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Abstract 19 

Advanced treatments for depressive symptoms, such as a real-time functional MRI 20 

(fMRI) neurofeedback have been proven by several studies. In particular, regularization 21 

of functional connectivity (FC) between executive control network (ECN) and default 22 

mode network (DMN) during fMRI neurofeedback have been proposed to reduce 23 

depressive symptoms. However, it is difficult to install this system anywhere and 24 

repetitively provide the treatment in practice, because the cost is high and no practical 25 

signal processing techniques have existed so far to extract FC-related features from EEG, 26 

particularly when no physical forward models are available. In this regard, stacked 27 

pooling and linear components estimation (SPLICE; Hirayama et al., 2017), recently 28 

proposed as a multilayer extension of independent component analysis (ICA) and related 29 

independent subspace analysis (ISA; Hyvärinen & Hoyer, 2000), can be a promising 30 

alternative, although its application to the resting-state EEG have never been 31 

investigated so far. We expected that if the extracted EEG network features were 32 

correlated with fMRI network activity corresponding to DMN or ECN, it may help to 33 

modulate the target FC in the EEG-based neurofeedback training. 34 

Here, we describe a real-time EEG neurofeedback paradigm for improvement of 35 

depressive symptoms by using an EEG network features estimated by SPLICE. We 36 

hypothesized upregulation of the dorsolateral prefrontal cortex (DLPFC)/middle frontal 37 

cortex or downregulation of precuneus/posterior cingulate cortex (PCC) related to fMRI 38 

biomarker for depression (Ichikawa et al., Sci Rep, 2020) should specifically predict 39 

decreases in depressive symptoms during the neurofeedback training. We conducted a 40 

single-blind design for neurofeedback group (n=8; NF group) and sham group (n=9) 41 

groups for three days. To this end, we found large effect size in the rumination response 42 
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scale score (total, brooding and reflection) in the comparison between NF and sham 43 

groups. Additionally, brain signals of the tasked fMRI (a contrast of 2-back > 0-back) in 44 

the neurofeedback group were significantly decreased in the right cuneus and DLPFC 45 

compared to the control group. We demonstrated a feasibility of EEG neurofeedback 46 

treatment for depressive symptoms using EEG network features extracted by SPLICE in 47 

the subclinical trials. 48 

 49 

Keywords: neurofeedback, depression, EEG-fMRI, blind source separation, 50 

functional connectivity 51 
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1. Introduction 54 

Advanced treatments for depressive symptoms have been studied using brain or 55 

physiological measurement instead of traditional treatments of medicine. One of the 56 

noninvasive ways to accurately monitor brain activity that may represent depressive 57 

symptoms is functional MRI (fMRI) because of its high spatial resolution even around 58 

deep brain areas. Several groups have proposed real-time fMRI neurofeedback 59 

paradigms that can used to train the brain of people with depressive symptoms to 60 

function more like those of healthy individuals (Young et al., 2017; Yamada et al., 2017; 61 

Taylor et al., 2021). During the intervention of the real-time neurofeedback, participants 62 

can control their own brain activity to be closed to the healthy condition, and then reduce 63 

their depressive symptoms. 64 

 65 

The effectiveness of real-time fMRI neurofeedback for depressive symptoms has been 66 

proven by several studies. However, it is difficult to install this system anywhere and 67 

repetitively provide the treatment in practice because of the expensive costs. Instead of 68 

fMRI, therefore, alternative approaches to the real-time neurofeedback have been 69 

proposed using electroencephalography (EEG), such as those based on frontal alpha 70 

asymmetry (Wang et al., 2019), peak alpha frequency (Yu et al., 2020), and alpha-theta 71 

ratio (Cheon et al., 2016). The frontal alpha asymmetry EEG neurofeedback has been 72 

examined to modulate left-side alpha power associated with brain activity in the left 73 

amygdala. EEG has many practical benefits such as reasonable cost, high-temporal 74 

resolution, and less physical constraints while it has a detriment of low-spatial resolution. 75 

Several ‘proof of concept’ studies have already shown the potential effectiveness of real-76 

time EEG-fMRI neurofeedback paradigms for depression (Zotev et al., 2014; Zotev et al., 77 
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2016; Zotev et al., 2020) and improved the reliability of EEG signature for neurofeedback. 78 

In these types of neurofeedback training (NF training), participants are required to 79 

imagine their autographic memory of happy events and to increase brain activity in the 80 

left amygdala, and frontal alpha asymmetry at the same time. Thus, the purpose of these 81 

neurofeedback is to control the left amygdala and related brain regions similar to the 82 

healthy state. 83 

 84 

Recently, a new type of approach has also been developed for fMRI neurofeedback of 85 

depression based on regularization of functional connectivity (FC) between executive 86 

control network (ECN) and default mode network (DMN) (Yamada et al., 2017; Taylor et 87 

al., 2021; Tsuchiyagaito et al., 2020). In healthy individuals, the time courses of ECN and 88 

DMN are often observed to be anticorrelated, and it is associated with the distinction 89 

between internal (e.g., own thoughts) and external (e.g., perceptions of external 90 

environment) contents. In contrast to the health individuals, the case of depressive 91 

disorder tends to dysbalanced, and then it increases self-focus (rumination, guilt, fear) 92 

and decreases environment-focus (social withdrawal, psychomotor retardation) (Northoff, 93 

2016; Drysdale et al., 2017). This fact is clarified in the fMRI biomarker, which was 94 

identified melancholic depression with data-driven approaches (Ichikawa et al., 2020; 95 

Yamashita et al., 2020). In particular, FC between the dorsolateral prefrontal cortex 96 

(DLPFC)/middle frontal gyrus (mFG) in ECN and the precuneus/posterior cingulate 97 

cortex (PCC) in DMN was shown to be necessary. Given an evidence of fMRI biomarker, 98 

this type of technique, called FC neurofeedback (FCNef), with a precise localization of 99 

the target connection, has shown a great promise for treatments of depression. 100 

 101 
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However, in contrast to the real-time fMRI feedback or FCNef, an EEG neurofeedback 102 

using network features have been poorly investigated. This is mainly because no 103 

practical signal processing techniques have existed so far to extract FC-related features 104 

from EEG, particularly when no physical forward models are available. In fact, most 105 

studies have used sensor-level features such as time-instant powers of particular 106 

frequency bands or sought to extract source-level features by a blind-source separation 107 

(BSS) technique such as independent component analysis (ICA). Neither method is not 108 

designed to detect EEG features that reflect FC and modular organization related to the 109 

resting-state networks. To extract EEG network features related to the FC observed in 110 

fMRI, a new BSS-based technique is strongly required, which should be combined with 111 

a signal model that explicitly assumes a network structures at the source level. In this 112 

regard, stacked pooling and linear components estimation (SPLICE; Hirayama et al., 113 

2017), recently proposed as a multilayer extension of ICA and related independent 114 

subspace analysis (ISA; Hyvärinen & Hoyer, 2000), can be a promising alternative, 115 

although its application to the resting-state EEG have never been investigated so far. We 116 

expected that if the extracted EEG network features were correlated with fMRI network 117 

activity corresponding to DMN or ECN, it may help to modulate the target FC in the EEG-118 

based NF training.  119 

 120 

Here, we describe a real-time EEG neurofeedback paradigm for improvement of 121 

depressive symptoms by using an EEG network features estimated by SPLICE. We 122 

hypothesized upregulation of the DLPFC/mFC or downregulation of precuneus/PCC 123 

should specifically predict decreases in depressive symptoms during the NF training. To 124 

investigate this, we ran subclinical participants with depressive symptoms in an EEG-125 
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neurofeedback paradigm for three days targeting regions (DLPFC/mFC or 126 

precuneus/PCC) in a single-blind design while referring a FCNef paradigm (Yamada et 127 

al., 2017; Taylor et al., 2021). For training of the SPLICE model, we conducted two-days 128 

EEG-fMRI experiments for each participant to simultaneously acquire EEG-fMRI data at 129 

resting and during N-back task. After modeling of SPLICE from the resting-state data, 130 

we selected EEG network features which was correlated with fMRI signal in the DLPFC 131 

or precuneus/PCC for NF training. Scores on the Beck Depression Inventory-II (BDI-II; 132 

Beck et al., 1996) and the Rumination Response scale (RRS; Hasegawa, 2013) were 133 

measured before and after the NF training. To this end, we evaluated effect size of 134 

difference between pre- and post-training among neurofeedback and sham groups, then 135 

described a feasibility of EEG-neurofeedback using EEG network features relevant to 136 

fMRI network information. 137 

 138 

2 Materials and Methods 139 

2.1 SPLICE 140 

SPLICE (Hirayama et al., 2017) is a multilayer extension of ICA based on a probabilistic 141 

model that simplifies the generative process of EEG. Let x and s denote the vectors of 142 

EEG measurements and unobserved source signals, respectively, at a single time point. 143 

Then, we assume a linear model (first layer) similar to ICA, given by 144 

x = As,    (1) 145 

where mixing matrix A is square and invertible; the inverse W: = A-1 is called demixing 146 

matrix. Both x and s are zero-mean, without loss of generality, by subtracting the sample 147 

mean in advance from original data vectors. Note that the sources (i.e., entries in s) lacks 148 

explicit physical mapping to the cortex, but they can still be interpretable as reflecting 149 
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cortical activations based on their associated topographies (i.e., corresponding columns 150 

of A), which is exactly the same case as ICA. For mathematical convenience, the number 151 

of sources, d, is assumed to be the same as the dimensionality of x; in practice, we apply 152 

PCA beforehand to determine an appropriate number of sources as customary done in 153 

ICA. 154 

 155 

The additional layers, on top of the first linear layer, are introduced to model statistical 156 

dependency among the sources and parametric structures behind it. Specifically, 157 

SPLICE introduces 1) functional modularity of sources and 2) intrinsic correlations 158 

(coactivations) among modules, into the multilayer generative model. The both are 159 

reasonable assumptions in particular for the resting-state EEG data, because cortical 160 

activity at rest is known to exhibit functional organization with multiple modules (e.g., 161 

resting-state network), often mutually correlated or anticorrelated. 162 

 163 

Formally, we divide the d first-layer sources into m modules s[j] without overlapping, where 164 

s[j] denotes the vector consisting of dj sources belonging to module j (d = ∑ 𝑑𝑑𝑗𝑗𝑚𝑚
𝑗𝑗=1 ). s[j] 165 

represents a dj-dimensional subspace spanned by the corresponding columns in A. Then, 166 

we assume that modules s[j] have mutually correlated (squared) L2-norms ||s[j]||2, 167 

generated by an additional ICA-like linear model with pointwise nonlinearity, such that 168 

||s[j]||2 = Fj
-1 ([A’s’] j), j = 1, 2, …, m,    (2) 169 

Where an appropriate link function Fj is used for convention between nonnegative (norm) 170 

and real random variables (we set Fj = log in our analysis); A’ and s’ are invertible mixing 171 

matrix and source vector (and W’:= A’-1 is demixing matrix) of this layer, and [·] j denotes 172 

j-th entry of a vector. Given the norms, every s[j]/||s[j]|| is assumed to be uniformly 173 
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distributed on a unit hypersphere, independently of any other random variables, which 174 

makes the model non-informative except for the distribution of the norms. Note that the 175 

model can actually be recursively extended to have additional layers to further model the 176 

dependency in higher-layer sources (Hirayama et al., 2017). In the present study, 177 

however, we simply assume Eq.(2) to be the top layer. The entries in s’ are thus assumed 178 

to be independent of each other, given a typical prior in ICA (e.g., the one corresponding 179 

to the standard tanh nonlinearity). 180 

 181 

To recapitulate the model, we illustrate a conceptual diagram of SPLICE in Figure 1. The 182 

model consists of three layers, two linear layers and an intermediate L2-pooling layer 183 

calculating the norms. Here, we define x’: = A’s’. If the highest layer A’ is not diagonal, 184 

modules are mutually independent and the model in fact reduces to that of independent 185 

subspace analysis (Hyvärinen & Hoyer, 2000). If not diagonal, the modules are not 186 

independent and thus expected to be suitable to represent correlated or anticorrelated 187 

cortical modules. Note that modeling non-diagonal A’ is not only affect the higher layer 188 

but also influences the first layer through the joint learning of the two layers (see below), 189 

because it makes a different (possibly improved) prior assumption on the first-layer 190 

sources from that of ICA or ISA. 191 

 192 

A striking property of SPLICE is that both parameter estimation (learning) and posterior 193 

inference on latent variables can be performed in a principled manner, without resorting 194 

to any approximative techniques or heavy numerical computation. Learning is done 195 

based on conventional maximum likelihood (ML) estimation. The corresponding loss 196 

function, i.e., negative log-likelihood for a single datum L: = − ln p(x) + const., is analytically 197 
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given by 198 
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 (3) 199 

where H and G are functions derived from the prior distribution on s’ and link function Fj 201 

and the dimensionality of every module (subspace) dj is adaptively determined before 202 

the ML estimation using a clustering-like technique (see Hirayama et al., 2017 for details). 203 

 204 

Once demixing matrices W and W’ are learned, one can readily invert the generative 205 

process by computing s = Wx and s’ = W’x’, with the L2-pooling ||s[j]||2 (followed by Fj) 206 

between them. In practice, the pooled outputs (squared norm) may fluctuate too heavily 207 

due to the noisy nature of EEG. Thus, as a slight extension of the original SPLICE, we 208 

also implemented the L2-pooling across successive time points for smoothing, which 209 

was done in a principled manner by modifying the model and likelihood, so that the top 210 

linear layer determines the L2 norm of s[j] that now concatenates several instances of the 211 

dj sources across time points. Note that here, the pooling just means taking the sum of 212 

squares (of the filtered outputs). Thus, the squared module norm essentially gives the 213 

total power or energy of a source module’s activity. We therefore focused primarily on 214 

the estimated module norms as the main output of the analysis, rather than the top-layer 215 

sources s’ which the multilayer computation eventually produces, because we expected 216 

to associate EEG features with the activity of cortical modules. 217 

 218 

(Figure 1 is inserted around here) 219 
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2.2 Experiment procedures 220 

2.2.1 Participants 221 

The flow of this experiment was summarized in Figure 2. All participants were recruited 222 

by screening questionnaires and clinician assessment (n = 102: 49 females, 53 males; 223 

mean age = 29.88 ± 9.8 years old). To meet criteria for participation in the EEG-fMRI 224 

simultaneous recording experiment, participants must have (a) no inclination of suicidal 225 

thoughts, as measured by a question on the BDI, (b) no current or recent mental or 226 

psychiatric diseases, (c) understanding of the Japanese language. All received cash 227 

remuneration for their involvement after the experiment. Twenty eight participants without 228 

psychiatric disease in the past could proceed to the EEG-fMRI experiment for two days. 229 

We excluded participants who caused body movement in the MRI scanner. Finally, 230 

seventeen participants completed the NF training experiment for four days. All 231 

participants provided written informed consent prior to the experiment. This study was 232 

approved by the ethical committee of the Advanced Telecommunications Research 233 

Institute International (ATR) and followed the Declaration of Helsinki. 234 

 235 

(Figure 2 is inserted around here) 236 

 237 

 2.2.2 Psychological questionnaires 238 

In the Screening experiment, all participants completed self-report questionnaires that 239 

included demographic characteristics, the Beck Depression Inventory II (BDI-II), 240 

Rumination Response Scale (RRS), Obsessive-Compulsive Inventory (OCI), Autism-241 

Spectrum Quotient (AQ), State-Trait Anxiety Inventory (STAI2), Snaith-Hamilton 242 

Pleasure Scale (SHAPS), Schizotypal Personality Questionnaire (SPQ), Barratt 243 
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Impulsiveness Scale 11 (BIS-11), Zimbardo Time Perspective Inventory (ZTPI), and were 244 

rated on the 21-item Hamilton Depression Rating Scale (HAM-D), the Hamilton Anxiety 245 

Rating Scale (HAM-A), and Structured Clinical Interview for DSM-IV-TR Axis disorders 246 

(SCID). To evaluate the effectiveness of the NF training, participants completed BDI-II, 247 

RRS, OCI, AQ, STAI2, BIS-11, and ZTPI on Day 1 (Visit 4) and Day 4 (Visit 7) in the NF 248 

training experiment. 249 

 250 

2.2.3 N-back task 251 

Participants had performed N-back tasks in the screening (Visit 1) and the NF training 252 

experiment (Day 1, Day 4) outside the MRI scanner as behavioral experiments. The N-253 

back task was controlled by using Presentation ® software (Version 18.0, 254 

Neurobehavioral Systems, Inc., Berkeley, CA) and can be viewed at a display or a screen. 255 

At the beginning of each session, participants had started a N-back task by pressing the 256 

response button when they were ready. They had been instructed to simply focus on this 257 

and relax. In each session, subsequent to the rest period for 30 s, there were four blocks 258 

of the N-back task, with the task ‘rule’ changing from block-to-block (order randomized 259 

within and between sessions). At the beginning of each block, written instructions were 260 

first presented on display to inform participants of the current ‘rule’ and this was followed 261 

by 64 trials in which this ‘rule’ should be applied. On each trial, a fixation for (1300 ms) 262 

and then a number between 1-9, for 200 ms was presented centrally on display. In the 263 

‘0-back’ block, the rule was to press the response button on the current trial if the number 264 

that appeared on screen was ‘0’. In the ‘1-back’, ‘2-back’, ‘3-back’ blocks, the rule was 265 

to press the response button on the current trial if the number that appeared on display 266 

was the same as the number that had been presented on display one, two, or three trials 267 
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beforehand, respectively. The participants completed two sessions of this task about 13 268 

min. 269 

 270 

In the EEG-fMRI experiment, they also conducted the N-back task with EEG recording 271 

only and EEG-fMRI simultaneous recording. At the beginning of each session, they first 272 

had a rest-period, where they saw a black fixation cross which was presented on the 273 

screen for 30 s. In each session, subsequent to the rest period, there were six blocks of 274 

the N-back task (0-, 1-, and 2-back) with the task ‘rule’ changing from block-to-block 275 

(order randomized within and between sessions). At the beginning of each block, written 276 

instructions were first presented on display to inform participants of the current ‘rule’ and 277 

this was followed by 20 trials in which this ‘rule’ should be applied as well as the task for 278 

the behavioral experiment. A “rest” period (identical to the one at the beginning of the 279 

session) was inserted halfway through (between block 3 and block 4 of) each session. 280 

Participants’ task was to follow the current ‘rule’ to make as many correct responses as 281 

possible. 282 

 283 

2.3 Data acquisitions 284 

For a general schematic of the experimental procedure, see Figure 2. 285 

MRI data were required with a 3T Siemens scanner, MAGNETOM Verio (Siemens, 286 

Erlangen, Germany) with a Siemens 12-channel head coil. High-resolution, T1-weighted 287 

structural images (TR = 2250 ms, TE = 3.06 ms, flip angle = 9 deg, inversion time = 900 288 

ms, matrix = 256 x 256, 208 sagittal slices, 1 mm isotropic) were acquired for 289 

normalization to a standard brain for echo planar image (EPI) registration purpose. 290 

Images of BOLD signal such as fMRI data, were acquired with an EPI sequence (TR = 291 
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2450 ms, TE = 30 ms, flip angle = 80 deg, matrix = 64 × 64, field of view = 192 mm, slice 292 

thickness = 3.2 mm, 35 axial slices, scan sequence: ascending). The durations of a 293 

single session were 6 min 7 s (150 volumes) for the resting state, 5 min 45 s (141 294 

volumes) for the N-back task. 295 

 296 

Scalp EEG signals were recorded with an MR-compatible amplifier (BrainAMP MR plus, 297 

Brain Products GmbH, Germany) and EEG electrode cap (BrainCap MR, Brain Products 298 

GmbH, Germany) providing 63 EEG channels and 1 electrocardiogram (ECG) channel. 299 

The EEG electrodes were placed according to the modified International 10-10 system. 300 

The ground electrode and on-line reference electrode were placed on AFz and at FCz, 301 

respectively. The impedance of all electrodes was kept lower than 10 kΩ throughout the 302 

experiment. The ECG electrode was placed on the back of participants to obtain the 303 

electrocardiographic data and subsequently correct ballistocardiographic artifacts. Raw 304 

recording data was sampled at 5 kHz with a bandpass filter between 0.1 and 250 Hz 305 

using the Brain Vision Recorder (Brain Products GmbH, Germany). The amplifier system 306 

was set beside the subject’s head within the scanner during fMRI scanning. To achieve 307 

phase synchronization clocks for digital sampling between the MRI data and the EEG 308 

system, the EEG system clock was synchronized with a SyncBox device (Brain Products 309 

GmbH, Germany) and the MRI scanner’s 10 MHz master synthesizer. The scanner also 310 

delivered each TR trigger signal that marked the onset time of every fMRI volume 311 

acquisition. These markers were used for fMRI scanning artifact correction of the EEG 312 

data. 313 

 314 

In the EEG-fMRI experiment, EEG signals were taken in the soundproof shield room, 315 
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and then EEG signals and MRI data were simultaneously taken in the MRI scanner for 316 

two days. First, each participant completed EEG measurement of the resting-state with 317 

two sessions and the N-back task (0-, 1-, 2-back) with two sessions in the soundproof 318 

shield room. A single session of the resting-state EEG took five minutes, and a single 319 

session of the N-back task took about six minutes. Second, participants moved to the 320 

MRI scanner and completed the resting-state (two sessions), the N-back task (two 321 

sessions), T1-weighted structural image scan, and the resting state (two sessions). 322 

Finally, four sessions of EEG data for the resting-state and the N-back task, eight 323 

sessions of EEG-fMRI data for the resting-state, four sessions of the EEG-fMRI data for 324 

the N-back task were taken to estimate the SPLICE filter for the neurofeedback.  325 

 326 

In the NF training experiment, EEG signals were taken in the soundproof shield room 327 

from Day 1 to Day 3, and EEG-fMRI data were taken in the MRI scanner at Day 4 as 328 

well as the EEG-fMRI simultaneous recording experiment. In the NF training (Day 1, 2 329 

and 3), the resting-state EEG took five minutes, then each participant conducted the NF 330 

training for 9 min in a single session and completed five sessions. 331 

 332 

In the EEG-fMRI data acquisition, the visual stimuli were projected on an opaque screen 333 

set inside the scanner via a (DLA-X7-B, JVC; frame rate = 60 Hz) projector and a mirror 334 

system. Participants responded to the stimuli using MRI compatible response pads 335 

(HHSC-2 × 2, Current Designs, Inc., PA, USA). 336 

 337 

(Table1 is inserted around here) 338 

 339 
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2.4 Data analysis 340 

2.4.1 Preprocess of fMRI 341 

The flow of preprocessing of EEG and fMRI data and its integration was illustrated in 342 

Figure 3. 343 

 344 

We followed a preprocessing protocol from a previous study (Ogawa et al., 2018). The 345 

data were processed using SPM8 (Wellcome Trust Centre for Neuroimaging). The first 346 

four volumes were discarded to allow for T1 equilibration. The remaining data were 347 

corrected for slice timing and realigned to the mean image of that sequence to 348 

compensate for head motion. Next, the structural image was coregistered to the mean 349 

functional image and segmented into three tissue classes in the MNI space. Using the 350 

associated parameters, the functional images were normalized and resampled in a 2 × 351 

2 × 2 mm grid. Finally, they were spatially smoothed using an isotropic Gaussian kernel 352 

of 8 mm full-width at half maximum. 353 

 354 

For each participant, we extracted fMRI time courses within each ROI. To remove several 355 

sources of spurious variance along with their temporal derivatives, linear regression was 356 

performed, including six motion parameters in addition to averaged signals over gray 357 

matter, white matter, and cerebrospinal fluid. Furthermore, to reduce spurious changes 358 

caused by head motion, the data were checked by a method that reduces motion-related 359 

artifacts. A high-pass filter (< 0.008Hz) was applied to these sets of time courses prior to 360 

the following regression procedure. 361 

 362 

(Figure 3 is inserted around here) 363 
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 364 

2.4.2 EEG-fMRI integration analysis for selection of a module for NF training 365 

To extract EEG network features, SPLICE model was optimized from the resting-state 366 

EEG data of simultaneously recorded with fMRI with leave-one-session out cross 367 

validation for each individual. Prior to training of the SPLICE model, the raw EEG data 368 

were cleaned as follows: remove the fMRI scanning and ballistocardiographic artifacts 369 

using Brain Analyzer (Brain Products); apply a bandpass filter between 8 and 12 Hz such 370 

as alpha band by EEGLAB (Delorme and Makeig, 2004). We decided to reduce 63, 20, 371 

and 20 dimensions for the first layer (sources), second layer (modules), and third layer 372 

(top-level ICs), respectively. We estimated EEG network features during N-back task 373 

through the SPLICE model, and then downsampled at 5 Hz. The EEG network features 374 

were convoluted with the hemodynamic response function (HRF) and decimated to 375 

match the time instant of fMRI signal. To evaluate correlation analysis with fMRI signal 376 

in the general linear model (GLM, SPM12), the design matrix consisted of EEG network 377 

features, such as the output of twenty modules to identify whether a statistical cluster 378 

was existed in the DLPFC/mFC or PCC/Precuneus thresholding p-value < 0.001, 379 

uncorrected and cluster level p < 0.05 corrected by Family-Wised Error (FWE). Five 380 

participants whom a cluster was found in the DLPFC/mFC performed to upregulate the 381 

EEG network features, and three participants whom a cluster was identified in the 382 

PCC/precuneus performed to downregulate the EEG network feature in the NF training. 383 

Of course, the participants did not know upregulation/downregulation in the NF training. 384 

 385 

2.5 Neurofeedback protocol 386 

A real-time neurofeedback system consisted of a software, OpenViBE (v1.0.0, Renard 387 
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et al., 2010) for the real-time EEG signal acquisition, feedback module programed by 388 

MATLAB, and Brain Amp MR (Brain Products) with 63-ch EEG electrode cap. EEG raw 389 

signals were acquired at 500 Hz through Brain Amp MR and OpenViBE Acquisition 390 

Server. In the interactive GUI, OpenViBE Designer, the EEG data was applied a 391 

bandpass filter between 8 and 12 Hz and electrooculography artifact removal (e.g., 392 

blinking, eye movement) using online recursive ICA (ORICA; Hsu et al., 2016). Afterward, 393 

the signals were put into the MATLAB wrapper that predicted EEG network features by 394 

the optimized SPLICE model. According to the selected module of SPLICE in advance, 395 

an L2-norm of the module was estimated as a targeting EEG network feature, and then 396 

displayed a feedback score depending on a task design. In this process, an output of the 397 

selected modules was downsampled at 5 Hz. 398 

 399 

In the NF training, all participants completed a 5-min resting state EEG recording and 400 

five neurofeedback sessions. We collected twenty trials in a single session. A single trial 401 

consisted of ‘rest’ for 6 s, ‘induction’ for 10 s, and ‘feedback’ for 4 s. Feedback was 402 

calculated as a score (-1 to 1) which was presented as a circle on monitor (Figure 4). For 403 

the NF group, the score was a difference of the mean power of between ‘induction’ and 404 

‘rest’ period in logarithm scale into -1 to 1 in eleven steps (resolution = 0.2; if the score 405 

was less than -1 or more than 1, a circle size was minimum or maximum). On the other 406 

hand, for the sham group, the score was randomly generated between -1 to 1. On each 407 

trial, during the ‘induction’ period, participants had been instructed to try their best to “do 408 

something with their brain” to get the best feedback possible. During the instructions, a 409 

list of example strategies had been provided (e.g., mental calculation, recalling words), 410 

so that participants understood what was meant by “do something with your brain”. It is 411 
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possible that this may have influenced what the participants did. Nonetheless, 412 

participants were not told to use any explicit strategies on any given trial or session, 413 

meaning that they had to learn how to get favorable feedback via trial and error during 414 

the task. None of these related to depression or the N-back task. 415 

 416 

To randomly divide participants into two training groups (NF and sham), we confirmed 417 

no significant differences of depressive symptoms with two-sample t-test (BDI-II: p = 418 

0.257; RRS: p = 0.317), but also other scores (OCI: p = 0.264; AQ: p = 0.815; STAI2(trait): 419 

p = 0.512) as control shown in Table 2.  420 

 421 

(Figure 4 and Table 2 are inserted around here) 422 

 423 

3. Results 424 

3.1 The effect of NF training on scores of psychological questionnaires 425 

In comparison between the NF group and the sham group, we calculated the effect sizes 426 

(Cohen’s d) from the differences of scores between post- and pre-NF for BDI-II and RRS. 427 

In Table 3, we summarized the average (and standard deviation) scores on the 428 

questionnaires across two groups. About the scores associated with depressive 429 

symptoms, we found large effect sizes in RRS (total: -0.722, brooding: -0.626, reflection: 430 

-1.050), but did not find large effect sizes in the BDI-II (total: 0.184). In other scores not 431 

directly related with depressive symptoms, we also found large effect sizes in AQ (total, 432 

attention switching), OCI (total, obsessing) in Supplemental Table1. As another effect, 433 

we found an increasing of STAI2 (trait) in the NF group compared to the sham group, but 434 

not in the STAI2 (state). Our results suggest that our NF training may affect to reduce 435 
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rumination in particular, subscales such as “brooding” and “reflection”.  436 

 437 

(Table3 is inserted around here) 438 

 439 

3.2 The effect of the NF training on the fMRI signal 440 

We evaluated effects on neural representation due to the NF training in a comparison of 441 

fMRI data during N-back task recorded on Visit 2 & 3 and Visit 7 (Day4). In fact, we did 442 

not collect the EEG-fMRI data on Visit 4 (Day1), because of practical reasons (scheduling 443 

of experiment and less burden on participants), therefore, we decided to compare the 444 

fMRI data on Visit 2 & 3 as pre-NF training and Visit 7 as post-NF training in this analysis. 445 

In order to statistically evaluate the interactions of groups (NF, sham) and time (Visit 2&3, 446 

Visit 7), we applied a full factorial analysis for fMRI data during N-back task using SPM 447 

12. Two clusters with a contrast of 2-back > 0-back were identified at the right angular 448 

gyrus and superior frontal gyrus 2 (labelled by AAL toolbox; thresholding by p-value < 449 

0.001, uncorrected and cluster level p < 0.05 corrected by Family-Wised Error (FWE, 450 

cluster size > 244 voxels; Figure 5 and Table 4). About behavioral performance of N-451 

back task during the EEG-fMRI simultaneous recording, we did not find significant effects 452 

observed in d’ or hit rates due to the NF training because of ceiling effect (Table 5). It is 453 

suggested that the neural basis of high cognitive load (2-back) could be processed with 454 

less effort in these regions due to the NF training. 455 

 456 

(Table 4, Table 5, and Figure 5 are inserted around here) 457 

 458 
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3.3 The effect of the NF training on EEG parameters  459 

Participants in the NF group were given feedback scores calculated by online EEG NF 460 

system on each trial end, therefore, we illustrated changes of the feedback scores across 461 

three days (Day1 to Day3, Figure 6). Four subjects showed an increased mean of the 462 

feedback scores at Day3 higher than the one at Day1, but other subject did not show 463 

training effect in the feedback score. From this result, we did not find an obvious training 464 

effect represented in the feedback score. 465 

 466 

(Figure 6 is inserted around here) 467 

 468 

4. Discussion 469 

In this study, we investigated the feasibility of an advanced EEG NF training targeting 470 

depressive symptoms, in particular, rumination related brain regions in subclinical 471 

participants. Before the NF training, EEG network features estimated by SPLICE were 472 

evaluated with fMRI data correlated with upregulation in the DLPFC/mFG or 473 

downregulation in the PCC/precuneus according to the previous biomarker studies 474 

(Ichikawa et al., 2020; Yamashita et al., 2020). To this end, we found large effect sizes in 475 

RRS (total, brooding and reflection) in the comparison between NF and sham groups. 476 

Here we start to discuss effect of our EEG NF protocol with SPLICE, its effect to neural 477 

basis associated with cognitive function, and methodological limitations of this study. 478 

 479 

4.1 Improvement of depressive symptoms due to EEG NF training  480 

Our hypothesis is that functional regularization in DMN or ECN may contribute the 481 

improvement of depressive symptoms, in particular, represented in BDI and RRS, we 482 
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then found large effect size on RRS (total, brooding and reflection) compared the NF 483 

group with the sham group, but not on BDI. The FCNef protocol of Taylor et al. (2021) for 484 

four days’ training with fMRI showed significant reduction of BDI and brooding in RRS. 485 

In their protocol, targeting FC between the left DLPFC/mFG and the left PCC/precuneus 486 

was precisely localized by fMRI during N-back task in the first day of the training. 487 

Feedback scores were directly calculated from the targeting FC in real time under the 488 

training, therefore, it may help for participants to control the feedback scores. 489 

Tsuchiyagaito et al. (2021) also investigated the feasibility of FCNef targeting on FC 490 

between the left precuneus and right temporoparietal junction, and found large effect 491 

size in difference between the NF and sham groups at the post-NF training on state-492 

rumination assessed by VAS, but not in RRS. Our result was consisted with the FCNef 493 

study of Taylor et al. (2021) that showed improvement of depressive symptoms 494 

associated with rumination, in particular, brooding. Brooding factor is specifically thought 495 

to be associated with depression and mistake concern (Treynor et al., 2003; Hasegawa 496 

2013), which is considered a specific trait of melancholic depression. The EEG network 497 

feature estimated from SPLICE was not directly calculated from the target FC like FCNef 498 

(Yamada et al., 2017; Taylor et al., 2021). However, we confirmed the statistical 499 

equivalence between EEG network features and fMRI data in the selection process of 500 

SPLICE module. It may approximately predict the network activity associated with DMN 501 

or ECN from EEG data and help to normalize the targeting brain region. 502 

 503 

Advantages of our NF protocol are fMRI-informed feature selection and not needed fMRI 504 

scanning in the NF training. One of the advanced approaches are simultaneous real-505 

time fMRI and EEG NF (Zotev et al., 2020; Cury et al., 2020). A NF protocol of Zotev et 506 
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al. (2020) simultaneously displayed bars of fMRI signals in the left amygdala and frontal 507 

EEG asymmetry in the alpha band and required to upregulate these bars involved with 508 

positive autographical memory. They conducted their NF protocols for major depressive 509 

disorder (MDD) patients and demonstrated through proof-of-concept to reduce 510 

depressive symptoms, the profile of mood state (POMS) and STAI. This method can 511 

directly modulate the target regions precisely, however, the costs of these treatments are 512 

very expensive, and people who has claustrophobia cannot be applied. Instead of the 513 

simultaneous real-time fMRI and EEG NF, our approach of EEG NF training using 514 

SPLICE that extract EEG network features using SPLICE showed the feasibility of an 515 

advanced treatment for depressive symptoms with low cost, and applicable in the 516 

realistic environment (not required MRI equipment). 517 

 518 

4.2 Training effect represented in fMRI activation during N-back task 519 

In a comparison between pre- and post-NF, we found an interaction of brain activity with 520 

group (NF, sham) and time (pre, post) in the right angular gyrus and superior frontal gyrus 521 

with a contrast of 2-back > 0-back. These brain regions were part of ECN and activated 522 

greater in MDD patients than in healthy individuals (Fitzgerald et al., 2008). Though the 523 

NF training, participants in the NF group regularized their own brain activity in the close-524 

loop process, therefore, the calculation cost in the right frontal and parietal regions may 525 

be decreased even though the same cognitive load. In contrast, participants in the sham 526 

group could not succeed to make efforts to get higher scores in the NF training, and may 527 

be required to do something for increasing size of the green disc in the induction period. 528 

 529 

About behavioral performance of N-back task (0, 1, 2-back) on Day 1 and Day 4, we 530 
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expected that the NF group should be improved due to the NF training. In the case of 0, 531 

1, 2-back condition, however, we did no find clear differences because of the ceil effect. 532 

One of the reasons is that we did not record EEG-fMRI of 3-back task in our protocol, 533 

and we could not accurately evaluate their performance of working memory with higher 534 

load. For healthy participants, we designed short duration numeral presentation in our 535 

N-back task paradigm such as 200 ms, but this was too easy in the case of 1 and 2-back 536 

condition to see effects of the NF training. For future studies, we need to improve our N-537 

back task protocol to correctly evaluate the work memory performance. 538 

 539 

4.3 Methodological limitation 540 

In this study, subclinical healthy participants completed the NF training, therefore, the 541 

scores of depressive symptoms were lower than previous patient studies (Wang et al., 542 

2019; Young et al., 2017; Zotev et al., 2020). Some participants were low scores from 543 

the beginning of the NF (Day 1) and did not show enough improvement due to the NF 544 

training because of the floor effect. Taylor et al. (2021) and Tsuchiyagaito et al. (2021) 545 

have conducted the NF training with healthy participants and is comparable to our study. 546 

One of difficulty is recruiting appropriate participants for this experiment, in fact, we 547 

recruited about a hundred participants as screening for subclinical participants with 548 

depressive symptoms. To this end, we completed the NF training for seventeen 549 

participants, however, it was not enough number of participants to show stable statistics 550 

like Wang et al. (2019). To improve the sensitivity of pre-screening, we should conduct 551 

questionnaires not only BDI, but also Self-rating Depression Scale (SDS; Zung, 1965). 552 

For depressive symptoms, the EEG NF protocol of Wang et al. (2019) have 553 

demonstrated a proof of concept for patients, with comorbid MDD and anxiety symptoms, 554 
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comparing three groups, frontal alpha asymmetry (ALAY group), high-beta 555 

downregulation training (Beta group), and control. Eighty-seven patients completed 10 556 

sessions NF training, twice a week, for five weeks. To this end, ALAY and Beta group 557 

showed a reduction of BDI-II about 10 points, and a reduction of Beck Anxiety Inventory 558 

(BAI) score about eight points. Both of psychological questionnaires showed significant 559 

interaction comparing to the control group. This intensive and long-term NF training may 560 

be enough to induce large effects on depressive symptoms. In our protocol, NF training 561 

was set for three days, and healthy individuals were recruited. To consider a practical 562 

application, there is a problem of scheduling and long-term treatment to achieve this NF 563 

training. For example, a case of Taylor et al. (2021) is four-days training, Tsuchiyagaito 564 

et al. (2021) and Zotev et al. (2020) are just one-day training. In making a NF protocol, 565 

balance of training intensity and efficacy is a crucial issue, but critical point in the realistic 566 

treatment, therefore, we have to carefully design the NF experiment. 567 

 568 

To extract EEG network features, we proposed SPLICE that extend ISA assumed 569 

hierarchical network structure in the EEG data. In the optimization process, SPLICE 570 

automatically pools several components which are highly correlated, and estimates time 571 

course of network feature including several components. For integration analysis of 572 

EEG-fMRI data, for instance, HRF-convoluted frequency powers were calculated to 573 

match time instants between EEG and fMRI data, then were applied GLM to identified 574 

brain regions or networks (Mantini et al., 2007). Another approach is combined with EEG-575 

microstate analysis which divides four to six states based on the clustering algorithm, 576 

then identifies brain regions using correlation analysis (Brechet et al., 2019; Al Zoubi et 577 

al., 2020). These methods may achieve dimension reductions and simply describe the 578 
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relationship between fMRI and EEG data. However, each extracted component was not 579 

considered a network structure which already known. To quantify the accuracy of 580 

SPLICE model, we have to evaluate several conditions of EEG-fMRI data for future 581 

studies. 582 

 583 

In summary, normalization of the targeted brain regions in the DLPFC/mFC and 584 

PCC/precuneus in the three days NF training have demonstrated reduction of depressive 585 

symptoms such as rumination in a single-blind test. EEG network features extracted by 586 

SPLICE demonstrated a feasibility of EEG NF treatment for depressive symptoms for 587 

sub-clinical healthy individuals. Our results have showed a possibility of transferable NF 588 

training from fMRI to EEG with sufficient accuracy. 589 

 590 

 591 
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Advanced treatments for depressive symptoms, such as a real-time fMRI neurofeedback 723 

have been proven by several studies. Regularization of functional connectivity (FC) 724 

between executive control network (ECN) and default mode network (DMN) during fMRI 725 

neurofeedback have been proposed to reduce depressive symptoms. However, it is 726 

difficult to install this system in practice because the cost is high and no practical signal 727 

processing techniques have existed to extract FC-related features from EEG. In this 728 

regard, stacked pooling and linear components estimation (SPLICE), recently proposed 729 

as a multilayer extension of independent component analysis and related independent 730 
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subspace analysis, can be a promising alternative, although its application to the resting-731 

state EEG have never been investigated. This method may help to modulate the target 732 

FC in the EEG-based neurofeedback training. Here, we describe an EEG neurofeedback 733 

paradigm for depressive symptoms using an EEG network features estimated by 734 

SPLICE. We hypothesized upregulation of ECN or downregulation of DMN should 735 

specifically predict decreases in depressive symptoms. Finally, we found large effect size 736 

in the rumination response scale in the comparison between neurofeedback and sham 737 

groups. We demonstrated a feasibility of EEG neurofeedback treatment for depressive 738 

symptoms using EEG network features in the subclinical trials. 739 
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Figure legends 741 

Figure 1.  742 

 743 

Figure1. Structure of SPLICE. 744 

s: unobserved source signal; A: mixing matrix; W: demixing matrix of A; x: EEG 745 

measurements; A’: invertible mixing matrix; s’: source vector; Fj: link function; W’: 746 

demixing matrix of A’. 747 
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Figure 2.  749 

 750 

Figure2. A flow of the experiment 751 

BDI-II: Beck Depression Inventory II; RRS: Rumination Response Scale; OCI: 752 

Obsessive-Compulsive Inventory; AQ: Autism-Spectrum Quotient; STAI2: State-Trait 753 

Anxiety Inventory, SHAPS: Snaith-Hamilton Pleasure Scale; SPQ: Schizotypal 754 

Personality Questionnaire; BIS-11: Barratt Impulsiveness Scale 11; ZTPI: Zimbardo Time 755 

Perspective Inventory; HAM-D: 21-item Hamilton Depression Rating Scale ; HAM-A: 756 

Hamilton Anxiety Rating Scale; SCID: Structured Clinical Interview for DSM-IV-TR Axis 757 

disorders (SCID); NF: Neurofeedback. 758 
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Figure 3.  760 

 761 

Figure3. A flow of preprocess of EEG-fMRI data and its integration analysis in this 762 

study. 763 

SPLICE: stacked pooling and linear components estimation; HRF: hemodynamic 764 

response function; MNI, Montreal Neurological Institute; FWHM, full width at half 765 

maximum; GLM, General Linear Model; BOLD, blood-oxygen-level dependent; CSF, 766 

cerebrospinal fluid; FWE, family-wise error. 767 
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Figure 4.  769 

 770 

Figure4. A protocol of EEG NF training in a single trial. 771 
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Figure 5.  773 

 774 

 775 

Figure 5. Identification of clusters illustrated the interaction of groups and times. 776 

Clusters showed significant interaction of group (NF, sham) and time (pre: Visit 2&3, post: 777 

Visit 7 (Day4)). A contrast was 2-back > 0-back, and labelled by AAL toolbox; 778 

thresholding by p-value < 0.001, uncorrected and cluster level p < 0.05 corrected by 779 

Family-Wised Error (FWE, cluster size > 244 voxels). 780 

 781 

Figure 6.  782 

 783 

Figure 6. Changes of feedback scores across three days NF training. 784 

Red dotted line showed mean of feedback scores for each participant.  785 
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Tables 787 

Table 1. Experimental Outline 788 

 Screening EEG-fMRI NF training 

 Visit 1 Visit 

2 

Visit 

3 

Visit 4 

(Day 1) 

Visit 5 

(Day 2) 

Visit 6 

(Day 3) 

Visit 7 

(Day 4) 

Questionnaires BDI-II, RRS, 

OCI, AQ, 

STAI2, 

SHAPS, 

SPQ, 

BIS_11, 

ZTPI 

− − 

BDI-II, 

RRS, 

OCI, 

AQ, 

STAI2, 

BIS-11, 

ZTPI 

− − 

BDI-II, 

RRS, OCI, 

AQ, 

STAI2, 

BIS-11, 

ZTPI 

Structured 

interview 

HAM-A, 

HAM-D, 

SCID 

− − − − − − 

N-back task 0, 1, 2, 3 
− − 

0, 1, 2, 

3 
− − 

0, 1, 2, 3 

EEG data 

− 

-5-min 

resting 

state×4 

-N-back 

task × 4  

(0, 1, 2) 

-5-min 

resting-

state 

-NF 

training

×5 

-5-min 

resting-

state 

-NF 

training×

5 

-5-min 

resting-

state 

-NF 

training

×5 

− 
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EEG-fMRI data 

− 

-5-min 

resting 

state×8 

-N-back 

task×4  

(0, 1, 2) 

-T1-

weighted 

image 

− − − 

5-min 

resting 

state×4 

-N-back 

task×2  

(0, 1, 2) 

-T1-

weighted 

image 

NOTE: BDI-II: Beck Depression Inventory II; RRS: Rumination Response Scale; OCI: 789 

Obsessive-Compulsive Inventory; AQ: Autism-Spectrum Quotient; STAI2: State-Trait 790 

Anxiety Inventory, SHAPS: Snaith-Hamilton Pleasure Scale; SPQ: Schizotypal 791 

Personality Questionnaire; BIS-11: Barratt Impulsiveness Scale 11; ZTPI: Zimbardo Time 792 

Perspective Inventory; HAM-D: 21-item Hamilton Depression Rating Scale ; HAM-A: 793 

Hamilton Anxiety Rating Scale; SCID: Structured Clinical Interview for DSM-IV-TR Axis 794 

disorders (SCID); NF: neurofeedback. 795 
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Table 2. The demographics of participants in the NF training 797 

NOTE: NF: neurofeedback; BDI-II:Beck Depression Inventory II; RRS: Rumination 798 

Response Scale 799 

Variables 
 

NF group 

(n = 9) 

Sham group 

(n = 9) 

p-value 

of t-test 

Age (years) 
 

28.62 ± 10.84 25.97 ± 7.22  0.606 

Gender Female 2 2 
 

 
Male 7 7 

 

BDI-II 
 

7.89 ± 3.26 10.44 ± 6.50 0.257 

RRS 
 

40.67 ± 9.18 35.44 ± 12.91 0.317 

 800 

Table 3. Comparison of statistical effect size associated with depressive 801 

symptom scores between NF and sham group 802 

Variables NF group (n = 8) Sham group (n = 9) Cohen’s d 

 
Pre Post Pre Post 

 

BDI-II (total) 5.25 

(5.52) 

3.75 

(4.43) 

7.22 

(7.72) 

5.33 

(6.34) 

0.184 

-Cognitive 

depression 

2.25 

(3.37) 

1.75 

(2.76) 

2.56 

(3.47) 

2.44 

(3.05) 

-0.390 
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-Somatic 

depression 

3.00 

(3.46) 

2.00 

(2.61) 

4.67 

(4.66) 

2.89 

(3.76) 

0.479 

RRS (total) 31.00 

(5.68) 

28.25 

(4.40) 

31.33 

(8.00) 

31.67 

(8.70) 

-0.722 

-Brooding 7.50 

(5.68) 

6.63 

(1.92) 

7.78 

(2.11) 

7.89 

(2.93) 

-0.626 

-Depression 16.25 

(2.96) 

15.88 

(2.95) 

17.67 

(5.48) 

17.56 

(5.00) 

-0.101 

-Reflection 7.25 

(1.98) 

5.75 

(0.89) 

5.89 

(1.45) 

6.22 

(1.64) 

-1.050 

 803 

  804 
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Table 4. Comparisons of Pre (Visit 2 & 3)/Post (Day 4) fMRI data during N-805 

back task. 806 

Brain region Peak 

coordinate 

(MNI) 

Cluster size Details 

 X Y Z Voxels Peak of T 

score 

 

0-back task  

R Angular 

gyrus 

38 -66 44 244 5.38 R Angular  

R Inferior parietal gyrus 

R Supramarginal gyrus 

R Superior 

frontal gyrus, 

2 

34 44 2 330 4.17 R Superior frontal gyrus, 

2 

R Middle frontal gyrus, 2 

 807 

  808 
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Table 5. Comparison of N-back task performance during EEG-fMRI 809 

simultaneous recording 810 

  NF group Sham group Cohen’s d 

Measure Level Visit 2 & 3 

(pre) 

Visit 7 

(post) 

Visit 2 & 3 

(pre) 

Visit 7 

(post) 

 

D’ 
0-back 4.12 ± 

0.1 

4.32 ± 0.1 4.32 ± 

0.1 

4.28 ± 0.1 0.48 

 
1-back 3.85 ± 

0.6 

4.11 ± 0.4 4.20 ± 

0.4 

4.28 ± 0.2 0.33 

 
2-back 3.18 ± 

0.9 

3.67 ± 0.7 3.52 ± 

0.7 

3.81 ± 0.6 0.30 

p (hit) 
0-back 0.93 ± 

0.2 

0.99 ± 0.0 0.99 ± 

0.0 

0.99 ± 0.0 0.50 

 
1-back 0.90 ± 

0.2 

0.96 ± 0.1 0.98 ± 

0.1 

0.99 ± 0.0 0.36 

 
2-back 0.81 ± 

0.2 

0.91 ± 0.1 0.88 ± 

0.1 

0.94 ± 0.1 0.22 

 811 

 812 

 813 
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