1 The molecular basis of extensively drug-resistant *Salmonella* Typhi isolates

2 from pediatric septicemia patients

- 3
- 4 Chanmi Kim^{1,#}, Iqra Latif^{2,#}, Durga P. Neupane¹, Gi Young Lee¹, Ryan S. Kwon¹, Alia Batool³,
- 5 Qasim Ahmed³, Muhammad Usman Qamar^{2,*}, and Jeongmin Song^{1,*}
- ⁶ ¹ Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell
- 7 University, Ithaca, New York 14853, USA
- 8 ² Department of Microbiology, Faculty of Life Sciences, Government College University
- 9 Faisalabad, 38000, Pakistan
- ³ Department of Pathology, Fatima Memorial Hospital, Lahore, Pakistan.
- [#] co-first authors. These authors contributed equally to this work.
- 12
- 13 * co-senior authors. Correspondence and requests for materials should be addressed to Jeongmin
- 14 Song (jeongmin.song@cornell.edu, +1-607-253-4059) and/or Muhammad Usman Qamar
- 15 (musmanqamar@gcuf.edu.pk)
- 16
- 17 **Running title**: XDR *Salmonella* Typhi isolates from children
- 18 Key words: Typhoid fever, Children, Septicemia, Salmonella Typhi, XDR, antimicrobial
- 19 resistance

20 Abstract

Sepsis is a syndromic response to infections and is becoming an emerging threat to the public 21 health sector, particularly in developing countries. Salmonella Typhi (S. Typhi), the cause of 22 23 typhoid fever, is one primary cause of pediatric sepsis in typhoid endemic areas. Extensively drug-resistant (XDR) S. Typhi is more common among pediatric patients, which is responsible 24 for over 90% of the reported XDR typhoid cases, but the majority of antibiotic resistance studies 25 available have been carried out using S. Typhi isolates from adult patients. Here, we 26 characterized XDR S. Typhi isolates from a medium size cohort of pediatric typhoid patients to 27 determine their antibiotic-resistance-related gene signatures associated with common treatment 28 options to typhoid fever patients. This study informs the molecular basis of antibiotic-resistance 29 among recent S. Typhi isolates from pediatric septicemia patients, therefore providing insights 30 31 into the development of molecular detection methods and control strategies for XDR S. Typhi.

32 Introduction

Sepsis is a syndromic response to infections and is becoming an emerging threat to the public 33 health sector. The World Health Organization (WHO) estimated that 48.9 million cases of sepsis 34 have been reported and that one person dies every 2.58 seconds around the world (1). 35 Furthermore, 20 million cases were detected among children, with 2.9 million deaths worldwide 36 and 85% of these deaths in developing countries (1). Salmonella enterica serovar Typhi (S. 37 Typhi), the causative agent of typhoid fever, is one primary cause of pediatric sepsis in typhoid 38 endemic areas including Pakistan (1-3). Antibiotics are the primary treatment options for typhoid 39 40 fever, but Salmonella are continuously evolving to acquire plasmid, prophage, transposon, or chromosomal gene mutation to attain resistance against antibiotics. A myriad of reports indicated 41 the global spread of S. Typhi that is resistant to all of the first-line antibiotics, ampicillin, 42 43 chloramphenicol, and co-trimoxazole, collectively known as multidrug-resistant (MDR) (4-8). All of the identified MDR S. Typhi carry the IncHI1 region located on either the plasmid or 44 chromosome, which encodes several antibiotic-resistance genes, including *catA1* (conferring 45 resistance to chloramphenicol), *blaTEM-1* (resistance to ampicillin), *dhfR7*, and *sul1* (resistance 46 to trimethoprim-sulfamethoxazole), among other antibiotics-resistance-related genes found in 47 MDR S. Typhi (4, 9-11). 48

49

50 Fluoroquinolones were used to treat MDR cases but became largely ineffective in some 51 endemic regions. Fluoroquinolone-resistant *S*. Typhi encodes the quinolone resistance gene *qnrS* 52 and point mutations in the quinolone resistance determining region (QRDR) harboring the genes 53 for gyrase/topoisomerase II *gyrA* and *gyrB* and topoisomerase IV *parC* and *parE*. For instance, 54 several point mutations occurred in *gyrA* have been correlated to resistance to fluoroquinolones,

55 including M52L, G81C, D82G, S83F/Y/L, D87N/G/A/Y/H, and A119E (10, 12-16). Point mutations in gyrB, parC, and parE have also been reported, while some variants have been 56 reported only from certain geographical locations (13, 15-20). Some of those mutation sites are 57 near the quinolone binding site, which in many cases results in the inhibition of the binding of 58 antibiotics to topoisomerases (21). S. Typhi strains resistant to chloramphenicol, ampicillin, co-59 trimoxazole, fluoroquinolones, and third-generation cephalosporins were first reported in 60 Hyderabad, Sindh, Pakistan, affecting over 300 cases in 2016 (9), collectively known as 61 extensively drug-resistant (XDR) S. Typhi (8, 22). XDR S. Typhi isolates commonly harbor an 62 IncY plasmid carrying the extended-spectrum β -lactamase resistance gene *blaCTX-M-15* and 63 64 quinolone resistance gene qnrS, among others (9).

65

Drug efflux pump systems also play a significant role in resistance to a wide range of 66 antibiotics. Salmonella spp. possess five efflux pump families, including the ATP-binding 67 cassette (ABC) MacAB-TolC system and resistance-nodulation-cell division (RND) AcrAB-68 TolC system (23). Members of the other families of drug transporters, major facilitator 69 superfamily (MFS), multidrug and toxin extrusion (MATE), and small multidrug resistance 70 71 (SMR), are located in the inner membrane (IM) of gram-negative bacteria (24). They usually function as independent units in the IM to translocate antibiotics across the membrane bilayer, 72 73 followed by their cooperation with RND-type efflux pumps to pump out antibiotics across the 74 entire cell envelope (24). In typhoidal Salmonella, point mutations at amino acid position 717 (R717Q or R717L) on AcrB, the antibiotic-binding subunit of the RND-type AcrAB-TolC efflux 75 76 pump, have been correlated with resistance to azithromycin in S. Typhi and S. Paratyphi A, respectively (19, 25, 26). 77

78

79	Antibiotic-resistant S. Typhi infection is more common among children; more than 90%
80	of the XDR typhoid cases are currently from children younger than 15 years old of age (9, 27,
81	28). The typhoid mortality in the pre-antibiotic era was approximately 25% (29). Typhoid fever
82	is only partly preventable by vaccines, and two types of typhoid fever vaccines, the live-
83	attenuated Ty21a and Vi and its conjugate subunit vaccines, are currently available (30). These
84	vaccines exhibit the efficacy of approximately 55-85%, with the Vi-protein conjugate subunit
85	vaccine being the most efficacious (30-32). The recent Vi-protein conjugate subunit vaccine has
86	been demonstrated efficacious among children who are older than six months of age. There are
87	no vaccines for early-life populations younger than six months available (31). Furthermore, S.
88	Typhi strains that lack Vi have emerged in some endemic areas (33), which is most likely to
89	make current subunit vaccines ineffective against those variants.
90	

Macrolides (e.g., azithromycin) and carbapenems (e.g., imipenem, meropenem) remain to 91 92 be "last resort" oral and injectable antibiotics for treating S. Typhi infection, respectively. S. Typhi strains resistant to macrolide azithromycin have been emerged (34). S. Typhi strains 93 resistant to carbapenem antibiotic meropenem, have also been reported, and many cases of 94 95 invasive nontyphoidal Salmonellae (NTS) resistant to carbapenems have been reported (25, 35-96 37). Given that typhoid fever vaccines and treatment options have limitations, there is an urgent need for closely monitoring drug-resistance profiles of S. Typhi strains at the point-of-care to 97 provide valuable insights into the development of control strategies against drug-resistant S. 98 99 Typhi.

100

101 Results

102 XDR S. Typhi strains isolated from children at various developmental stages

We isolated S. Typhi strains from 45 typhoid fever-suspected pediatric septicemia 103 104 patients with 1-13 years of age (68.89% male and 31.11% female) who have visited the Fatima Memorial Hospital, Lahore, Punjab, Pakistan, between October 2019 to January 2020. Punjab is 105 the most populous province approximately 1,044 km away from Hyderabad, Sindh, Pakistan, 106 where the first XDR S. Typhi was reported (Figure 1A). Before samples were transferred to 107 researchers, all S. Typhi samples were de-identified, number-based identification codes were 108 109 assigned to samples (Table 1). The data were analyzed anonymously throughout the study. Positive blood culture bottles from the initial step using a fully automated culture and test system 110 for patient blood specimens were sub-cultured on blood and MacConkey agar plates and 111 112 incubated overnight at 37°C. Preliminary identification of the isolates was conducted according to colony morphology and culture characteristics, followed by polymerase chain reaction (PCR) 113 and Sanger sequencing-based molecular determination (Figure 1B and C). These results indicate 114 115 that all suspected patient specimens carried S. Typhi and all isolates are XDR since they are resistant to both first- and second-line antibiotics (Figure 1 and Table 1). XDR S. Typhi isolates 116 exhibit similar minimum inhibitory concentration (MIC) values across 45 isolates with some 117 variations, indicating that antibiotic resistance phenotypes do not correlate with age, sex, or 118 hospital wards (Table 1). 119

120

121 Molecular basis of resistance to first-line antibiotics among XDR S. Typhi isolates

We hypothesized that resistance to first- and second-line antibiotics among XDR *S*.
Typhi isolates is primarily due to the acquisition and/mutation of antibiotic-resistance-related

124	genes. To carry out a series of molecular characterization via PCR and/or PCR amplicon
125	sequencing, we selected 18 S. Typhi samples based on sex, age, hospital wards, antibiotic-
126	resistance profile, and MIC (Table 2). According to child development milestones defined by the
127	Centers for Disease Control and Prevention (CDC), age groups were split into toddlers (ages 1 to
128	2), preschoolers (ages 3 to 5), school-age children (ages 6 to 12), and adolescents (ages 13 to 18)
129	(Figure 2A). To understand the molecular basis of the MDR phenotype resistant to all the first-
130	line antibiotics with clinical relevance, we have designed primers specific to catA1, blaTEM1,
131	dhfR7, and sul1, MDR-related genes encoded in the IncHI1 region (Table 3). Using these
132	primers, we evaluated the presence of these MDR-related genes in 18 selected S. Typhi isolates
133	via PCR analysis. All PCR reactions resulted in amplicons with expected size for specific genes
134	except for two controls, antibiotic-susceptible S. Typhi ISP2825 (ISP) and a control PCR
135	reaction mixture that did not contain any S. Typhi genomic DNA (N) (Figure 2B-D). Drug-
136	susceptible S. Typhi ISP clinical isolate available in the laboratory was used as a control since all
137	S. Typhi isolates from this cohort were XDR (Table 1). These results indicate that the MDR
138	phenotype exhibited by these XDR S. Typhi isolates is most likely due to MDR-related genes
139	encoded in the IncHI1 region.

140

141 Molecular basis of fluoroquinolone-resistance among XDR S. Typhi isolates

The acquisition of an IncY region harboring *qnrS* and one or more point mutations on the genes *gyrA*, *gyrB*, *parC*, and/or *parE*, referred to as the quinolone resistance determining region (QRDR), have been correlated to fluoroquinolone-resistance among typhoidal *Salmonella*

strains. A PCR primer set specific for *qnrS* was designed and used to investigate whether XDR *S*.

146 Typhi isolates encode this fluoroquinolone-resistance-related gene. We found that, unlike

147 antibiotic-susceptible S. Typhi ISP2825, all XDR S. Typhi isolates tested encode *qnrS* (Figure 3A). Fluoroquinolone-resistant Salmonella strains have been reported to carry point mutations in 148 gyrA, gyrB, parC, and/or parE, which exhibits variations depending on geographical locations 149 150 (10, 12-20) (Table 4). Specific primer sets for the known mutations on these four genes were designed for PCR and PCR amplicon sequencing (Table 3). Consistent with their essential roles 151 in bacterial cell replication, both antibiotic-susceptible S. Typhi ISP2825 and all XDR S. Typhi 152 isolates resulted in PCR products with expected size for the four topoisomerase genes (Figure 153 3B-E). To determine whether XDR S. Typhi isolates resistant to fluoroquinolones have point 154 155 mutations in these topoisomerase genes, we carried out Sanger sequencing of PCR amplicons. Consistent with the antibiotic-susceptible phenotype, S. Typhi ISP2825 carries wild-type 156 topoisomerases. In contrast, we found that all the XDR S. Typhi isolates carry a mutant form of 157 gyrA encoding for GyrA^{Ser83Phe} (Figure 3F-G). GyrA^{Ser83Phe} has been found most commonly 158 among XDR S. Typhi identified from other endemic regions. We also found that these XDR S. 159 Typhi isolates from pediatric septicemia patients encode wild-type gyrB, parC, and parE (Figure 160 161 3G and Table 4).

162

163 Molecular basis of third-generation cephalosporin-resistance among XDR S. Typhi isolates

In addition to GyrA^{Ser83Phe}, resistance to second-line antibiotics among XDR *S*. Typhi in
 Pakistan has been associated with an IncY region carrying the quinolone resistance gene *qnrS*

166 (Figure 3A) and extended-spectrum β -lactamase resistance gene *blaCTX-M-15* (9, 38).

167 Consistent with resistance to second-line antibiotics, fluoroquinolones and cephalosporins,

among these XDR S. Typhi isolates from pediatric septicemia patients, we found the acquisition

169 of *blaCTX-M-15* among all XDR *S*. Typhi tested (Figure 4). In contrast, antibiotic-susceptible *S*.

Typhi ISP2825 did not result in PCR amplicon for *blaCTX-M-15*, indicating the specificity of theprimers used.

172

173 Effects of efflux pumps on antibiotic resistance among XDR S. Typhi isolates

XDR S. Typhi isolates from pediatric typhoid patients exhibit some variations in their 174 antibiotic-resistance/susceptibility profiles across antibiotics tested in Table 1. These results led 175 176 us to investigate drug efflux pumps in XDR S. Typhi isolates since drug efflux pump systems are associated with resistance/susceptibility to a wide range of antibiotics. The recent worrisome 177 178 trend among some XDR S. Typhi includes a correlation between efflux pump mutations and azithromycin resistance. For instance, a point mutation(s) on the antibiotic-binding subunit AcrB 179 of the tripartite AcrAB-TolC efflux pumps (e.g., R717Q or R717L) has recently been correlated 180 181 to azithromycin-resistance among some S. Typhi and S. Paratyphi A clinical isolates (19, 25, 26). In addition, Salmonella encodes another tripartite efflux pump, ABC-type MacAB-TolC, and 182 three other small efflux pumps, major facilitator superfamily (MFS), multidrug and toxin 183 184 extrusion (MATE), and small multidrug resistance (SMR), spanning in the inner membrane of the bacteria and therefore need to cooperate with another tripartite efflux pump such as RND-185 type AcrAB-TolC in exporting antibiotics (24). In Neisseria gonorrhoeae that, like S. Typhi, is 186 also a human-adapted gram-negative bacterial pathogen, point mutations on the promoter of 187 *macA* of the tripartite MacAB-TolC efflux pump have been correlated to azithromycin-resistance 188 (39). 189

190

To assess whether point mutations on tripartite efflux pumps have occurred among XDR
S. Typhi isolates from pediatric patients, we have determined *macA* promoter and *acrB*

193	sequences via PCR and PCR amplicon sequencing using specific primer sets summarized in
194	Table 3. We found that all XDR S. Typhi isolates tested carry wild-type -10 promoter sequence
195	in the macA promoter and wild-type Arg at position 717 on the AcrB protein (Figure 5A-C).
196	These results are consistent with azithromycin-susceptibility (2-8 μ g/ml) among XDR S. Typhi
197	isolates from our pediatric septicemia patient cohort (Figure 5C and Table 1).
198	
199	The expression of drug-efflux pumps is tightly regulated. For instance, AcrR represses
200	acrAB gene expression by binding to the operator and inhibiting the transcription of acrAB. In 3-
201	dimensional protein structure, wild-type AcrR protein monomer forms nine α -helices crucial for
202	homodimer assembly, DNA-binding, and ligand-binding for its function in repressing acrAB
203	expression (40, 41). Through whole-genome sequencing analysis of the latest NCBI RefSeq
204	dataset of the fully assembled complete genome of S. Typhi (107 in total; Table 5), we found that
205	two S. Typhi strains (RefSeq assembly accession IDs GCF_001121865.2 and
206	GCF_900205275.1) carry a variant form of AcrR with 48 amino acid difference at the C-
207	terminus (Figure 6A). Unlike the repressor AcrR variant, these two S. Typhi strains still carry
208	wild-type RobA (NP_463442.1) and MarA (WP_000091194.1), activators for the acrAB gene
209	expression, and wild-type AcrA (NP_459471.1), AcrB (NP_459470.1), and MacA
210	(NP_459918.1) (data not shown). These results led us to investigate whether our XDR S. Typhi
211	isolates carry a variant form of AcrR. Consistent with our azithromycin-susceptibility data, we
212	found that all the XDR S. Typhi isolates from our pediatric septicemia patient cohort carry wild-
213	type AcrR (Figure 6B-C).
214	

215 **Discussion**

216	XDR S. Typhi is more common among pediatric patients but the majority of antibiotic
217	resistance studies available have been carried out using S. Typhi isolates from adult patients.
218	Here, we characterized S. Typhi isolates from a medium size cohort of pediatric typhoid patients
219	to determine antibiotic-resistance-related gene signatures associated with their drug-resistant
220	profiles. This study provides a valuable overview of the recent (2019-2020) populations in the
221	setting of Lahore, Pakistan, among a septic pediatric cohort and provides insights into the
222	development of simple, cost-effective molecular detection methods with point-of-care testing
223	potential.
224	
225	Biochemical method-mediated identification assisted by the streamlined automated
226	system was further validated via molecular typing for typhoidal Salmonella specific gene
227	sequences (42-44). Antibiotic resistance profiles were obtained through the automated test
228	system that followed the CLSI 2018 guidelines. To determine the molecular basis of the
229	antibiotic resistance profiles among these XDR S. Typhi, we have designed primer sets and
230	optimized PCR reaction conditions for antibiotic resistance genes harbored in the IncHI1 (catA1,
231	blaTEM1, dhfR7, and sul1) and IncY (qnrS and blaCTX-M-15) regions, contributing to
232	resistance to front-line and second-line antibiotics, respectively. Overall findings across the XDR
233	S. Typhi isolates for these antibiotic resistance genes are in agreement with our MIC results and
234	other reports correlated to molecular determinants of MDR and XDR phenotypes among recent
235	XDR S. Typhi isolates from adult typhoid patients (9).
236	
237	Besides qnrS, mutations on gyrA, gyrB, parC, and parE also contribute to

238 fluoroquinolone-resistance, which exhibits more diverse patterns depending on geographical

across all samples tested, while the remaining genes were found to be wild-type (Figure 3 and
Table 4). This result indicates that XDR *S*. Typhi circulating in this geographical location is
different from the ones prevalent in other locations that exhibit different QRDR mutation
signatures. Future investigations on XDR *S*. Typhi isolates from adult patients in the same
geographical location would inform us about whether a divergent host adaptation process has
occurred in pediatric and adult patients.

246

247 Macrolides such as azithromycin are considered the only remaining oral antibiotic option in treating XDR S. Typhi resistant to both front-line and second-line antibiotics. An additional 248 treatment option against XDR S. Typhi, although requiring injection, are carbapenems such as 249 250 imipenem and meropenem. Our XDR S. Typhi isolates from pediatric patients are susceptible to azithromycin, imipenem, and meropenem (Table 1). In contrast, 5% and 48% of recent S. Typhi 251 isolates (n=81) from a mid-size adult cohort in Northern Punjab were resistant to azithromycin 252 253 and meropenem, respectively (36), supporting the concept of a divergent host adaptation and/or transmission process in child and adult groups. These results also support a possibility that, with 254 time, molecular determinants for azithromycin-resistance and meropenem-resistance would 255 likely be adopted in nearly all S. Typhi circulating locally and globally. 256

257

Current analysis indicates that our XDR *S*. Typhi isolates from pediatric septicemia
patients in Punjab do not carry molecular determinants that have been correlated to
azithromycin-resistance in typhoidal *Salmonella*, *S*. Typhi and *S*. Paratyphi A, and another
human-adapted Gram-negative pathogen *N. gonorrhoeae* (Figure 5). Besides wild-type AcrB and

262 wild-type -10 promoter sequence in the macA promoter across our XDR S. Typhi isolates, WGS 263 analysis of the latest NCBI RefSeq dataset of the fully assembled complete genome of S. Typhi (107 in total), conducted as part of this study, indicates the emergence of S. Typhi strains 264 carrying the frameshifted AcrR variant, the repressor of the *acrAB* efflux pump components. 265 Although further investigations are required to understand the consequence of having the AcrR 266 267 frameshifted variant in antibiotic-resistance, it is intriguing to hypothesize that the AcrR variant is less effective in repressing the expression of *acrAB*, therefore contributing to antibiotic-268 resistance such as azithromycin. We also found that those S. Typhi strains carrying the AcrR 269 270 variant carry wild-type RobA and MarA, activators for the *acrAB* gene expression, and wild-type AcrAB, collectively supporting the hypothesis that possession of the AcrR frameshifted variant 271 is an adaptation/evolution outcome, rather than a stochastic event outcome. 272

273

The emergence and spread of S. Typhi resistant to macrolides and carbapenems are a 274 serious global health concern, deserving close surveillance for local and global spread. We 275 276 envision that some of the methods detecting key molecular determinants for S. Typhi antibiotic resistance used in the current study could be developed as a surveillance strategy and point-of-277 care testing strategy. The detection and analysis methods for resistance to front-line and second-278 line antibiotics described in the study are straightforward. Besides efflux pump related molecular 279 determinants described in the study, the future surveillance strategy could include additional 280 molecular traits predicted to be associated with resistance to macrolides and carbapenems in S. 281 Typhi. For instance, in *Enterobacteriaceae, erm* genes encoding for methylases to modify target 282 sites, ere genes for esterase transferases, and mph genes for phosphor transferases are known to 283 284 confer macrolide-resistance by altering the structure of antibiotics (45). Similarly, carbapenem

285	resistance in S. Typhi can be acquired by mutational events or gene acquisition via horizontal
286	gene transfer, leading to the overexpression of efflux pumps that expel carbapenems and the
287	acquisition of carbapenemases. The most effective carbapenemases known that hydrolyze
288	carbapenem and spread across many bacterial pathogens are KPC, VIM, IMP, NDM and OXA-
289	48 types (46).
290	
291	In summary, this study informs the molecular basis of antibiotic-resistance among recent
292	S. Typhi isolates from pediatric septicemia patients and provides insights into the development of
293	molecular detection and control strategies for XDR S. Typhi.
294	
295	Materials & Methods
296	Ethics Statement
297	Before initiating this research, ethical approval was obtained following the Declaration of
298	Helsinki from the Institutional Review Board (IRB# FMH-03-2020-IRB-774-F), the Fatima
299	Memorial Hospital Lahore. In addition, informed consent was obtained from a legal guardian of
300	each study participant. Informed consent was read to the person in the language they understood
301	and signed appropriately. They were willing to provide a sample and utilize the isolates for
302	research. They were assured that the samples would be used solely for research purposes and that
303	personal information would be kept confidential. Before samples were transferred to researchers,
304	all XDR S. Typhi samples were de-identified, number-based identification codes were assigned
305	to samples (Tables 1 and 2). The data were analyzed anonymously throughout the study.
306	
307	S. Typhi isolation from patient specimens and MIC determination

308 The BACT/ALERT® 3D Microbial Detection System with PF/PF plus culture bottles 309 (bioMérieux, France), an automated bacterial culture and antibiotic-resistance test system capable of incubating, agitating, and continuously monitoring aerobic and anaerobic media 310 inoculated with patient specimens was used in this study. The samples were collected between 311 October 2019 to January 2020. In brief, 1-4 mL blood samples of each septicemia suspected 312 child based on their age and bodyweight were taken and placed in BacT/ALERT PF/PF plus 313 bottles for up to 5 days. The bottles contained BacT/Alert FAN Plus media with Adsorbent 314 Polymeric Beads (APB) that neutralized antimicrobials (47). Positive blood culture bottles were 315 316 sub-cultured on blood and MacConkey agar plates and incubated overnight at 37°C aerobically. Preliminary identification of the isolates was conducted according to colony morphology and 317 culture characteristics. MIC determinations were made using the automatic VITEK 2 compact 318 319 system (bioMérieux, France) and antibiotics interpretation was carried out as per the clinical laboratory standards institute (CLSI) 2018 guidelines (https://clsi.org). 320 321

322 XDR S. Typhi samples selection for detailed molecular characterization

Of 45 XDR *S*. Typhi isolates, 18 isolates were selected for detailed molecular characterization based on their MIC results, gender, age, and hospital wards, representing all 45 XDR isolates (Tables 1 and 2).

326

327 PCR-based detection of antibiotic-resistance-related genes among XDR S. Typhi isolates

Bacterial genomic DNA was prepared using a DNeasy bacterial DNA extraction kit (QIAGEN)

following the vendor's recommendation. The PCR primer sequences and reaction conditions

used are summarized in Table 3. Green Taq DNA polymerase with provided buffers (GenScript)

331	was used for pltB, blaTEM1, dhfR7, sul1, catA1, parC, parE, blaCTXM15, macA, acrB, and
332	acrR. Phusion high fidelity DNA polymerase with the provided GC buffer (New England
333	BioLabs) or Herculase II fusion DNA polymerase (Agilent) was used for gyrA, gyrB, and qnrS.
334	PCR reaction steps were: pre-denaturation at 95°C for 3min, 34 cycles of denaturation at 95°C
335	for 30 sec, annealing (see Table 3), and extension at 72°C for 1 kb/min (see Table 3 for amplicon
336	size), and final extension at 72°C for 7 min using a C1000 Touch Thermal Cycle (BIO-RAD).
337	PCR results were run on 1% agarose gels and imaged using an iBright CL1500 Imaging system
338	(ThermoFisher Scientific).
339	
340	Sanger sequencing of PCR amplicons
341	When indicated, PCR amplicons were extracted from agarose gels for sequencing analysis by
342	using the QIAEX II gel extraction system (QIAGEN, cat # 20051), followed by standard Sanger
343	sequencing (The Cornell Institute of Biotechnology or Eton Bioscience Inc). The primer
344	sequences used for Sanger sequencing are summarized in Table 3.
345	
346	Whole-genome sequencing analysis for efflux pump-related genes
347	The latest NCBI RefSeq dataset of the fully assembled complete genome of S. Typhi (107 in
348	total; Table 5) was collected on Feb 26, 2021. The 107 complete whole-genome sequences were
349	utilized to analyze the sequence variations for <i>acrR</i> (NP_459472.1) using 'General Feature
350	Formats (gff)' files with a bash script (grep acrR *.gff grep pseudo=true). Two whole genome
351	sequences (GCF_001121865.2 and GCF_900205275.1) that have an <i>acrR</i> variant were further
352	analyzed with CLC Main Workbench 8.1.3 (QIAGEN) for multidrug efflux pump-related genes:

353	macA (NP_459918.1), acrA (NP_459471.1), acrB (NP_459470.1), marA (WP_000091194.1),
354	and <i>robA</i> (NP_463442.1).
355	
356	Acknowledgments
357	This work was supported in part by NIH R01 AI137345, AI139625, and AI141514 to JS. The
358	funders had no role in the study design, data collection and analysis, decision to publish, or
359	preparation of the manuscript.
360	
361	Author contributions
362	C.K. conducted experiments shown in Figs. 1-6 using genomic DNA received from M.U.Q., and
363	prepared the manuscript draft. D.P.N. contributed to experiments shown in Figs. 1-6. G.Y.L.
364	conducted WGS analysis for efflux pump-related genes shown in Fig. 6. R.S.K. contributed to
365	antibiotic resistance-related gene sequence analysis. I.L. A.B. and Q.A. isolated XDR S. Typhi
366	strains, conducted MIC determination experiments, and genomic DNA preparations. M.U.Q
367	supervised the isolation and antibiotic resistance phenotype characterization study. J.S.
368	supervised the molecular characterization study using genomic DNA received, and prepared the
369	manuscript with input from all authors.
370	
371	Declaration of interests
372	The authors declare no competing interests.
373	
374	References
375	1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global,

376 regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden
377 of Disease Study. Lancet. 2020;395(10219):200-11.

Wain J, Hendriksen RS, Mikoleit ML, Keddy KH, Ochiai RL. Typhoid fever. Lancet.
 2015;385(9973):1136-45.

380 3. Crump JA, Mintz ED. Global trends in typhoid and paratyphoid Fever. Clin Infect Dis.
2010;50(2):241-6.

Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, et al. Phylogeographical
 analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and
 intracontinental transmission events. Nat Genet. 2015;47(6):632-9.

5. Baker S, Holt KE, Clements AC, Karkey A, Arjyal A, Boni MF, et al. Combined highresolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol. 2011;1(2):110008.

6. Holt KE, Dolecek C, Chau TT, Duy PT, La TT, Hoang NV, et al. Temporal fluctuation of
multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam. PLoS
Negl Trop Dis. 2011;5(1):e929.

391 7. Yan M, Li X, Liao Q, Li F, Zhang J, Kan B. The emergence and outbreak of multidrug392 resistant typhoid fever in China. Emerg Microbes Infect. 2016;5(6):e62.

Ingle DJ, Nair S, Hartman H, Ashton PM, Dyson ZA, Day M, et al. Informal genomic
 surveillance of regional distribution of Salmonella Typhi genotypes and antimicrobial resistance
 via returning travellers. PLoS Negl Trop Dis. 2019;13(9):e0007620.

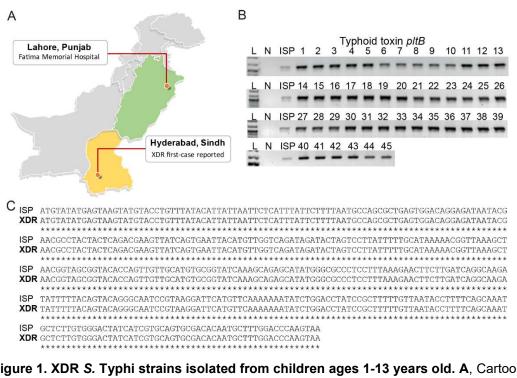
Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK, et al. Emergence of an
 Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous

398 Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins. MBio.

- 399 2018;9(1):e00105-18.
- Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, et al. Complete genome
 sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature.
 2001;413(6858):848-52.
- 403 11. Dyson ZA, Klemm EJ, Palmer S, Dougan G. Antibiotic Resistance and Typhoid. Clin
 404 Infect Dis. 2019;68(Suppl 2):S165-s70.
- 405 12. Dutta S. Fitness gains hamper efforts to tackle drug resistance. Elife. 2013;2:e01809.
- 406 13. Veeraraghavan B, Anandan S, Muthuirulandi Sethuvel DP, Puratchiveeran N, Walia K,
- 407 Devanga Ragupathi NK. Molecular Characterization of Intermediate Susceptible Typhoidal
 408 Salmonella to Ciprofloxacin, and its Impact. Mol Diagn Ther. 2016;20(3):213-9.
- 409 14. Capoor MR, Nair D, Walia NS, Routela RS, Grover SS, Deb M, et al. Molecular analysis
- 410 of high-level ciprofloxacin resistance in Salmonella enterica serovar Typhi and S. Paratyphi A:
- 411 need to expand the QRDR region? Epidemiol Infect. 2009;137(6):871-8.
- 412 15. Gopal M, Elumalai S, Arumugam S, Durairajpandian V, Kannan MA, Selvam E, et al.
 413 GyrA ser83 and ParC trp106 Mutations in Salmonella enterica Serovar Typhi Isolated from
 414 Typhoid Fever Patients in Tertiary Care Hospital. J Clin Diagn Res. 2016;10(7):Dc14-8.
- Ling JM, Chan EW, Lam AW, Cheng AF. Mutations in topoisomerase genes of
 fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob Agents Chemother.
 2003;47(11):3567-73.
- Accou-Demartin M, Gaborieau V, Song Y, Roumagnac P, Marchou B, Achtman M, et al.
 Salmonella enterica Serotype Typhi with nonclassical quinolone resistance phenotype. Emerg
 Infect Dis. 2011;17(6):1091-4.
- 421 18. Qian H, Cheng S, Liu G, Tan Z, Dong C, Bao J, et al. Discovery of seven novel mutations

of gyrB, parC and parE in Salmonella Typhi and Paratyphi strains from Jiangsu Province of China.
Sci Rep. 2020;10(1):7359.

424 19. Cheng MW, Lee CM, Wang NY, Wu AY, Lin CC, Weng LC, et al. Clinical characteristics


- 425 in adult patients with Salmonella bacteremia and analysis of ciprofloxacin-nonsusceptible isolates.
- 426 J Microbiol Immunol Infect. 2015;48(6):692-8.
- 427 20. Matono T, Morita M, Yahara K, Lee KI, Izumiya H, Kaku M, et al. Emergence of
 428 Resistance Mutations in Salmonella enterica Serovar Typhi Against Fluoroquinolones. Open
 429 Forum Infect Dis. 2017;4(4):ofx230.
- Vashist J, Vishvanath, Kapoor R, Kapil A, Yennamalli R, Subbarao N, et al. Interaction of
 nalidixic acid and ciprofloxacin with wild type and mutated quinolone-resistance-determining
 region of DNA gyrase A. Indian J Biochem Biophys. 2009;46(2):147-53.
- Chiou CS, Lauderdale TL, Phung DC, Watanabe H, Kuo JC, Wang PJ, et al. Antimicrobial
 resistance in Salmonella enterica Serovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and
 Vietnam. Antimicrob Agents Chemother. 2014;58(11):6501-7.
- Buckner MM, Blair JM, La Ragione RM, Newcombe J, Dwyer DJ, Ivens A, et al. Beyond
 Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella
 Biology. mBio. 2016;7(6):e01916.
- 439 24. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, et al. Multidrug
 440 efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018;16(9):523-39.
- 441 25. Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J, Santosham M, et al.
 442 Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in
 443 Bangladesh identified through passive pediatric surveillance. PLoS Negl Trop Dis.
 444 2019;13(11):e0007868.

- 26. Sajib MSI, Tanmoy AM, Hooda Y, Rahman H, Andrews JR, Garrett DO, et al. Tracking
 the Emergence of Azithromycin Resistance in Multiple Genotypes of Typhoidal Salmonella. mBio.
 2021;12(1):e03481-20.
- 448 27. Feasey NA, Gaskell K, Wong V, Msefula C, Selemani G, Kumwenda S, et al. Rapid
 449 emergence of multidrug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi. PLoS Negl
 450 Trop Dis. 2015;9(4):e0003748.
- 28. Qamar FN, Yousafzai MT, Sultana S, Baig A, Shakoor S, Hirani F, et al. A Retrospective
 Study of Laboratory-Based Enteric Fever Surveillance, Pakistan, 2012-2014. J Infect Dis.
 2018;218(suppl_4):S201-S5.
- 454 29. Levine MM, Simon R. The Gathering Storm: Is Untreatable Typhoid Fever on the Way?
 455 mBio. 2018;9(2):e00482-18.
- 456 30. Yang YA, Chong A, Song J. Why Is Eradicating Typhoid Fever So Challenging:
 457 Implications for Vaccine and Therapeutic Design. Vaccines (Basel). 2018;6(3):E45.
- 458 31. WHO. Typhoid vaccines: WHO position paper, March 2018 Recommendations. Vaccine.
 459 2018.
- 460 32. Voysey M, Pollard AJ. Seroefficacy of Vi Polysaccharide-Tetanus Toxoid Typhoid
 461 Conjugate Vaccine (Typbar TCV). Clin Infect Dis. 2018;67(1):18-24.
- Wain J, House D, Zafar A, Baker S, Nair S, Kidgell C, et al. Vi antigen expression in
 Salmonella enterica serovar Typhi clinical isolates from Pakistan. J Clin Microbiol.
 2005;43(3):1158-65.
- 465 34. Ahsan S, Rahman S. Azithromycin Resistance in Clinical Isolates of Salmonella enterica
 466 Serovars Typhi and Paratyphi in Bangladesh. Microb Drug Resist. 2019;25(1):8-13.
- 467 35. Wattal C, Goel N. Pediatric Blood Cultures and Antibiotic Resistance: An Overview. Indian

- 468 J Pediatr. 2020;87(2):125-31.
- 36. Ali Shah SA, Nadeem M, Syed SA, Fatima Abidi ST, Khan N, Bano N. Antimicrobial
 Sensitivity Pattern of Salmonella Typhi: Emergence of Resistant Strains. Cureus.
 2020;12(11):e11778.
- 472 37. Fernández J, Guerra B, Rodicio MR. Resistance to Carbapenems in Non-Typhoidal
- A73 Salmonella enterica Serovars from Humans, Animals and Food. Vet Sci. 2018;5(2):40.
- 474 38. Rasheed F, Saeed M, Alikhan NF, Baker D, Khurshid M, Ainsworth EV, et al. Emergence
- 475 of Resistance to Fluoroquinolones and Third-Generation Cephalosporins in Salmonella Typhi in
- 476 Lahore, Pakistan. Microorganisms. 2020;8(9).
- 477 39. Rouquette-Loughlin CE, Balthazar JT, Shafer WM. Characterization of the MacA–MacB
- efflux system in Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy. 2005;56(5):856-60.
- 480 40. Kang SM, Kim DH, Jin C, Ahn HC, Lee BJ. The crystal structure of AcrR from
 481 Mycobacterium tuberculosis reveals a one-component transcriptional regulation mechanism.
 482 FEBS Open Bio. 2019;9(10):1713-25.
- 483 41. Su CC, Rutherford DJ, Yu EW. Characterization of the multidrug efflux regulator AcrR
 484 from Escherichia coli. Biochem Biophys Res Commun. 2007;361(1):85-90.
- 485 42. Neupane DP, Dulal HP, Song J. Enteric Fever Diagnosis: Current Challenges and Future
 486 Directions. Pathogens. 2021;10(4):410.
- 487 43. Lee S, Yang YA, Milano SK, Nguyen T, Ahn C, Sim JH, et al. Salmonella Typhoid Toxin
- 488 PltB Subunit and Its Non-typhoidal Salmonella Ortholog Confer Differential Host Adaptation and
- 489 Virulence. Cell Host Microbe. 2020;27(6):937-49.
- 490 44. Ahn C, Yang Y-A, Neupane DP, Nguyen T, Richards AF, Sim JH, et al. Mechanisms of

- 491 typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits.
- 492 iScience. 2021;24(5):102454.
- 493 45. Taitt CR, Leski TA, Prouty MG, Ford GW, Heang V, House BL, et al. Tracking
- 494 Antimicrobial Resistance Determinants in Diarrheal Pathogens: A Cross-Institutional Pilot Study.
- 495 Int J Mol Sci. 2020;21(16).
- 496 46. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J
- 497 Antimicrob Chemother. 2012;67(7):1597-606.
- 498 47. Mitteregger D, Barousch W, Nehr M, Kundi M, Zeitlinger M, Makristathis A, et al.
- 499 Neutralization of antimicrobial substances in new BacT/Alert FA and FN Plus blood culture bottles.
- 500 J Clin Microbiol. 2013;51(5):1534-40.
- 501 48. Baker S, Duy PT, Nga TV, Dung TT, Phat VV, Chau TT, et al. Fitness benefits in
- 502 fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure. Elife.

503 2013;2:e01229.

1

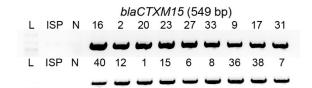
Figure 1. XDR S. Typhi strains isolated from children ages 1-13 years old. A, Cartoon showing the geographical location that XDR S. Typhi characterized in this study was isolated compared to the location that the first case of XDR S. Typhi was reported. B, PCR reactions of 45 XDR isolates for typhoid toxin *pltB*. C, *pltB* sequences from all 45 XDR isolates (XDR, one representative is shown) were identical to typhoid toxin *pltB* sequence of S. Typhi ISP2825 (ISP). ISP, antibiotic-susceptible S. Typhi ISP2825. N, negative control containing all PCR components except for S. Typhi genomic DNA. See Table 1 for sample information.

А						В					bla	aTE	M1 ((861	bp)		
53 -	#	Age	Sex	AMP	SXT		L	ISP	Ν	16	2	20	23	27	33	9	17	31
			dlers ('	1-2 yrs)						-		-	-	-	-	-	-	-
	16	2	F	R	R		and and	ISP	N	40	12	1	15	6	8	36	38	7
	2	2	М	R	R		-					_		_	_		_	
	20	2	М	R	R		=			-		-	-	-			-	
1	23	2	М	R	R	0					d	hfD	7 (40)5 h	2			
	27	2	М	R	R	C	1.	ISP	N	16	2		23			9	17	31
				(3-5 yrs)			-	101		10	_	-	20	-		_	_	-
-	33	3	F	R	R		-				-	-		-	-			-
-	9	3	М	R	R		No.	ISP	N	40	12	1	15	6	8	36	38	7
15	17	3	M	R	R					-	-	-	-	-	-	-	-	-
	31	3	М	R	R						S	ul1 (500	bp)				
	40	4	F	R	R		L_	ISP	Ν	16	2	20	23	27	33	9	17	31
	12	4	F	R	R		-			-	-	-	-	-	-	-	-	-
12.	1	5	М	R	R		-	ISP	N	40	12	1	15	6	8	36	38	7
				en (6-12			and a	101		10			10				00	
	15	9	F	R	R		-			-	-	-	-	-	-	-	-	-
	6	11	Μ	R	R						~	ot A -	1 (96	34 h	2			
	8	11	М	R	R	D	L	ISP	Ν	16	2	20	23	27	33	9	17	31
	36	11	М	R	R		-			-	-	-	-	-	-	-	-	-
1.5				13-18 yı					-			111						
	38	13	F	R	R		L	ISP	Ν	40	12	1	15	6	8	36	38	7
-	7	13	М	R	R					-	•	-		-		-	•	-

10 Figure 2. Molecular basis of resistance to first-line antibiotics among XDR S. Typhi isolates. A,

11 Sample information and antibiotic resistance profiles of select of XDR S. Typhi isolates for molecular

12 characterization. See Table 2 for details. **B**, PCR reactions for *blaTEM1*. **C**, PCR reactions for *dhfR7* and


13 *sul1*. **D**, PCR reactions for *catA1*. ISP, antibiotic-susceptible S. Typhi ISP2825. N, negative control

14 containing all PCR components except for *S*. Typhi genomic DNA. See Table 3 for details.

A qnrS (1 L ISP N 16 2 20	722 bp) 23 27 33 9 17 31	F G81 D8	2 <u>S83</u> F	A84 V85
L ISP N 40 12 1	15 6 8 36 38 7	XDR:G G C G A		
B	2726 bp) 23 27 33 9 17 31	WT: G G C G A	Ť Ť Ċ Č	GCAGTG
L ISP N 40 12 1	15 6 8 36 38 7	ID Age Sex Toddlers (1-2 yrs o 16 2 F	CIP gyrA d) R S83F	gyrB parC parE
		2 2 M	R S83F	WT WT WT
	2415 bp) 23 27 33 9 17 31	20 2 M 23 2 M	R S83F R S83F	WT WT WT WT WT WT
L ISP N 40 12 1	1 5 6 8 36 38 7	27 2 M Pre-schoolers (3-5		WT WT WT
		33 3 F 9 3 M	R S83F R S83F	WT WT WT WT WT WT
D parC (2 L ISP N 16 2 20	2283 bp) 23 27 33 9 17 31	17 3 M 31 3 M	R S83F R S83F	WT WT WT WT WT WT
E		40 4 F 12 4 F	R S83F R S83F	WT WT WT WT WT WT
L ISP N 40 12 1	15 6 8 36 38 7	1 5 M School-age childre		WT WT WT
E parE (1	1893 bp)	<u>15 9 F</u> 6 11 M	R S83F R S83F	WT WT WT WT WT WT
	23 27 33 9 17 31	8 11 M 36 11 M	R S83F R S83F	WT WT WT WT WT WT
L ISP N 40 12 1	15 6 8 36 38 7	Adolescents (13-18		
		38 13 F 7 13 M	R S83F R S83F	WT WT WT WT WT WT

15

Figure 3. Molecular basis of fluoroquinolone-resistance among XDR S. Typhi isolates. A-E, PCR reactions for *qnrS* (A), *gyrA* (B), *gyrB* (C), *parC* (D), and *parE* (E). See Table 3 for details. ISP, antibioticsusceptible S. Typhi ISP2825. N, negative control containing all PCR components except for S. Typhi genomic DNA. *, PCR amplicons specific to *gyrA* in B and *gyrB* in C. F, Representative sequencing chromatogram showing GyrA S83F mutation. G, Summary of PCR amplicon sequencing analysis for *gyrA*, *gyrB*, *parC*, and *parE*. See Table 4 for additional information. WT, wild type for the known mutations.

23

24 Figure 4. Molecular basis of third-generation cephalosporin-resistance among XDR S. Typhi

- 25 isolates. PCR reactions for *blaCTXM15*. ISP, antibiotic-susceptible S. Typhi ISP2825. N, negative control
- 26 containing all PCR components except for S. Typhi genomic DNA.

А					m	acA	(130	8 bp	5				C.			_			_
	1	ISP	Ν	16	2	20	23	27	33	9	17	31		ID	Age	Sex	AZM	macA	acrB
	1000		1		-					-			L				ers (1-2		
	-	-		-	-		-	-		-	-	-		16	2	F	8	WT	WT
	1000						1							2	2	М	2	WT	WT
	L	ISP	Ν	40	12	1	15	6	8	36	38	7		20	2	М	8	WT	WT
	-			-	-	-	-	-	-	-	-	-		23	2	М	4	WT	WT
	Sec.												17	27	2	М	8	WT	WT
															Pre	-schoo	lers (3-	5 yrs)	
В					ac	rB-N	ltern	1 (16	95 b	p)			-	33	3	F	4	ŴŤ	WT
D	L	ISP	Ν	16	2	20	23	27	33	9	17	31	1.00	9	3	М	4	WT	WT
		-		-	-	-	-	-	-	-	-	-	: .	17	3	М	2	WT	WT
													-	31	3	М	8	WT	WT
	1	ISP	Ν	40	12	1	15	6	8	36	38	7		40	4	F	4	WT	WT
	-		1000	_	<u> </u>		_	-	-	_	_			12	4	F	2	WT	WT
	-	-		_	-	-	-	-		-	-	-		1	5	М	8	WT	WT
					~	PD (Horr	n /10	200	201				5	School-	age ch	nildren (6-12 yrs)
					au	1D-0	Jen	n (18	520 L	p)			-	15	9	F	2	WŤ	WT
	L	ISP	Ν	16	2	20	23	27	33	9	17	31	-	6	11	M	4	WT	WT
		-		-	-	-	-	-	-	-	-	time in		8	11	M	4	WT	WT
		-		-	-	-						-	-	36	11	М	8	WT	WT
		100						•	~	~~	~~	-	-		Ad	olesce	nts (13-	18 yrs)	
	-	ISP	Ν	40	12	1	15	6	8	36	38	/	-	38	13	F	4	ŴT	WT
		-		-	-	-	-	-	-	-	-	-	17	7	13	М	4	WT	WT
													-						

Figure 5. macA and acrB sequence analysis among XDR S. Typhi isolates. A-B, PCR reactions for
 macA (A) and acrB (B). acrB was split into two pieces for more productive PCR reaction outcomes (acrB Nterm and acrB-Cterm). ISP, antibiotic-susceptible S. Typhi ISP2825. N, negative control containing all
 PCR components except for S. Typhi genomic DNA. See Table 3 for details. C, Summary of PCR

amplicon sequencing analysis for *macA* and *acrB*. WT, wild type for the known mutations.

27

A										С	ID	Age	Sex	AZM	acrR
	181			190					200	ר		To	ddlers (1-2 yrs)	
Ty2 AcrR					07 V 1	ידדידי	TEM		PTLRA		16	2	F	8	WT
CT18 AcrR									PTLRA		2	2	М	2	WT
SGB92 AcrR		-						-	SDAAR		20	2	М	8	WT
									SDAAR		23	2	М	4	WT
403Ty_AcrR		~	***:		RTR	HDP	AGD	VSIV	SDAAR		27	2	М	8	WT
	^ ^	^ ^ ^	~ ~ ~ ·	^ • ÷				• •	•			Pre-s	choolers	s (3-5 yrs)
	211		217						238		33	3	F	4	WT
Ty2 AcrR	ST	VNG	SP								9	3	М	4	WT
CT18 AcrR	ST	VNG	SP								17	3	М	2	WT
SGB92 AcrR	VD	GOR	LPL	LIFC	ENS	WTF	SVS	LFCI	LQA		31	3	М	8	WT
403Ty AcrR					-				LQA		40	4	F	4	WT
			*						~~~		12	4	F	2	WT
											1	5	М	8	WT
В											S	chool-a	ge child	ren (6-12	yrs)
D		a	crR	(633	bp)						15	9	F	2	ŴT
L ISP N	16	2	20	23	27	33	9	17	31	2 	6	11	М	4	WT
	-	-	-	-	-	-	-	-	-		8	11	М	4	WT
					-				-		36	11	М	8	WT
L ISP N	40	12	1	15	6	8	36	38	1			Adole	scents (13-18 yrs	5)
	-	-	-	-	-	-	-	-	-		38	13	F	4	WT
Carrier Street S											7	13	М	4	WT

Figure 6. AcrR sequence analysis among XDR S. Typhi isolates. A, AcrR amino acid sequence

33

comparison analysis of the latest RefSeq dataset of the fully assembled complete genome of *S*. Typhi
 (107 in total) collected from NCBI as of Feb 26, 2021. Ty2, *S*. Typhi Ty2 (RefSeq assembly accession:

GCF_000007545.1, assembly name: ASM754v1, strain: Ty2, submitter: University of Wisconsin). CT18,
 S. Typhi CT18 (RefSeq assembly accession: GCF_000195995.1, assembly name: ASM19599v1, strain:
 CT18, submitter: Sanger Institute). SGB92, S. Typhi SGB92 (RefSeq assembly accession:

40 GCF_001121865.2, assembly name: 404Ty, strain name: SGB92, submitter: Wellcome Sanger Institute).

403Ty, S. Typhi 403Ty-sc-1979084 (RefSeq assembly accession: GCF_900205275.1, assembly name:

42 403Ty, isolate: 403Ty-sc-1979084, submitter: Wellcome Sanger Institute). See Table 5 for details. **B**,

43 PCR reactions for *acrR*. ISP, antibiotic-susceptible *S*. Typhi ISP2825. N, negative control containing all

PCR components except for *S*. Typhi genomic DNA. **C**, Summary of PCR amplicon sequencing analysis
 for *acrR*. WT, wild type for the known mutations.

46	Table 1. The minimum inhibitory concentration (MIC) results (µg/mI) of all samples used in this
47	study, related to Fig. 1.

#	Age *	Sex	Wards **	AMP ***	SXT	CIP	СТХ	CRO	PIP/TZB	AMC	AZM	IPM	MEM
1	5	M	E	≥32	≥4/76	≥64	8	32	32/4 - 64/4	≥32/16	8	0.25	0.25
2	2	M	1	≥32	≥4/76	32	8	≥64	4/4-128/4	8/4	2	0.5	0.25
3	4	F	E	≥32	≥4/76	≥64	≥64	32	32/4 - 64/4	16/8	8	0.5	0.25
4	10	М	1	≥32	≥4/76	32	32	8	32/4 - 64/4	16/8	4	0.5	0.25
5	11	М	М	≥32	≥4/76	8	≥64	≥64	32/4 - 64/4	≥32/16	4	0.25	0.5
6	11	М	С	≥32	≥4/76	≥64	32	≥64	4/4-128/4	8/4	4	0.25	0.5
7	13	М	E	≥32	≥4/76	≥64	≥64	32	4/4-128/4	4/2	4	0.25	0.5
8	11	М	E	≥32	≥4/76	32	≥64	≥64	≥128/4	≥32/16	4	0.5	0.5
9	3	М	С	≥32	≥4/76	8	≥64	≥64	4/4-128/4	4/2	4	0.25	0.5
10	4	М	E	≥32	≥4/76	≥64	32	≥64	≥128/4	≥32/16	4	0.5	0.5
11	4	F	G	≥32	≥4/76	≥64	32	32	≥128/4	≥32/16	2	0.5	0.5
12	4	F	E	≥32	≥4/76	≥64	8	≥64	32/4 - 64/4	16/8	2	0.5	0.25
13	5	М	0	≥32	≥4/76	32	≥64	32	≥128/4	16/8	2	0.5	0.5
14	4	М	1	≥32	≥4/76	≥64	≥64	≥64	≥128/4	16/8	8	0.5	0.5
15	9	F	0	≥32	≥4/76	32	32	≥64	4/4-128/4	8/4	2	0.5	0.5
16	2	F	0	≥32	≥4/76	≥64	≥64	≥64	≥128/4	16/8	8	0.5	0.25
17	3	М	E	≥32	≥4/76	≥64	≥64	32	32/4 - 64/4	≥32/16	2	0.25	0.25
18	6	М	С	≥32	≥4/76	≥64	≥64	32	32/4 - 64/4	16/8	8	0.25	0.25
19	8	М	С	≥32	≥4/76	≥64	≥64	≥64	≥128/4	16/8	8	0.25	0.25
20	2	М	W	≥32	≥4/76	32	≥64	32	32/4 - 64/4	16/8	8	0.25	0.25
21	6	М	W	≥32	≥4/76	≥64	32	≥64	≥128/4	≥32/16	2	0.25	0.25
22	5	М	E	≥32	≥4/76	≥64	≥64	32	32/4 - 64/4	≥32/16	8	0.5	0.25
23	2	М	1	≥32	≥4/76	≥64	≥64	≥64	32/4 - 64/4	16/8	4	0.5	0.5
24	7	М	MI	≥32	≥4/76	≥64	8	32	32/4 - 64/4	≥32/16	8	0.5	0.5
25	5	М	E	≥32	≥4/76	8	≥64	≥64	≥128/4	16/8	4	0.25	0.25
26	11	М	E	≥32	≥4/76	≥64	≥64	32	≥128/4	16/8	8	0.25	0.25
27	2	М	E	≥32	≥4/76	≥64	≥64	32	≥128/4	≥32/16	8	0.25	0.5
28	7	М	W	≥32	≥4/76	≥64	32	≥64	≥128/4	16/8	4	0.5	0.5
29	2	F	W	≥32	≥4/76	≥64	32	8	4/4-128/4	8/4	4	0.5	0.25
30	6	М	E	≥32	≥4/76	≥64	≥64	≥64	32/4 - 64/4	16/8	4	0.5	0.25
31	3	М	С	≥32	≥4/76	≥64	≥64	8	32/4 - 64/4	≥32/16	8	0.25	0.25
32	5	М	E	≥32	≥4/76	≥64	32	32	32/4 - 64/4	16/8	4	0.25	0.25
33	3	F	E	≥32	≥4/76	≥64	≥64	≥64	32/4 - 64/4	16/8	4	0.25	0.25
34	6	М	E	≥32	≥4/76	32	≥64	≥64	32/4 - 64/4	≥32/16	4	0.5	0.5
35	6	F	0	≥32	≥4/76	≥64	≥64	≥64	32/4 - 64/4	8/4	4	0.25	0.5
36	11	М	С	≥32	≥4/76	≥64	≥64	8	≥128/4	8/4	8	0.25	0.5
37	2	F	W	≥32	≥4/76	32	32	≥64	4/4-128/4	8/4	4	0.5	0.5
38	13	F	F	≥32	≥4/76	32	≥64	≥64	32/4 - 64/4	8/4	4	0.5	0.5
39	10	F	E	≥32	≥4/76	≥64	≥64	8	32/4 - 64/4	8/4	8	0.5	0.25

40	4	F	0	≥32	≥4/76	8	≥64	≥64	32/4 - 64/4	8/4	4	0.25	0.25
41	5	М	0	≥32	≥4/76	≥64	≥64	32	≥128/4	≥32/16	8	0.25	0.5
42	5	М	E	≥32	≥4/76	≥64	32	≥64	32/4 - 64/4	16/8	4	0.25	0.25
43	8	F	E	≥32	≥4/76	32	32	≥64	≥128/4	8/4	4	0.25	0.5
44	2	F	0	≥32	≥4/76	≥64	≥64	≥64	32/4 - 64/4	≥32/16	4	0.5	0.25
45	1	М	E	≥32	≥4/76	≥64	8	32	32/4 - 64/4	≥32/16	4	0.25	0.25

48 *, Age in years.

49 **, E, Peads Emergency; I, PAED-ICU; M, Male Medical; C, Clinical Laboratory; G, General OPD; O,

50 Peads Medical OPD; W, Pead Medical Ward; MI, Pead Medical ICU; F, FMH-executive clinic.

51 ***, Antibiotic acronym: AMP, ampicillin, SXT, trimethoprim-sulfamethoxazole, CIP, ciprofloxacin, CTX,

52 cefotaxime, CRO, ceftriaxone, AZM, azithromycin, PIP, piperacillin, TZB, tazobactam, AMC, amoxicillin/ 53 clavulanic acid, IPM, imipenem, MEM, meropenem.

Lab No	Age (Yr)	Sex	AMP	SXT	CIP	CTX	CRO	PIP/TZB	AMC/CLA	AZM	IPM	MEM
			M	DR		XDR						
	Toddlers (1-2 yrs)											
16	2	F	R	R	R	R	R	I	I	S	S	S
2	2	М	R	R	R	R	R	S	S	S	S	S
20	2	М	R	R	R	R	R	I	I	S	S	S
23	2	М	R	R	R	R	R	I	I	S	S	S
27	2	М	R	R	R	R	R	I	I	S	S	S
	Pre-schoolers (3-5 yrs)											
33	3	F	R	R	R	R	R	I	ļ	S	S	S
9	3	М	R	R	R	R	R	S	S	S	S	S
17	3	М	R	R	R	R	R	I	I	S	S	S
31	3	М	R	R	R	R	R	I	I	S	S	S
40	4	F	R	R	R	R	R	I	S	S	S	S
12	4	F	R	R	R	R	R	I	I	S	S	S
1	5	М	R	R	R	R	R	1	l	S	S	S
				S	chool-a	ge childı	en (6-12	2 yrs)		1		
15	9	F	R	R	R	R	R	S	S	S	S	S
6	11	М	R	R	R	R	R	S	S	S	S	S
8	11	М	R	R	R	R	R	I	I	S	S	S
36	11	М	R	R	R	R	R		S	S	S	S
		1			Adole	scents (13-18 yr	s)	1	1		
38	13	F	R	R	R	R	R	I	S	S	S	S
7	13	М	R	R	R	R	R	S	S	S	S	S

54 Table 2. Select of samples for molecular characterization, related to Figs 2-6.

Genes	Primers	Primer sequences (5'-3')	Annealing temp.	Extension time (min)	
pltB	Forward	TAAACCATGATAGACTGG	55°C		1
phe	Reverse	GAAAGTTACGGTTATACC		0.0	001
	Sequencing	TAAACCATGATAGACTGG			
blaTEM1	Forward	AACCCTGGTAAATGCTTC	55°C	1	861
	Reverse	GTATATATGAGTAAACTTGG			
catA1	Forward	GAAGATCACTTCGCAGAATAA	45°C	1	964
04011	Reverse	CAGCAATAGACATAAGCG			
dhfR7	Forward	GCAACGTCAGAAAATGGC	60°C	0.5	size (b) 657 861 964 405 500 722 2726 2726 22726 2283 1893 1893 1893 1893
••••••	Reverse	AAACTGCTCAAAAAGGAAATT			
		GA			657 861 964 405 500 722 2726 2415 2283 2283 2283 1893 1893 549 1308 1695
sul1	Forward	GTATTGCGCCGCTCTTAGAC	60°C	0.5	 size (b) size (b) 657 861 964 405 405 500 722 2726 2415 2283 2415 2283 1893 1893 549 1308 1695 1820 1820
	Reverse	AGGGTTTCCGAGAAGGTGAT			
0	Forward	TATAATGGTAGTCTAGCCC	5000		700
qnrS	Reverse	GATGTGTGATTTTAAACG	52°C	1	122
	Forward	CTTTGAATCCGGGATACAG	5500	<u> </u>	0700
gyrA	Reverse	CCTTTTTCTTGTCTATGGAA	55°C	time (min) size (br $^{\circ}$ C 0.5 657 $^{\circ}$ C 1 861 $^{\circ}$ C 1 964 $^{\circ}$ C 0.5 405 $^{\circ}$ C 0.5 500 $^{\circ}$ C 0.5 500 $^{\circ}$ C 2 2726 $^{\circ}$ C 2 2726 $^{\circ}$ C 2 2415 $^{\circ}$ C 2.5 2283 $^{\circ}$ C 2 1893 $^{\circ}$ C 2 1893 $^{\circ}$ C 1.5 1695 $^{\circ}$ C 1.5 1820 $^{\circ}$ C 1.5 1820	
	Sequencing	CTTTGAATCCGGGATACAG			size (br 657 861 964 405 500 722 2726 22726 22726 22415 2283 1893 1893 1893 1308
	Forward	GAAAAGGGTAAAATAACGG	5500	0	2415
gyrB	Reverse	CATCATGATGCCCTGGCCAG	55°C	2	2415
	Sequencing	GAATAAAACGCCGATCCAC			2415
	Forward	ATAGGGTATTATCTGCGGC	5500	0.5	2283
parC	Reverse	GAATAAACAACGGTTTTACG	55°C	2.5	2283
	Sequencing	ATAGGGTATTATCTGCGGC			
	Forward	TGCACAGTTGCTGACAATC			
	Reverse	TCGGATTCTCTTATCCGGCCT	A 55°C 2 2 G G G G G 55°C 2 2 AG 55°C 2.5 2 C C C C C C C C C C C C C C C C AG 52°C 0.5 8 TG 52°C 1 1	2	1893
parE		G			
	Sequencing	CTGTGGCTGAACCAGAAC			
blaCTXM15	Forward	GATGTGCAGCACCAGTAAAG	50°C	0.5	540
DIACTXIVITS	Reverse	AACGATATCGCGGTGATCTG	52 C	0.5	549
	Forward	CTGTAAGCTGTGTCATGATCG	50°C	1	657 861 964 405 500 722 2726 2415 2283 2283 1893 1893 1893 1893 1893 1893 1893 18
macA	Reverse	CTCACATTGCACAGTTCAAGC	52 C	I	
	Sequencing	CTGTAAGCTGTGTCATGATCG			
	Forward	GGTTAAAGTGCAGGAAATTAC			
acrB(1)		CG	50°C	1.5	1695
	Reverse	CTACGCTATCGGTGTAGTGAT			
	Forward	GACGATGCTCAAACCCGT			
acrB(2)	Reverse	GCCAACTTTCCTAAGAAAAAG	50°C	1.5	1820
	L	СС			
	Sequencing	GACTTCGAGTTGATTGACCA			
_	Forward	CACCGACATATGGCACGAA	52°C	1	2726 2415 2283 1893 549 1308 1695 1820
acrR	Reverse	CAGCGTCGGACACAATTGATA			
	Sequencing	GAAAGTTACGATCGGATTGA			

56 **Table 3. PCR and sequencing primers and PCR conditions used in this study, related to Methods.**

Genes	Mutations	References	Findings
	M52L	(14)	Wild type
	G81C	(16)	Wild type
aurA	D82G	(16)	Wild type
gyrA	S83F/Y/L	(13, 20)	S83F
	D87Y/H/N/G/A	(13, 20, 48)	Wild type
	A119E	(16)	Wild type
	S464Y/F/T	(17)	Wild type
avrP	Q465L		Wild type
gyrB	E466D		Wild type
	A468E		Wild type
	T57S	(18, 19)	Wild type
	G72S	(13)	Wild type
	G78D	(16)	Wild type
parC	D79G/R	(16, 18)	Wild type
	S80R/I	(16, 20)	Wild type
	G84G/K	(18, 20)	Wild type
	W106G	(15)	Wild type
	D420N	(20)	Wild type
parE	Y434S	(18)	Wild type
	S458P	(16)	Wild type

58 Table 4. Sequencing results associated with fluoroquinolone resistance, related to Fig. 3.

60 Table 5. Details of the 107 completed S. Typhi genomes used in the study, related to Fig. 6.

Accession number	Assembly number	BioProject	BioSample	BioSample ID	Serovar
GCF_000007545.1	ASM754v1	PRJNA371	SAMN02604095	2604095	Typhi
GCF 000195995.1	ASM19599v1	PRJNA236	SAMEA1705914	25445	Typhi
GCF_000245535.1	ASM24553v1	PRJNA80939	SAMN02603101	2603101	Typhi
GCF 000385905.1	ASM38590v1	PRJNA34855	SAMN02603210	2603210	Typhi
GCF_001048035.2	ERL103914	PRJEB3215	SAMEA2072815	2363281	Typhi
GCF_001048375.2	M223	PRJEB3215	SAMEA2156512	2372886	Typhi
GCF_001095585.2	ERL114000	PRJEB3215	SAMEA2072817	2363290	Typhi
GCF_001104165.2	E00-7866	PRJEB3215	SAMEA2072798	2363309	Typhi
GCF_001104885.2	10349_1#89_ 2	PRJEB3215	SAMEA2072799	2363310	Typhi
GCF_001118185.2	H12ESR0039 4-001A	PRJEB3215	SAMEA2150110	2379332	Typhi
GCF_001119245.2	76_1292	PRJEB3215	SAMEA1930246	2387556	Typhi
GCF_001121865.2	404Ty	PRJEB3215	SAMEA2072936	2363311	Typhi
GCF_001127485.2	ERL041834	PRJEB3215	SAMEA2072498	2363237	Typhi
GCF_001135805.2	ERL072973	PRJEB3215	SAMEA2072503	2363252	Typhi
GCF_001148125.2	ERL024120	PRJEB3215	SAMEA2072494	2363225	Typhi
GCF_001148305.2	ERL082356	PRJEB3215	SAMEA2072647	2363255	Typhi
GCF_001163025.2	H12ESR0473 4-001A	PRJEB3215	SAMEA2072794	2363303	Typhi
GCF_001165785.2	ERL024919	PRJEB3215	SAMEA2072495	2363228	Typhi
GCF_001302605.1	ASM130260v1	PRJNA286155	SAMN03765654	3765654	Typhi
GCF_001357935.2	80_2002	PRJEB3215	SAMEA1930249	2387559	Typhi
GCF_001360555.2	2010_7898	PRJEB3215	SAMEA2058419	2301303	Typhi
GCF_001362095.2	034151_4	PRJEB3215	SAMEA2072676	2363233	Typhi
GCF_001362135.2	11909_3	PRJEB3215	SAMEA2072788	2363294	Typhi
GCF_001362195.2	H12ESR0075 5-001A	PRJEB3215	SAMEA2072793	2363301	Typhi
GCF_001362335.2	Ty2	PRJEB3215	SAMEA2072934	2363305	Typhi
GCF_003429465.1	ASM342946v1	PRJNA398278	SAMN07507058	7507058	Typhi
GCF_003716995.1	ASM371699v1	PRJNA474465	SAMN09320528	9320528	Typhi
GCF_003717015.1	ASM371701v1	PRJNA474465	SAMN09320527	9320527	Typhi
GCF_003717035.1	ASM371703v1	PRJNA474465	SAMN09320526	9320526	Typhi
GCF_003717055.1	ASM371705v1	PRJNA474465	SAMN09320523	9320523	Typhi
GCF_003717075.1	ASM371707v1	PRJNA474465	SAMN09320522	9320522	Typhi
GCF_003717095.1	ASM371709v1	PRJNA474465	SAMN09320521	9320521	Typhi
GCF_003717115.1	ASM371711v1	PRJNA474465	SAMN09320520	9320520	Typhi
GCF_003717135.1	ASM371713v1	PRJNA474465	SAMN09320519	9320519	Typhi
GCF_003717215.1	ASM371721v1	PRJNA474465	SAMN09320518	9320518	Typhi
GCF_003717285.1	ASM371728v1	PRJNA474465	SAMN09320517	9320517	Typhi
GCF_003717355.1	ASM371735v1	PRJNA474465	SAMN09320516	9320516	Typhi
GCF_003717395.1	ASM371739v1	PRJNA474465	SAMN09320514	9320514	Typhi
GCF_003717435.1	ASM371743v1	PRJNA474465	SAMN09320513	9320513	Typhi
GCF_003717455.1	ASM371745v1	PRJNA474465	SAMN09320512	9320512	Typhi
GCF_003717475.1	ASM371747v1	PRJNA474465	SAMN09320511	9320511	Typhi
GCF_003717515.1	ASM371751v1	PRJNA474465	SAMN09320510	9320510	Typhi
GCF_003717535.1	ASM371753v1	PRJNA474465	SAMN09320509	9320509	Typhi

GCF_003717575.1	ASM371757v1	PRJNA474465	SAMN09320507	9320507	Typhi
GCF_003717615.1	ASM371761v1	PRJNA474465	SAMN09320564	9320564	Typhi
GCF_003717635.1	ASM371763v1	PRJNA474465	SAMN09320563	9320563	Typhi
GCF_003717655.1	ASM371765v1	PRJNA474465	SAMN09320562	9320562	Typhi
GCF_003717675.1	ASM371767v1	PRJNA474465	SAMN09320561	9320561	Typhi
GCF_003717695.1	ASM371769v1	PRJNA474465	SAMN09320560	9320560	Typhi
GCF_003717715.1	ASM371771v1	PRJNA474465	SAMN09320559	9320559	Typhi
GCF_003717735.1	ASM371773v1	PRJNA474465	SAMN09320558	9320558	Typhi
GCF_003717755.1	ASM371775v1	PRJNA474465	SAMN09320557	9320557	Typhi
GCF_003717775.1	ASM371777v1	PRJNA474465	SAMN09320556	9320556	Typhi
GCF_003717795.1	ASM371779v1	PRJNA474465	SAMN09320555	9320555	Typhi
GCF_003717815.1	ASM371781v1	PRJNA474465	SAMN09320554	9320554	Typhi
GCF_003717835.1	ASM371783v1	PRJNA474465	SAMN09320553	9320553	Typhi
GCF_003717855.1	ASM371785v1	PRJNA474465	SAMN09320552	9320552	Typhi
GCF_003717875.1	ASM371787v1	PRJNA474465	SAMN09320551	9320551	Typhi
GCF_003717895.1	ASM371789v1	PRJNA474465	SAMN09320550	9320550	Typhi
GCF_003717915.1	ASM371791v1	PRJNA474465	SAMN09320549	9320549	Typhi
GCF_003717935.1	ASM371793v1	PRJNA474465	SAMN09320548	9320548	Typhi
GCF_003717955.1	ASM371795v1	PRJNA474465	SAMN09320547	9320547	Typhi
GCF_003717975.1	ASM371797v1	PRJNA474465	SAMN09320546	9320546	Typhi
GCF_003717995.1	ASM371799v1	PRJNA474465	SAMN09320545	9320545	Typhi
GCF_003718015.1	ASM371801v1	PRJNA474465	SAMN09320544	9320544	Typhi
GCF_003718035.1	ASM371803v1	PRJNA474465	SAMN09320543	9320543	Typhi
GCF_003718055.1	ASM371805v1	PRJNA474465	SAMN09320542	9320542	Typhi
GCF 003718075.1	ASM371807v1	PRJNA474465	SAMN09320541	9320541	Typhi
GCF 003718095.1	ASM371809v1	PRJNA474465	SAMN09320540	9320540	Typhi
GCF_003718115.1	ASM371811v1	PRJNA474465	SAMN09320539	9320539	Typhi
GCF 003718135.1	ASM371813v1	PRJNA474465	SAMN09320538	9320538	Typhi
GCF 003718155.1	ASM371815v1	PRJNA474465	SAMN09320537	9320537	Typhi
GCF 003718175.1	ASM371817v1	PRJNA474465	SAMN09320536	9320536	Typhi
GCF_003718195.1	ASM371819v1	PRJNA474465	SAMN09320535	9320535	Typhi
GCF 003718235.1	ASM371823v1	PRJNA474465	SAMN09320533	9320533	Typhi
GCF 003718255.1	ASM371825v1	PRJNA474465	SAMN09320532	9320532	Typhi
GCF_003718275.1	ASM371827v1	PRJNA474465	SAMN09320531	9320531	Typhi
GCF 003718295.1	ASM371829v1	PRJNA474465	SAMN09320530	9320530	Typhi
GCF 003718315.1	ASM371831v1	PRJNA474465	SAMN09320529	9320529	Typhi
GCF 003718355.1	ASM371835v1	PRJNA474465	SAMN09320578	9320578	Typhi
GCF 003718375.1	ASM371837v1	PRJNA474465	SAMN09320577	9320577	Typhi
GCF 003718395.1	ASM371839v1	PRJNA474465	SAMN09320576	9320576	Typhi
GCF 003718415.1	ASM371841v1	PRJNA474465	SAMN09320575	9320575	Typhi
GCF 003718435.1	ASM371843v1	PRJNA474465	SAMN09320574	9320574	Typhi
GCF 003718455.1	ASM371845v1	PRJNA474465	SAMN09320573	9320573	Typhi
GCF 003718475.1	ASM371847v1	PRJNA474465	SAMN09320572	9320572	Typhi
GCF 003718495.1	ASM371849v1	PRJNA474465	SAMN09320571	9320571	Typhi
GCF 003718515.1	ASM371851v1	PRJNA474465	SAMN09320570	9320570	Typhi
GCF 003718535.1	ASM371853v1	PRJNA474465	SAMN09320569	9320569	Typhi
GCF 003718555.1	ASM371855v1	PRJNA474405	SAMN09320568	9320568	Typhi
GCF_0037185353.1	ASM371855V1	PRJNA474405	SAMN09320567	9320567	Typhi
GCF_003718575.1	ASM371857v1	PRJNA474405	SAMN09320566	9320566	Typhi
GCF_003/10383.1	ASINIS1 10380 1	FRJINA4/4403	SAMMINU3320300	9320300	турпі

ASM371861v1	PRJNA474465	SAMN09320565	9320565	Typhi
ASM371863v1	PRJNA474465	SAMN09320525	9320525	Typhi
ASM371865v1	PRJNA474465	SAMN09320506	9320506	Typhi
ASM371921v1	PRJNA474465	SAMN09320534	9320534	Typhi
ASM371923v1	PRJNA474465	SAMN09320508	9320508	Typhi
ASM371925v1	PRJNA474465	SAMN09320515	9320515	Typhi
ASM371955v1	PRJNA471337	SAMN09208111	9208111	Typhi
ASM413633v1	PRJNA480202	SAMN09630442	9630442	Typhi
ASM588583v1	PRJNA543969	SAMN11792777	11792777	Typhi
BL60006	PRJEB21155	SAMEA1041091	7190870	Typhi
		93		
1554	PRJEB5919	SAMEA3109638	3338098	Typhi
lupe_GEN005	PRJEB5919	SAMEA2564024	3071773	Typhi
95				
403Ty	PRJEB5919	SAMEA2564027	3071775	Typhi
E98-3139	PRJEB5919	SAMEA2467787	3000319	Typhi
ERS3381924	PRJEB32272	SAMEA5577690	11516613	Typhi
	ASM371863v1 ASM371865v1 ASM371921v1 ASM371923v1 ASM371925v1 ASM371955v1 ASM413633v1 ASM413633v1 BL60006 1554 lupe_GEN005 9_5 403Ty E98-3139	ASM371863v1 PRJNA474465 ASM371865v1 PRJNA474465 ASM371921v1 PRJNA474465 ASM371923v1 PRJNA474465 ASM371925v1 PRJNA474465 ASM371925v1 PRJNA474465 ASM371955v1 PRJNA471337 ASM413633v1 PRJNA4743969 BL60006 PRJEB21155 1554 PRJEB5919 Jupe_GEN005 PRJEB5919 9_5 PRJEB5919 403Ty PRJEB5919	ASM371863v1 PRJNA474465 SAMN09320525 ASM371865v1 PRJNA474465 SAMN09320506 ASM371921v1 PRJNA474465 SAMN09320534 ASM371921v1 PRJNA474465 SAMN09320508 ASM371923v1 PRJNA474465 SAMN09320508 ASM371925v1 PRJNA474465 SAMN09320515 ASM371955v1 PRJNA474465 SAMN09320511 ASM371955v1 PRJNA474465 SAMN093205111 ASM413633v1 PRJNA471337 SAMN09630442 ASM588583v1 PRJNA543969 SAMN11792777 BL60006 PRJEB21155 SAMEA1041091 93 1554 PRJEB5919 SAMEA3109638 lupe_GEN005 PRJEB5919 SAMEA2564024 9_5 - - 403Ty PRJEB5919 SAMEA2564027 E98-3139 PRJEB5919 SAMEA2467787	ASM371863v1 PRJNA474465 SAMN09320525 9320525 ASM371863v1 PRJNA474465 SAMN09320506 9320506 ASM371921v1 PRJNA474465 SAMN09320534 9320534 ASM371923v1 PRJNA474465 SAMN09320508 9320508 ASM371923v1 PRJNA474465 SAMN09320508 9320508 ASM371925v1 PRJNA474465 SAMN09320515 9320515 ASM371955v1 PRJNA471337 SAMN09208111 9208111 ASM413633v1 PRJNA480202 SAMN09630442 9630442 ASM588583v1 PRJNA543969 SAMN11792777 11792777 BL60006 PRJEB21155 SAMEA1041091 7190870 93 93 93 93 111 1554 PRJEB5919 SAMEA3109638 3338098 lupe_GEN005 PRJEB5919 SAMEA2564024 3071773 9_5 9 SAMEA2564027 3071775 E98-3139 PRJEB5919 SAMEA2467787 3000319