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Abstract 12 

Background 13 

Genome-wide association studies have found many genetic risk variants associated with 14 
Alzheimer's disease (AD). However, how these risk variants affect deeper phenotypes such as 15 
disease progression and immune response remains elusive. Also, our understanding of cellular 16 
and molecular mechanisms from disease risk variants to various phenotypes is still limited. To 17 
address these problems, we performed integrative multi-omics analysis from genotype, 18 
transcriptomics, and epigenomics for revealing gene regulatory mechanisms from disease 19 
variants to AD phenotypes.  20 

Method 21 

First, we cluster gene co-expression networks and identify gene modules for various AD 22 
phenotypes given population gene expression data. Next, we predict the transcription factors 23 
(TFs) that significantly regulate the genes in each module and the AD risk variants (e.g., SNPs) 24 
interrupting the TF binding sites on the regulatory elements. Finally, we construct a full gene 25 
regulatory network linking SNPs, interrupted TFs, and regulatory elements to target genes for 26 
each phenotype. This network thus provides mechanistic insights of gene regulation from 27 
disease risk variants to AD phenotypes.  28 

Results 29 

We applied our analysis to predict the gene regulatory networks in three major AD-relevant 30 
regions: hippocampus, dorsolateral prefrontal cortex (DLPFC), and lateral temporal lobe (LTL). 31 
These region networks provide a comprehensive functional genomic map linking AD SNPs to 32 
TFs and regulatory elements to target genes for various AD phenotypes. Comparative analyses 33 
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further revealed cross-region-conserved and region-specific regulatory networks. For instance, 34 
AD SNPs rs13404184 and rs61068452 disrupt the bindings of TF SPI1 that regulates AD gene 35 
INPP5D in the hippocampus and lateral temporal lobe. However, SNP rs117863556 interrupts 36 
the bindings of TF REST to regulate GAB2 in the DLPFC only. Furthermore, driven by recent 37 
discoveries between AD and Covid-19, we found that many genes from our networks regulating 38 
Covid-19 pathways are also significantly differentially expressed in severe Covid patients (ICU), 39 
suggesting potential regulatory connections between AD and Covid. Thus, we used the machine 40 
learning models to predict severe Covid and prioritized highly predictive genes as AD-Covid 41 
genes. We also used Decision Curve Analysis to show that our AD-Covid genes outperform 42 
known Covid-19 genes for predicting Covid severity and deciding to send patients to ICU or not. 43 
In short, our results provide a deeper understanding of the interplay among multi-omics, brain 44 
regions, and AD phenotypes, including disease progression and Covid response. Our analysis 45 
is open-source available at https://github.com/daifengwanglab/ADSNPheno. 46 

Introduction 47 

Alzheimer’s Disease (AD), a neurodegenerative disorder and form of dementia, affects more 48 
than 50 million elders in the world1.  In particular, late-onset AD (LOAD), which comprises 97% 49 
to 99% of all cases, usually occurs in individuals older than 652. The AD patients experience 50 
memory loss, cognitive decline, and weak executive function, as reflected in their poor Mini-51 
Mental State Examination (MMSE) results1.  Furthermore, AD is a complex process.  Many 52 
molecular changes from underlying biological mechanisms, such as an accumulation of 53 
amyloid-beta plaques, neurofibrillary tangles (NFTs) within neurons, and neuroinflammation, 54 
have been associated with AD progression phenotypes3. However, beyond these associations, 55 
the causal molecular mechanisms of AD, especially for the disease progression, remain elusive.  56 
 57 
Several AD cohorts have measured the genome-wide gene expression data at the population 58 
level. Also, these data cover different brain regions in AD, such as the Hippocampus, 59 
Dorsolateral Prefrontal Cortex (DLPFC), and Lateral Temporal Lobe (LTL). For instance, the 60 
Hippocampus Cornu Ammonis 1 (CA1) region—which is crucial for autobiographical memory, 61 
mental time travel, and self-awareness—usually has the most significant loss in memory ability, 62 
neurogenesis, volume, and neuronal density in the AD Hippocampus4.  The LTL contains the 63 
cerebral cortex (responsible for hearing, understanding language, visual processing, and facial 64 
recognition)5 and is impacted early in AD6.  The DLPFC is involved in executive functioning 65 
(working memory and selective attention), supports cognitive responses to sensory information7, 66 
works with the Hippocampus to help mediate complex cognitive functions8, and has plasticity 67 
deficits in AD patients9.  These datasets thus enable finding genes and transcriptional activities 68 
that associate with AD phenotypes from the populations, providing molecular mechanistic 69 
insights into AD.  70 
 71 
For example, differential expression analyses for the temporal lobes and frontal lobes found 72 
many key Differentially Expressed genes (DEGs) in AD, including ABCA1 and 2, C1R and C1S, 73 
VGF, REST, GAD1 and 2, SST, and CALB110.  Further, gene co-expression network analysis 74 
such as WGCNA has been widely applied to these population data to identify various gene co-75 
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expression modules11. The genes in the same module show similar expression dynamics across 76 
AD phenotypes (e.g., progression stages), implying that they involve certain shared molecular 77 
mechanisms dysregulated in AD12.  A previous study using the Hippocampal gene expression 78 
dataset, built gene co-expression networks to find enriched functions for AD and potential target 79 
genes for AD therapy and found 19 co-expression modules and key hub genes for AD, such as 80 
MT1, MT2, MSX1, NOTCH2, ADD3, and RAB3113.  Other studies with multiscale network 81 
analysis of different AD brain regions identified cell subtype-specific AD drivers, including 82 
GABR2, LRP10, MSN, PLP1, and ATP6V1A14.  Nevertheless, it is also vital to understand 83 
underlying gene regulatory mechanisms that control those DEGs, co-expression networks, and 84 
gene expression dynamics, which is still unclear.   85 
 86 
Recent Genome-Wide Association Studies (GWAS) have identified various genetic variants 87 
associated with AD (e.g., explaining the variations of AD phenotypes)15. Linking those AD 88 
variants to genes and genomic functions provides a deeper understanding of molecular causes 89 
in AD. For instance, GWAS studies linked AD risk SNPs from 20 loci to AD genes (e.g., AP4E1, 90 
AP4M1, APBB3, BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) by 91 
their proximity to the coding regions16.  New Proteome-Wide Association Studies (PWAS) 92 
identified 11 additional causal AD genes involved in protein abundance17.  However, since most 93 
AD-associated variants are located on non-coding DNA regions, identifying potentially causal 94 
AD genes from the variants is still challenging. To address this, functional genomics and gene 95 
regulatory network (GRN) analyses have been widely used to predict the biological functions 96 
and pathways that can be affected by disease variants.  For example, gene regulatory network 97 
(GRN) is a crucial mechanism fundamentally controlling gene expression, such that the 98 
transcription factors (TFs) bind to the non-coding regulatory elements (e.g., promoters, 99 
enhancers) to initialize transcription. Non-coding disease SNPs may disrupt the binding sites of 100 
TFs (TFBSs) on the non-coding regulatory elements to cause the abnormal gene expression 101 
that potentially leads to diseases and disease phenotypes (e.g., disease genes). Also, many 102 
tools have been thus developed to discover such TFBS-disrupting SNPs such as SNP2TFBS18 103 
and atSNP19. Using the TFBS-disrupting SNPs, recent studies have identified many disease 104 
genes, such as for Schizophrenia20.  However, it is still unclear how these AD-associated 105 
variants cause the gene expression for various AD phenotypes, especially during AD 106 
progression.    107 
 108 
To address the issues as above, we performed an integrative analysis of multi-omics to reveal 109 
the functional genomics and GRNs from AD variants to AD phenotypes (Fig. 1, Methods). In 110 
particular, the input to our analysis includes the population gene expression and phenotype 111 
data, epigenomic data, and AD risk SNPs. First, using a population gene expression dataset in 112 
AD, our analysis builds the gene co-expression network, clusters the network into gene co-113 
expression modules, and predicts the TFs that co-regulate the modular genes. The genes and 114 
modules are associated with various AD phenotypes via modular expression patterns. Then, we 115 
integrate the chromatin interaction data (e.g., Hi-C) to further link the regulatory elements (e.g., 116 
promoters, enhancers) to the genes. The binding sites of TFs are also used to link TFs to the 117 
regulatory elements. After this step, we predict a full GRN linking TFs and regulatory elements 118 
to genes and gene modules.  Enrichment analysis of each gene module further links the 119 
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network to functions and pathways. Finally, we look at TFs with binding sites interrupted by AD 120 
SNPs and use them to subset the full network. This subnetwork thus reveals a map linking AD 121 
SNPs to interrupted TFs to regulatory elements to genes and modules to enriched 122 
functions/pathways to AD phenotypes, providing the mechanistic insights of AD variants to 123 
phenotypes. This paper applied this integrative analysis to population gene expression data in 124 
three major regions: Hippocampus, DLPFC, and LTL. We identified brain-specific regulatory 125 
networks for various AD phenotypes, especially on AD progression.   126 
 127 
In addition, the recent surging SARS-CoV-2 virus (Covid-19) has widely affected elders, 128 
especially with neurogenerative diseases. For example, studies have found that Covid-19 may 129 
increase a person’s risk for Alzheimer’s, Parkinson’s, and other brain disorders. Elders with AD 130 
are at a significantly higher risk of severe Covid-19 outcomes21.  Moreover, Covid-19 survivors 131 
show an increased risk of neurological and psychiatric problems, known as Neuro-COVID22.  132 
Also, Covid-19 morbidity and mortality have been linked to an overactivated and exaggerated 133 
immune system response.  Recent studies have found that the innate immune system may go 134 
awry in AD and maybe a driver of cognitive decline, neuroinflammation, neurodegeneration, and 135 
overall AD pathology23.  Therefore, both Covid-19 and AD are associated with a dysregulation of 136 
the innate immune system response, and the excessive inflammation and severe immune 137 
response in Covid-19 could advance the progression of neuroinflammatory neurodegenerative 138 
diseases like AD23.  For instance, several AD risk genes, like APOE4, have been identified with 139 
increased susceptibility to severe Covid-1924. Since Covid-19 serves as a strong marker for an 140 
exaggerated and overreactive immune system, elucidating pathways disrupted in Covid-19 and 141 
AD may provide more insights on the role of a misguided immune system in AD onset and 142 
progression. However, underlying gene functions linking the immunological functions from 143 
Covid-19 to AD are unknown. To better understand this, we looked at brain-region gene 144 
regulatory networks from our analysis that target AD genes relating to the immunological 145 
functions and pathways, including Covid-19. Using independent gene expression data for Covid, 146 
we found that many genes in the networks are significantly differentially expressed in severe 147 
Covid patients (ICU), suggesting abnormal expression activities of those genes in Covid-19.  148 
Therefore, we finally trained a machine learning model to predict severe Covid-19 from those 149 
network genes and prioritized the highly predictive genes as a set of AD-COVID marker genes. 150 
This marker set provides a potentially novel map for understanding the functional interplay 151 
between the immune system, Covid-19, and Alzheimer’s Disease. 152 
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Fig. 1 – Integrative analyses to predict gene regulatory networks from disease risk 
variants to phenotypes. Primarily, this analysis consists of seven major steps as a pipeline. 
First, it inputs the population gene expression data with phenotypic information (Step 1) and 
constructs and clusters gene co-expression networks into gene modules (Step 2). Second, it 
performs enrichment analysis for modules (Step 3) and links genes and modules to various 
phenotypes from the population (Step 4). Third, it predicts the transcription factors (TFs) and 
regulatory elements (e.g., enhancers) that regulate genes and co-regulate modular genes as a 
gene regulatory network (Step 5). Also, it further finds disease risk variants (e.g., GWAS SNPs) 
that interrupt the binding sites of TFs from the network (Step 6). Finally, we output a full gene 
regulatory network linking disease variants to interrupted TFs and enhancers to regulated genes 
and modules to enriched functions and pathways to disease phenotypes (Step 7). The network 
thus provides a deeper understanding of gene regulatory mechanisms in diseases. As a demo, 
in this paper, we applied to AD population datasets from different brain regions. We predicted 
brain-specific gene regulatory networks for various AD phenotypes such as progression stages.  

Materials and Methods 154 

The pipeline of our integrative analysis for predicting gene regulatory 155 
mechanisms from AD risk variants to phenotypes 156 

Our analysis can be summarized as a pipeline to predict gene regulatory networks from disease 157 
risk variants to phenotypes (Fig. 1). The network for specific phenotypes links disease risk 158 
variants (e.g., GWAS SNPs), non-coding regulatory elements, transcription factors (TFs) to 159 
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genes and genome functions, providing comprehensive mechanistic insights on gene regulation 160 
in disease phenotypes. Specifically, the pipeline includes the following steps. Here, our analysis 161 
is open-source available at https://github.com/daifengwanglab/ADSNPheno.    162 
• Step 1: Input gene expression data at the population level. The input data includes gene 163 

expression data of individuals and clinical information on AD phenotypes such as Braak 164 
staging and progression. 165 

• Step 2: Construct and cluster gene co-expression network. The pipeline constructs a gene 166 
co-expression network linking all possible gene pairs from the input data. The network edge 167 
weights are the Pearson correlations of the gene expression profiles across input samples. 168 
The gene co-expression network is further clustered into gene co-expression network 169 
modules. The genes in the same co-expression module are likely involved in similar 170 
functions and co-regulated by specific regulatory mechanisms. 171 

• Step 3: Annotate modular functions by enrichment analyses. To annotate the functions of 172 
gene co-expression modules, we calculate enriched pathways and functions, including 173 
KEGG pathways, REACTOME pathways, and Gene Ontology (GO) terms of the genes in 174 
each gene co-expression module.  175 

• Step 4: Associate AD phenotypes with genes and modules. We associate genes and 176 
modules with the phenotypes of input samples, revealing potential driver genes and 177 
modules for the phenotypes.  178 

• Step 5: Predict gene regulatory networks for genes and modules. We apply multiple 179 
computational methods to predict the gene regulatory networks that link TFs, non-coding 180 
regulatory elements to genes and modules, providing regulatory mechanistic insights on AD 181 
genes and modules. 182 

• Step 6: Link disease risk variants to the gene regulatory network. Our analysis further finds 183 
disease risk variants that interrupt the binding sites of TFs (TFBSs) in the gene regulatory 184 
networks for identifying functional variants to genes and modules to AD phenotypes. 185 

• Step 7: Output a gene regulatory network linking disease variants to AD phenotypes. 186 
Ultimately, this network is the output that links AD genetic risk variants, non-coding 187 
regulatory elements, transcription factors (TFs) to genes and genome functions (via 188 
modules) for various phenotypes in the input data. 189 

Population gene expression data and data processing in Alzheimer’s 190 
disease 191 

We applied this pipelined analysis to post-mortem AD population gene expression datasets for 192 
three major regions that relate to AD: Hippocampal CA1, Lateral Temporal Lobe (LTL), and 193 
Dorsolateral prefrontal cortex (DLPFC).  Also, we processed the gene expression datasets as 194 
follows.    195 
 196 
Hippocampal CA1: The microarray gene expression dataset (GSE1297)25 was used.  The 197 
dataset had total RNA expression values for 22,283 HG-U133 Affymetrix Human Genome U133 198 
Plus 2.0 Microarray Identifier probes for 31 individual postmortem samples.  These individual 199 
samples include 9 control samples (no AD), 7 initial stage samples, 8 moderate stage samples, 200 
and 7 severe stage samples. We used GEOquery26, hgu133a.db27, hgu133acdf28, and Affy29 R 201 
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packages to download the raw data and perform Robust Multichip Average (RMA) 202 
normalization30 to account for background and technical variations among these samples.  We 203 
mapped those microarray probes genes, averaging values that mapped to the same gene 204 
Entrez ID, removing probes that did not map to any known genes.  Also, we transformed the 205 
resulting gene expression data by log2(x + 1) transformation and standardized that by R’s 206 
scale() function. The finalized gene expression dataset in hippocampal CA1 has 13,073 unique 207 
genes for these 31 samples. 208 
 209 
Lateral Temporal Lobe (LTL): The normalized bulk RNA-Seq dataset (GSE159699)6 was used.  210 
This dataset had total RNA expression values for 27,130 different genes for 30 individual 211 
postmortem samples.  This group of individual samples includes 8 young samples (ages 60 and 212 
below),10 old samples, and 12 old samples with advanced AD.  After our data pre-processing 213 
steps, we had 25,292 genes, and we applied a log2(x+1) transformation to this gene expression 214 
data.  The finalized gene expression dataset in Lateral Temporal Lobe has 25,292 unique genes 215 
for these 30 samples.  216 
 217 
Dorsolateral prefrontal cortex (DLPFC): FPKM data from the ROSMAP Study, available on 218 
synapse.org (ID: syn3219045), was used31.  Removing lowly expressed protein-coding genes 219 
(those with counts low for over 90% of the samples and 0 variance) shrunk the list of DLPFC 220 
genes down to 26,014 genes.  In this dataset, there are 638 out of 640 individual RNA-Seq 221 
samples with mapped phenotype information.  We also applied a log2(x+1) transformation to 222 
this gene expression data and then standardized it with the R function, scale().  The finalized 223 
gene expression dataset in DLPFC has 26,014 genes for these 638 samples.  224 
 225 
Finally, there are 32,648 total unique protein-coding genes and 12,183 shared genes across 226 
these 3 brain regions.  Fig. S1 has a Venn-Diagram breakdown of gene counts across the 227 
different regions.  12,591 genes are found in the Hippocampus Ca1 and LTL, 12,444 genes are 228 
found in the Hippocampus Ca1 and DLPFC, and 18,882 genes are found in the LTL and 229 
DLPFC.   230 

Regulatory elements and Chromatin interactions in the human brain 231 
regions 232 

Epigenomic data has identified a variety of regulatory elements such as enhancers and 233 
promoters. Also, chromatin interaction data (e.g., Hi-C) have further revealed interacting 234 
enhancers and gene promoters. Thus, we integrated recent published epigenomic and 235 
chromatin interaction data for three brain regions to link enhancers to genes (via promoters). 236 
For Hippocampal Ca1, we obtained its enhancers and promoters from Brain Open Chromatin 237 
Atlas (BOCA)32 and promoter-based interactions from GSE8618933.  To identify promoters in 238 
LTL and DLPFC, we used R package, TxDb.Hsapiens.UCSC.hg19.knownGene34, to retrieve 239 
promoter start and stop positions of genes, using a promoter length of 5,000 base pairs. 240 
Besides, we used the H3K27ac data from GSE1307466 to find the enhancers in LTL. This 241 
dataset contains information on the target gene, distance that the H3K27ac mark is from the 242 
target gene’s Transcription Start Site (TSS), and enhancer start and end positions. The 243 
enhancers in LTL that we used were at least 1,000 bases away from the TSS. Moreover, for 244 
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DLPFC, we used the enhancers and interacting enhancer-promoter pairs in DLPFC from 245 
PsychENCODE35.   246 

Gene co-expression network analysis 247 

We applied WGCNA36 to population gene expression data to construct and cluster gene co-248 
expression networks into gene co-expression modules (minimum module size = 30 genes). 249 
Also, we further used a K-Means clustering37 step to improve the module assignments, i.e., 250 
assigning unclustered genes (grey modules from WGCNA) into the modules. This step uses the 251 
modular eigengenes from WGCNA as initial centroids for the K-Means to build modules with a 252 
minimum size of 30 genes. In total, we obtained 29 gene co-expression modules for 13,073 253 
genes for the hippocampal data, 56 modules for the 25,292 genes for the LTL, and 35 modules 254 
for 26,014 genes for the DLPFC.  Besides, we calculated the module membership (MM) of 255 
genes for each module, which is the Pearson Correlation (r) of each gene with the modular 256 
eigengene. The MM values illustrate how similar the genes in the dataset are to a given module. 257 
Genes can have statistically significant MM values (p-value < 0.05) for multiple modules. 258 

Enrichment analyses of gene co-expression modules 259 

Co-expressed genes in the same module are highly likely involved in similar functions and 260 
pathways. The enrichment analysis has thus been widely used to identify such functions and 261 
pathways in a gene module. Enrichment p-values were adjusted using the Benjamini-Hochberg 262 
(B-H) correction. Given a group of genes (e.g., from a module) for each brain region, we used 263 
multiple tools and hundreds of data sources for enrichment analyses (please see Table S1).  264 
We used the highest enrichment -log10(adjusted p-value) scores from any source for each gene 265 
module and respective enrichment in a brain region. Then, for each enrichment for a phenotype 266 
in a region, we averaged the non-zero enrichment values for the gene modules that are 267 
statistically significantly positively correlated for that phenotype.  268 

Association of genes and modules with AD phenotypes 269 

We further associated genes and modules with these key AD developmental phenotypes: AD 270 
Stages and Progression (Moderate Stage, Severe Stage, and AD Progression), 271 
Healthy/Resilient (Control Stage or other resilient individuals with better cognitive abilities 272 
despite AD pathology), APOE genotype (APOE E4/E4 is a huge AD risk factor38), Braak 273 
Staging, neuritic plaque accumulation (measured by CERAD Score), and cognitive impairment 274 
level (based on the MMSE Score).  We associated the gene co-expression modules with all 275 
possible AD phenotypes from the input data, by computing the Pearson Correlations of each 276 
modular eigengene to each phenotype. The eigengenes of modules by WGCNA are the first 277 
principal components of modular gene expression.  A modular eigengene is a vector with its 278 
elements representing the expression levels of input samples and represents the most likely 279 
gene expression patterns of modular genes. Second, based on the modular eigengenes, we 280 
used the functions of moduleTraitCor() and moduleTraitPvalue() in WGCNA to find significantly 281 
associated phenotypes to the modules.  Statistically significant module-phenotype associations 282 
for analysis have a p-value less than 0.05 and a positive correlation.  Also, we used the gene 283 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449165


 

8 

co-expression networks to examine the relationship between the genes and AD phenotypes and 284 
identify potential driver (hub) genes for the modules (based on the degree of connectivity for 285 
each gene in each module).   286 

Prediction of gene regulatory networks 287 

Gene Regulatory Networks (GRNs), a key molecular mechanism, fundamentally control gene 288 
expression. Also, co-expressed genes are likely co-regulated by similar gene regulatory 289 
networks. Thus, our analysis integrates multiple methods to predict the GRNs from gene 290 
expression data and co-expression modules. This study predicted gene regulatory networks in 291 
three brain regions that link transcription factors (TFs), Regulatory Elements (REs), and target 292 
genes/modules. First, we identified REs including enhancers and promoters that potentially 293 
interact using recent chromatin interaction data (Hi-C) and the scGRNom pipeline39.  Second, 294 
we inferred the transcription factor binding sites (TFBSs) based on consensus binding site 295 
sequences on the interacting enhancers and promoters by TFBSTools40 and motifmatchr41. This 296 
step generates a reference network linking TFs to regulatory elements (by TFBSs) to genes (by 297 
interactions). Third, using gene expression data for a given brain region, we predicted all 298 
possible TF-target gene (TG) pairs (or TF-modules) that have strong expression relationships 299 
by several widely used tools and databases: RTN42, TReNA Ensemble Solver43, Genie344, (and 300 
TF-gene-module pairs by RTN) as below.  Finally, this step maps these TF-TG pairs to the 301 
reference network. It outputs a full gene regulatory network (GRN) for the region that links TFs, 302 
non-coding regulatory elements to target genes and modules.  303 
 304 
We combined a recent list of TFs45 with JASPAR’s list46 to generate a final list of candidate TFs 305 
for inferring TF-TG pairs with strong expression relationships.  We used this final TF list to find 306 
the candidate TFs for each brain region (based on the respective gene expression data).  Also, 307 
TReNA Ensemble Solver with the default parameters (geneCutoff of 0.1 and ensemble of these 308 
solvers: LassoSolver, RidgeSolver, RandomForestSolver, LassoPVSolver, PearsonSolver, and 309 
SpearmanSolver) was used to construct the transcriptional regulatory network that link TFs to 310 
target genes (TGs).  Besides, we used GENIE3 to predict additional GRNs via Random Forest 311 
regression, predicting each gene’s expression pattern from the expression patterns of all TFs 312 
(TF-TG pairs with weights greater than 0.0025 were retained).  In addition, we used RTN to 313 
predict TFs to TGs by calculating the Mutual Information between the TFs and all genes. In 314 
particular, the permutation analysis with 1,000 permutations was applied bootstrapping and the 315 
ARACNe algorithm47 was used to select most meaningful network edges. Finally, the TF-TG 316 
pairs found in at least 2 of the above 3 sources were combined to map to the reference network.  317 
For the DLPFC, we instead used the published PsychENCODE GRN (Elastic Net regression 318 
weight of 0.1 as a cutoff) filtered for genes found in the DLPFC gene expression data48.   319 
 320 
In addition to predicting TFs for individual genes, we also inferred TFs significantly co-regulating 321 
genes in a module in the Hippocampus and LTL. In particular, we performed the Master 322 
Regulatory Analysis (MRA) on the RTN-inferred network by RTN package42.  For each gene 323 
module, MRA performed enrichment analysis using the inferred GRN, the phenotype (Module 324 
Membership correlation of all genes to that module), and hits (genes assigned to that module).  325 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449165


 

9 

It applied the hypergeometric test for overlaps between TFs and the genes (using gene 326 
expression data) and found the statistically significant TFs for each module.   327 

Linking GWAS SNPs for AD to gene regulatory elements  328 

GWAS studies have identified a wide variety of genetic risk variants associated with diseases. 329 
However, most disease risk variants lie on non-coding regions, hindering finding disease genes 330 
and understanding downstream disease functions. To this end, we used gene regulatory 331 
networks as described above to link AD SNPs to the regulatory elements in the networks via 332 
interrupted TFBSs. In particular, we looked at 97,058 GWAS SNPs significantly associated with 333 
AD (i.e., AD risk SNPs with p<0.005)15. We overlapped those AD risk SNPs with the regulatory 334 
elements such as enhancers and promoters in the gene regulatory networks from Step 5. Then, 335 
we identified the variants that interrupt the TFBSs on the regulatory elements by motifbreakR49 336 
(using ENCODE-motif, FactorBook, HOCOMOCO, and HOMER data sources and default 337 
methodology, with a threshold of 0.001), and further linked them to the genes from the 338 
regulatory elements with interrupted TFBSs. An extension of 10 kilobase pairs was added to the 339 
start and end positions of enhancers and an extension of 2 kilobase pairs was added to the start 340 
and end positions of promoters. We found that 83,842 SNPs out of 97,058 AD GWAS SNPs 341 
interrupt the binding sites of 787 TFs.   342 

Identification of AD-Covid genes and regulatory networks  343 

We compared the KEGG pathways50 for AD (hsa05010) and Covid-19 (hsa05171). We found 344 
several AD-Covid common mechanisms: Nuclear Factor Kappa B (NFkB), Inhibitor of Nuclear 345 
Factor Kappa B Kinase (IKK), c-Jun N-terminal Kinase (JNK), Interleukin-6 (IL-6), 346 
Phosphoinositide 3-Kinase (PI3K), Tumor Necrosis Factor (TNF) alpha, and TNF Receptor. This 347 
implies potential mechanistic interplays between AD and Covid-19. Further, we found 22 genes 348 
involved in those AD-Covid common mechanisms that correlate highly with AD phenotypes in 349 
different brain regions. Pathview51 was used to visualize the correlations of those genes and AD 350 
phenotypes. Also, for each brain region, we found the subnetworks of its gene regulatory 351 
network in AD that have TFs regulating those AD-Covid common genes as the region’s AD-352 
Covid regulatory network. 353 

Gene expression analysis and machine learning prediction for Covid-19 354 
severity from AD-Covid regulatory networks 355 

To gauge the clinical predictive performance of our AD-Covid genes and networks in terms of 356 
predicting Covid-19 severities, we looked at a recent population RNA-seq gene expression data 357 
in blood of Covid-19 samples (GSE157103)52 to check whether any genes from our AD-Covid 358 
regulatory networks can predict Covid-19 severities such as being in the Intensive Care Unit 359 
(ICU) or not. To this end, we first median normalized this gene expression data (19,472 genes) 360 
and then applied differentially expression analysis by DESeq253 between 50 ICU and 50 non-361 
ICU Covid patients. The Volcano plot was used to highlight differentially expressed AD-Covid 362 
genes (adjust p<0.05). A smoothing factor of 0.01 was added to the numerator and denominator 363 
when computing the empirical log2(fold change). 364 
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In addition to differentially expression analysis which aims to find individual associated genes, 365 
we also performed machine learning analysis for the genes from our AD-Covid regulatory 366 
networks to see if they together can predict severe Covid-19 or not.  367 
 368 
In addition to our AD-Covid genes (from each region and combined), we also compared the 369 
machine learning prediction performance from other published Covid-19 genes. Since we are 370 
predicting Covid-19 severity, we compared predictive models from our lists with the respective 371 
performance of the benchmark list.  A recent study54 using U.K. Biobank GWAS data and Covid-372 
19 mortality information discovered 8 Covid-19 susceptibility genes associated with an 373 
extremely high risk of Covid-19 mortality:  DNAH7, CLUAP1, DES, SPEG, STXBP5, PCDH15, 374 
TOMM7, and WSB1.  Another study55 identified seven other risk genes (OAS1, OAS2 , 375 
and OAS3, TYK2, DPP9, IFNAR2, CCR2) associated with severe and life-threatening Covid-19 376 
outcomes, including inflammatory organ damage.  Numerous studies such as 56 have implicated 377 
ACE2 and TMPRSS2 as key genetic factors whose polymorphisms could be risk factors linked 378 
to greater Covid-19 susceptibility. We thus included all 17 genes, from these published studies, 379 
into a list of Covid-19 published genes, to use as our benchmark list.  380 
 381 
The Python package, Scikit-Learn57, was used for our machine learning analysis. The 382 
classification accuracy of each gene was calculated by 4-Fold Cross Validation (CV). For the 17 383 
published Covid-19 susceptibility genes, we performed Recursive Feature Elimination (RFE) CV 384 
based on a Support Vector Machine (SVM) classification model (with linear kernel, outputting 385 
predicted probabilities)58; this calculated the classification accuracy of each gene and the 386 
optimal number of published genes to use.  We fixed all models to incorporate only this optimal 387 
number of genes. Then, to build a model for each of our input gene lists, we performed RFE 388 
based on linear SVM to then select the optimal number of predictive genes from the list for 389 
classifying ICU vs. non-ICU Covid-19 patients with high accuracy (i.e., feature selection).  We 390 
then trained an SVM classification model again with those select predictive genes and reported 391 
the accuracy and AUROC values of the model using 4-Fold CV.  Besides Covid severity, we 392 
also calculated the correlations of gene expression with Covid and non-Covid for the genes from 393 
the AD KEGG pathway for three brain regions. 394 
 395 
In addition, we also used Decision Curve Analysis (DCA)59 to evaluate and compare the 396 
machine learning models of those brain-region AD-Covid genes and benchmark genes for 397 
predicting Covid severity. DCA has been widely used for making medical decisions to 398 
individuals, improving upon traditional comparison metrics (e.g., AUROC) for predictive models 399 
and other approaches that require additional information to address clinical consequences59. 400 
Particularly, given a model and a threshold probability pT, the patients will be sent to ICU if their 401 
percentage risks for Covid severity (i.e., ICU) from the model are greater than or equal to pT. 402 
Based on this, the true positive (TP) count is the number of Covid-19 severe individuals sent to 403 
the ICU, and the False Positive (FP) is the number of Covid-19 non-ICU individuals sent to the 404 
ICU. Thus, pT inherently represents subjective clinician preferences for FPs versus False 405 
Negatives (FNs: wrongly predicting a severe Covid-19 patient would not be severe and not 406 
sending them to the ICU). Based on TP, FP and pT, the DCA then calculates Net Benefit = 407 
TP/N – ((FP/N)*pT/(1-pT)), where N is the total number of patients (N=100 here). Thus, the Net 408 
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Benefit represents the benefit of true positive ratio (TP/N) from false positive ratio (FP/N) 409 
weighted by odds of pT (i.e., pT/(1-pT)). DCA provides a simple, personalized risk-tolerance 410 
based approach of using pT to weight the FN and FP mistakes: lower thresholds represent a 411 
fear of FNs over FPs, and vice-versa.  For instance, for a clinician who sends a Covid-19 412 
positive individual with predicted severity of at least pT = 20%, the utility of treating a Covid-19 413 
severe individual is 4 times greater than the harm of needlessly sending a non-severe Covid-19 414 
patient to the ICU. Also, we compared our predictive models with 2 extremes: Treat All (predict 415 
1 for all Covid-19 positive patients and send all to the ICU regardless of severity) and Treat 416 
None (predict 0 for all positive patients and send none to the ICU). Practically, a clinician ought 417 
to opt for the predictive model or extreme intervention strategy with the highest Net Benefit 418 
based on that clinician’s preferred pT; thus, two clinicians (who may have their own, different pT 419 
values) may obtain different optimal results. Thus, DCA can be used to evaluate the clinical 420 
usability of a Covid-19 severity prediction model based on its Net Benefit across clinically 421 
reasonable pT values. Finally, we performed the DCA using the codes provided by Memorial 422 
Sloan Kettering Cancer Center60. 423 

Results 424 

Gene co-expression network analysis reveals gene expression dynamics 425 
for AD phenotypes across multiple brain regions 426 

We first applied our analysis to population gene expression datasets of three major brains 427 
relating to AD: Hippocampal CA1, Lateral Temporal Lobe (LTL), and Dorsolateral prefrontal 428 
cortex (DLPFC) (Methods and Materials). We identified several gene co-expression modules 429 
showing specific gene expression dynamic changes for various AD phenotypes as below. 430 
These expression dynamics also imply potential underlying gene regulatory mechanisms in the 431 
phenotypes. In particular, given a brain region, we constructed and clustered a gene co-432 
expression network for the region to a set of gene co-expression modules. In a gene co-433 
expression network for a region, the nodes are genes and each edge represents that the two 434 
respective genes have correlated gene expression profiles during AD progression (i.e., co-435 
expression).  Also, there are likely groups of co-expressed genes within the network that form 436 
densely-connected sub-networks, also known as gene co-expression modules.  Genes within a 437 
module share similar gene expression dynamics in the region for the observed AD phenotypes. 438 
We also used modular eigengenes (MEs) to represent such expression dynamics for a gene 439 
module, using the first principal components of modular gene expression matrices. The 440 
information for all modules with associated phenotypes is available in Supplement files 1, 2 441 
and 3 for Hippocampal CA1, Lateral Temporal Lobe and Dorsolateral prefrontal cortex, 442 
respectively. 443 
 444 
Hippocampal CA1. We identified 29 gene co-expression modules in the Hippocampal Ca1 445 
region (min. module size = 30 genes). We found that 21 out of 30 modules were significantly 446 
positively associated with at least one AD phenotype: AD progression, Braak Stage 447 
progression, aging, accumulation of NFTs, MMSE score cognitive impairment, AD, and being 448 
resilient.  Also, their eigengenes show specific expression dynamics (Fig. 2A for 7 select 449 
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modules, Fig. S2 for all modules).  For instance, the pink and lightyellow modules tend to have 450 
higher expression values for individuals who do not have AD (Control Stage) and are clustered 451 
together. On the other hand, the greenyellow, yellow, magenta, and tan modules have higher 452 
expression levels for AD individuals and cluster together.  In between those groups of modules 453 
is the midnightblue module, which has relatively high expression for some Control Stage and 454 
some AD individuals.  455 
 456 
Next, using these expression dynamic patterns, we further linked these gene modules to those 457 
key AD phenotypes (Fig. 2B) using their significant correlations (Fig. S3 and Supp. file 1 for all 458 
modules).  For instance, the greenyellow module has significantly highly correlations with AD, 459 
AD progression (e.g., moderate and severe stages), Braak 6 Stage and cognitive impairment.  460 
The tan module has the highest correlation (r = 0.68) with the Severe Stage, along with other 461 
AD-related phenotypes.  The midnightblue module is more significant (r = 0.02) for the Braak 4 462 
Stage, where affected individuals typically exhibit mild symptoms of dementia.  The lightyellow 463 
module is significant for cognitive resilience (r = 0.5), which is the ability of individuals to exhibit 464 
stronger cognitive functioning despite AD pathology.  Moreover, the lightyellow module has a 465 
strong positive correlation with better MMSE performance (r = 0.58) than the pink module (r = 466 
0.44).  Instead, the pink module is more significantly correlated with the Braak 3 Stage (r = 467 
0.45).   468 
 469 
Lateral Temporal Lobe.  We identified 56 gene co-expression modules and found that 28 470 
modules are significantly positively correlated with AD phenotypes of interest. We highlighted 471 
five modular eigengenes in Fig 2C showing specific expression dynamics for AD phenotypes in 472 
LTL (Fig. S4 for all modules). In total, we found that 12 gene modules are positively associated 473 
with AD Progression, 1 with Aging (mediumpurple3), 1 with Gender (lightgreen), 12 with the 474 
Control Stage, and 2 with the Initial Stage (associated with Braak 1 and 2 Stages).   As shown 475 
in Fig. 2C, the sienna3 module has higher expression values for both old and young individuals 476 
in the Control Stage.  The orange, magenta, and yellow modules are clustered together and 477 
have higher expression values for AD samples.  The midnightblue module is clustered between 478 
both groups and tends to be associated with higher Braak stages.  As shown in Fig. 2D, the 479 
sienna3 module also has a statistically significant positive correlation with the Control Stage (r = 480 
0.63) and asymptomatic based on the Braak stage (r = 0.55).  The midnightblue module is 481 
associated with aging, average Braak stage, clinical Braak stage, and AD.  The yellow, orange, 482 
and magenta modules are associated with aging, AD and Braak progression phenotypes, and 483 
neuritic plaque accumulation (based on the CERAD score); the orange module has a very 484 
strong correlation with dementia Braak stages (r = 0.72) and AD (r = 0.72). More module-485 
phenotype associations are available in Fig. S5 and Supplementary File 2. 486 
 487 
Dorsolateral prefrontal cortex. We found 35 gene co-expression modules for DLPFC. Figs. 2E 488 
and 2F highlighted 6 of those gene modules: darkolivegreen, yellow, red, royalblue, tan, and 489 
green (Figs. S5-6 for all modules). Those modules are significantly associated with various AD 490 
phenotypes such as progression, MMSE, APOE genotype and neuritic plaques. Larger sample 491 
size for the DLPFC, which is over 20 times larger than that for the Hippocampal or LTL regions, 492 
likely attributes to the relatively lower correlation coefficients between modules and AD 493 
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phenotypes in DLPFC However, we still see significantly correlated modules with various AD 494 
phenotypes (Fig. 2F, p< 0.05). For example, the tan gene module is associated with the worst 495 
APOE genotype, APOE E4/E4 (r = 0.082), AD diagnosis age (r = 0.12) and points lost on the 496 
last MMSE (r = 0.09). The royalblue and green modules are statistically significantly positively 497 
correlated with the Severe Stage based on the last MMSE score, with correlations of r = 0.22 498 
and r = 0.2, respectively. In terms of better outcomes, the darkolivegreen module is significant 499 
for the Control Stage (r = 0.11), better performance on the last MMSE (r = 0.17), and cognitive 500 
resilience (r = 0.12).  Furthermore, the red module is also significant for better performance on 501 
the last MMSE (r = 0.15) and has a similar correlation as the darkolivegreen module for 502 
cognitive resilience.    503 
 504 
Therefore, those AD-phenotype-associated gene co-expression modules uncover the specific 505 
gene expression dynamic patterns across phenotypes and suggest that those co-expressed 506 
genes in the same modules are likely involved in similar functions and pathways for the 507 
phenotypes. To understand this, we further performed the enrichments analysis of the modules 508 
as follows. 509 
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 510 
Fig. 2 – Gene co-expression modules significantly associated with AD phenotypes show 511 
specific expression dynamic patterns across phenotypes. Top heatmaps show the 512 
eigengenes of select gene co-expression modules in Hippocampal CA1 region (A), LTL (C) and 513 
DLPFC (E). Rows: modules. Columns: individual samples. Red: high expression level. Blue: low 514 
expression level. Bottom heatmaps show the correlation coefficients and p-values between 515 
select modules and AD phenotypes in Hippocampal CA1 region (B), LTL (D) and DLPFC (F). 516 
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Row: modules. Columns: AD phenotypes. Red: highly positively correlation. Green: highly 517 
negatively correlation.  518 

Eigengenes and enrichments of co-expression modules reveal hub genes, 519 
gene functions and pathways in AD phenotypes 520 

Gene module enrichment analysis allows us to better understand the biological functions, 521 
structures, diseases, and other observed biological phenomena associated with AD 522 
phenotypes.  Through enrichment analysis (Methods), we found enriched functions and 523 
pathways of AD modules and then linked them to various AD phenotypes associated with the 524 
modules (Fig. 3 and Supplementary document). Overall, healthier phenotypes are the Control 525 
Stage (No AD), cognitive resilience, and protective APOE E2/E2 genotype.  526 
 527 
Hippocampal CA1 (Fig. 3A, Supplementary file 1): The modules for non-AD phenotypes (e.g., 528 
control and resilience) are enriched with synaptic plasticity and dendrite development, 529 
norepinephrine neurotransmitter release cycle, and calcium signaling pathway, which can be 530 
typically dysregulated in AD61. This also suggests that resilient individuals may be protected 531 
from microsatellite instability and amyloid accumulation that may even occur naturally62. Further, 532 
our analysis supports recent hypotheses on dysregulated immune systems in AD.  We found 533 
that aging, NFTs, and AD developmental phenotypes are associated with abnormal innate 534 
immunity and interleukin-6 secretion.  Our cognitive impairment, Braak progression, and AD 535 
modules also have enrichments for: viral genes and Covid-19 spike glycoprotein (that trigger an 536 
immune response), activated TAK1 mediating p38 MAPK activation (linked to tau 537 
phosphorylation, neurotoxicity, neuroinflammation, synaptic dysfunction, and worse AD63), and 538 
NFKB pathway (impaired and over-expressed during AD, leading to neuroinflammation, 539 
microgliosis64, and suppression of Wnt Signaling65).  Moreover, we found an association 540 
between Severe AD and immunologic memory, antigen-antibody interactions, and regulation of 541 
Interferon-Alpha Signaling.   Interferon response to immunogenic amyloid may activate 542 
microglia, initiate neuroinflammation, and lead to synaptic loss66.  Finally, many AD phenotypes 543 
are associated with Death Receptor Signaling, positive regulation of gliogenesis, Constitutive 544 
Signaling by aberrant PI3K in Cancer, and positive regulation of JNK cascade (activated in AD 545 
brains and involved in tau phosphorylation and neuronal death)70. Xenobiotic Metabolic 546 
Processes are specific to Severe AD modules only, and studies67 have found links between 547 
dementia progression and various metabolic pathways.   548 
 549 
LTL (Fig. 3B, Supplementary file 2): First, control modules are indeed enriched with several 550 
pathways that are typically present in healthy conditions, such as Wnt signaling, Actin 551 
organization and transmission across chemical synapses. Dysregulation of those pathways has 552 
been reported to lead to AD and neurodegeneration, e.g., Wnt signaling to inhibit amyloid-beta 553 
production and tau protein hyperphosphorylation in AD progression68. Second, in the LTL 554 
modules for AD and large neuritic plaques, Frontotemporal Dementia (FTD) and Loss of Nlp 555 
from Mitotic centrosomes are enriched, and the latter may lead to reduced microtubule stability, 556 
abnormal cellular morphology, and functions in AD69. Also, we found cell-type specific 557 
enrichments in the AD progression related phenotypes, e.g., astrocyte projection for clinical 558 
braak stage and asymptomatic. Astrocytes are increasingly activated near amyloid plaques in 559 
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LOAD, producing pro-inflammatory cytokines and reactive oxygen species70. Additional 560 
previously identified AD-related functions and pathways include postsynaptic differentiation, 561 
stress-activated signaling, TRAF-mediated NF-kB activation, prion pathway and epigenetic 562 
modifications. The feedback look of the prion pathway is likely disrupted during AD leading to 563 
Aβ accumulation71. The epigenetic modifications (e.g., Histone A4 acetylation) can be 564 
dysregulated to affect gene expression of long-term potentiation and memory formation in AD72. 565 

DLPFC (Fig. 3C, Supplementary file 3): The resident macrophage brain cells, microglia, tend 566 
to exclusively express most AD risk genes like APOE73.  Our APOE E2 modules were shielded 567 
from neurotoxins and associated with mitochondrial inheritance (p<1e-16), while our E4 568 
modules are strongly enriched for cellular response to Aβ and cognitive dysfunction.  Having 569 
both high risk E4 alleles (instead of only 1 E4 allele) is not associated with mitochondrial 570 
depolarization. Still, it is more strongly associated with Serum Amyloid A Protein (p<1e-28 vs. 571 
p<1e-16), monocyte chemoattractant proteins, and neuroimmunomodulation.  572 
 573 
We found several strong promising associations (some with p<e-58) for APOE4-related and 574 
cognitive impairment modules, supporting the crucial role of the immune system and reactive 575 
microglia in AD onset and pathogenesis.  These include astrocyte activation (boosting 576 
production of proinflammatory cytokines and phagocytic capabilities74), abnormal circulating 577 
cytokine level and innate immunity, synapse pruning (excess in Schizophrenia75), 578 
neuroinflammatory responses, autoimmune diseases (Wegener’s Granulomatosis), abnormal 579 
macrophage physiology, Microglia Pathogen Phagocytosis Pathway, and microglial cell 580 
activation (key to ALS and Multiple Sclerosis pathology76).  During early synaptic decline in AD, 581 
microglia may change shape, functions, and pathways, express more receptors and 582 
inflammatory molecules (cytokines, chemokines), become more phagocytic and activated, and 583 
go awry, leading to neuroinflammation and cell death73.  Except for neurotransmitter reuptake, 584 
our other AD phenotype (ex. severe stage, Braak progression, plaques, cognitive impairment, 585 
survival post diagnosis) modules share many biological associations with our APOE4 modules, 586 
like: Immune System diseases, Covid-19, inflammation mediated by chemokines and cytokines, 587 
natural killer mediated immunity. Besides, the modules for non-AD phenotypes like control and 588 
resilience are also enriched with pathways that may be dysfunctional in AD such as the Electron 589 
Transport Chain77, neuron recognition, calcium ion regulated exocytosis, mitotic spindle 590 
checkpoint, and synaptic plasticity.  591 
 592 
Comparison Across Brain Regions (Fig. 3D): We also found that many enriched pathways for 593 
AD phenotypes are shared by different brain regions. In particular, the datasets of three brain 594 
regions share major phenotypes (control, AD, and clinical Braak stage). The modules from three 595 
regions for those shared phenotypes are all enriched with physiological adaptation. Also, many 596 
of our modules from different brain regions are enriched with immunological functions that have 597 
been recently studied in AD78. For instance, the Hippocampal and DLPFC modules for control 598 
and AD share neuroimmunomodulation. The MAPK cascade (associated with control modules 599 
in all 3 regions) is associated with stress-activation in the AD and Braak modules in the 600 
hippocampus and LTL, which has been reported to be dysregulated in AD79. These AD and 601 
Braak modules in multiple brain regions are also enriched with the Ki-1 antigen, a tumor marker 602 
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of activated immune cells regulating NF-kB and apoptosis80, proto-oncogenes, dendritic antigen-603 
presenting cells, diabetes complications, focal adhesion (plaques), and angiogenesis VEGFA-604 
VEGFR2 Signaling. The VEGFA-VEGFR2 pathway promotes neural cell survival, migration, and 605 
proliferation, and has altered levels in AD that may impact the role of microglia81. Moreover, the 606 
AD and Braak modules across regions have common brain enrichments such as Blood-Brain 607 
Barrier, virus attachment, Complement Activation (innate immune-mediated defense82, altered 608 
in AD74), and Oligodendrocyte differentiation (potentially impacted by Aβ accumulation and 609 
associated with neurodegeneration83). Finally, the control modules across regions are enriched 610 
for higher cellular energy levels like ATP synthesis, Mitochondrial proteins. In particular, the 611 
DLPFC and Hippocampal control modules are enriched with Calcium Signaling, LTP, 612 
Presynaptic Terminals, regulation of dendrite development, and positive regulation of 613 
neurogenesis.  614 

615 
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Fig. 3 – Select enriched functions and pathways of gene co-expression modules for 616 
various AD phenotypes. (A) Hippocampus; (B) Lateral Temporal Lobe (LTL); (C) DLPFC; (D) 617 
Across three regions. Rows: select enriched terms (Methods). Columns: AD phenotypes. The 618 
heatmap colors correspond to –log10(adjust p-value).   619 

Prediction of brain-region gene regulatory networks for AD phenotypes 620 
To understand underlying molecular mechanisms regulating gene expression associated with 621 
various AD phenotypes, we predicted the gene regulatory networks (GRNs) for genes and gene 622 
modules of brain regions, especially using multi-omics data (Methods). The brain-region GRNs 623 
link transcription factors (TFs) and regulatory elements (REs, e.g., enhancers or promoters) to 624 
target genes (TGs) and co-expressed genes (e.g., from same modules). The regulatory network 625 
edges can be activation or repression. Moreover, these GRNs can be further linked to the AD 626 
phenotypes significantly associated with TGs and modules. As described in Methods, we 627 
applied multiple widely-used approaches and public databases to predict the networks and 628 
finally used shared predictions across different approaches as highly confident GRNs. In terms 629 
of candidate TFs, we found: 1,043 in the Hippocampus, 1,580 in the LTL, and 1,588 in the 630 
DLPFC, which we input into RTN, Genie3, and Trena.  As shown in Table S2, we obtained 631 
6,823,631 TF-RE-TG network edges of three brain regions’ GRNs, corresponding to 632 
973,025 unique TF-TG pairs, 20,601 TGs and 709 TFs.  In particular, the hippocampal GRN 633 
has 2,810,102 TF-RE-TG edges, including 169,292 unique TF-TG pairs, 11,972 TGs and 351 634 
TFs. The GRN of Lateral temporal lobe has 161,404 TF-RE-TG edges, including 65,321 unique 635 
TF-TG pairs, 13,791 TGs and 402 TFs. The GRN of DLPFC has 3,852,125 TF-RE-TG edges, 636 
including 752,169 unique TF-TG pairs, 13,511 TGs and 670 TFs. Detailed edge lists of 637 
hippocampus and LTL GRNs are provided in Supplementary files 4-5.  638 

 639 
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640 
Fig. 4 – Select gene regulatory networks (GRN) linking AD risk variants (GWAS SNPs) to 641 
AD phenotypes. (A) Subnetwork of LTL GRN among TFs (i.e., the target genes (TGs) are TFs 642 
too). Nodes are TF genes. The edges connect TFs to their TGs. Besides, TFs have the binding 643 
sites interrupted by AD SNPs on the regulatory elements to TGs. (B) Example of 3 AD SNPs 644 
that interrupt binding sites of TFs in different brain regions. The AD phenotypes and gene 645 
modules positively correlated with APOC2, DMPK, and PPP1R37 expression are shown. (C)  646 
SNP rs78073763 interrupts multiple possible binding sites of SPI1 in Hippocampus and RARA 647 
in LTL. Additional regulatory links from AD SNPs to interrupted TFs to TGs along with 648 
associated phenotypes and modules are shown in (D) regulation of ACTN2 in all three regions, 649 
(E) FOXC2, POU2F2, and E2F7 to KCNN4 in hippocampus and LTL.  650 

Identification of disease risk variants for AD phenotypes via integration of 651 
GWAS and gene regulatory networks   652 

Over 90% of disease risk variants (e.g., GWAS SNPs) are in the non-coding regions18. For 653 
instance, we found that GWAS SNPs for AD are enriched in the regulatory elements of our 654 
GRNs as above. Thus, it is crucial to further understand how those disease risk variants affect 655 
gene regulatory mechanisms that eventually impact AD phenotypes such as progression. To 656 
this end, we linked AD GWAS SNPs to our GRNs to see how those SNPs interrupt the binding 657 
sites of TFs on the enhancers or promoters that regulate target genes and modules (Methods). 658 
These SNPs can also be linked to various AD phenotypes of corresponding genes and modules 659 
for different brain regions, i.e., “brain-region risk variants for AD phenotypes”. Specifically, we 660 
found that 39,832 unique AD SNPs disrupted TFBSs on the regulatory elements of three brain-661 
region GRNs (35,940 for Hippocampus, 7,119 for LTL, 2,359 for DLPFC, Fig. S8). Across three 662 
regions, there are 543 unique TFs whose binding sites were interrupted, regulating 11,596 663 
genes (Table S3).   664 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449165


 

20 

For instance, a subnetwork of the LTL GRN between TFs is shown in Fig. 4A, i.e., the target 665 
genes are also TFs. These subnetwork TFs also have interrupted TFBSs on the regulatory 666 
elements to their target genes. We found that several TFs are the hub genes of the subnetwork 667 
like RUNX2 (11 TFs experience difficulty in binding and regulating RUNX2) and neurogenesis 668 
TF REST (experiences difficulty in regulating 16 TFs in LTL). In fact, REST is induced by Wnt 669 
signaling, represses genes (like PLCG2) that promote cell death or AD pathology, protects 670 
neurons from Aβ-protein toxicity84.  We found that during AD, PLCG2 is overexpressed in the 671 
LTL, which may be partly explained by REST’s inability to bind to chromatin and repress its 672 
target genes85; this may lead to changes in autoinflammation, immune disorders, and changes 673 
in immune cell functioning86; moreover, we found that REST significantly regulates the turquoise 674 
gene module in the LTL (Figs. S9-10). The subnetwork of the DLPFC GRN between TFs (Fig. 675 
S11) has the hub genes: CREB3L1 (26 TFs are unable to properly regulate CREB3L1) and 676 
PAX5 (has difficulty in regulating 11 TFs).  Lastly, the Hippocampal GRN SNP subnetwork 677 
between TFs has hubs such as ZNF226 (21 TFs experience difficulty regulating ZNF226) and 678 
GATA2 (unable to regulate 65 TFs in AD Hippocampus).  In the Hippocampus, ZNF226 679 
significantly regulates 3 modules (2 which are associated with the Control Stage) and GATA2 680 
significantly regulates 4 modules (1 Control Stage module and 2 modules associated with 681 
worsening AD phenotypes) (Figs. S12-13).   682 
 683 
Furthermore, we found several regulatory networks, which provide more insights on the possible 684 
association of various non-coding SNPs with AD phenotypes. Fig. S14 provides a detailed 685 
explanation of how to interpret such networks.  In Fig. 4B, we examine the varying effect of a 686 
given SNP on gene regulation across brain regions, and the impact on 3 target genes: APOC2, 687 
DMPK, and PP1R37. For instance, SNP rs78073763 (Fig. 4C) changes the DNA base from a T 688 
to a G (at chr19:45649838) and breaks the binding of RARA on the enhancer of Control Stage 689 
gene PPP1R37 in the LTL and SPI1 binding to the DMPK enhancer in the Hippocampus.  A 690 
recent study found that PPP1R37 expression is strongly associated with APOE expression and 691 
has extensive cross-tissue effects on AD and that DMPK expression in the hippocampus and 692 
putamen strongly impact AD87.  We found that increased expression of DMPK is associated with 693 
worsening AD phenotypes (ex. Moderate Stage or worse, AD progression, more severe 694 
dementia, NFTs).  Two extremely statistically significant AD SNPs (rs17643262 and rs2041262; 695 
p < 2e-13) that disrupt SPI1 regulation of DMPK in the Hippocampus also disrupt SPI1 696 
regulation of APOC2 in the DLPFC; APOC2 is associated with a cognitive impairment gene 697 
module, Alzheimer’s dementia, cognitive decline, and having at least 1 APOE E4 allele.   SPI1 698 
is a well-known master regulator in microglial cells, plays a key roles in regulating immune 699 
functions in AD88, is strongly correlated with AD (r = 0.355) and AD Progression (r = 0.375), 700 
Braak progression (r = 0.437), Braak 6 (r = 0.407), and belongs to a Severe AD Stage gene 701 
module (r = 0.41). This suggests a low-level expression of SPI1 in hippocampus control 702 
samples, which potentially reduced microglial-mediated neuroinflammatory responses and 703 
delayed AD onset89. SPI1 regulation in the Hippocampus by 10 TFs (ex. RXRA, RARA, NFKB1) 704 
is disrupted by several SNPs (Fig. S15).  The regulated genes by SPI1 are also upregulated in 705 
microglia, leading to microglia-mediated neurodegeneration in AD89; in fact, SPI1 significantly 706 
regulates DMPK and its Severe Stage gene module in the Hippocampus.  Our results further 707 
underscore the role of the microglia and immune system in AD onset and progression and 708 
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neuroinflammation. In addition, MYC regulation of APOC2 in the DLPFC is also impacted.  709 
Abnormalities in MYC functioning may lead to dysregulation in cellular processes such as cell 710 
cycle activation and Wnt Signaling and re-entry mediated neuronal cell death in AD90.   711 
 712 
In Fig. 4D, we present an example of a gene, ACTN2 (cytoskeletal alpha-actin protein), whose 713 
regulation in all 3 brain regions, is impacted by various SNPs, and whose expression is 714 
associated with healthier outcomes.  Across the 3 brain regions, we observe that ACTN2 715 
expression is positively associated with the cognitive resilience DLPFC gene module, no 716 
cognitive impairment Hippocampus gene module, and Control Stage LTL gene module.  717 
Increased expression of ACTN2 may be associated with improvements in MMSE scores and is 718 
found at the neuronal synapse, and is a highly ranked gene in a previous study on 719 
echocardiographic traits, heart function, and AD91. Several SNPs impact ACTN2 expression in 720 
the DLPFC and Hippocampus, but we focused on SNPs shared by several TFs in this Figure.  721 
Here, rs60023867 disrupts regulation of ACTN2 in the DLPFC by both NKX6-1 and NOBOX.  In 722 
the Hippocampus, rs2062 disrupts regulation of ACTN2 by 3 TFs (LEF1, SMAD3, and TEAD3) 723 
and rs144105756 impacts IRF2 and IRF9 regulation of ACTN2.  Lastly, in the LTL, rs79542980 724 
may lead to FOXF2 dysregulation of ACTN2.   725 
 726 
Also, we found different SNPs in the Hippocampus and LTL that impact regulation of KCNN4, a 727 
key AD drug target that is overexpressed during AD (Fig. 4F).  In Fig. S16, we visualize the 728 
impact of rs62117780 on FOXC2 and POU2F2 regulation of KCNN4 in the hippocampus and 729 
rs4802200 on E2F7 regulation of KCNN4 in the LTL.  FOXC2 and POU2F2 also regulate 730 
KCNN4’s Hippocampal Braak Progression module.  KCNN4 belongs to an AD LTL module, so 731 
increased KCNN4 expression is associated with AD progression in both regions.  Previous 732 
studies found that KCNN4 is primarily expressed in macrophages and microglia and regulates 733 
microglia activation by modulating Ca2+ influx signaling and membrane potential85. Thus, it has 734 
low expression in healthy neurons, and is associated with neuroinflammation and reactive 735 
gliosis during AD.  Blocking KCNN4 likely curbs microglial neurotoxicity, leading to slower 736 
neuronal loss and better memory levels92. Therefore, this link uncovers how AD SNPs regulate 737 
KCNN4 expression in AD phenotypes.    738 
 739 
Finally, we highlighted all possible SNPs that interrupt TFBSs in our brain region GRNs via 740 
Manhattan plots (Figs. S17-21): S18 (hippocampus), S19 (LTL) and S20 (DLPFC).  268 SNPs 741 
were found in all 3 regions and are examined in Figs. S21-24. Regulatory links from AD SNPs 742 
to interrupted TFBSs and regulatory elements to target genes and modules is provided in 743 
Supplementary files 6-8.  We provide additional examples and explanations of regulatory 744 
networks linking non-coding SNPs to AD phenotypes for the networks, which we visualize in 745 
Figs. S25-28.  746 

 747 
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748 
Fig. 5 – Gene regulatory networks and phenotypes for NFKB, a shared pathway of AD 749 
and Covid-19. (A) Pearson correlations of the NFKB pathway (KEGG:hsa05171) and AD 750 
pathway (KEGG: hsa05010) with AD phenotypes from the Pathview analysis of hippocampal 751 
expression data of pathway genes51. (B) Pearson correlations of NFKB TFs (NFKB1, NFKB2, 752 
RELA, RELB, and REL) with Control in three regions. (C) Pearson correlations of NFKB TFs 753 
with Severe stage in Hippocampus and DLPFC. (D) Covid-19 virus spike and gene regulation of 754 
NFKB TFs from our hippocampal, LTL, and DLPFC GRNs for pro-inflammatory cytokines linked 755 
with severe Covid-19 outcomes. Gray dashed arrows indicate regulation and black arrows 756 
indicate activation of cytokines by the TF. (E) Correlations between AD phenotypes and 757 
expression levels of genes from (D) in the hippocampus. 758 

Gene regulatory networks and AD phenotypes associated with shared 759 
pathways between Covid-19 and AD 760 

Recent Covid-19 virus has widely affected the elders with neurogenerative diseases including 761 
AD, suggesting potential links between Covid-19 and AD.  We found that many significantly 762 
up/down-regulated genes in Covid-19 present in the AD KEGG pathway and 763 
positively/negatively correlated with AD in three regions. To understand molecular mechanisms 764 
across two diseases, we look at shared AD-Covid pathways such as the NFKB pathway 765 
involved in adverse effects and inflammation in both AD and Covid-1993. There are five TFs: 766 
NFKB1, NFKB2, REL, RELA, and RELB (proto-oncogene near APOE) involved in this pathway 767 
that regulate cellular processes including inflammation, cell growth, apoptosis94. Further, in both 768 
AD and Covid-19, Reactive Oxygen Species activate RELA and NFKB1 that then transcribe 769 
pro-inflammatory cytokines (typically secreted by macrophages), like: IL-6, IL-1B, and TNF, 770 
reducing LTP in AD, leading to an exaggerated and potentially lethal immune response in 771 
Covid-19 (e.g., tissue injury, Acute Respiratory Distress Syndrome (ARDS)93) (Fig. S29). We 772 
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found that in general, the gene expression levels of those NFKB TFs positively correlate with 773 
AD phenotypes such as severity but negatively with control in all three regions (Fig. 5A for 774 
hippocampus, Fig. S30 for LTL, and Fig. S31 for DLPFC). For instance, NFKB1 and RELB 775 
negatively correlate with controls in three regions, and so are NFKB2 and RELA in 776 
hippocampus and DLPFC (Fig. 5B). However, all five TFs positively correlate with AD severity 777 
in the hippocampus and two of them in DLPFC (Fig. 5C). Since the up-regulation of these NF-778 
kB TFs is also linked to greater inflammatory responses in Covid-19 infected individuals93, this 779 
result implies that the gene expression of NFKB TFs is a potential interplay between AD and 780 
Covid-19. Thus, we further investigated our gene regulatory networks involving NFKB TFs to 781 
understand possible regulatory mechanistic links across AD and Covid. 782 
 783 
To this end, we looked at the impact of the NFKB pathway in SAR-CoV-2 to additional 784 
molecules (KEGG: hsa05171) (Fig. 5D). In particular, to enter the cell, the SARS-CoV-2 Spike 785 
protein is primed by TMPRSS2, binds to ACE2 (highly expressed in macrophages and the 786 
brain95), and interacts with A1TR (elevates viral entry and infection96). We also found that the 787 
expression levels of TMPRSS2, ACE2, and A1TR receptors are negatively correlated with 788 
controls but positively associated with late AD stages in hippocampus (Fig. 5E). Moreover, in 789 
our brain region GRNs, NFKB1 and RELA regulate genes of several cytokines associated with 790 
the severe Covid-19 Cytokine Storm. For instance, in the DLPFC, RELA regulates IL-6 via the 791 
promoter and particularly activates CXCL10 (biomarker whose altered levels are associated 792 
with immune dysfunction, tumor development, and disease severity97) by binding to the 793 
enhancer.  In the LTL, NFKB1 binds to the enhancer of hematopoietic growth factor and 794 
cytokine, CSF3R, a key regulator of neutrophil cell development, proliferation, and 795 
differentiation98; in Severe Covid-19 patients, there are increased levels of neutrophils (immune 796 
cells involved in the first-line of defense against pathogens) and changes in their phenotype and 797 
functionality99.  Also, our hippocampal GRN found that NFKB1 regulates IL-2 (via an enhancer 798 
on chr4:121696658-121696872) and RELA regulates TNFa-induced proteins, TNFAIP3 and 799 
TNFAIP6.  Overall, NF-kBs regulate TNF-a, increasing expression during AD progression, likely 800 
triggering neurodegeneration, inflammation, neuronal death, and healthy tissue destruction23.   801 
 802 
RELA regulate genes of several cytokines associated with the severe Covid-19 Cytokine Storm. 803 
For instance, RELA regulates IL-6 and particularly activates IL-12A/B (recruit and activate 804 
Natural Killer cells100) and IL-1B via the enhancers.  In Fig. S32, we shared additional examples 805 
of NFKB1 and RELA TFs regulating other TFs that regulate inflammatory cytokines IL-1B, IL-806 
12B (recruit and activate Natural Killer cells100), CCL2, MMP 1/3, and CLGN. For instance, in the 807 
Hippocampus, NFKB1 regulates TFs SPI1 and BATF, regulating MMP1 (Fig. S32B).  The 808 
expression of cytokines IL-2, CCL2, IL-1B IL-12B, and TNFa highly positively correlate with AD 809 
severe stages (Fig. 5E). IL-2 and TNFa are usually highly expressed in Covid-19 patients with 810 
severe pneumonia who are developing ARDS and need intensive care and oxygen therapy93.  811 
NFKB1 and RELA belong to the same Hippocampal gene module. 812 
 813 
Further, APOE genotype is associated with differences in Complement Cascade Component 814 
C1qrs expression in Covid-19 patients24 in the DLPFC, as it is negatively correlated with E2/E2 815 
but positively with E4/E4 (Fig. S33).  C1qrs activates microglia to the M1 state, where they 816 
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release mediators that increase inflammation and damage healthy cells101.  We found that 817 
C1qrs is negatively correlated with Control and Initial Stages, but positively correlated with 818 
Moderate and Severe Stages in the Hippocampus (Fig. S34-35).  Complement activation is 819 
involved in an inflammatory feedback loop with neutrophil activation (resulting in tissue injury)102, 820 
and may be a hallmark of severe Covid-19.  Many complement components are instead 821 
negatively correlated with Control and Initial Stages in the Hippocampus (except MBL and 822 
VWF), but positively correlated with AD progression.  IgG antibodies, whose responses to 823 
various epitopes are key to the immune response to Covid-19103, are the only component 824 
positively associated with Moderate AD but not for Severe AD. Fibrinogen and SELP changed 825 
from negative to positive associations from Moderate to Severe AD stages.  826 
 827 
Additionally, our GRNs help find potential roles of AD SNPs to NFKB for Covid-19.  In Fig. S27, 828 
we examine the impact of various AD SNPs on the expression of NF-kB TFs and NFKB 829 
regulation of key cytokines described in Fig. 5D. We found several SNPs disrupting regulation 830 
of RELA and NFKB1 in the Hippocampus (Fig. S36).  Moreover, there are 4 highly significant 831 
SNPs (p < 5e-15) impacting RELA’s ability to regulate ZNF226, a hub TF from the 832 
Hippocampus SNP TF-TF Subnetwork GRN (Fig. S27B); RELA also regulates ZNF226’s gene 833 
module.  99 extremely significant SNPs (p < 1e-9) impact regulation of RELB in DLPFC (Fig. 834 
S37). In Hippocampal GRN, SNP rs71350303 disrupts RELA regulation of TNFAIP6 (Fig. 835 
S38B) and in the LTL GRN SNP rs6425995 disrupts NFKB1 regulation of CSF3R (Fig. S38C). 836 
Besides the NFKB pathway, we also found several other shared pathways in AD and Covid-19 837 
from KEGG such as IKK, TNFR, PI3K, JNK, and IL6 (Fig. S39). We thus looked at the 838 
correlations between AD phenotypes and genes from those pathways in each brain region (Fig. 839 
S40). Finally, we identified highly correlated AD-COVID pathways and AD phenotypes, e.g., 840 
TNFR with severe stage and IKK with cognitive impairment in hippocampus, IKK with frequent 841 
plaques in LTL, JNK with Resilience in DLPFC). 842 
 843 
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 844 
Fig. 6 – Differential expression and prediction of Covid-19 severity using AD-Covid gene 845 
regulatory networks. Top volcano plots show differential expression analyses for Covid-19 846 
severity (i.e., Covid-19 ICU, Methods) and label the genes from the AD-Covid gene regulatory 847 
networks (GRNs) that relate to 22 AD-Covid genes: (A) Hippocampus, (B) Lateral Temporal 848 
Lobe (LTL), (C) Dorsolateral Prefrontal Cortex. Red: up-regulated. Green: down-regulated. 849 
Yellow: No significance. x-axis: log2(fold change). y-axis: -log10(Adjusted p-value). (D) 850 
Prediction accuracy of Covid-19 severity after selecting different numbers of genes from AD-851 
Covid GRNs and recently found Covid-19 genes (benchmark genes). The accuracy was 852 
calculated based on the support vector machine classification with 4-fold cross-validation. The 853 
dashed lines correspond to the minimal numbers of select genes with highest accuracy (i.e., 854 
optimal gene sets for predicting Covid-19 severity). (E) Receiver Operating Characteristic 855 
(ROC) curves and area under curve (AUC) values for classifying Covid-19 severity in (D). (F) 856 
Subnetwork of DLPFC GRN relating to the 15 DLPFC optimal genes (excluding JUND) for 857 
predicting Covid-19 severity (N=15) with AD-Covid shared genes. Blue: genes/TFs found in the 858 
DLPFC final model. White: AD-Covid shared genes. 859 

Machine learning prediction of Covid-19 severity from AD-Covid gene 860 
regulatory networks 861 

All gene lists and machine learning prediction results for this section are available in 862 
Supplementary file 9. In total, we found 22 genes from the pathways that are shared between 863 
Covid-19 and AD in the KEGG database. We also looked at our brain-region gene regulatory 864 
networks (GRNs) that relate to those AD-Covid genes, including TFs that regulate them as well 865 
as their target genes, i.e., AD-Covid GRNs. We found 1,305 genes from hippocampus GRN, 866 
670 genes from LTL GRN, and 895 genes from DLPFC GRN (2,536 unique genes in total, and 867 
38 genes shared by three regions). As shown in Fig. S41, those 38 shared genes (17 found in 868 
both Covid and AD KEGG Pathways) across AD-Covid GRNs also highly correlate with AD 869 
phenotypes such as clinical Braak stage. 870 
 871 
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We found that many genes from our AD-Covid GRNs are significantly differentially expressed in 872 
the Covid-19 severity condition. Moreover, the Covid-19 positive phenotype is positively 873 
correlated with many of the mechanisms in the AD KEGG pathway (Fig. S42). In particular, we 874 
normalized gene expression data (Fig. S43) of a recent Covid-19 cohort (N=50 ICU vs. N=50 875 
non-ICU)108 and identified differentially expressed genes (DEGs) for Covid-19 ICU (Methods). 876 
We found 4,692 DEGs (2,490 up-regulated, 2,202 down-regulated genes) in total. Out of those 877 
DEGs, 403 DEGs are from the AD-Covid GRN in hippocampus (232 up-regulated, 171 down-878 
regulated, Fig. 6A). Similarly, LTL’s AD-Covid GRN has 95 DEGs (51 up-regulated, 44 down-879 
regulated, Fig. 6B), and DLPFC’s has 223 DEGs (113 up-regulated including APP, 110 down-880 
regulated, Fig. 6C). These DEGs suggest that genes from our AD-Covid GRNs significantly 881 
associate with Covid-19 severity. Thus, beyond association, we further want to develop a model 882 
to predict Covid-19 severity from those genes. 883 
 884 
In particular, we first gathered 17 benchmark Covid-19 susceptibility genes from recent 885 
studies54–56.  Then, we used recursive feature elimination (RFE) to select an optimal number of 886 
genes from the list of 17 published Covid-19 genes for Covid-19 severity, i.e., 4-fold cross-887 
validated feature selection with highest classification accuracy based on linear support vector 888 
machine (Methods, Fig. 6D). This resulted in 15 genes being optimal for the published genes 889 
model.  Then, we performed RFE feature selection for each region’s AD-Covid GRN to select 890 
the top 15 genes; building linear kernel SVM predicted probability models with the same number 891 
of genes (15) from each of the 5 gene lists would enable us to directly compare the 892 
effectiveness of our AD-Covid GRNs with that of the published genes.  893 
 894 
Our prediction accuracy based on 15 genes for each AD-Covid GRN is also higher than the 895 
optimal benchmark of 15 Covid-19 genes (86% for Hippocampus, 89.99% for DLPFC, 90.99% 896 
for LTL, and 88.99% for combined regions, 80% for the benchmark).  As shown in Fig. 6E, our 897 
areas under the ROC curve (AUROC) values are also larger than the benchmark (0.912 for 898 
Hippocampus, 0.971 for DLPFC, 0.934 for LTL, 0.929 for combined regions, 0.866 for 899 
benchmark). Relative to the benchmark, the optimal model (in terms of highest accuracy and 900 
highest AUC) improved accuracy by 9.99% and boosted the AUC by 0.105.  Therefore, this 901 
suggests that the select genes from our AD-Covid GRNs have higher predictability than existing 902 
Covid-19 genes for predicting Covid-19 severity.  903 
 904 
We highlight the subnetwork of the DLPFC GRN for 14 out of the 15 optimal predictive genes 905 
(excluding JUND) that are directly regulating or regulated by at least 1 of the 22 shared AD-906 
Covid genes (Fig. 6F).  3 of 22 AD-Covid shared genes (NFKB1, RELA, and IL1B) were found 907 
in this network. Indeed, NFKB1 regulates 11 out of 15 DLPFC model genes (NCOR1, CCR5, 908 
and ERAP1) and RELA regulates 4 genes, further underscoring the importance of NF-kB TFs in 909 
Covid-19 outcomes.  Microglia TF SPI1 regulates IL1B along with 4 other DLPFC model genes, 910 
which also supports research into immune dysregulation in both Covid-19 and AD.   911 
 912 
We also evaluated and compared our predictive models with benchmark genes using Decision 913 
Curve Analysis (DCA). DCA enables evaluating the clinical usability of our Covid-19 severity 914 
prediction models based on their Net Benefits (Methods). We plotted the Decision Curves to 915 
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show how the Net Benefit of each model varies across probability thresholds (Fig. S44). And 916 
the threshold of each model that gives the highest Net Benefit corresponds to the optimal 917 
decision probability for sending Covid-19 patients to ICU or not, i.e., the “optimal” threshold (Fig. 918 
S45). In general, the models of genes from our AD-Covid GRNs have higher Net Benefits than 919 
the benchmark Covid-19 genes, especially around the optimal thresholds that achieve possible 920 
maximum Net Benefits. Note that since 50% of our Covid-19 positive patients are in the ICU, the 921 
maximum Net Benefit is 0.50. The increase in Net Benefit of our models (around 0.00121 to 922 
0.2443 at optimal thresholds with an average increase of 0.119 in Net Benefit) compared with 923 
the benchmark could be interpreted that using the genes from our AD-Covid GRNs on average 924 
increases the number of truly severe Covid-19 patients detected by about 119 per 1000 Covid-925 
19 positive patients, without changing the number of non-severe patients who are needlessly 926 
sent to the ICU (Fig. S46). Thus, those genes along with our predictive models provide potential 927 
novel strategies for helping clinical decisions on sending Covid-19 patients to ICU or not.    928 

Discussion 929 

In this paper, we performed an integrative analysis of multi-omics for predicting the underlying 930 
gene regulatory networks for disease phenotypes that link disease variants to TFs to regulatory 931 
elements to genes and modules. We applied our analysis to the multi-omics datasets of three 932 
AD-relevant brain regions DLPFC, Hippocampus and Lateral Temporal Lobe and predicted 933 
brain regional gene regulatory networks for various AD phenotypes such as progression The 934 
results revealed how potential causal AD risk variants lead to AD phenotypes via gene 935 
regulation. However, our analysis is open-source available and thus can serve as general-936 
purpose for understanding functional genomics and gene regulation for other diseases. 937 
 938 
Gene regulation typically fundamentally affects biological and disease functions at the cellular 939 
resolution. Recent sequencing data of single cells such as scRNA-seq and scATAC-seq, 940 
especially in AD and other brain diseases, enable studying the functional genomics and 941 
regulatory mechanisms at the cell type level104. For instance, many cell-type gene regulatory 942 
networks in the human brain, such as neuronal and glial types, have been predicted from single 943 
cell data. Shortly, we can perform integrative analysis of those cell-type networks to understand 944 
the regulatory mechanism from AD variants that cause AD for different cell types. Also, many 945 
other phenotypes are observed in AD. Increasing GWAS studies105 have identified additional 946 
variants associated with refined AD phenotypes such as cerebrospinal fluid and psychotic 947 
symptoms. We aim to predict the gene regulatory networks of those variants for additional AD 948 
phenotypes in future.  949 
 950 
Also, we found that some regulatory networks in AD also relate to the immunological functions 951 
and pathways for Covid-19.  Further, our machine learning and Decision Curve analyses show 952 
that the genes from those AD-Covid regulatory networks better predict Covid-19 severity (i.e., 953 
ICU) than the known Covid-19 genes. With a dramatic increase of discovered variants for 954 
Covid-19, our integrative analysis will allow us to predict the regulatory mechanisms of the 955 
Covid-19 variants in AD phenotypes. If an exaggerated immune response (found in Covid-19) 956 
can lead to heightened and more severe AD, then perhaps the immune response may indeed 957 
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be rogue in AD.  We can then use Covid-19 as a proxy and biomarker to better understand the 958 
role of a dysregulated immune system in AD onset and progression.  This will help advance our 959 
understanding of the interplay between Covid-19, neuroimmune and AD phenotypes.  960 
 961 
Furthermore, we integrated the data from different population studies via step by step. Many 962 
large scientific consortia have generated matched multi-omic data of individuals such as 963 
PsychENCODE35, AMP-AD106, TCGA107.  Moreover, machine learning has been widely used for 964 
predicting phenotypes from individual data. Thus, we can extend our analysis to input matched 965 
omics data of individuals (e.g., genotype, gene expression, epigenomics) at the population level 966 
to train machine learning models to predict personalized phenotypes. The resulting predictive 967 
models can be further used to predict personalized phenotypes for new individual data and 968 
prioritize phenotype-specific functional genomics and gene regulatory networks in human 969 
diseases. 970 
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