibility of the MSM. 159

The MSM transition matrix is estimated from the observed/counted transitions be-
tween the states in the single MD simulations. An important parameter for the accuracy
of the estimation is the lag time τ . Ideally, the eigenvalues λi of the MSM should be
independent of τ . Therefore τ should be chosen such that the implied relaxation time
scales are approximately constant

ti(τ) = −
τ

ln|λi(τ)|
. (5)
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To obtain those ti for a MSM, the lag time might easily exceed the given time scales and 160

therefore our interest lies only in the largest u eigenvalues λi(τ), which represent the 161

slowest state transitions. For projected MSMs built on the reduced set of slow-transition 162

eigenvalues, Eq.2 does not in general hold anymore. Rather, in order to coarse-grain an 163

MSM into a meaningful and smaller set of macrostates, a hidden markov model (HMM) 164

can be built to describe u such states at any time step kτ . 165

The HMM can then be expressed as:

P(kτ) = Π−1χTΠ̃P̃k(τ)χ, (6)

where P̃ ∈ R
u×u is a transition matrix of u kinetic important coarse-grained states and 166

Π̃ = diag(π̃1, ..., π̃u) contains the corresponding stationary distribution of the coarse- 167

grained u-state HMM. χ is a matrix, whose elements χIj ∈ R
u×v hold the probability 168

to observe a macrostate I, while the system is in microstate j. Π = diag(π1, ..., πv) is 169

the stationary distribution of the v-state MSM. 170

To calculate a coarse-grained matrix, the microstates are grouped into a membership
matrix B ∈ R

v×u, the elements of which contain the probability that a microstate i

participates in a macrostate J and are computed by linear transformation of the first u
eigenvectors λi (PCCA+ and PCCA++ methods). χ is then calculated as

χ = Π̃−1BTΠ. (7)

Also the u×u transition matrix of Eq.6 can be calculated from the membership matrix
B as

P̃ = (BTB)BTPB, (8)

where P is the v × v MSM transition matrix. Together with Eq.7, Eq.8 is used to 171

estimate the HMM. 172

A transition rate matrix K can then be derived, which describes the state transitions
in terms of the actual kinetics. The relation between the rate and probability matrix is
given by the equation

P̃(τ) = exp(τK), (9)

where τ is here again the lag time at which the given HMM is constructed. 173

Let us now consider a multistate receptor that permits significant ligand access to
only a single accessible state r, as described previously [15]. In a regime where ligand
binding is limited by conformational gating to r and not by a subsequent induced fit
association rate constant (kif ), the overall bimolecular association rate constant (kon)
is dominated by the gated association rate constant (kg) and can be expressed as:

kon ∼ kg = γkug, (10)

where γ=kacc/(kacc+knacc), is the conformational gating factor and represents the prob- 174

ability of the ligand finding the apo-receptor in state r. The first-order rate constants 175

kacc=
∑

i6=r kir and knacc=
∑

j 6=r krj describe the overall transition kinetics between ac- 176

cessible state r and all other non-accessible states in the apo-receptor. Here, kij rep- 177

resent the (off-diagonal) elements of the transition rate matrix K, representing the net 178

flux from a single metastable state i to another metastable state j, and which can be 179

computed directly from the HMM of the apo-receptor, as described above. 180

We now expand this model more generally to the case of multiple accessible states.
The apo-state space is divided into two disjoint subsets, containing all non-accessible
N and all accessible M states. The first-order conformational rate constants between
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Fig 2. Schematic of coupling approach between BD and MD/MSM to compute gated
ligand binding to accessible states of a multiconformation receptor. A conformational
gating factor (γ), representing the probability of accessing the accessible states is
derived from the previously described hidden Markov model (HMM) transition matrix
of the apo-state conformational kinetics (see Theory), where γ=kacc/(kacc+knacc) and
where kacc and knacc are the first-order rate constants for transitioning into the
accessible and non-accessible states, respectively. BD simulations are then performed
for binding to the accessible states yielding a second-order ungated association rate
constant (kug). For ligand-receptor complexes in which the subsequent induced fit step
(kif ) to form a closed bound complex is not rate-limiting, the overall association
kinetics can be approximated by a gated rate constant, kg=γkug.

the two sets of states can then be expressed as the sum of transition rates from non-
accessible n ∈ N to accessible m ∈ M states such that kacc =

∑
knm and vice versa

knacc =
∑

kmn. A gating factor (γ) can then be defined for the overall transition of
the accessible states:

γ =

∑
N,M knm∑

N,M (kmn + knm)
. (11)

However, γ alone does not contain the information about the respective contributions
of the accessible states. To account for these we define the state specific gating factor
Γm = γǫm, where ǫm represents the relative population of state m ∈ M and which
can also be computed from the HMM. By combining with ungated rate constants (kugm )
computed from BD simulations for each state m, the overall gated association rate
constant (kg) for the set of states, M , is then given by:

kg =
∑

M

Γm · kugm (12)

= γ
∑

M

ǫm · kugm . (13)

With this formalism, the combined ungated rate constant (kug) for the set of states, M ,
is then given by:

kug =
∑

M

ǫm · kugm , (14)

and in the limiting case where there is only one accessible metastable state, ǫm = 1, we 181

recover the single-state gating factor. Extending the previous formalism [15] to multiple 182

accessible states, ‘slow’ and ‘fast’ gating regimes can be differentiated in relation to the 183

characteristic diffusion time τd = r2c/D, where rc is the collision distance between the 184

molecules and D is the relative translational diffusion constant by: 185
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kg = γ
∑

M

ǫm · kugm , τc >> τd (15)

kg =
∑

M

ǫm · kugm , τc << τd, (16)

where τc is the characteristic timescale of conformational gating given by: 186

τc =
1∑

N,M (kmn + knm)
. (17)

Materials and Methods 187

Initial preparation 188

Atomic coordinates for wildtype dimeric HIV-1 protease in the semi-open conformation 189

were extracted from the 1HHP crystal structure [77] in the Protein Data Bank [93]. 190

Those for a wide-open conformation were taken from the reported structure in our 191

previous study [86]. The standard AMBER forcefield (ff03) [94] was used to describe 192

all protease parameters. A dianionic state was assigned to the catalytic dyad as, at 193

physiological pH, the unbound protease is unprotonated, whilst mono-protonation is 194

thought to occur upon or after ligand binding [95–98]. The VMD software package [99] 195

and the LEAP module of the AMBER 16 software package [100] then used to build the 196

initial systems. Each system was solvated using atomistic TIP3P water [101] in a cubic 197

box extending at least 7 Å around the complex and then electrically neutralised with 198

an ionic concentration of 0.15 M NaCl, resulting in fully atomistic systems for both 199

semi-open and wide-open conformations of ∼40,000 atoms. 200

Equilibration and production MD simulations 201

All equilibration and production simulations were performed using ACEMD [102]. Dur- 202

ing equilibration the positions of the heavy protein atoms were restrained by a 10 203

kcal/mol/Å2 spring constant and conjugate-gradient minimisation was performed for 204

2000 steps. The hydrogen atoms and water molecules were then unrestrained and al- 205

lowed to evolve for a total of 500 ps at 300 K in the NVT ensemble to ensure thorough 206

solvation of the complex and to prevent premature flap collapse [103]. The magnitude 207

of the restraining spring constant was set to 1 kcal/mol/Å2 for the following 500 ps, 208

then to 0.05 kcal/mol/Å2 for 500 ps, then finally to zero for 500 ps. The temperature 209

was maintained at 300 K using a Langevin thermostat with a low damping constant of 210

0.1/ps and the pressure was maintained at 1 atm using a Nose-Hoover barostat. The 211

sytem was finally equilibrated for 6 ns of unrestrained simulation in the isothermal- 212

isobaric ensemble (NPT). The long range Coulomb interaction was handled using a 213

GPU implemention [104] of the particle mesh Ewald summation method (PME) [105] 214

with grid size 84x84x84. A non-bonded cut-off distance of 9 Å was used with a switching 215

distance of 7.5 Å. For the equilibration runs, the SHAKE algorithm [106] was employed 216

on all atoms covalently bonded to a hydrogen atom with an integration timestep of 2 217

fs. Production simulations took place in the NVT ensemble. The hydrogen mass repar- 218

titioning scheme [107] was used, allowing a timestep of 4 fs. All other parameters were 219

kept the same as the equilibration phase. The production data set consisted of 465 and 220

499 simulations started from semi-open and wide-open conformations respectively, each 221

for 130 ns with coordinate generation every 100 ps. 222

Our molecular simulation protocol for the HIV-1 protease has been previously vali- 223

dated using NMR S2 order parameters [86]. 224
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Determination of collective variable space 225

Before MSMs can be constructed from MD simulation data, the high-dimensional con- 226

figuration space of atomistic coordinates needs to be projected onto a low-dimensional, 227

but meaningful, collective-variable (CV) space. Finding the appropriate CV space is 228

still a major challenge, despite considerable efforts at systemisation [54–56]. A mini- 229

mum fluctuation alignment (MFA) method, introduced previously [44] and developed 230

further here, was used to determine a set of information-rich collective variables that 231

describe flap conformations in HIV-1 PR. 232

Minimum fluctuating (MF) residues for the protease were identified as residues 23, 24, 233

85 and 89-92 of each monomer. The homodimeric C2 symmetry of the protease makes 234

identical MF residue subsets on both monomers a sensible choice of vector termini. 235

The x-axis was thus chosen to be the vector between the center of mass (COM) of 236

the backbone atoms of residues 89-92 of the second and first monomers respectively. A 237

second vector was selected (between the COM of residues 23,24 and 85 of each monomer 238

respectively). The resultant z-axis therefore approximated the C2 symmetry axis. The 239

selected residues are either within the α-helix of the protease or within the β-sheet region 240

that supports each side of the active-site and thus exhibit minimal RMSFs compared to 241

other residues [86]. Due to the choice of the x-axis, the resultant y-axis was similar to 242

the vector describing the binding conduit of bound peptides in the active site [70, 71]. 243

A 3D metric based on the re-aligned cylindrical polar components of the I50-I50′ 244

Cα-atom flap tip separation vector, λ(λr, λΘ, λz), was then devised. A wrapping angle 245

of 50◦ was added to all values of λΘ with a wrapping modulus of 360◦. This extends the 246

original 1D Cartesian λx metric used earlier [44] and was employed as a set of collective 247

variables to describe the conformational transitions of the system. 248

Markov state model 249

The software package pyEMMA2 [92] was used for Markov state model construction and 250

analysis. The 3D λ-space was used as the set of collective variables in which to construct 251

the models. The data were subsequently clustered into 100 microstates using k-means 252

clustering in this 3D CV-space. Discretized state labels were assigned and Markov state 253

models (MSMs) with Bayesian error estimation were built at various lag-times (τ) and 254

the computed relaxation timescales analyzed as a function of τ . Constant relaxation 255

timescales for the slowest transitions were exhibited at τ= 30 ns, significantly shorter 256

than the length of all trajectories used, with time scale separation suggesting a set of five 257

kinetically distinct macrostates (C1-C5). A subsequent MSM was then estimated using 258

a lag time of 30 ns. The 100-state MSM at τ= 30 ns was coarse-grained into a five-state 259

hidden Markov model (HMM) and validated using a generalized Chapman-Kolmogorov 260

test. Fuzzy clustering of microstates into macrostates was performed and the resulting 261

membership (B) and observation (χ) distribution matrices computed. The transition 262

matrix (P̃) between a smaller set of meaningful macrostates was then computed using 263

Equations 7 and 8. The stationary distribution of the five states and the transition 264

kinetics between these states was then extracted from the HMM. 265

Structural characterization 266

Representative snapshots of the kinetically distinct macrostates (C1-C5) were extracted 267

for structural characterization. Macrostate C1 was noted to be an antisymmetric 268

doublet-state (see Results), thus representative structures were extracted separately for 269

each of the corresponding substates C1a and C1b. For each macrostate, the microstate 270

with the largest observation probability was selected. Within each corresponding mi- 271

crostate, conformers were ranked in order of proximity in the λ-space to the centroid 272
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and the closest 1000 conformers extracted for analysis. Microstates for C1a and C1b 273

corresponded to those with the first and second highest observation probability, respec- 274

tively, for macrostate C1. In addition, various structural features from the extracted 275

ensembles were compared with respect to the first replica of a previous ensemble MD 276

simulation of the HIV-1 protease in a closed conformation and bound to the SP1-NC nat- 277

ural octapeptide [108,109]. Analysis was implemented using Python scripts based on the 278

MDAnalysis toolkit [110]. Distributions of the root-mean-squared-deviations (RMSDs) 279

of the Cα backbone with respect to semi-open (1HHP) and closed (1KJ7) reference 280

crystal structures were computed as were the distributions of the absolute flap-tip sep- 281

aration (λ). Instantaneous hydrogen bonds were computed based on a donor-acceptor 282

distance threshold of ≤3.5 Å and a donor-hydrogen-acceptor angle of ≥150◦. Only those 283

hydrogen bonds with an exhibition frequency fhb ≥ 0.5 were considered stable - the cor- 284

responding mean distances and angles were computed from the exhibited snapshots. 285

Hydrophobic contacts were determined from sidechain-sidechain distance analysis; the 286

minimum non-hydrogen atom distance between pairs of sidechains was computed for 287

each conformer. A hydrophobic contact was assigned to hydrophobic residue pairs with 288

a mean minimum distance ≤ 5 Å across the corresponding ensemble/trajectory. Volu- 289

metric maps of the averaged weighted atomic densities for each apo-conformer ensemble 290

and the natural octapeptide from a former study [108] were computed with the Volmap 291

tool in VMD [99] using a grid spacing of 0.5 Å. 292

Brownian dynamics simulations 293

Atomistic coordinates for the 100 conformers most proximal to the microstate centroid 294

in each structural ensemble were extracted to use in Brownian dynamics (BD) simu- 295

lations to compute diffusional association rate constants for a set of inhibitors with 296

experimentally determined rate constants [88]. Protein partial atomic charges were as- 297

signed using the ff14SB forcefield [111]. Atomistic coordinates and partial charges for 298

the inhibitors were extracted from a previous study [112]. PQR files were generated 299

using the PDB2PQR module in AMBER18 [113]. Electrostatic potential grids for the 300

protein structures and for the inhibitors were computed using APBS [114] with a grid 301

spacing of 1 Å, an ionic concentration of 150 mM and a temperature of 298K, corre- 302

sponding to experimental conditions, as well as a solvent dielectric constant of 78, a 303

solute dielectric constant of 2 and an ionic radius of 1.5 Å. For the calculation of the 304

electrostatic potential, the linearized Poisson-Boltzmann equation was solved under the 305

single Debye-Hückel dielectric boundary condition. All BD simulations were carried 306

out using SDA7.2.3 [115], and association rates constants were computed using the 307

Northrup-Allison-McCammon algorithm [23]. SDA employs an effective charge model 308

(ECM) [116], where the charge on a reduced number of centers is fitted to reproduce, in 309

a uniform dielectric medium, the potential computed with APBS for a heterogeneous 310

dielectric medium in the region around the molecule. ECM charges for the protein were 311

determined using the standard protocol in SDA, those for the ligands were determined 312

from a newly developed protocol [117]. Electrostatic and hydrophobic desolvation grids 313

were generated with a grid spacing of 1 Å. The ionic strength was set to zero for com- 314

puting the electrostatic grid, with electrostatic and hydrophobic desolvation factors of 315

0.36 and -0.013 assigned, respectively. The solute and probe radii were both set to 1.4 316

Å. 317

Translational and rotational diffusion coefficients were calculated for all solutes us- 318

ing Hydropro [118] with an atomic element radius (AER) of 2.9 Å and 1.2 Å for protein 319

and ligands respectively, with a σmin of 1.0 Å and a σmax of 2.0 Å. For each macrostate- 320

ligand combination, a diffusional association rate constant was computed from a set 321

of 100000 trajectories (100 protein conformers × 1000 replicas). Each trajectory was 322

started with an initial center-to-center distance of 150 Å between the solutes and stopped 323
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when the solutes reached a seperation of 250 Å. A variable time step was used, linearly 324

ranging from 1 ps at a solute-solute separation of 50 Å to 20 ps at a separation of 90 Å. 325

A distance threshold of 3 Å was set for pairs of contacts to be assigned as independent 326

reaction criteria that described formation of a receptor-ligand encounter complex. Re- 327

action criteria included polar interactions at 3.5 Å defined in terms of acceptor-donor 328

pairs, as well as methyl, halogen and aromatic interactions at 4.5 Å, defined in terms of 329

π-π pairs from the above-mentioned crystal structures of the corresponding complexes, 330

filtering out any residues that did not match the sequence of the apo-protein (PDB: 331

1HHP) and including symmetrically equivalent contacts due to the C2 symmetry of the 332

protease dimer. Reaction criteria coordinates were taken for each BD simulation after 333

superimposition of the Cα backbone of residues 1-43 and 58-99 in each monomer of a 334

given apo-conformer with the corresponding original inhibitor-bound complex. An en- 335

counter complex was counted whenever a sufficient number of contacts from the subset 336

of pre-defined reaction criteria was observed within a specified distance. The association 337

rate constant was initially calculated using a range of definitions of encounter complex 338

in terms of number of contacts, {1, ..., 5} and their corresponding distances from a 339

minimum of 3 Å and with increasing window intervals of 0.5 Å up to 20 Å. Ungated 340

association rate constants were subsequently computed by requiring the formation of 3 341

independent contacts shorter than 4 Å. 342

343

BD docking simulations were performed for each of the ligands diffusing to each 344

of the protein macrostates under the same reaction criteria as for the association rate 345

calculations to check if the reaction criteria corresponded to ligands binding within the 346

active site of the protease. 10000 trajectories were run for protein conformers with 347

the highest number of encounters obtained in the association rate constant calculation 348

simulations, and complexes were recorded at a 4 Å reaction criterion window distance. 349

Results 350

Ensemble molecular dynamics simulations resulted in ∼1.25 ×106 molecular conformers 351

for subsequent analysis. In order to reveal and characterize meaningful conformational 352

states from this ensemble, we constructed a converged Markov state model (MSM) based 353

on a suitable projection of the atomistic coordinates into a three-dimensional collective 354

variable space. This enabled us to identify a small set of discretised macrostates of the 355

system, compute their equilibrium distribution and transition kinetics, and then analyse 356

representative constituent conformers belonging to each macrostate to reveal distinct 357

structural features. This in turn allowed the differentiation of the macrostates that 358

were accessible and non-accessible to ligand binding and the subsequent computation 359

of a gating factor. Brownian dynamics simulations enabled computation of the ungated 360

association rate constant to accessible states from which the overall gated rate constant 361

could be computed for a set of ligands. 362

Kinetic network of HIV-1 protease conformations 363

The 3D λ-state-space in cylindrical polar coordinates (λr, λΘ, λz) was chosen as a 364

collective variable space in which to construct Markov state models (MSMs). The λ- 365

state-space was discretised into 100 microstates. MSMs constructed using Bayesian error 366

estimation across a range of lag-times (τ) show independence of the relaxation timescale 367

(tn) for the slowest-order transitions at τ = 30 ns (Figure 3(a)) and a significant timescale 368

separation between the fourth and fifth non-stationary eigenvectors with t4/t5 > 2 369

(Figure 3(b)). 370
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Fig 3. (a) Relaxation timescales (tn) for the dominant non-stationary eignvectors of
the MSMs constructed in the λ-space at increasing lag times (τ) with Bayesian error
estimation. Independence of the relaxation timescale with lag time is observed at τ =
30 ns. (b) Plot of the ratio of proximal relaxation timescales (ti/ti+1) shows a
signifcant timescale separation of t4/t5 > 2 at τ = 30 ns suggesting the existence of
five kinetically meaningful metastable states.
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Consequently a MSM was constructed with Bayesian error estimation using 100 371

microstates and τ = 30 ns and the microstate equilibrium distribution computed. A 372

potential of mean force (PMF) landscape, computed for 2D projections of the λ-state- 373

space and weighted by this equilibrium distribution (Figure 4(A)), samples a large 374

region, ranging from 0 < λr < 40 Å, 0 < λΘ < 360 Å and -15 < λz < 15 Å. This 375

PMF differentiates several significant energetic minima with λ(λr, λΘ, λz) centers at 376

λ ∼(8,40,±5) Å, λ ∼(5,100,0) Å, λ ∼(20,150,0) Å and λ ∼(8,300,0) Å, with minima 377

values of -0.5, -4.5, -3.5 and -2.5 kcal/mol respectively. 378

Timescale separation analysis implies that five kinetically meaningful macrostates 379

exist, with the two slowest transitions in the system being around or larger than the 380

100 ns-timescale. Based on this a corresponding five-state coarse-grained hidden Markov 381

model (HMM) was computed. This further clustered the microstates into kinetically 382

separated macrostates, C1-C5 (Figure 4(A)). This model was validated by performing 383

a generalized Chapman-Kolmogorov (C-K) test (Supporting Figure S1(A)). The C-K 384

test showed good agreement with the predicted probability decay from the model at τ 385

= 30 ns (pkIJ (τ)) and the expected decay from models constructed at multiple (k) lag 386

times (pIJ (kτ)). Moreover, the probabilities, χ, of observing each of the 100 microstates 387

across the five macrostates (see Theory) were computed and projected onto the λ-space 388

(Supporting Figure S1(B)). This analysis confirmed that the five macrostates also exhib- 389

ited mutual exclusivity of microstate probabilities and therefore could be interpreted as 390

distinct states. The microstates that constitute most macrostates correspond well with 391

the energetic minima in the PMF. The only exception is C2, whose microstates seem 392

to be primarily distributed in a transitional region between C4 and C5. 393

The HMM yielded a kinetic network of the stationary distributions and their respec- 394

tive first-order transition kinetics (Figure 4(B)). The five states, C1-C5, exhibit different 395

stationary probabilities (ρ) with ρ1 = 0.1, ρ2 = 0.29, ρ3 = 0.07, ρ4 = 0.25 and ρ5 = 0.29 396

corresponding to zero-centered Boltzmann-weighted free energies of ∼-0.2, -0.8, 0, -0.7 397

and -0.8 kcal/mol, respectively. Thus the free energy differences betwen all five states 398

are thermodynamically barely indistinguishable from thermal noise (∼0.6 kcal/mol). 399

Nonetheless, there are significant differences in the transition kinetics between the 400

various states. Only direct fluxes faster than 100 µs are shown (≥ 3×10−4/τ = 0.01 401

µs−1). Forward and reverse transitions between C2 and C5, as well as between C2 402

and C4, are well within the sub-µs timescale (> 1 µs−1), although the rate for direct 403

transition between C4 and C5 is ∼0.1 µs−1. The C1 conformation only directly accesses 404

the C4 conformation, and does so with kinetics slower than the µs-timescale, whilst the 405

C3 conformation accesses both C2 and C4 conformations with forward and reverse 406

kinetics faster and slower than 1 µs−1, respectively. Only the C4 conformation directly 407

accesses all other conformations on a timescale faster than 100 µs. 408

Structural characterization of principal conformations 409

The conformational features of representative structures corresponding to each of the 410

macrostates were analyzed. Probabilistic clustering of microstates into macrostates via 411

the observation probability matrix (χI,j) enables selection of the most likely microstates 412

that represent each macrostate (Supporting Table S1). For each macrostate, the most 413

probable microstate largely coincides with the corresponding minimum or minima in 414

the λ-space (Supporting Figure S2). Macrostate C1 is characterized by two distinct 415

minima in the λ-space equidistantly separated from the origin along λ-z. This implies 416

a symmetry-related doublet state. Moreover the two most probable microstates for C1 417

correspond to each of these minima - thus C1 was split into two sub-states, C1a and 418

C1b, in subsequent analyses corresponding to the +λz and -λz regions respectively. A 419

set of 1000 closest conformers was thus extracted from the most probable microstate of 420

each macrostate based on the ranked proximity of each snapshot to the corresponding 421
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Fig 4. (A) Potential of mean force (PMF) of HIV-1 PR in the apo-state in the
λ(λr,λΘ,λz)-collective variable space, projected onto λr-λΘ and λΘ-λz. Values are in
kcal/mol. Energetic minima correspond to frequently sampled regions of the λ-space
weighted by the equilibrium distribution of discretised microstates of the MSM. A
HMM based on five macrostates (C1-C5) has clusters of corresponding microstates
whose λ-centroids are overlayed on the PMF. (B) Kinetic network between the five
coarse-grained macrostates, corresponding to conformations C1-C5, determined by the
hidden Markov model (HMM). Stationary probabilities are shown in the circles,
forward and reverse first order transition kinetics are shown by arrows with values in
µs−1. Displayed structures for each macrostate are superpositions of conformers
belonging to the most probable microstate given the corresponding macrostate.
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microstate centroid in the 3D cylindrical polar λ-space. 422

Visual inspection of each set of conformers reveals that several macrostates cor- 423

respond to known conformations of HIV-1 protease (Figure 4(B)), as well as a pre- 424

viously unidentified conformation. Hydrogen bonds and sidechain-sidechain contacts 425

between each flap and the opposite (trans) monomer were analyzed (Supporting Tables 426

S2 and S3). C2 and C5 correspond to open and wide-open conformations, respectively, 427

where the flaps are pulled back enabling sterically unhindered access to the active site 428

(Figure 4(B)). These two conformations exhibit no trans flap-monomer interactions. 429

Macrostates C3 and C4 correspond to the characteristic closed and semi-open confor- 430

mations, respectively, where the flaps extend over the active site but with opposite 431

handedness (Figure 5 and Figure 6(A)-(B)). In C3, the I50 sidechain interacts with the 432

characteristic array of hydrophobic residues (V32′, I47′, I54′, I80′ and I84′) on the oppo- 433

site monomer and symmetrically vice versa. In C4, these contacts are missing, and are 434

instead replaced predominantly a smaller set of hydrophobic contacts (I50-I50′,I50-F53′ 435

and F53-I50′) and a symmetric pair of inter-glycine amide hydrogen bonds (G51–N-H–O- 436

G49′ and G51′–N-H–O-G49). C1a and C1b are identified as anti-symmetric sub-states 437

of a novel conformation, where one flap is extended as in the semi-open conformation 438

whilst the other orients under it and traverses across the active site towards the other 439

monomer (Figure 5). They share a subset of hydrophobic contacts with both C3 (C1a: 440

I50-V32′ and I50-I47′, C1b: V32-I50′ and I47-I50′) and C4 (C1a: F53-I50′, C1b: I50- 441

F53′) but also exhibit sidechain contacts (C1a: I50-D30′ and M46-I50′, C1b: D30-I50′ 442

and I50-M46′) and a backbone hydrogen bond (C1a: G48′-N-H–O-I50, C1b: G48-N-H– 443

O-I50′) that are unique to them and which serve to stabilise these conformations. In 444

particular, the I50-D30′/D30-I50′ contacts bring the corresponding flap tip diagonally 445

across to the opposite side of the active site. 446

Observation of C3 and C4 are further confirmed by unimodal distributions of flap- 447

RMSD with respect to crystal-structures of closed and semi-open conformations for 448

which C3 and C4 exhibit the smallest mean RMSDs, 1.8±0.5 Å and 2.0±0.4 Å, respec- 449

tively (Figure 6(C)). All other macrostates exhibit significantly larger mean RMSDs 450

with respect to both crystal structures. Analysis of the distribution of absolute flap tip 451

separation distances (λ) shows that C3 and C4 all exhibit peak distances substantially 452

lower than 10 Å, whilst C1a and C1b both peak at ∼10 Å(Figure 6(D)). By contrast, 453

C2 and C5 exhibit a relatively broad distribution of distances peaking at 15 Å and 454

20 Å respectively, implying that only these two states provide sufficient access to pep- 455

tidomimetic ligands binding in the active site. The λ-distributions of all conformers for 456

each of the top microstates of every macrostate exhibit very similar profiles respectively 457

to the macrostate conformer sets selected here (Supporting Figure S2). 458

Cross-sections of averaged weighted atomic density over the conformers of each 459

set provide further insight into the steric active-site accessibility of the correspond- 460

ing macrostates (Figure 6(E)-(H)). The averaged density of a closed bound reference 461

complex of HIV-1 protease with the SP1-NC cleavage peptide was calculated based 462

on previous simulations [108, 109]. Superimposing densities calculated individually for 463

the apo-protease (gray) and ligand (red) from this complex are consistent with both a 464

snugness of fit and the inaccessibility of binding the enzymatically viable closed confor- 465

mation (Supporting Figure S3). The ligand exhibits significant density between -5 Å < 466

x < 5Å, -15 Å < y < 15Å, 5 Å < z <10 Å. To provide corresponding steric context to 467

the macrostates, the density of the peptide from this analysis was superimposed with 468

those calculated from each of the representative conformer sets. Cross-sections in the 469

x-y plane reveal that at z = 8 Å, states C1a, C1b and C3 exhibit partial occlusion at 470

the edges of the active site, whilst states C2, C4 and C5 exhibit a zero-density lateral 471

exit pathway in the y-direction. Moreover, states C2-C5 exhibit a zero-density groove 472

corresponding to the active site that can accommodate the reference peptide density. 473
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Fig 5. Mututally exclusive and shared sidechain-sidechain and hydrogen bond
interactions between each flap region and the alternate monomer across different
macrostates. C2 and C5 do not form any such interactions and are not displayed.
Hydrogen bonds are marked with dashed black lines and noted in italics. The
catalytic dyad D25/D25′ is shown for structural context.
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However, by z = 12 Å, only macrostates C2 and C5 maintain this groove, whilst the 474

flap extensions in the other conformations incur protein density that closes off peptide 475

escape in the z-direction. Lateral cross-sections in the x-z and y-z planes confirm that 476

only the C2 and C5 macrostates maintain a zero-density pathway out of the active 477

site along the z-direction. Thus, combining exit pathways from the y- and z-directions, 478

only macrostates C2, C4 and C5, corresponding to open, semi-open and wide-open con- 479

formations, respectively are selected as ligand accessible states for rigid body binding 480

simulations. 481

Gated ligand binding of peptidomimetic inhibitors 482

A set of peptidomimetic ligands (Figure 7), covering a range of experimentally deter- 483

mined association rate constants, kon ∼104 - 1010 M−1s−1, were chosen for Brownian 484

dynamics simulations to each of the three chosen (C2, C4 and C5) accessible states 485

of HIV-1 protease. The closest 100 conformers to the centroid of the most probable 486

microstate were extracted for each of the accessible states. All three sets of conformers 487

exhibit similar translational diffusion constants (< DT (C2) > = 9.90 ± 0.08 × 10−11
488

m2/s, < DT (C4) > = 1.00 ± 0.01 × 10−10 m2/s), < DT (C5) > = 9.80 ± 0.08 × 10−11
489

m2/s) and similar radii of gyration (rg(C2) = 1.99 ± 0.03 × 10−9 m, rg(C4) = 1.91 ± 490

0.02 × 10−9 m, rg(C5) = 2.04 ± 0.02 × 10−9 m). Translation diffusion constants and 491

radii of gyration for the ligands range between 2.88 - 4.58 × 10−10 m2/s and 4.43 - 7.83 492

× 10−10 m, respectively, yielding a characteristic diffusional timescale, τd, that ranges 493

between ∼ 12 - 16 ns depending on the ligand. By contrast, based on the outcome of 494

the MSM and using Equation 17, the characteristic protein conformational transition 495

timescale, τc, is computed to be almost an order of magnitude larger (τc = 85 ns), 496

suggesting a ‘slow’ gating regime (τc >> τd). Thus, there is a kinetic gating factor to 497

binding and via Equation 11, this is computed to be γ = 0.75. 498

Ungated rate constants (kugm ) were then computed from BD simulations to each 499

of the macrostates m=C2,C4 and C5, where the value for each state was computed 500

using ensemble averaging over the set of 100 conformers that represented it. For each 501

state, a number of complexes were formed at the reaction criteria corresponding to 502

the bound state (see Methods). BD docking simulations were performed for each of 503

the ligands binding to each of the accessible protein macrostates under these reaction 504

criteria and the most popular clusters inspected. These confirmed that fulfillment of 505

the reaction criteria corresponds to ligands binding within the active site of the protease 506

(Supporting Figure S4). Similarly, BD simulations were carried out for ligands binding 507

to the inaccessible states (C1 and C3). Lack of complexes formed within the active site of 508

these two states thus further confirmed assignment of them as inaccessible (Supporting 509

Figure S4). 510

Values for the ungated rate constants (kugm ) were combined to give the overall ungated 511

rate constants for the set of accessible states (kug) and finally multiplied by the gating 512

factor γ to obtain the gated rate constants (kg). Our calculations show, as expected, 513

that binding to the C4 (semi-open) state is slower than to the C2 (open) state and also 514

slower than binding to the C5 (wide-open) state for all ligands except Nelfinavir and 515

Saquinavir (Table 1). Furthermore, binding for most ligands is faster to C2 than C5, 516

occasionally by several-fold, whilst for Ritonavir and B376 it is only marginally slower. 517

The resulting combined ungated rate constants (kug) are almost all within one order of 518

magnitude of each other, ranging from kug∼60-750 µM−1s−1 and, as the gating factor 519

is 0.75, the gated rate constant range is only marginally reduced (kg∼45-565 µM−1s−1). 520

This results in kg being up to several orders faster than the corresponding experimental 521

association rate constants (kexpon ) for most ligands, similar for B376, and several orders 522

of magnitude slower for the fastest binder, DMP323 (Table 1). 523
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Fig 6. Structural characterization of representative conformers of each macrostate of
HIV-1 apo-protease. (A) Top (x-y plane) and (B) side (x-z plane) views of ribbon
representations of superimposed structures in each conformational ensemble, (C)
Distribution (ρ(d)) of root-mean-square deviations (drms) of Cα atoms of protease
flaps (residues 43-58 in each monomer) with respect to crystallographic reference
closed (pink) and semi-open (blue) structures. (D) Distribution of (ρ(λ)), the absolute
flap tip separation distance (λ). (E-H) Cross-sections of superimposed volumetric
density between the SP1-NC natural peptide in a closed-bound reference structure
(red) and representative conformational ensembles of each macrostate (grey) in the x-y
plane at z =8 Å (E) and z = 12 Å (F), the x-z plane at y = 0 Å (G) and the y-z plane
at x = 0 Å (H).
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Fig 7. Chemical structures of the set of peptidomimetic ligands for which association
rate constants were computed and which have a wide range of experimentally
determined association rate constants, kexpon ∼104 - 1010 M−1s−1.

Table 1. Comparison of experimental association rate constants (kexpon ) with computed ungated constants for individual
(kugm ) and multiple-combined (kug) accessible states and corresponding gated rate constants (kg), computed with a gating
factor of γ = 0.75. All rate constants are given in units of µM−1s−1.

Ligand kugC2 kugC4 kugC5 kug kg kexpon

A038 417.00 ± 5.24 103.72 ± 1.50 330.67 ± 5.70 292.48 ± 4.27 219.36 ± 3.20 0.03 ± 0.00

A037 349.53 ± 2.81 89.69 ± 2.76 262.07 ± 5.66 240.71 ± 3.79 180.53 ± 2.84 0.20 ± 0.04

Nelfinavir 156.96 ± 3.70 84.54 ± 2.58 61.77 ± 0.80 101.89 ± 2.35 76.42 ± 1.76 0.66 ± 0.30

Saquinavir 103.56 ± 3.02 48.59 ± 3.21 32.32 ± 2.11 62.11 ± 2.76 46.58 ± 2.07 0.82 ± 0.16

Indinavir 1052.30 ± 8.50 269.74 ± 4.65 866.02 ± 10.31 751.50 ± 7.97 563.63 ± 5.98 1.53 ± 0.24

Ritonavir 242.21 ± 4.06 39.90 ± 1.28 250.47 ± 5.67 184.16 ± 3.79 138.12 ± 2.84 3.92 ± 0.11

B376 631.82 ± 6.36 112.97 ± 2.71 672.54 ± 4.10 489.77 ± 4.47 367.33 ± 3.35 205.00 ± 187.00

DMP323 533.32 ± 2.98 157.72 ± 2.26 480.90 ± 5.78 401.87 ± 3.74 301.40 ± 2.81 25200.00 ± 9990.00
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Discussion and Conclusions 524

We have developed an approach to characterize the effects of gating by a multi-conformation525

protein consisting of subsets of accessible and inaccessible states on ligand association 526

rate constants. Our approach first involves the construction of a kinetic network model 527

of the apo-protein from atomistic MD simulations from which we identify meaningful 528

conformations, compute their relative populations and interchange kinetics, structurally 529

characterizing them in terms of ligand accessibility. We integrate the calculated first- 530

order rate constants for conformational transitions into a multi-state gating theory from 531

which we derive a characteristic timescale for conformational transitions (τc) and a gat- 532

ing factor γ. This factor modulates the association rate constants of ungated ligand 533

binding to the subset of accessible conformations (kug) - which we compute here for a 534

set of ligands from Brownian dynamics simulations - when τc is significantly slower than 535

the characteristic timescale for diffusional encounter (τd) and enables us to quantify the 536

degree of conformational gating by the protein. 537

Applied to HIV-1 protease, the kinetic network model of the apo-protein has macrostates538
corresponding to canonical crystallographic conformations - namely the well-characterized 539

closed (C3) and semi-open (C4) states, as well as open (C2) and wide-open (C5) states 540

previously reported from atomistic and coarse-grained simulations. It also reveals a 541

previously unreported (C1) state (Figure 4). This latter conformation is an asymmetric 542

doublet macrostate (C1a and C1b) in which the β-hairpin moiety, termed ‘flap’, of one 543

monomer, reaches into and across the active site, making contacts with the opposite 544

monomer and vice versa. These contacts are a mixture of those unique to the confor- 545

mation (especially the flap tip I50 with the distal D30′), some only otherwise exhibited 546

by the semi-open conformation, and others only otherwise by the closed conformation 547

(Figure 5). Structural characterization reveals that only this state exhibits significant 548

overlap in the averaged atomic density when superimposed with a putative natural sub- 549

strate bound in the closed conformation. The other characterized states fit within an 550

existing putative model of conformational change across the catalytic cycle [119] - pre- 551

ferring a semi-open state in the apo protein, transitioning to an open/wide-open state 552

during ligand encounter, then to the closed bound reactive state, and finally via an open 553

state again for product release, back to the semi-open state. Our results suggest that C1 554

sterically partitions the active site, thus we term it ‘parted’ here. It may therefore assist 555

in separating post-cleavage peptide fragments that are no longer covalently connected 556

- and thus be favoured during product release, especially as it lies structurally on the 557

pathway between closed and semi-open. CGMD simulations have suggested product 558

release can occur even in the closed conformation [120]. The parted conformation is 559

kinetically disjoint from all other states except the semi-open in our apo-protein model 560

- future atomistic simulations may reveal whether transition to the parted conformation 561

from closed becomes kinetically favourable during product release. 562

Our kinetic model suggests that, individually, all of the macrostate conformations 563

are almost thermodynamically indistinguishable from each other. The stationary dis- 564

tribution favours the subset of accessible (semi-open, open and wide-open) states, but 565

even combined they are only ∼1 kcal/mol more favourable than the sum of inaccessi- 566

ble states (parted and closed). Furthermore, there is comparatively rapid interchange 567

between semi-open, open and wide-open states on the sub-µs timescale whilst being an 568

order of magnitude slower from these states to either parted or closed conformations. 569

Interestingly, this results in a slow gating regime for ligand binding (τc >> τd), but 570

because the calculated gating factor is not much smaller than unity (γ = 0.75), this can 571

still be interpreted as the protease almost always being accessible or open to binding. 572

This view broadly agrees with our previous study [86] but here, we can quantify the 573

estimated timescale of transition from semi-open to wide-open to be ∼500 ns, in good 574

agreement with a previous kinetic model [87]. However, our model also suggests an equi- 575
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stable population for the wide-open conformation compared to the other conformations, 576

rather than a rarely accessed state. The role of the wide-open state is still ambiguous 577

as ligand binding does not seem to require it. Indeed, we find binding of almost all 578

ligands studied here is faster to the open than to the wide-open state (Table 1). The 579

relative stability of the wide-open state may instead be compatible with alternate roles. 580

It has been observed that the protease makes direct non-specific interactions with the 581

viral RNA - dramatically enhancing catalytic activity [121]. Whilst the mechanism for 582

this remains unclear, the wide-open state may further modulate RNA binding and thus 583

indirectly regulate catalysis. The immature HIV-1 ribonucleoprotein forms a phase- 584

separated condensate that allows influx of protease for its subsequent maturation [122]. 585

The conformational flexibility of the protease, including its ability to form the wide-open 586

state may aid its mobility in such a crowded environment. 587

The approach reported here enables us to dissect the potential contributions of gated 588

conformational selection from induced fit during the process of ligand binding. Here, 589

we studied an array of inhibitors of HIV-1 protease whose association rate constants 590

measured by surface plasmon resonance vary in the range: kexpon ∼104 - 1010 M−1s−1. 591

However, the calculated gated rate constants (kg) all lie within a narrow range from 592

∼0.5-5.7 × 108 M−1s−1. For the majority of the inhibitors, kg >> kexpon (Table 1), 593

conformationally gated diffusional association is fast and the overall binding process 594

is expected to be rate limited by the subsequent induced fit step. This mechanism is 595

compatible with earlier findings from CGMD simulations on ligand binding [89]. Only 596

one inhibitor (B376), a small peptidomimetic, exhibits a computed gated rate constant 597

similar to the experimental rate constant. Thus, the second induced fit step is likely to 598

be very fast and binding is rate-limited by the conformational gating of diffusion into 599

the active site. Inhibitors with rate constants in this range are likely to belong to the 600

same class. Finally, the inhibitor DMP323 exhibits kg << kexpon and is therefore not 601

limited by either the first conformational gating or second induced fit steps. Its rate 602

constant exceeds the Smoluchowski diffusion limit - therefore experiencing no hindrance 603

from first encounter to final binding. This may be due to a first induced fit step which 604

allows first encounters distal from the binding site to rapidly direct the ligand to the 605

final bound state, possibly by lower-dimensional diffusion. Previous MD simulations of 606

a similar rapid binder with a kexpon ∼ 109 M−1s−1 have suggested such an initial induced 607

fit step from the semi-open conformation [90, 91]. Similarly, another rationale for the 608

existence of states such as the parted and wide-open may be to facilitate this rapid 609

binding mode. 610

Although, HIV-1 protease ligands exhibit complex combinations of conformational 611

gating and induced fit, other proteins with gated binding sites may be largely modu- 612

lated by the gating itself. In such cases, our approach may extend beyond classification 613

of different binding pathways, in addition to revealing binding mechanisms, and allow 614

the computation of association rate constants that correlate with the overall experimen- 615

tal rate constants for different inhibitors. Finally, because our method only requires 616

computing the apo-protein kinetics once from atomistic simulations and then using the 617

extracted conformations for simulating the binding of each ligand using computationally 618

inexpensive independent Brownian dynamics simulations that can be run in parallel, it 619

could be effectively scaled for such protein systems for high-throughput ligand ranking. 620

Supporting information 621

Figure S1. (A) Generalized Chapman-Kolmogorov test and (B) Distribution of mi- 622

crostate observation probabilities (χ) projected onto the λ-space. 623

Table S1. Top five most likely microstates that represent each macrostate. 624
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Figure S2. Centroids of most probable microstate of each macrostate in the λ-space. 625

Table S2. Hydrogen bonds between flap and alternate monomers. 626

Figure S3. Cross sections of superimposed volumetric density of natural peptide and 627

protein from a complex of HIV-1 protease. 628

Table S3. Sidechain-sidechain contacts between flap and alternate monomers. 629

Figure S4. Representative docked structures of peptidomimetic ligands to macrostates 630

of HIV-1 protease. 631
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67. Teo I, Mayne CG, Schulten K, Lelièvre T. Adaptive multilevel splitting method
for molecular dynamics calculation of benzamidine-trypsin dissociation time.
Journal of chemical theory and computation. 2016;12(6):2983–2989.

68. Miao Y. Acceleration of biomolecular kinetics in Gaussian accelerated molecular
dynamics. The Journal of chemical physics. 2018;149(7):072308.

69. Wlodawer A, Miller M, Jaskólski M, Sathyanarayana BK, Baldwin E, Weber IT,
et al. Conserved folding in retroviral proteases: crystal structure of a synthetic
HIV-1 protease. Science. 1989;245:616–621.

June 23, 2021 26/30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449380doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449380
http://creativecommons.org/licenses/by-nc-nd/4.0/


70. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. How does a symmetric dimer
recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J
Mol Biol. 2000;301:1207–1220.

71. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. Substrate shape determines speci-
ficity of recognition for HIV-1 protease: Analysis of crystal structures of six
substrate complexes. Structure. 2002;10:369–381.

72. Pettit SC, Sheng N, Tritch R, Erickson-Viitanen S, Swanstrom R. The regula-
tion of sequential processing of HIV-1 gag by the viral protease. Advances in
Experimental Medicine and Biology. 1998;436:15–25.

73. Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R. Replacement of the
P1 amino acid of human immunodeficiency virus type 1 gag processing sites
can inhibit or enhance the rate of cleavage by the viral protease. J Virol.
2002;76(20):10226–10233.

74. Pettit SC, Clemente JC, Jeung JA, Dunn BM, Kaplan AH. Ordered processing of
the human immunodeficiency virus type 1 gagpol precursor is influenced by the
context of the embedded viral protease. Journal of Virology. 2005;79(16):10601–
10607.

75. Palese LL. Conformations of the HIV-1 protease: a crystal structure data
set analysis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics.
2017;1865(11):1416–1422.

76. Hassan S, Srikakulam SK, Chandramohan Y, Thangam M, Muthukumar S, Gay-
athri Devi P, et al. Exploring the conformational landscapes of HIV protease
structural ensembles using principal component analysis. Proteins: Structure,
Function, and Bioinformatics. 2018;86(9):990–1000.

77. Spinelli S, Liu Q, Alzari P, Hirel P, Poljak R. The three-dimensional structure of
the aspartyl protease from the HIV-1 isolate BRU. Biochimie. 1991;73(11):1391–
1396.

78. Martin P, Vickrey JF, Proteasa G, Jimenez YL, Wawrzak Z, Winters MA, et al.
”Wide-open” 1.3 A structure of a multidrug-resistant HIV-1 protease as a drug
target. Structure. 2005;13(12):1887–1895. doi:10.1016/j.str.2005.11.005.

79. Torbeev VY, Raghuraman H, Hamelberg D, Tonelli M, Westler WM, Perozo
E, et al. Protein conformational dynamics in the mechanism of HIV-1 protease
catalysis. Proceedings of the National Academy of Sciences. 2011;108(52):20982–
20987.

80. Ishima R, Freedberg DI, Wang YX, Louis JM, Torchia DA. Flap opening and
dimer-interface flexibility in the free and inhibitor-bound HIV protease, and
their implications for function. Structure. 1999;7:1047–1055.

81. Freedberg DI, Ishima R, Jacob J, Wang YX, Kustanovich I, Louis JM, et al.
Rapid structural fluctuations of the free HIV protease flaps in solution: Re-
lationship to crystal structures and comparison with predictions of dynamics
calculations. Protein Sci. 2002;11:221–232.

82. Roche J, Louis JM, Bax A. Conformation of inhibitor-free HIV-1 protease de-
rived from nmr spectroscopy in a weakly oriented solution. ChemBioChem.
2015;16(2):214–218.

June 23, 2021 27/30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449380doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449380
http://creativecommons.org/licenses/by-nc-nd/4.0/


83. Sadiq SK, Wan S, Coveney PV. Insights into a mutation-assisted lateral
drug escape mechanism from the HIV-1 protease active site. Biochemistry.
2007;46:14865–14877.

84. Chang CEA, Trylska J, Tozzini V, Andrew McCammon J. Binding pathways of
ligands to HIV-1 protease: coarse-grained and atomistic simulations. Chemical
biology & drug design. 2007;69(1):5–13.

85. Hornak V, Okur A, Rizzo RC, Simmerling C. HIV-1 protease flaps sponta-
neously close to the correct structure in simulations following manual placement
of an inhibitor into the open state. J Am Chem Soc. 2006;128(9):2812–2813.
doi:10.1021/ja058211x.

86. Sadiq SK, De Fabritiis G. Explicit solvent dynamics and energetics of
HIV-1 protease flap opening and closing. Proteins. 2010;78(14):2873–2885.
doi:10.1002/prot.22806.

87. Deng Nj, Zheng W, Gallicchio E, Levy RM. Insights into the dynamics of HIV-
1 protease: a kinetic network model constructed from atomistic simulations.
Journal of the American Chemical Society. 2011;133(24):9387–9394.
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