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Abstract 12 

When making decisions in real-life, we may receive discrete pieces of evidence during a time period. 13 

Although subjects are able to integrate information from separate cues to improve their accuracy, 14 

confidence formation is controversial. Due to a strong positive relation between accuracy and 15 

confidence, we predicted that confidence followed the same characteristics as accuracy and would 16 

improve following the integration of information collected from separate cues. We applied a Random-17 

dot-motion discrimination task in which participants had to indicate the predominant direction of dot 18 

motions by saccadic eye movement after receiving one or two brief stimuli (i.e., pulse(s)). The interval 19 

of two pulses (up to 1s) was selected randomly. Color-coded targets facilitated indicating confidence 20 

simultaneously. Using behavioral data, computational models, pupillometry and EEG methodology we 21 

show that in double-pulse trials: (i) participants improve their confidence resolution rather than 22 

reporting higher confidence comparing with single-pulse trials, (ii) the observed confidence follow 23 

neural and pupillometry markers of confidence, unlike in weak and brief single-pulse trials. Overall, 24 

our study showed improvement of associations between confidence and accuracy in decision results 25 

from the integration of stimulus separated by different temporal gaps. 26 

1 Introduction 27 

Humans and animals can both make choices based on multiple discrete pieces of information. Imagine 28 

that a large bus is passing between you and a faraway car as you cross the street. In this situation, 29 

simply by collecting discrete pieces of information about the car’s position through the windows of the 30 

bus, you can decide whether the car is moving toward or away from you. In this scenario, as the number 31 

of pieces of information increased, the interpretation of the car’s direction would be improved. Indeed, 32 

research has shown that the accuracy of decisions can be significantly improved by integrating 33 
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information from separate cues (Kiani, Churchland, & Shadlen, 2013; Kira, Yang, & Shadlen, 2015; 34 

tickle, Tsetsos, Speekenbrink, & Summerfield, 2020; Tohidi-Moghaddam, Zabbah, Olianezhad, & 35 

Ebrahimpour, 2019; Waskom & Kiani, 2018). Typically, our decisions are accompanied by feelings 36 

that reflect the likelihood that the decision is correct; such a feeling is called confidence (Kiani, 37 

Corthell, & Shadlen, 2014). For example, imagine that the scene in the previous scenario is also 38 

included a foggy weather. In this case, low visibility may reduce the confidence of your judgments. 39 

This diminished confidence per se may lead to change your mind (Fleming, Putten, & Daw, 2018; 40 

Resulaj, Kiani, Wolpert, & Shadlen, 2009), impact your behavioral adjustments, and affect how 41 

quickly and accurately you make your consecutive decisions (Meyniel, Sigman, & Mainen, 2015; van 42 

den Berg, Zylberberg, Kiani, Shadlen, & Wolpert, 2016). Due to the potential effects of confidence on 43 

decision-making, in the last few years, considerable progresses had been made in the understanding of 44 

the behavioral (Kiani et al., 2014; Zylberberg, Barttfeld, & Sigman, 2012) and the neuronal (Baranski 45 

et al., 2017; Gherman & Philiastides, 2015; Kiani & Shadlen, 2009) properties of confidence and its 46 

association with perceptual decision-making. However, how confidence is established within a discrete 47 

environment is still unclear. 48 

According to the leading computational approach in perceptual decision-making (Gold & Shadlen, 49 

2007; Shadlen & Kiani, 2013), when the accumulated evidence for one option, called a decision 50 

variable (DV), crosses a threshold or a boundary, a decision would be made. In addition, confidence is 51 

briefed by the probability that a decision relying on the DV is correct (Kiani et al., 2014; Kiani & 52 

Shadlen, 2009; van den Berg et al., 2016; Zylberberg, Fetsch, & Shadlen, 2016). Research has 53 

confirmed a strong positive relation between accuracy and confidence  (Kiani et al., 2014; Vafaei 54 

Shooshtari, Esmaily Sadrabadi, Azizi, & Ebrahimpour, 2019). Moreover, it has been shown that, when 55 

we need to decide based on the discrete pieces of evidence, the decision is determined by integrating 56 

the DV of all those pieces (Kiani et al., 2013; Waskom & Kiani, 2018) and the accuracy even exceeded 57 

expectations predicted by evidence integration models (Kiani et al., 2013). Accordingly, one may 58 

suggest that confidence would follow the same characteristics as accuracy and would increase 59 

considerably after receiving separate pieces of information.  60 

Nevertheless, a large body of evidence (e.g. (Herce Castañón et al., 2019; Zylberberg et al., 2016)) 61 

determines that human observers do not report their confidence in consistent with their accuracy. From 62 

this standpoint, noise can be considered as the key parameter to clarify variations in confidence (Kiani 63 

et al., 2014; Zylberberg et al., 2012).  For instance, an underestimation of sensory noise in decisions 64 

would lead to over and/or under-confidence (De Gardelle & Mamassian, 2015; Herce Castañón et al., 65 

2019; Zylberberg, Roelfsema, & Sigman, 2014) such that observers may ignore evidence in favor of 66 

other alternatives (Zylberberg et al., 2012). Moreover, confidence ratings may not only originate from 67 

the available sensory evidence (Rahnev & Denison, 2018; Zylberberg et al., 2016). So, the observers 68 

may integrate additional evidence into their confidence rating, which was not used for making their 69 

decision, allowing them to change their mind after the initiation of a response (Atiya et al., 2020; 70 

Resulaj et al., 2009). This suggests that computational description of confidence would be controlled 71 

by the attendance of both decision and confidence performance (Balsdon, Wyart, & Mamassian, 2020; 72 

Maniscalco & Lau, 2014).  73 

To test the hypothetical relation between the accuracy and confidence, in binary decisions, signal 74 

detection theory (SDT) can provide a method to characterize how well the observers reporting the 75 

confidence ratings by introducing metacognitive sensitivity and efficiency (Figure 1B; (Fleming, 76 

2017; Maniscalco & Lau, 2012, 2014)). In fact, for years, SDT has provided a simple yet powerful 77 

methodology to distinguish between an observer’s ability to categorize the stimulus and the behavioral 78 

response (Green & Swets, 1966), and to determine confidence resolution.  79 
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Moreover, levels of confidence can be tracked by behavioral, neural and pupillometry signatures. 80 

Higher confidence are accompanied by faster and more accurate decisions (Kiani et al., 2014; van den 81 

Berg et al., 2016; Zylberberg et al., 2016). In addition, research on perceptual decision-making has 82 

established an EEG potential characterized by a centro-parietal positivity (CPP) as a neural correlate 83 

of sensory evidence accumulation (Kelly & O’Connell, 2013; O’connell, Dockree, & Kelly, 2012) and 84 

confidence (Boldt, Schiffer, Waszak, & Yeung, 2019; Herding, Ludwig, von Lautz, Spitzer, & 85 

Blankenburg, 2019; Tagliabue et al., 2019; Vafaei Shooshtari et al., 2019; Zizlsperger, Sauvigny, 86 

Händel, & Haarmeier, 2014). In particular, it has been shown that the CPP, despite the difference, is 87 

present for both correct and incorrect decisions (O’connell et al., 2012; Steinemann, O’Connell, & 88 

Kelly, 2018) and can reflect not only external evidence but also an internal decision quantity such as 89 

decision confidence. In addition, levels of confidence can be tracked by monitoring the pupil. The 90 

literature has suggested strong links between pupil dilation and both the decision (Murphy, Boonstra, 91 

& Nieuwenhuis, 2016) and confidence (Allen et al., 2016; Lempert, Chen, & Fleming, 2015; Urai, 92 

Braun, & Donner, 2017) via pupil-linked dynamics of the noradrenergic system (Laeng, Sirois, & 93 

Gredebäck, 2012). For example, pupillometry has provided some evidence that shows a partial 94 

dissociation between choice and confidence in decision-making (Balsdon et al., 2020). Considering the 95 

potential of response-time, CPP and pupillometry signatures to capture the distinction between choice 96 

and confidence in decision-making, they can be considered as informative paradigms to explore the 97 

confidence-accuracy association. 98 

Accordingly, to bridge the existing gap in the confidence and perceptual decision-making literature, 99 

we implemented two separate experiments to explore three questions: First, how participants 100 

accumulate discrete evidence to establish confidence judgments. Second, whether the confidence 101 

ratings are in accordance with accuracy after integration of discrete evidence. Finally, how implicit 102 

markers of confidence —response-time, CPP and pupillometry— change after receiving separated 103 

pieces of information. Here, to clarify confidence, we required observers to make a two-alternative 104 

decision after viewing either one (single-pulse) or two (double-pulse) motion pulses separated by four 105 

various temporal gaps (similar to (Kiani et al., 2013; Tohidi-Moghaddam et al., 2019)). We performed 106 

several logistic regression models to measure the impact of stimulus characteristics on confidence. 107 

Also, we applied a set of computational models based on SDT to assess how accuracy and confidence 108 

varied throughout the experiments. Then, in the second experiment, we used EEG methodology to 109 

examine the relation between participants’ brain activity and their confidence. We expected a neural 110 

indicator of perceptual decision making (CPP) would show amplitude changes between the two levels 111 

of confidence. In addition to behavioral data and EEG methodology, participants’ pupil response was 112 

monitored across both experiments to examine the relation between participants’ pupil dilation and 113 

their confidence.  The findings expose that participant integrated information from pulses, invariant to 114 

the temporal gap, to improve the confidence resolution instead of reporting higher confidence. 115 

Likewise, in double-pulse trials, behavioral, neural and pupillometry markers of confidence would be 116 

distinguishable, entirely unlike in brief and weak single-pulse trials. 117 

2 Materials and Methods 118 

2.1 Participants 119 

Consistent with methodological considerations in previous studies, a total of 19 observers participated 120 

in the two experiments. Six participants (three male; Mage = 32.25; SDage = 4.5) attended in our 121 

behavioral experiment —Experiment 1— and 13 participants (three males; Mage = 31.41; SDage = 5.56) 122 

took part in our EEG experiment —Experiment 2. All participants had normal or corrected-to-normal 123 
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vision, and none of them had any history of psychiatric and neurological disorders. Previous studies 124 

with the same paradigm in which a large number of trials were presented to a small number of 125 

participants (e.g., five participants in(Kiani et al., 2013); six participants in (Kiani et al., 2014); four 126 

participants in (van den Berg et al., 2016) and six participants in (Stine, Zylberberg, Ditterich, & 127 

Shadlen, 2020)), assume that with extensive training, all participants would reach an acceptable level 128 

of performance. As such, a small number of trained participants would perform similar to the 129 

performance of a large number of participants. Accordingly, to make participants' performance reach 130 

the same criteria and reduce the between-participant variability, all participants received extensive 131 

training sessions on the Random-dot-motion discrimination task prior to data collection. Moreover, 132 

participants’ understanding of the confidence reporting procedure was double-checked prior to the 133 

experiments.  In Experiment 1, one participant was excluded due to the difficulty in reporting decision 134 

and confidence simultaneously, and another participant decided to leave the experiment shortly after 135 

participation. In addition, one participant was excluded from Experiment 2 because of the excessive 136 

noise in EEG electrodes crucial to the analysis.  137 

2.2 Stimuli 138 

We explored the confidence formation in discrete environment with a random-dot-motion (RDM) 139 

discrimination task. Participants had to indicate the predominant motion direction of a cloud of moving 140 

dots (left or right) presented within a 5° circular aperture at the center of the screen. The dot density 141 

was 16.7 dots/degree2/s and the displacement of the coherently moving dots produced an apparent 142 

speed of 6 deg/s. The RDM movies were generated by three interleaved sets of dots presented on 143 

consecutive video frames. Three video frames later, each dot was redrawn at a location consistent with 144 

the direction of motion or at a random location within the stimulus space. More details can be found in 145 

previous studies (e.g. (Roitman & Shadlen, 2002)). The experiment code was programmed in 146 

MATLAB 2016a (Mathworks Inc., USA) using PsychToolbox (Brainard & Vision, 1997; Kleiner, 147 

Brainard, & Pelli, 2007) 148 

2.3  Experimental Tasks 149 

Participants performed the RDM task in blocks of 200 trials. Each trial started with participants fixating 150 

a small red point (diameter 0.3°) at the screen center. After 500 ms, two choice-targets appeared to the 151 

left and right of the fixation point (10° eccentricity; Figure 1A). Each target was shaped as a gradient 152 

rectangle (9° length and 0.5° width). After a variable duration of 200 - 500 ms (truncated exponential 153 

distribution), the RDM was presented. Participants had to indicate their choice after receiving one or 154 

two pulses of 120ms of motion pulses. The gap interval of double-pulse trials was selected randomly 155 

from 0, 120, 360, and 1080ms. On single-pulse trials, motion coherence was randomly selected from 156 

these six values: 0%, 3.2%, 6.4%, 12.8%, 25.6%, and 51.2%, whereas, on double-pulse trials, motion 157 

coherence of each pulse was randomly chosen from three values: 3.2%, 6.4%, and 12.8%. Both pulses 158 

had the same net direction of motion and participants were aware of it. In total, there were 6 single-159 

pulse and 9 × 4 double-pulse trial types. After the offset of one or two motion pulses, a 400 to 1000 ms 160 

delay period (truncated exponential) was imposed before the Go signal appeared on the screen. In each 161 

trial, participants were required to indicate their response by directing the gaze to one of the targets, 162 

the upper extreme of targets representing full decision confidence and the lower extreme representing 163 

guessing (Figure 1A). To provide the approximate balance within the trials, we constructed a list of 164 

all possible conditions of motion coherences and gaps. Then, we shuffled the listed conditions and 165 

assigned them randomly to the trials in each block. Participants were instructed to achieve high 166 

performance. Distinctive auditory feedback (Beep Tones) was provided for correct and incorrect 167 

responses. The type of feedback of 0% coherence trials was selected randomly by a uniform 168 
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distribution.  In Experiment 1, each participant performed the task across multiple blocks on different 169 

days (12-20 blocks). Experiment 2 contained the same paradigm as Experiment 1. All variables of 170 

stimulus remained constant except, in Experiment 2, the EEG data were also recorded. In Experiment 171 

2, each participant completed a session of 4-5 blocks. 172 

 173 

 

Figure 1. Task paradigm and Signal Detection Theory. (A) Participants had to indicate the 

predominant direction of motion of moving dots (left or right) by saccadic eye movement to one 

of the targets after receiving one or two pulse(s) of 120ms stimulus. The intervals between two 

pulses were selected randomly from 0 to 1080 ms and the direction of both pulses were the same. 

Color-coded targets enabled participants indicating their confidence simultaneously. (B) On 

each trial, a stimulus generates an internal response 𝑥 within an observer, who must use 𝑥 to 

decide whether the stimulus is 𝑆1 or 𝑆2, 𝑥 is drawn from a normal distribution. The distance 

between these distributions is 𝑑′, which measures the observer’s ability to discriminate 𝑆1 from 

𝑆2. The observer also rates decision confidence on a scale of high and low by comparing 𝑥 to 

the additional response specific confidence criteria (𝑐𝑟2 for each option). For details, see 

Supplementary Appendix 2 and refs (Fleming, 2017; Maniscalco & Lau, 2012, 2014). 

 174 

2.4 EEG Recording and pre-processing 175 

We used a 32-channel amplifier for the EEG signal recording (eWave, produced by ScienceBeam, 176 

http://www.sciencebeam.com/) which provided 1K sample/s of time resolution. EEG was recorded at 177 
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31 scalp sites (Fp1, Fp2, AF3, AF4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, FPz, Fz, Cz, Pz, 178 

Oz, POz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6). The EEG signals were referenced to the right 179 

mastoid. The recorded data were taken to Matlab (Mathworks Inc., USA) and pre-processed as follows. 180 

The signals were filtered using a band-pass filter from 0.1 Hz to 40 Hz (Zizlsperger et al., 2014) for 181 

removing high frequency and independent cognitive noises. Then, all trials were inspected, and those 182 

containing Electromyography (EMG) or other artifacts were identified and manually removed. The 183 

second artifact rejection step included independent components analysis (ICA) using the EEGLAB 184 

toolbox (Delorme & Makeig, 2004). To select the removable ICA component, the ADJUST plugin 185 

(Mognon, Jovicich, Bruzzone, & Buiatti, 2011) was used. 186 

2.5 Pupillometry Recording and pre-processing 187 

The eye data were collected using an EyeLink 1000 infrared eye-tracker system (SR Research Ltd. 188 

Ontaro, Canada). This device allowed a 1000-Hz sampling rate and was controlled by a dedicated host 189 

PC. The system was calibrated and validated before each block by presenting nine targets at the center, 190 

edges, and corners of the display monitor. The left eye’s data was recorded and passed to the host PC 191 

via an Ethernet link during data collection. 192 

Missing data and blinks, as detected by the EyeLink software, were padded and interpolated. 193 

Additional blinks were spotted using peak detection on the pupil signal's velocity and then linearly 194 

interpolated (Mathôt, 2013).  195 

2.6 Experimental procedure 196 

In this study we employed behavioral, neural, and pupillometry signatures. Participants were given a 197 

consent form in which the experiment was described in general terms. After providing written informed 198 

consent, in both experiments, participants completed the tasks in a semidark, sound-attenuating room 199 

to minimize distraction. All instructions were presented and stimuli were displayed on a CRT monitor 200 

(17 inches; PF790; refresh rate, 75 Hz; screen resolution, 800 × 600). A head and chin rest confirmed 201 

that the distance between the participants’ eyes and the monitor’s screen was 57 cm throughout the 202 

experiment. Participants were presented demographic questions followed by training sessions and main 203 

sessions, respectively. The experimental protocol was approved by the ethics committee of the Iran 204 

University of Medical Sciences.  205 

2.7 Data Analysis 206 

Data analysis was performed using Matlab 2019a (The MathWorks Inc., United States). 207 

2.7.1 Quantifying confidence 208 

Reported confidence was categorized as high and low. Since the participants were told to choose the 209 

upper part of the bar as high confidence and lower part as low confidence, we considered reported 210 

confidence higher than midline as high confidence and lower than midline as low confidence 211 

respectively. This categorization allowed us to take each confidence report as a binary variable 212 

comparable to the choice. Using categorical variables also provided the possibility of comparing the 213 

current data with our previous work (Vafaei Shooshtari et al., 2019). However, in addition to the 214 

midline, we tested various binary level set methods for categorizing participants’ high and low 215 

confidence ratings. First, the highest 55% and 45% of each participant’s confidence reports were 216 

considered high confidence (similar to (Zylberberg, Wolpert, & Shadlen, 2018)). Then, the mean of 217 
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each participant’s confidence was calculated separately, and the confidence ratings above the mean 218 

were considered as high ratings. Using these methods did not significantly alter reported confidence 219 

categorization (see Supplementary Figure 6). 220 

2.7.2 Behavioral analyses 221 

Except where otherwise specified, we reported behavioral data of the first experiment but all the 222 

analyses were repeated for the EEG experiment and if the results were inconsistent, it has been admitted 223 

(EEG experiment results were reported in Supplementary Figures 1, 2, 3, 4 and, 5).  224 

We performed several logistic regression models to measure the impact of stimulus characteristics on 225 

binary outcomes after confirming the assumptions of the linear regression were met. For logistic 226 

regression models, we used maximum likelihood under a binomial error model (i.e., a GLM) to 227 

evaluate the null hypothesis that one or more of the regression coefficients were equal to zero. 𝑃ℎ𝑖𝑔ℎ 228 

was the probability of high confidence, 𝐿𝑜𝑔𝑖𝑡[𝑃ℎ𝑖𝑔ℎ] indicated log 
𝑃ℎ𝑖𝑔ℎ

1 – 𝑃ℎ𝑖𝑔ℎ
 and 𝛽𝑖 denoted fitted 229 

coefficients. Also, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 was the probability of correct response and 𝐿𝑜𝑔𝑖𝑡[𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡] indicated log 230 
𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡

1 – 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡
.  231 

For single-pulse trials, the probability of a high confidence choice was given by the following: 232 

𝐿𝑜𝑔𝑖𝑡[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 +  𝛽1𝐶, (1) 

where 𝐶 was motion strengths of the pulse. Likewise, the probability of a correct choice was stated by 233 

the logistic regression: 234 

𝐿𝑜𝑔𝑖𝑡[𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡] = 𝛽0 + 𝛽1𝐶, (2) 

To examine whether confidence judgments were associated with more accurate choices, we fitted a 235 

logistic regression model to accuracy where the probability of high confidence is given by: 236 

𝐿𝑜𝑔𝑖𝑡[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 +  𝛽1𝐴, (3) 

where 𝐴 was the accuracy of the response (0 or 1 for incorrect and correct) and our null hypothesis was 237 

that the accuracy would not affect reported confidence (𝐻0: 𝛽1  =  0). We also used logistic regression 238 

to evaluate the effect of interpulse interval on confidence in double-pulse trials: 239 

𝐿𝑜𝑔𝑖𝑡[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 +  𝛽1𝐶1 +  𝛽2𝐶2 +  𝛽3𝑇 +   𝛽4𝐶1𝑇 +  𝛽5𝐶2𝑇, (4) 

where 𝐶1 and 𝐶2 were motion strengths of each pulse, and 𝑇 was the interpulse time interval. For 240 

double-pulse trials with equal pulse strength (𝐶1 =  𝐶2), the redundant regression terms (𝛽2, 𝛽4) were 241 

omitted. The null hypothesis was that the interpulse interval would not affect reported confidence 242 

(𝐻0: 𝛽3−5  =  0). The similar equation was used to assess relation of accuracy and time interval:  243 

𝐿𝑜𝑔𝑖𝑡[𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡] = 𝛽0 +  𝛽1𝐶1 +  𝛽2𝐶2 + 𝛽3𝑇 +  𝛽4𝐶1𝑇 +  𝛽5𝐶2𝑇, (5) 
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The null hypothesis was that the interpulse interval would not affect performance (𝐻0: 𝛽3−5  =  0). To 244 

evaluate the impact of pulse sequence on confidence, the following regression model was fitted: 245 

Logit[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 +  𝛽1[ 𝐶1 + 𝐶2] +  𝛽2[𝐶2 −  𝐶1], (6) 

where 𝐶1 and 𝐶2 were corresponding motion strengths of each pulse. 𝛽2 indicated how the confidence 246 

varied from trials in which 𝐶1 >  𝐶2 to trials with a reversed sequence of motion pulses 𝐶1 <  𝐶2. The 247 

null hypothesis was that the sequence of motion pulses did not influence the confidence (𝐻0: 𝛽2  =  0). 248 

To examine the interaction between the two pulses (e.g., a stronger pulse 1 reduced the effect of pulse 249 

2), we fitted the following regression model to all double-pulse trials: 250 

Logit[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 +  𝛽1𝐶1 +  𝛽2𝐶2 + 𝛽3𝐶1𝐶2, (7) 

The null hypothesis was that there was not an interaction between motion strengths of pulses (𝐻0: 𝛽3  =251 

 0). In other words, higher influence of second pulse on confidence was due to higher sensitivity rather 252 

than an interaction of motion pulses and 𝛽2 > 𝛽1 confirmed greater sensitivity to the second pulse on 253 

the decision. 254 

In addition to logistic regression models, to investigate the variation of confidence in double-pulse 255 

trials compared to single-pulse trials, we subtracted participants’ confidence of double-pulse trials from 256 

corresponding confidence in single-pulse trials. For example, the confidence of a sequence of 3.2%, 257 

6.4% motion strength trial, subtract separately once from 3.2% and once from 6.4% corresponding 258 

confidence in single-pulse trials. The process repeated for the data of each gap too. Moreover, the same 259 

method was used to compare accuracy of double-pulse trials and single-pulse trials. To assess the effect 260 

of choice accuracy on variation of confidence in double-pulse and single-pulse trials, we fitted the 261 

following:  262 

𝑆𝐶𝑜𝑛𝑓  = 𝛽0 +  𝛽1𝐴, (8) 

where the 𝑆𝐶𝑜𝑛𝑓 was the subtraction of confidence in double-pulse trials from corresponding single-263 

pulse trials and 𝐴 was the accuracy of the response (0 or 1 for incorrect and correct). The null hypothesis 264 

was the choice accuracy did not affect the variation of 𝑆𝐶𝑜𝑛𝑓 (𝐻0: 𝛽1  =  0). 265 

2.7.2.1 Response-time analysis 266 

In the current study, response-time was referred to the time between the cue onset and a participant’s 267 

response. To evaluate the significance of the effect of response-time on confidence, we fitted the 268 

following linear regression model separately in double-pulse and single-pulse trials:  269 

Logit[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 + 𝛽1𝑅, (9) 

where 𝑅 was the response-time of each trial and the null hypothesis was that confidence did not depend 270 

on the response-time (𝐻0: 𝛽1  =  0). Moreover, to  evaluate the relation of delay-time imposed before 271 

the cue onset and response-time, we fit a linear regression model as follows: 272 
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RT = 𝛽0 +  𝛽1𝐷, (10) 

where 𝐷 was the delay-time. The null hypothesis was that response-time did not rest on the delay-time 273 

(𝐻0: 𝛽1  =  0).  274 

In addition, confidence is tracked by both evidence and response-time (Kiani et al., 2014; van den Berg 275 

et al., 2016; Zylberberg et al., 2016), and indeed accuracy is relied on evidence. Furthermore, to study 276 

the profile of high and low confidence from behavioral data, an equal number of trials from each 277 

participant’s trials was selected randomly from single/double-pulse trials. Same procedure repeated 278 

100 times, then individual response-time were rank-ordered and binned into four quintiles. Then, the 279 

accuracy of high and low confidence trials in each bin was calculated. We expected to see a significant 280 

difference between accuracy of each bin grouped by levels of confidence. We only included motion 281 

strength of 3.2, 6.4, 12.8 of single-pulse trials (similar to coherence used in double-pulse trials) to 282 

control the impact of coherence on response-time. 283 

2.7.3 Motion energy analysis  284 

Random dot stimulus is stochastic, so the sensory evidence fluctuated within and across trials but 285 

around the nominal motion coherence level. To examine the fluctuations in motion during each trial, 286 

we filtered the sequence of random by using two pairs of quadrature spatiotemporal filters, as specified 287 

in previous studies (Adelson & Bergen, 1985; Kiani, Hanks, & Shadlen, 2008; Zylberberg et al., 2012). 288 

Since we aimed to understand the temporal course of choice and confidence, we summed the energies 289 

across trials for each pulse in single/double-pulse trials. 290 

We used logistic regression to test whether the confidence was more influenced by the second pulse’s 291 

motion energy than that of the first pulse in double-pulse trials. We tested double-pulse trials with equal 292 

motion strength using the following logistic regression model: 293 

Logit[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 + 𝛽1C +  𝛽2(𝑀1 +  𝑀2) +  𝛽3𝑀2, (11) 

where 𝑀1 and 𝑀2 were the motion energy of each pulse. The null hypothesis was that the second pulse 294 

was not more functional (𝐻0: 𝛽3  =  0). We tested double-pulse trials with unequal motion strength by 295 

modifying the regression model to: 296 

Logit[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 + 𝛽1𝐶1 + 𝛽2𝐶2 + 𝛽3(𝑀1 +  𝑀2) +  𝛽4𝑀2 , (12) 

and the null hypothesis was  (𝐻0: 𝛽4  =  0   ( . To evaluate the relation of 𝑃ℎ𝑖𝑔ℎ and motion energy in single-297 

pulse trials, we fitted a linear regression model as follows: 298 

Logit[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 + 𝛽1C +  𝛽2𝑀, (13) 

where 𝑀 was the motion energy of the presented motion stimulus and the null hypothesis was  that 299 

confidence did not depend on the motion energy (𝐻0: 𝛽2  =  0). 300 
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2.7.4 General computational modeling approach 301 

We implemented a set of computational models based on signal detection theory to provide a 302 

mechanistic explanation of the experimental data. According to SDT, observers set a decision criterion 303 

(𝑐𝑟) to discriminate between two stimuli (e.g., labeled as 𝑆1 and 𝑆2). They also set criteria 𝑐𝑟2,“𝑆1” and 304 

𝑐𝑟2,“𝑆2” to determine confidence ratings around the decision criterion 𝑐𝑟 (Figure 1B; for more details, 305 

see Supplementary Appendix 2). We computed stimulus sensitivity (𝑑’) and measures of metacognitive 306 

ability (𝑀𝑒𝑡𝑎– 𝑑′, 𝑀𝑒𝑡𝑎– 𝑑’/𝑑’). We used code provided by Maniscalco and Lau (Maniscalco & Lau, 307 

2012) in which metacognitive sensitivity (𝑀𝑒𝑡𝑎– 𝑑′) is computed by setting the 𝑑′ value that would 308 

produce the observed confidence. In addition, 𝑀𝑒𝑡𝑎– 𝑑’/𝑑’ were calculated by normalizing 309 

𝑀𝑒𝑡𝑎– 𝑑’ by 𝑑′ through division. Here, 𝑑′, 𝑀𝑒𝑡𝑎– 𝑑′ and, 𝑀𝑒𝑡𝑎– 𝑑′ 𝑑′⁄  of single-pulse and double-310 

pulse trials were computed separately. In addition, we fitted SDT model with trials simulated by a 311 

perfect integrator model (the model is described later). We then addressed the trend of  𝑑′, 𝑀𝑒𝑡𝑎– 𝑑′ 312 

and, 𝑀𝑒𝑡𝑎– 𝑑′ 𝑑′⁄  of three models for each participant. To support the fact that our findings were not 313 

relevant to variation of coherence of single and double-pulse trials, we only included single-pulse trials 314 

with motion strength of 3.2, 6.4, 12.8. However, one difference between groups was that they might 315 

not be matched for the number of trials: the single-pulse included on average fewer trials for each 316 

coherence per participant compared to double-pulse trials. Previous research has suggested that the 317 

number of trials could bias measures of metacognitive ability (Fleming, 2017). Therefore, in a control 318 

analysis, we created 100 sets of trials randomly from the single/double-pulse trials and from trials 319 

simulated by the perfect integrator model. Each set contained the same number of trials for each 320 

participant. We then averaged the metacognitive scores obtained from these 100 sets and repeated the 321 

comparison procedure (see Supplementary Figure 6). 322 

2.7.5 Perfect integrator Model 323 

To estimate the expected high confidence (𝑃𝑒(ℎ𝑖𝑔ℎ))  in double-pulses trials, we assumed that each trial’s 324 

confidence was achieved based on evidence integrating from both pulses by using a perfect integrator 325 

model. In the perfect integrator model, the expected accuracy (𝑃𝑒(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)) for double-pulse trials 326 

computed as the following (Kiani et al., 2013): 327 

𝑃𝑒(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 1 −  ɸ(0, 𝑒1 +  𝑒2, √2), (14) 

where 𝑒1 and 𝑒2 were the pieces of evidence that underlie by 𝑃1 and 𝑃2 (the probabilities of the correct 328 

answer in corresponding single-pulse trials) and were computed as: 329 

𝑒𝑖 =  ɸ−1(𝑃𝑖, 0, 1), I = 1,2, (15) 

Where ɸ -1 was inverse ɸ, which represented the cumulative Gaussian distribution (Kiani et al., 2013). 330 

To predict the confidence of double-pulse trials by this model, after calculating 𝑐𝑟 and 𝑑′ (see 331 

Supplementary Appendix 2), 𝑐𝑟 was shifted to zero and 𝑑′ was normalized. Then, confidence Hit Rate 332 

and False Alarm Rate were calculated based on confidence performance from corresponding single-333 

pulse trials (similar to Eq.14, 15). Accordingly, high confidence probability (for both correct response 334 

or incorrect response) would be predicted by the perfect integrator model. Besides, the model 335 

parameters, including confidence criteria along with 𝑀𝑒𝑡𝑎– 𝑑′ were computed. 336 
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2.7.6 Confidence optimized model 337 

In the confidence optimized model, we optimized the confidence criteria in the perfect integrator model 338 

by providing each participant’s confidence performance computed of double-pulse trials. The purpose 339 

of this simulation was to understand why the perfect integrator model was not able to predict 340 

confidence well. 341 

2.7.7 Model evaluation 342 

We evaluated the models qualitatively (i.e., parameter recovery exercises) and quantitatively (i.e., 343 

maximum likelihood estimation).  344 

In the qualitative method, based on the calculated parameters of the model, the probability of choosing 345 

high confidence for all combinations of motion strength for each participant were calculated (see 346 

Supplementary Appendix 2). We compared the expected high confidence predicted by models to the 347 

observed confidence in double-pulse trials using regression, as follows: 348 

𝑃ℎ𝑖𝑔ℎ = 𝛽1𝑃𝑒(ℎ𝑖𝑔ℎ) +  𝛽0, (16) 

where 𝑃𝑒(ℎ𝑖𝑔ℎ) was the expected probability of high confidence. We regressed predicted vs. observed 349 

𝑃ℎ𝑖𝑔ℎ  and compare slope (𝛽1) against the 1:1 line in each model. In this linear regression, we expected 350 

the predicted values to be close to the actual values. 351 

In addition, to compare models quantitatively, an equal number of trials from each subject’s trials 352 

selected randomly and then each model fitted to the selected data. This procedure repeated for 100 353 

times, then the computed MLEs of each model was averaged. 354 

2.7.8 Confidence suboptimality  355 

The optimal decision-making is disrupted by several sources of suboptimality (Balsdon et al., 2020). 356 

In SDT, an added noise, 𝜉𝑛, represents a potential loss of information between sensory decision 357 

information and metacognitive information, such as confidence rating. This noise has a Gaussian 358 

distribution with zero mean, and standard deviation 𝜎 (Maniscalco & Lau, 2014). The parameter 𝜎 359 

determines how much noisier the metacognitive variable is than the decision variable (Maniscalco & 360 

Lau, 2014). 361 

𝜉𝑛 = 𝑁 (0, 𝜎)) (17) 

This noise is correlated to metacognitive efficiency (𝑀𝑒𝑡𝑎– 𝑑′/𝑑′) (Maniscalco & Lau, 2014). To 362 

consider this suboptimality, we simulated trials using the same parameter values resulted from the 363 

perfect integrator model except this noise was increased. 364 

2.7.9 EEG analysis 365 

The EEG analysis focused on a neural marker of perceptual decision-making linked with stimulus 366 

preparation and stimulus processing. The component we focused on was the centro-parietal positivity 367 

(CPP) which possibly identical to the classic P300 component (Herding et al., 2019; Twomey, Murphy, 368 

Kelly, & O’connell, 2015). The CPP is associated with the sampling of available evidence in perceptual 369 

decisions and confidence rating at time period of 200-500 ms after stimulus onset (Herding et al., 2019; 370 

Rausch, Zehetleitner, Steinhauser, & Maier, 2020; Vafaei Shooshtari et al., 2019; Zizlsperger et al., 371 
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2014) or at the time of the response (Boldt et al., 2019). Here, CPP amplitude was measured as the 372 

mean amplitude in a time-window ranging from 200 ms to 500 ms after stimulus onset in an electrode 373 

cluster containing the electrodes CP1, CP2, Cz, and Pz (Boldt et al., 2019; Herding et al., 2019; Rausch 374 

et al., 2020; Tagliabue et al., 2019; Twomey, Kelly, & O’Connell, 2016; Vafaei Shooshtari et al., 2019; 375 

Zizlsperger et al., 2014). We epoched the EEG responses were aligned with respect to the stimulus 376 

onset, from 200 ms pre-stimulus to 500 ms post-stimulus of each pulse. Then, these epochs were 377 

baselined to a window -100 ms to stimulus-locked to prevent differences in the visual response to the 378 

stimulus affecting the baseline. The ERP signals were examined for levels of confidence separately in 379 

double-pulse trials and single-pulse trials. We analyzed correct trials of each coherence level distinctly 380 

to support the fact that our findings were not relevant to participants’ performance and motion pulse 381 

strength. Also, in double-pulse trials, we tested double-pulse trials with non-zero gaps and equal motion 382 

strength pulses.  383 

2.7.10 Pupillometry analysis 384 

Previous work showed that pupil dilation after choice and before feedback reflected decision 385 

uncertainty (Colizoli, De Gee, Urai, & Donner, 2018; Urai et al., 2017). Accordingly, as the confidence 386 

is uncertainty complement (Hebart, Schriever, Donner, & Haynes, 2014; Kepecs & Mainen, 2012), to 387 

study the confidence profile, the method was implemented here. The mean baseline-corrected pupil 388 

signal throughout 200 ms before feedback was calculated as our single-trial measure of pupil response. 389 

We epoched trials and baselined each trial by subtracting the mean pupil diameter 50 ms before the 390 

response. We included all trials of both experiments in the analyses reported in this paper.  391 

According to the temporal low-pass characteristics of the slow peripheral pupil apparatus (Hoeks & 392 

Ellenbroek, 1993), trial-to-trial variations in response-time can impact trial-to-trial pupil responses, 393 

even in the absence of amplitude variations in the underlying neural responses (Urai et al., 2017). To 394 

isolate trial-to-trial variations in the amplitude (not duration) of the underlying neural responses, we 395 

removed components explained by response-time via linear regression: 396 

𝑦′ = 𝑦 − (𝑦𝑇𝑅)𝑅, (18) 

where 𝑦 was the original vector of pupil responses, 𝑅 was the vector of the corresponding response-397 

time (log-transformed and normalized to a unit vector), and 𝑇 indicated matrix transpose. 398 

Consequently, after removing the variance explained by trial-by-trial response-time, the residual 𝑦′ 399 

reflected pupil responses. This residual pupil response was used for analyses reported in this study. To 400 

evaluate the relation of confidence and pupil response, we fit a linear regression model as follows: 401 

Logit[𝑃ℎ𝑖𝑔ℎ] = 𝛽0 + 𝛽1𝑃, (19) 

where the 𝑃 was pupil response in each trial. The null hypothesis was that confidence did not change 402 

with the pupil response (𝐻0: 𝛽1  =  0). To control the impact of coherence on pupil response, we only 403 

included motion strength of 3.2, 6.4, 12.8 of single-pulse trials. 404 

2.7.11 General statistical analysis 405 

We used repeated-measures two-tailed t-tests. As suggested, we considered small (d = .2), medium (d 406 

= .5), and large (d = .8) effect sizes for this assessment (see (Cohen, 1970)) and the statistical 407 

significance for t-tests was set to a probability from data ≥ .90. 408 
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Moreover, to test our hypotheses, a series of regression analyses were run after confirming the 409 

assumptions of the linear regression are met. Effect sizes were reported and as suggested, here, we 410 

considered small (f2 = .02), medium (f2 = .15), and large (f2 = .35) effect sizes (see (Cohen, 1970)) at 411 

the alpha level of 5%. 412 

For tests of pupil response signals and ERPs between two levels of confidence, statistical inferences 413 

were performed using t-tests at each time-point (at a statistical threshold of p < .05). 414 

3 Results 415 

We tested our predictions in two studies that applied the same paradigm (Figure 1A). The first study 416 

used behavioral measures and pupillometry analyses, whereas for the second experiment, we recorded 417 

EEG signals as well. Participants decided about the direction of the RDM motion based on brief motion 418 

pulses. The task design contained different conditions which allowed us to compare participants’ 419 

behavior in (i) double-pulse vs single-pulse, (ii) different coherence of motion stimulus, and (iii) four 420 

distinct gaps intervals.  421 

3.1 Behavioral results 422 

We used the single-pulse trials to benchmark the effect of coherence on choice accuracy and 423 

confidence. As shown in Figure 2A, for single-pulse trials, participants were more confident for high 424 

coherence stimuli (Figure 2A; Eq.1; β1 = .06, p < .001, 95% CI = [.04, .08], f2 = .23), ranged from .96 425 

for 51.2 coherence to .43 for 3.2 coherence. Also, accuracy improved with motion strength reached 426 

from .56 for 3.2% to .99 for 51.2% (Figure 2B, black line; Eq.2; β1 = .10, p < .001, 95% CI = [.08, 427 

.12], f2 = .36). They also had better performance whenever they had reported higher confidence 428 

comparing to lower confidence (Figure 2B, red and green; Eq.3; β1 = 1.1, p < .001, 95% CI = [.88, 429 

1.31], f2 = .09). Moreover, in double-pulse trials, the accuracy improved with motion strength (Figure 430 

2C, black dots) and participants were more accurate while reporting higher confidence (Figure 2C, 431 

green dots). Along with accuracy (Figure 2D; Eq.5; p > .1, (Kiani et al., 2013; Tohidi-Moghaddam et 432 

al., 2019), see Supplementary Figure 1A for Experiment 2 data), the confidence was largely 433 

unaffected by interpulse interval in both double-pulse trials with equal pulse strength (Figure 2E; Eq.4; 434 

p > .1; Supplementary Table 2, results of individual participants) and those with unequal pulse 435 

strength (Figure 2E; Eq.4; p > .1; Supplementary Table 2; see Supplementary Figure 1B  for 436 

Experiment 2 data). The two pulses separated by up to 1 s supported a level of confidence that was 437 

indistinguishable from a pair of pulses separated by no gap. 438 

 439 
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Figure 2. Interplay between confidence, accuracy, and coherence in single/double-pulse trials, 

and interpulse interval in double-pulse trials. (A) Probability of high confidence as a function of 

motion coherence. (B) (C) Accuracy in single-pulse trials and double-pulse trials in all trials (black), 

split by high (green) and low (red) confidence decisions. In (B) curves are model fits. (D) Choice 

accuracy for double-pulse trials grouping in all possible interval conditions. (E) Confidence of 

double-pulse trials was calculated by pooling data across all time intervals. In (D) and (E) each data 

point reports pooled data from indicated sequence pulse and its reverse order (e.g., 12.8– 3.2% and 

3.2 –12.8%). 

 440 

Direct comparison between single-pulse and double-pulse trials, along with previous studies (Kiani et 441 

al., 2013; Tohidi-Moghaddam et al., 2019), showed that participants’ accuracy significantly differed 442 

(t(11490) = -3.09, p < .05, 95% CI = [-.08, -.02], Cohen’s d = .11). However, in double-pulse trials 443 

participants were not more confident comparing to single-pulse trials (t(11490) = 1.35, p = .18, 95% 444 

CI = [-.01, .06], Cohen’s d = -.05).  445 

Although, the order of the pulses affected accuracy (Figure 3A, (Kiani et al., 2013; Tohidi-446 

Moghaddam et al., 2019)), participants were not more confident in double-pulse trials with unequal 447 

pulse strength where the stronger motion appeared in a second order (Figure 3B; Eq. 6; β2 = .01, p = 448 

.08, 95% CI = [.00, .02] ], f2 = .02; see Supplementary Figure 2B for Experiment 2 data). Also, the 449 

increased confidence was not because of an interaction of motion pulses (Eq. 7; β3 = -.01, p = .13, 95% 450 

CI = [-.02, .00], f2 = .03).  451 
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 Figure 3. Choice confidence was not depended of the sequence of motion pulses (A) The weak–

strong pulse sequence contributed higher accuracy than the strong–weak sequence. (B) The weak–

strong pulse sequence did not contribute higher confidence than the strong–weak sequence. In all 

panels, data are represented as group mean ± SEM. (*p<0.05) (C) In single-pulse trials, low and high 

confidence cannot be determined by motion energy profiles in weaker pulses (D) The second pulse 

had slightly more impact on confidence. Data were pooled for all nonzero interpulse intervals. Only 

correct trials with equal pulse strength are included. In (C) and (D), the shaded region around the 

mean indicates SEM. The black horizontal bars show the duration of the stimulus display. The units 

of motion energy are arbitrary and the same for all motion strengths.  

 452 

3.2 Motion energy results 453 

To yield a precise  estimate of the decision-relevant sensory evidence accommodated in the stochastic 454 

stimuli, we employed motion energy filtering to the random dot motion stimuli. Figure 3D displays 455 

the average motion energy in double-pulse trials  when the strength of pulses was the same. 456 

Accordingly, the difference of the motion energy profiles for high and low confidence responses was 457 

slightly larger for the second pulse than the first pulse. A logistic regression confirmed the influence 458 

of trial-to-trial fluctuations of motion  energy on confidence (Eq.11; β2 = .10, p = .001, 95% CI = [.04, 459 

.16], f2 = .19). Also, there was slightly larger impact of motion energy of the second pulse with equal 460 

pulse strength (Eq.11; β3 = .11, p = .04, 95% CI = [.07, .15], f2 = .13). On the contrary, the impact of 461 

motion energy of the second pulse was not significant (Eq.12, β4 = .10, p = .06, 95% CI = [.06, .14], f2 462 
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= .08). Consequently, motion energy analysis could not provide independent confirmation of 463 

asymmetric effect of both pulses for confidence. 464 

As well, in single-pulse trials, the difference of the motion energy profiles for high and low confidence 465 

with stronger pulse strength (12.8%, 6.4%) was significant (Figure 3C; Eq.13; β2  = .41, p = 2.25 × 10-466 
5, 95% CI = [.23, .59], f2 = .24). However, the difference in weak motion pulse was insignificant 467 

(Figure 3D; Eq.13; β2  = .17, p = .44, 95% CI = [-.26, .60], f2 = .10). Thus, motion energy analysis thus 468 

suggests that when the pulses’ motion strengths are weak, the subjects decide about their confidence 469 

almost randomly. 470 

3.3 The Interplay between confidence in single vs double-pulse trials 471 

To address accuracy and confidence variation in double-pulse from single-pulse trials, we consider 472 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 or 𝑃ℎ𝑖𝑔ℎ of each coherence (3.2%, 6.4% and 12.8%) in single-pulse as baseline and measure 473 

the 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 or 𝑃ℎ𝑖𝑔ℎ variation of any corresponding sequence in double-pulse trials. As we expected 474 

in all combinations of three coherence as the baseline, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 improved (Figure 4A). Additionally, 475 

when considering all the trials, in all combinations of three coherence as the baseline, 𝑃ℎ𝑖𝑔ℎ increased 476 

when the other pulse was a strong pulse (12.8%) (Figure 4B and Figure 4C for correct trials). On the 477 

contrary, 𝑃ℎ𝑖𝑔ℎ decreased or not changed considerably whenever the other pulse was a weak motion 478 

strength (3.2%, 6.4%). Interestingly, in incorrect trials, the confidence decreased comparing to single-479 

pulse for all the coherence and conditions (Figure 4D). These data did not correlate with the interval 480 

duration (Figure 4A, B, C, D). 481 
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Figure 4. Variation of accuracy or confidence in double-pulse trials baselined by corresponding 

coherence (3.2%, 6.4% and 12.8% for each column). (A) Considering all the trials, the accuracy 

improved in almost all pulses combination. (B) Considering all the trials, the confidence improved 

in combination with stronger pulses while the confidence in sequence with a weaker pulse either 

decreased or remained constant. (C) In correct-choice trials, the increasing effect of stronger pulses 

is more significant and the confidence even slightly improved in combination with weaker pulses 

comparing to corresponding baseline. (D) Interestingly, in incorrect trials, the confidence decreased 

in every condition. The colored line representing matching data for each of four possible gaps. The 

data are represented as group mean ± SEM. 
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 482 

In other words, the participants reported lower confidence in double-pulse trials compared to single-483 

pulse trials for incorrect choices but reported higher confidence for correct choices (Figure 4 Eq.8, β1 484 

= .15, p < .001, 95% CI = [.13, .17], f2 = .29; Supplementary Figure 3 for Experiment 2; 485 

Supplementary Table 1, results of individual participants). This data is in line with the fact that the 486 

good metacognitive sensitivity will provide higher confidence for correct responses, and lower for 487 

incorrect ones. 488 

3.4 Computational models 489 

The accuracy in double-pulse trials surpasses the expectation measured by the perfect integrator 490 

(Figure 5A; (Kiani et al., 2013)). Considering the strong positive relation of accuracy and confidence 491 

(Kiani et al., 2014; Vafaei Shooshtari et al., 2019), we expected the observed confidence would exceed 492 

the predicted confidence (Eq.16) calculated by the perfect integrator model (Eq.14), but it did not 493 

(Figure 5B).  494 

According to SDT models, 𝑑′ is stimulus sensitivity and has relation to task performance. As the 𝑑′ of 495 

the perfect integrator model was calculated based on single-pulse trials performance, if participants’ 496 

performance in single-pulse trials failed, their performance prediction missed the double-pulse trials 497 

(Figure 5C).  498 

𝑀𝑒𝑡𝑎– 𝑑′ in all participants increased in double-pulse trials but perfect integrator model failed to imitate 499 

the increasing (Figure 5C). We also computed metacognitive efficiency (𝑀𝑒𝑡𝑎– 𝑑′/𝑑′), as another 500 

index of the ability to discriminate between correct and incorrect trials. Here, 𝑀𝑒𝑡𝑎– 𝑑′/𝑑′ in all 501 

participants missed to track their 𝑀𝑒𝑡𝑎– 𝑑′/𝑑′ in double-pulse trials. Altogether, the perfect integrator 502 

was incapable of employment observed metacognitive ability in double-pulse trials. The same 503 

modeling procedure of data from EEG experiment has provided similar results (Supplementary 504 

Figure 4). 505 

As a control investigation, we examined whether the differences in estimated metacognitive ability 506 

between models could result from the different number of trials. We averaged the metacognitive scores 507 

obtained from equal numbers of samples, and found very similar results. Thus, the difference in the 508 

estimated metacognitive efficiency cannot be explained by the difference in the number of trials 509 

between the single-pulse, double-pulse, and perfect integrator models (Supplementary Figure 7). 510 

 511 
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Figure 5. Comparison of the models and human behavior. (A) Accuracy in double-pulse trials. 

Horizontal lines show accuracy prediction by the perfect integrator model. (B) Confidence in 

double-pulse trials. Horizontal lines show confidence prediction by the perfect integrator model. In 

(A) and (B) Each data point represents pooled data from the pulse sequence indicated by the legend 

and its reverse order. (C) Stimulus sensitivity (𝑑′), metacognitive sensitivity (𝑀𝑒𝑡𝑎– 𝑑′), 

metacognitive efficiency (𝑀𝑒𝑡𝑎– 𝑑′/𝑑′) estimated for single-pulse trials, double-pulse trials and 

perfect integrator models for each participant. (D) Model comparison suggests strong evidence in 

favor of the confidence optimized model over the perfect integrator (E) Relation of predicted 

confidence and observed data.  SDT model fitted to double-pulse trials (green), the perfect integrator 

model (purple), and optimized model (blue). Colored lines indicate best-fitting slope of a linear 

regression analysis. Each data point represents pooled data from different sequence of pulses of each 

participant. (F) Variation of confidence criteria comparing to single-pulse trials in perfect integrator 

vs optimized model. For panels A, B and, D, data are represented as group mean ± SEM. 

 512 
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As in the perfect integrator model, the β1 (slope in Eq.16) differed from 1:1 line and confidence 513 

prediction failed to account for behavioral data (Figure 5E; Eq.16, β1 = .77, p < .001, 95% CI = [.71, 514 

.83], f2 = 15.66), we introduced a model in which the metacognitive sensitivity (𝑀𝑒𝑡𝑎– 𝑑′) calculated 515 

in the perfect integrator model was optimized. The stimulus parameter (𝑑′) remained constant whereas 516 

the placement of confidence criteria was optimized to fit best to observed data. So, the predicted 𝑃ℎ𝑖𝑔ℎ 517 

improved intensely (Figure 5E, Eq.16, β1 = .98, p < .001, 95% CI = [.88, 1.08], f2 = 10.11). 518 

Additionally, we take the confidence criteria of the single-pulse model as the baseline and measure the 519 

variation of criteria of the perfect integrator and the optimized model. This variation in the optimized 520 

model has changed comparing to the perfect integrator (Figure 5F, and Supplementary Figure 5 for 521 

EEG experiment). Failure to predict the proper change in confidence criteria in the perfect integrator 522 

model was the factor that made the model unable to estimate the confidence from single-pulse trials. 523 

In addition, to consider the suboptimality in confidence reporting, we simulated data using the perfect 524 

integrator model’s parameters while setting higher confidence noise (Eq.15). The predicted 𝑃ℎ𝑖𝑔ℎ from 525 

this simulation improved (Eq.16, β1 = .97, p < .001, 95% CI = [.83, 1.07], f2 = 9.00). Consequently, the 526 

perfect integrator model simply highlighted accumulating decision evidence and ignored the effect of 527 

confidence noise. 528 

3.4.1 Models’ evaluation 529 

We conducted parameter recovery simulations to evaluate models fitted to single/double-pulse trials. 530 

We regressed predicted vs. observed 𝑃ℎ𝑖𝑔ℎ confidence for each coherence of each participant. In single-531 

pulse trials, linear regression indicated that there was a significant effect between the predicted and 532 

observed 𝑃ℎ𝑖𝑔ℎ, (Eq.16, β1 = 1.04, p < .001, 95% CI = [.90, 1.18], f2 = 8.09). In double-pulse trials, 533 

regression coefficient was statistically significant and close to 1:1 line (Figure 5E; Eq.16, β1 = 1.03, p 534 

< .001, 95% CI = [.91, 1.15], f2 = 11.05) meaning predicted 𝑃ℎ𝑖𝑔ℎ by classic SDT also explained a 535 

significant proportion of variance in the observed 𝑃ℎ𝑖𝑔ℎ.   536 

A quantitative model comparison unsurprisingly favored the optimized model (mean MLE = -18.31) 537 

and the SDT behavioral model (mean MLE = -16.98) over the perfect integrator model (mean MLE = 538 

-45.53) (Figure 5D).  539 

In summary, comparing between the models, both quantitatively (Figure 5E) and qualitatively (Figure 540 

5D) in doube-pulse trials, also showed that the confidence optimized model has a better prediction in 541 

estimating confidence. Accordingly, these investigations indicated: (i) participants integrated the 542 

decision evidence perfectly but to report their confidence, their confidence resolution improved rather 543 

than reporting higher confidence, (ii) the inability to predict the proper change in confidence criteria in 544 

the perfect integrator model was the factor that made the model unable to estimate the confidence from 545 

single-pulse trials, (iii) the confidence noise was changed after receiving the second pulse in double-546 

pulse trials.  547 

3.5 Response-time analysis 548 

Response-time had a significant effect on confidence in double-pulse (Eq.9, β1 = .09, p = .04, 95% CI 549 

= [0.01, 0.17], f2 = .10) but not in single-pulse trials (Eq.9, β1 = - .02, p = .90, 95% CI = [-1.78, 1.74], 550 

f2 = .00). Moreover, the confidence profile as a function of response-time was significant in double-551 

pulse trials (Figure 6A; Table 1) but not in single-pulse trials (Figure 6B; Table 1).  552 

 553 
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Table 1. Result from t-tests to compare confidence profile in single/double-pulse trials in each response-time bin.  554 

Trial type Double-pulse Single-pulse 

RT bin 1 2 3 4 1 2 3 4 

tstat 8.89 6.77 9.20 8.10 1.00 2.71 1.46 1.69 

df 2652 2652 2652 2652 2150 2150 2150 2152 

p .11 × 1018 .16 × 1011 .71 × 1020 .77 × 1016 .31 .007 .14 .09 

95% CI [-.17, -.11] [-.15, -.08] [-.19, -.12] [-.19, -.12] [-.18, .06] [-.30, -.05] [-.22, .03] [-.24, .02] 

Cohen’s d .35 .26 .36 .32 .14 .37 .20 .23 

 555 

Additionally, in our double-pulse trials, participants decided faster than single-pulse trials in all interval 556 

durations (Figure 6C). We regress the delay-time before cue onset (0.4 to 1 s truncated exponential) 557 

and response-time in both single-pulse and double-pulse trials to examine the effect of  imposed delay 558 

time on response-time. The effect was small in both single-pulse (Eq.10, β1 = - .01 × 10-5, p = .004, 559 

95% CI = [0.00, 0.00], f2 = .00) and double-pulse trials (Eq.10, β1 = - .0003 × 10-6, p < .001, 95% CI = 560 

[0.00, 0.00], f2 = .01).  561 

 562 

 

Figure 6. Response-time profiles in single and double-pulse trials. (A) (B) Accuracy as a 

function of response-time split by high (green) and low (red) confidence in double-pulse trials (A) 

and single-pulse trials (B). (C) Response-time of all coherence combination clustered by gap 

interval in double-pulse trials (dots) comparing to single-pulse trials (lines). Data are represented 

as group mean ± SEM. 

 563 

3.6 EEG Analysis  564 

We derived the ERPs of averaged signals for two levels of confidence to verify whether there was a 565 

significant difference in the centro-parietal ERPs across confidence levels. Figure 7 exhibit ERPs and 566 

scalp topographies for confidence levels time-locked to the stimulus onset in low and high confidence 567 

in single-pulse trials.  568 
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Figure 7. ERPs and scalp topographies in single-pulse trials. (A) (B) (C) ERPs of correct 

single-pulse trials shows an insignificant difference in weaker motion strength in high and low 

confidence level trials. (D) (E) (F) Scalp topographies in two levels of confidence (the mean 

amplitude in a time-window ranging from 200 ms to 500 ms after stimulus onset). The shading 

region around the mean indicates SEM. * indicate p<.05 from a t-test, of the difference between 

the two-time. 

 569 

Figure 8 exhibit ERPs and scalp topographies for confidence levels time-locked to the stimulus onset 570 

in low and high confidence in double-pulse trials. 571 

 572 

 

Figure 8.  ERPs and scalp topographies in double-pulse trials. (A) (B) (C) ERPs in the two levels 

of confidence are distinct after the stimulus onset. (D) (E) (F) Scalp topographies in two levels of 

confidence (the mean amplitude in a time-window ranging from 200 ms to 500 ms after stimulus 
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onset of second pulse). The shading region around the mean indicates SEM. * indicate p<.05 from a 

t-test, of the difference between the two-time. 

 573 

Interestingly the effect of different confidence profiles in centro-parietal was considerable in double-574 

pulse trials (Figure 8) but not in single-pulse trials (Figure 7). 575 

3.7 Pupil responses 576 

We took the mean baseline-corrected pupil signal during 200 ms before feedback delivery as our 577 

measure of pupil response. In line with previous work (Urai et al., 2017) pupil responses reflect 578 

decision confidence in our double-pulse trials (Figure 9A; Eq.19, β1 = - .95, p < .001, 95% CI = [-1.10, 579 

-.79] , f2 = .31) while in single-pulse trials the confidence profile is not significant (Figure 9B; Eq.19, 580 

β1 = - .42, p = .21, 95% CI = [-1.09, -.24], f2 = .22).  581 

 582 

 

Figure 9. Standardized pupil response across time-window aligned to the feedback. (A) (B) 

Standardized pupil response, high confidence trials (green) vs low confidence trials (red) in double-

pulse trials (A) and single-pulse trials (B). The shading region around the mean indicates SEM. * 

indicate p < .05 from a t-test. 

 583 

4 Discussion 584 

The current study was designed to clarify the confidence of decisions in more real-world contexts 585 

where the evidence arrives separately. Using an experimental design, we examined how human 586 

subjects combined the pieces of information to form their decision and confidence and how the two 587 

are related to each other. We performed two experiments with either single or double pulses of RDM 588 

stimuli. To this end, we investigated behavioral modeling, EEG responses and pupillometry. In 589 

summary, the results across experiments showed that participants used both pulses to decide about their 590 

confidence. Also, while their confidence was largely invariant to the gap interval, confidence scoring 591 

was not noticeably enhanced in double-pulse trials compared to single-pulse trials. Instead, participants 592 

reported their confidence with higher resolution and their metacognitive sensitivity improved. 593 

Furthermore, using RT, EEG and pupillometry analysis, we could considerably track the confidence 594 

profiles in double-pulse trials, unlike in single-pulse trials. 595 
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4.1 Behavioral and motion energy findings 596 

Remarkably, unlike accuracy, confidence ratings in double-pulse trials have not increased significantly 597 

comparing to single-pulse trials. We hypothesize that participants mainly trust on the evidence of one 598 

of the pulses and ignore the other one. The trusted pulse can either be the first or second pulse; it also 599 

can simply be the stronger pulse. However, the effect of sequence and interaction of pulses on 600 

confidence was examined and no effect was observed. Moreover, motion stimulus fluctuations are 601 

known to influence the choice (Kiani et al., 2008; Resulaj et al., 2009) and confidence (Van Den Berg 602 

et al., 2016; Zylberberg et al., 2012), so they can inform us about the parts of the stimulus that bear 603 

more intensely on the choice and confidence (Kiani et al., 2013, 2008; Nienborg & Cumming, 2009). 604 

The motion energy analysis could not confirm the asymmetric influences of the two pulses for 605 

confidence. However, the motion energy analysis does provide independent confirmation of the 606 

unequal influences of the two pulses for choice (Kiani et al., 2013). Since, pervious research suggests 607 

that participants obtained more information from a second pulse (Kiani et al., 2013; Tohidi-608 

Moghaddam et al., 2019), we hypothesized, in line with a large body of evidence (De Gardelle & 609 

Mamassian, 2015; Herce Castañón et al., 2019; Rahnev & Denison, 2018; Zylberberg et al., 2016, 610 

2014), here observers do not make their decisions exactly in accordance with confidence rating.  611 

Moreover, once comparing confidence in double-pulse trials grouped by accuracy, we show that the 612 

participants had lower confidence in double-pulse trials than single-pulse trials for incorrect choices 613 

but higher confidence for correct choices. In other words, compared with single-pulse trials, in double-614 

pulse trials, participants adjusted their confidence by enhancing their confidence resolution or 615 

metacognitive sensitivity.  616 

Typically, confidence facilitates evidence accumulation and drives a confirmation bias in perceptual 617 

decision-making (Rollwage et al., 2020). Likewise, we suggest that an extra brief and weak evidence 618 

can validate confidence and improve metacognitive sensitivity.  619 

4.2 Computational modeling findings 620 

To understand the nature of the differences in participants’  metacognitive sensitivity in double-pulse 621 

vs single-pulse trials, we compared corresponding estimated metacognitive parameters. Likewise, we 622 

included the expected parameters that would be achieved in double-pulse trials under the assumption 623 

of perfect integration. Accordingly, we computed 𝑀𝑒𝑡𝑎– 𝑑’/𝑑′ as a measure of ‘metacognitive 624 

efficiency’. In the case of 𝑀𝑒𝑡𝑎– 𝑑’ =  𝑑’, the observer is metacognitively ‘ideal’. Indeed, all the 625 

information available for the decision would be used to report the confidence. Yet, in many cases, we 626 

might find that 𝑀𝑒𝑡𝑎– 𝑑’ < 𝑑′, along with some degree of noise or suboptimality (Fleming & Lau, 2014; 627 

Maniscalco & Lau, 2012). Conversely, we may find that 𝑀𝑒𝑡𝑎– 𝑑’ > 𝑑′, if subjects are able to draw on 628 

additional information such as hunches (Rausch & Zehetleitner, 2016), further processing of stimulus 629 

information (Charles, Van Opstal, Marti, & Dehaene, 2013) or extra prior knowledge on the task. In 630 

the model fitted to double-pulse trials, 𝑀𝑒𝑡𝑎– 𝑑’/𝑑′ was around .8 and near to ideal for almost all 631 

participants. However, as in single-pulse trials,  it varies considerably between participants, the value 632 

could not be adjusted in perfect integrator model similar to the behavioral model. 633 

Previously, the better-than-expected performance in double-pulse trials was explained by 634 

underperformance in single-pulse trials (Kiani et al., 2013). Here, metacognitive sensitivity in double-635 

pulse trials surpasses the value predicted by the perfect integrator model (Figure 5C and 636 

Supplementary Figure 4). This effect can be followed in all of our participant (except one of 637 
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participants from EEG experiment) and can be explained by low confidence resolution in single-pulse 638 

trials.  639 

Metacognitive noise is the noise that affects confidence estimates but not perceptual decisions (De 640 

Martino, Fleming, Garrett, & Dolan, 2013; Jang, Wallsten, & Huber, 2012; Maniscalco & Lau, 2016; 641 

Mueller & Weidemann, 2008; Rahnev, Nee, Riddle, Larson, & D’Esposito, 2016; Shekhar & Rahnev, 642 

2018; Van den Berg, Yoo, & Ma, 2017). A recent work categorized sources of metacognitive 643 

inefficiency (Shekhar & Rahnev, 2020). Accordingly, metacognitive noise is a superordinate term for 644 

all noise sources that impact the confidence formation process (Shekhar & Rahnev, 2020, 2021) 645 

ranging from systematic to nonsystematic input and computation. Nevertheless, the exact source of 646 

metacognitive noise remains unclear (Shekhar & Rahnev, 2020). This noise can be tracked in our 647 

perfect integrator model, which was capable of accumulating decision evidence perfectly but could not 648 

predict confidence formation in our task. We suggest that the perfect integrator model was unable to 649 

adjust to confidence criteria when predicting confidence in double-pulse trials. However, an improved 650 

SDT capable of addressing metacognitive noise might be able to empower the employed perfect 651 

integrator model. Furthermore, SDT is not the only available model to implement a perfect integrator 652 

model. Previous studies suggested attractor models as a candidate model to implement the perfect 653 

integrator model (Kiani et al., 2013; Waskom & Kiani, 2018). Attractor models are a group of networks 654 

that formed a bridge between cognitive theory and biological data which exploits inhibition to achieve 655 

a competition among alternatives (Wang, 2002; Wong & Huk, 2008). Although these models can 656 

integrate momentary evidence to establish a decision, they have specific failure behaviors that would 657 

be apparent when the sources of evidence are separated by gaps in time (Kiani et al., 2013). Besides, 658 

when the stimulus is very short, mostly, none of the attractors could be reached and, the network would 659 

revert back to the resting state after the stimulus offset (Wang, 2002). Therefore, the choice would be 660 

assigned randomly. However, our experiments’ data represent a noteworthy performance in single-661 

pulse trials, which does not support this expectation. Consequently, to implement a perfect integrator 662 

model by implementing an attractor model, a mechanism for simulating a very short stimulus might be 663 

considered. Moreover, our behavioral assays highlighted different relationships between confidence 664 

and accuracy in the different conditions of the task. So, a dedicated neural module with a plausible 665 

circuit of confidence might be a better option to implement a perfect integrator model. Recently, multi-666 

layer recurrent network models has been developed to account for decision confidence mechanisms 667 

(Atiya, Rañó, Prasad, & Wong-Lin, 2019; Paz, Insabato, Zylberberg, Deco, & Sigman, 2016). These 668 

models consist of multiple layers of neural integrators and in line with neural evidence of decision 669 

confidence (Kepecs, Uchida, Zariwala, & Mainen, 2008; Murphy, Robertson, Harty, & O’Connell, 670 

2015), they are suggested to justify the observed behavior.  671 

Furthermore, perceptual decisions are often modeled using ideal observers (e.g., SDT). However, a 672 

source of suboptimal behavior in decision-making is ‘lapse’ (Gold & Ding, 2013; Pisupati, 673 

Chartarifsky-Lynn, Khanal, & Churchland, 2021). Lapses are an additional constant rate of errors 674 

independent of the evidence strength (Gold & Ding, 2013; Pisupati et al., 2021). Lapse rate has been 675 

shown to increase with higher perceptual uncertainty (Pisupati et al., 2021) and would be accounted 676 

by fitting extra parameter to psychometrics models. Accordingly, as the perfect integrator model was 677 

based on SDT, ignoring lapse in the single-pulse trials might lead to mis-estimation of decision 678 

parameters in double-pulse trials. Consequently, further models including the lapse parameters 679 

(Pisupati et al., 2021), may improve the perfect integrator model’s predictivity.  680 

4.3 Implicit confidence markers 681 
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Although research suggests faster decisions accompanied by higher confidence (Kiani et al., 2014; 682 

Vafaei Shooshtari et al., 2019; van den Berg et al., 2016; Zylberberg et al., 2016), our results do not 683 

show such an association in the presence of a brief piece of evidence. Moreover, our participants decide 684 

much faster in double-pulse trials comparing to single-pulse trials. We hypothesized that the decrease 685 

of response-time in double-pulse trials would be reflected with higher internal confidence. However, 686 

another hypothesis of this variation pointed to the extra time duration in double-pulse trials, which can 687 

be used to increase readiness to decide. We regress the delay-time before response cue onset and 688 

response-time in both single-pulse and double-pulse trials to explore the hypothesis. If the variation of 689 

response-time was primarily dependent on extra delay time, the delay time should have had a 690 

considerable effect on response-time, especially in our 120ms single-pulse trials when the stimulus 691 

duration was concise and the delay time varied. Nevertheless, the effects in both double-pulse and 692 

single-pulse trials are weak. Accordingly, the hypothesis that faster decision reflect higher confidence 693 

in double-pulse trials is supported. In addition, the confidence profile as a function of response-time 694 

was significant in double-pulse trials unlike in single-pulse trials. 695 

Our findings furthermore suggest that reported confidence might not follow confidence marker in EEG 696 

response. We focused on the CPP —a neural correlate of perceptual processing believed to reflect 697 

evidence accumulation and correlated to confidence (Boldt et al., 2019; Herding et al., 2019; Rausch 698 

et al., 2020; Vafaei Shooshtari et al., 2019; Zizlsperger et al., 2014). However, our findings suggest 699 

that in the presence of a brief and weak stimulus, entirely unlike in double-pulse trials, CPP amplitudes 700 

show no significant variation in high and low level of confidence. As confidence in single and double-701 

pulse trials did not vary significantly, we suggest that variation of CCP amplitude share more 702 

commonalities with implicit confidence measure rather than explicit confidence measures like ratings. 703 

Moreover, we propose that pupil response relation to confidence rating varies as the task condition 704 

changes; when participants access brief and weak stimuli, no association detected, unlike in the 705 

presence of a pair of separated stimuli. Our current observations are not easily reconciled with existing 706 

theoretical accounts of the impact of the confidence level on pupil response (Allen et al., 2016; Lempert 707 

et al., 2015; Urai et al., 2017). 708 

To sum up, when participants access brief and mainly weak stimuli, the confidence ratings are not 709 

reliable and confidence profile could not be tracked from response-time, pupil and EEG response. In 710 

other words, implicit confidence markers, in some case, might be incapable of following the conscious 711 

confidence rating. This is in line with innovative findings abstracting implicit confidence measures 712 

from explicit confidence measures (Logan & Crump, 2010). 713 

4.4 Limitations and future directions 714 

To the best of our knowledge, how evidence accumulation processes improve the accuracy confidence 715 

association was not addressed using the combination of behavioral, neural, and pupillometry signatures 716 

before. Obviously, our results were grounded in assumptions of integration strategy in decision-717 

making. However, this insight has recently been reconsidered (Carland, Marcos, Thura, & Cisek, 2016; 718 

Stine et al., 2020). Participants' decisions might be better explained by an urgency-gate model (Evans, 719 

Hawkins, Boehm, Wagenmakers, & Brown, 2017; Thura, Beauregard-Racine, Fradet, & Cisek, 2012) 720 

rather than an integration strategy such as perfect integrator. A participant’s strategy could be 721 

something between no integration and perfect integration or in a completely different space of models 722 

(Stine et al., 2020) and might be change depending on task paradigm or even subject’s internal state 723 

(Evans & Hawkins, 2019; Najafi & Churchland, 2018; Tsetsos, Gao, McClelland, & Usher, 2012). 724 

Consequently, further models to discuss the decision strategy in the presence of separated pulses could 725 

guide future works. In addition, future experiments could develop computational approaches and 726 
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attempt to implement other scenarios in a discrete environment to study choice and confidence 727 

formation and examine the involved processes. 728 

 In addition, although the vast number of trials for each participant allowed us to do a robust subject-729 

wise analysis and our EEG study replicated the same behavioral and modeling data, the small number 730 

of participants we used prevents us from making general claims. Future research might capitalize on 731 

our paradigm to provide a situation in which confidence remains persistent but metacognitive 732 

sensitivity improved. In this way, future research continues studying the neural basis of metacognitive 733 

ability and consciousness in addition to previous works (Feuerriegel, Blom, & Hogendoorn, 2021; 734 

Fleming & Dolan, 2012). 735 

5 Conclusion 736 

To sum, the present study sheds new light on confidence formation, especially in perceptual decision-737 

making when a pair of visual cues separated by diverse temporal gaps. Our data suggest that 738 

accumulated evidence from both pulses shapes confidence but not in line with accuracy. Moreover, we 739 

showed that the classic perfect integrator model merely highlighted evidence accumulation which 740 

predict the choice and ignored the effect the metacognitive noise that affects confidence. Finally, 741 

integrating evidence from two separated pieces of information makes the confidence profiles in RT, 742 

EEG and pupil responses show up, unlike the situation in which participants have to decide based on 743 

a brief and weak pulse of information. 744 
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Supplementary Material 968 

13 Supplementary Appendix 1: Figures and Tables 969 

13.1 Supplementary Tables 970 

Supplementary Table 1. Subtraction of confidence in double-pulse from single-pulse trials was 971 

significantly affected by choice accuracy. 972 

Participant 𝜷𝟏  

P1 
0.17 (p < 0.01) 

CI = [.15, .19] 

P2 
0.21 ± 0.01 (p < 0.01) 

CI = [.19, .23] 

P3 
0.10 ± 0.01 (p < 0.01) 

CI = [.08, .12] 

P4 
0.12 ± 0.01 (p < 0.01) 

CI = [.10, .14] 

Each row shows the coefficients of Eq.10 of manuscript, their related p values and a 95% confidence 973 

interval.  974 
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Supplementary Table 2. Performance was largely unaffected by interpulse interval for double-pulse 975 

trials with equal pulse strength and with unequal pulse strength. 976 

  Equal strength   Unequal strength   

Participant  β3  β4  β3 β4 β5 

P1 
 -0.45 ± 1.07 (p = 0.67) 

CI = [-2.55, 1.65] 

-0.01 ± 0.01 (p = 0.91) 

95% CI = [-.03, .01] 

 

0.39 ± 0.84 (p = 0.63) 

CI = [-1.26, 2.03] 

-0.10 ± 0.09 (p = 0.29) 

CI = [-.28, .08] 

-0.01 ± 0.01 (p = 0.77) 

CI = [-.03, .01] 

P2 
 -2.58 ± 1.50 (p = 0.09) 

CI = [-5.52, .36] 

-0.01 ± 0.08 (p = 0.93) 

CI = [-.17, .15] 

 

0.78 ± 1.23 (p = 0.52) 

CI = [-1.63, 3.19] 

0.01 ± 0.15 (p = 0.95) 

CI = [-.28, .30] 

 0.02 ± 0.07 (p = 0.77) 

CI = [-.11, .17] 

P3 
 0.48 ± 1.08 (p = 0.66) 

CI = [-1.64, 2.60] 

0.07 ± 0.11 (p = 0.52) 

CI = [-.15, .28] 

 

2.18 ± 0.95 (p = 0.03) 

CI = [.32, 4.04] 

- 0.19 ± 0.10 (p = 0.06) 

CI = [-.39, .01] 

0.14 ± 0.10 (p = 0.17) 

CI = [-.06, .34] 

P4 
 0.74 ± 0.97 (p = 0.44) 

CI = [-1.16, 2.64] 

-0.12 ± 0.08 (p = 0.15) 

CI = [-.28, .04] 

 

-0.57 ± 0.75 (p = 0.45) 

CI = [-2.04, .90] 

0.02 ± 0.08 (p = 0.81) 

CI = [-.14, .18] 

-0.07 ± 0.07 (p = 0.33) 

CI = [-.21, .07] 

Each row shows the coefficients of Eq.4 and 5, their related p values and a 95% confidence interval of 977 

βi. 978 

  979 
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Supplementary Table 3. Pairwise comparisons across models (1: single-pulse trials, 2: double-pulse 980 

trials, 3: perfect integrator) for SDT parameters. 981 

  𝒅′  𝑴𝒆𝒕𝒂– 𝒅′  𝑴𝒆𝒕𝒂– 𝒅′/𝒅′ 

  1 vs 2 1 vs 3 2 vs 3  1 vs 2 1 vs 3 2 vs 3  1 vs 2 1 vs 3 2 vs 3 

tstat  3.79 4.05 1.25  1.98 0.21 2.48  1.74 0.12 3.58 

df  22 22 22  22 22 22  22 22 22 

pValue  0.001 0.52 × 10-5 0.22  0.05 0.83 0.02  0.09 0.90 0.002 

95% CI  [.13, .44] [.20, 0.62] [-.08, 0.32]  [-.02, 1.12] [-.66, 0.82] [.10, 1.15]  [-.17, 1.98] [-1.09, 1.23] [.35, 1.32] 

Cohen’s d  1.55 1.65 - 0.51  0.81 0.09 1.01  0.71 0.05 1.46 

  982 
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13.2 Supplementary Figures 983 

 

Supplementary Figure 10. Choice confidence was not depended on the sequence of motion 

pulses. (A) The weak–strong pulse sequence contributed higher accuracy than the strong–weak 

sequence. (B) The weak–strong pulse sequence did not contribute higher confidence comparing 

to the strong–weak sequence. In all panels, data are represented as group mean ± SEM. 

(*p<0.05) 

 984 

  985 
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Supplementary Figure 11. Interplay between confidence/accuracy and interpulse interval 

in double-pulse trials. (A) Choice accuracy for double-pulse trials grouping in all possible 

interval conditions. (B) Confidence of double-pulse trials was calculated by pooling data across 

all time intervals. In (A) and (B) each data point addresses pooled data from indicated sequence 

pulse and its reverse order (e.g., 12.8– 3.2% and 3.2 –12.8%). 

 986 
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Supplementary Figure 12. Variation of accuracy or confidence in double-pulse trials baselined 

by corresponding coherence (3.2%, 6.4% and 12.8% for each column). (A) Considering all the 

trials, accuracy improved in combination with almost all pulses comparing to the baseline. (B) 

Considering all the trials, confidence improved in combination with stronger pulses while the 

confidence in sequence with a weaker pulse either decreased or remained constant. (C) In correct-

choice trials, the increasing effect of stronger pulses is more significant and the confidence even 

slightly improved in combination with weaker pulses comparing to corresponding baseline. (D) 

Interestingly, in incorrect trials, the confidence decreased in every condition. The colored line 

representing matching data for each of four possible gaps. In bar graph, the data are represented as 

group mean ± SEM.  

 988 
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Supplementary Figure 4.  Comparison of models and human behavior. Stimulus sensitivity (𝑑′), 

metacognitive sensitivity (𝑀𝑒𝑡𝑎– 𝑑′) and, metacognitive efficiency (𝑀𝑒𝑡𝑎– 𝑑′/𝑑′) estimated for 

single-pulse trials, double-pulse trials and the perfect integrator models.  

 989 

A univariate ANOVA showed that 𝑑′ between models fit to double/single-pulse trials and the perfect 990 

integrator model significantly differed (F(2,33) = 9.99; p = 0.41 × 10-4). Also, a univariate ANOVA 991 

showed that 𝑀𝑒𝑡𝑎– 𝑑′ between models fit to double/single-pulse trials and the perfect integrator model 992 

partialy differed (F(2,33) = 1.04; p = 0.09). We also computed metacognitive efficiency 993 

(𝑀𝑒𝑡𝑎– 𝑑′/𝑑′), A univariate ANOVA revealed a significant difference on all three models (F(2,33) = 994 

2.50; p = 0.10).), We also applied the t-test as a post hoc procedure to compare all pairs of 𝑑′, 𝑀𝑒𝑡𝑎– 𝑑′, 995 

𝑀𝑒𝑡𝑎– 𝑑′/𝑑′ from three models (Supplementary Supplementary Table 3. Pairwise comparisons 996 

across models (1: single-pulse trials, 2: double-pulse trials, 3: perfect integrator) for SDT 997 

parameters.Table 3). 998 

  999 
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Supplementary Figure 5.  Variation of confidence criteria comparing to single-pulse trials in 

perfect integrator vs double-pulse trials and optimized model. 

 1000 
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Supplementary Figure 6. A univariant Anova showed that confidence categorized by four 

different approaches in double-pulse trials not significantly differed (F(3,140) = 9.99; p = 0.34). 

Three paired-samples t-tests between our confidence categorization with other methods showed 

no difference (all ps > 0.36). 

  1002 
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Supplementary Figure 7. Comparison of models and human behavior considering the 

same numbers of trials. (a) Stimulus sensitivity (𝑑′), metacognitive sensitivity (𝑀𝑒𝑡𝑎– 𝑑′), 

metacognitive efficiency (𝑀𝑒𝑡𝑎– 𝑑′/𝑑′) estimated for single-pulse trials, double-pulse trials and 

the perfect integrator models.  

 1003 

We compared 𝑑′, 𝑀𝑒𝑡𝑎– 𝑑′ and, 𝑀𝑒𝑡𝑎– 𝑑′ 𝑑′⁄  of fitted models to single/double-pulse trials and 1004 

simulated data by perfect integrator model, following up with three Dunn pair tests. A Kruskal-Wallis 1005 

test showed that 𝑑′ between models fit to double/single-pulse trials and the perfect integrator model 1006 

not significantly differed (H(3) = 3.23; p = 0.20). We also applied the Dunn test as a post hoc procedure 1007 

to compare all pairs of 𝑑′ from three models. No 𝑑′ in models significantly differed from others (all ps 1008 

> 0.21). 1009 

Also, a Kruskal-Wallis test showed that 𝑀𝑒𝑡𝑎– 𝑑′ between models fit to double/single-pulse trials and 1010 

the perfect integrator model significantly differed (H(3) = 6.96; p = 0.03). Post-hoc Dunn were used to 1011 

compare all pairs of 𝑀𝑒𝑡𝑎– 𝑑′ from three models. The difference of 𝑀𝑒𝑡𝑎– 𝑑′ of single-pulse trials 1012 

and double-pulse was significant (p = 0.03, CI = [- 12.58, -0.41]). However, the difference of 𝑀𝑒𝑡𝑎– 𝑑′ 1013 

was insignificant for single-pulse trials and perfect integrator model (p = 0.87, CI = [-7.83, 4.33]) and 1014 

for double-pulse trials and perfect integrator model (p = 0.17, CI = [4.75, 10.83]). 1015 

We also computed metacognitive efficiency (𝑀𝑒𝑡𝑎– 𝑑′/𝑑′), A Kruskal-Wallis test revealed a 1016 

significant difference on all three models (H(3) = 7.42, p = 0.02), metacognitive efficiency in double-1017 

pulse and perfect integrator differed significantly (p = 0.04, CI = [0.16 12.33]) while in double-pulse 1018 

and single-pulse, it partially differed (p = 0.07, CI = [-11.83, 0.33]). The difference of single-pulse and 1019 

perfect integrator was not significant (p = 0.99, CI = [-5.58 6.58]). 1020 
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14 Supplementary Appendix 2: Signal detection theory models 1022 

In the binary decision, the observer must discriminate between stimuli labeled 𝑆2 or labeled 𝑆1. Each 1023 

stimulus presentation generates a value on an internal decision axis (Figure 1b), corresponding to the 1024 

evidence in favor of 𝑆1 or 𝑆2. Evidence generated by each stimulus class is normally distributed across 1025 

the decision axis, and the distance between these distributions in standard deviation units (𝑑′) measures 1026 

how well the observer can discriminate 𝑆1 from 𝑆2. The observer sets a decision criterion 𝑐𝑟, such that 1027 

all signals exceeding 𝑐𝑟 are labeled 𝑆2 and all those failing to exceed 𝑐𝑟 are labeled 𝑆1. The observer 1028 

also sets criteria 𝑐𝑟2,“𝑆1” and 𝑐𝑟2,“𝑆2” to determine confidence ratings around the decision criterion 𝑐𝑟. 1029 

These two thresholds must be well-ordered so that cr2,“𝑆1” <  𝑐𝑟 < cr2,“𝑆2” (Figure 1b). When a 𝑆2 1030 

response is made, a confident 𝑆2 response requires the evidence also to have surpassed the 𝑐𝑟2,“𝑆2” 1031 

threshold [1]. Consider only trials where the observer responds 𝑆2, which means the decision axis 1032 

exceeding 𝑐𝑟. Then the 𝑆2 distribution corresponds to the distribution of evidence for correct responses 1033 

(i.e., 𝑆2 stimuli classified as 𝑆2), and the 𝑆1 distribution corresponds to the distribution of evidence for 1034 

incorrect responses (i.e., 𝑆1 stimuli classified as 𝑆2).  1035 

14.1 Confidence 𝑯𝒊𝒕 𝑹𝒂𝒕𝒆 and 𝑭𝒂𝒍𝒔𝒆 𝑨𝒍𝒂𝒓𝒎 𝑹𝒂𝒕𝒆 1036 

Sweeping the cr2,“S2” criterion across the decision axis generates different values for confidence false 1037 

alarm rate (𝑃𝑟𝑜𝑏(𝑐𝑜𝑛𝑓 = "ℎ" |  𝑠𝑡𝑖𝑚 ≠ 𝑟𝑒𝑠𝑝) and confidence hit rate (𝑃𝑟𝑜𝑏(𝑐𝑜𝑛𝑓 = "ℎ" |  𝑠𝑡𝑖𝑚 =1038 

𝑟𝑒𝑠𝑝). A summary of the observer’s confidence performance is provided by hit rate (Hit Rate2) and 1039 

false alarm rate (False Alarm Rate2)[1]: 1040 

Hit Rate2 =  Prob(conf = "ℎ" |  stim = resp)  =
 n(high conf correct )

n(correct)
  , 

False Alarm Rate2 = Prob(conf = "ℎ" |  stim ≠ resp)  =
 n(high conf incorrect )

n(incorrect)
, 

(1) 

 1041 

where 𝑛(𝑐𝑜𝑛𝑑) denotes a count of the total number of trials satisfying the condition 𝑐𝑜𝑛𝑑.  1042 

14.2 Decision 𝑯𝒊𝒕 𝑹𝒂𝒕𝒆 and 𝑭𝒂𝒍𝒔𝒆 𝑨𝒍𝒂𝒓𝒎 𝑹𝒂𝒕𝒆 1043 

In the SDT model, the decision hit rate (Hit Rate1) and the decision false alarm rate 1044 

(False Alarm Rate1) are also calculated as follows: 1045 

 1046 

Hit Rate1 =  
  n(resp=𝑆𝑖,   stim=𝑆𝑖  ) 

n(stim = 𝑆𝑖)  
  , i = 1,2 

False Alarm Rate1 =
  n(resp=𝑆𝑖,   stim=𝑆𝑗 ) 

n(stim = 𝑆𝑗)  
   , i = 1, j = 2 or i = 2, j = 1 

(2) 

 1047 
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where 𝑖 and 𝑗 represent the stimulus classification. After calculating the Hit Rate1 1048 

and False Alarm Rate1 of each participant, 𝑑′ and 𝑐𝑟 are calculated as follows for each participant: 1049 

(3) 

𝑑′ = ɸ−1(Hit Rate1, 0, 1) − ɸ−1(False Alarm Rate1, 0, 1) 

𝑐𝑟 =  −0.5 ∗ [ɸ−1(Hit Rate1, 0, 1) +  ɸ−1(False Alarm Rate1, 0, 1)] 

 1050 

here, ɸ−1 is the inverse of a function that represents a normal cumulative distribution and is calculated 1051 

as follows: 1052 

 1053 

where 𝑁(𝑣, µ, 𝜎) is a Normal distribution with mean (µ) and standard deviation (𝜎). After the above 1054 

calculations, to simplify the next calculations, we may consider the value of 𝑐𝑟 as zero point and move 1055 

the distribution diagrams related to each option on the axis of the evidence. 1056 

By setting 𝑑′, 𝑐𝑟 and two criteria 𝑐𝑟2,“𝑆1” and 𝑐𝑟2,“𝑆2” (Figure 1B), the probabilities of each confidence 1057 

rating conditional on a given stimulus and response (Hit Rate2 and False Alarm Rate2) can be 1058 

calculated theoretically according to the following equations:  1059 

 1060 

Prob(conf = ”ℎ”|stim = 𝑆1, resp = “𝑆1”) = HitRate2”S1” =
ɸ (cr2,“𝑆1”, −

d′

2 )

ɸ (cr, −
d′

2 )
 

Prob(conf = ”ℎ”|stim = 𝑆2, resp = “𝑆1”) = FalseAlarmRate2”S1” 
=

ɸ (cr2,“𝑆1”,
d′

2 )

ɸ (cr,
d′

2 )
 

Prob(conf = ”ℎ”|stim = 𝑆1, resp = “𝑆2”) = HitRate2”S2” =
1 − ɸ (cr2,“𝑆2”,

d′

2 )

1 − ɸ (cr,
d′

2 )
 

(5) 

ɸ(𝑠, µ, σ) = ∫ 𝑁(𝑣, µ, 𝜎)𝑑𝑣
0

− ∞
, (4) 
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Prob(conf = ”ℎ”|stim = 𝑆2, resp = “𝑆2”) = FalseAlarmRate2”S2” =
1 − ɸ (cr2,“𝑆2”, −

d′

2
)

1 − ɸ (cr, −
d′

2
)

 

 1061 

In the SDT model, there are different methods for adjusting the model with the data obtained from the 1062 

experiments. In the method we used, 𝑑′ and 𝑐𝑟 were calculated from the participants' performance (Eq. 1063 

3). Then, using maximum likelihood estimation (MLE) and Eq. 1 and 5 and by altering the value of 1064 

the confidence criteria while holding 𝑑′ and 𝑐𝑟 constant, a set of (Hit Rate2, False Alarm Rate2) pairs 1065 

ranging between (0, 0) and (1, 1) were generated. Moreover, 𝑀𝑒𝑡𝑎– 𝑑’ was found by fitting the decision 1066 

SDT model to response-specific confidence.  1067 
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