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ABSTRACT

Cells are enticingly complex systems. The identification of feedback regulation is critically

important for understanding this complexity. Network motifs defined as small graphlets that

occur more frequently than expected by chance have revolutionized our understanding of feed-

back circuits in cellular networks. However, with their definition solely based on statistical

over-representation, network motifs often lack biological context, which limits their usefulness.

Here, we define functional network motifs (FNMs) through the systematic integration of genetic

interaction data that directly informs on functional relationships between genes and encoded

proteins. Occurring two orders of magnitude less frequently than conventional network motifs,

we found FNMs significantly enriched in genes known to be functionally related. Moreover,

our comprehensive analyses of FNMs in yeast showed that they are powerful at capturing both

known and putative novel regulatory interactions, thus suggesting a promising strategy towards

the systematic identification of feedback regulation in biological networks. Many FNMs ap-

peared as excellent candidates for the prioritization of follow-up biochemical characterization,

which is a recurring bottleneck in the targeting of complex diseases. More generally, our work

highlights a fruitful avenue for integrating and harnessing genomic network data.
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INTRODUCTION

Cells are enticingly complex systems (Wolf et al., 2018). Their phenotypic traits often depend

on the concerted action of hundreds or even thousands of individual genes and encoded proteins

(Lehner, 2013; Boyle et al., 2017). Rationalizing this interdependency is important both for

understanding how cellular function is encoded in the genome (Watanabe et al., 2019) as well

as the origins of complex diseases (Wray et al., 2018).

The large-scale mapping of protein-protein interactions (PPI) (Bork et al., 2004; Rual et al.,

2005; Krogan et al., 2006; Tarassov et al., 2008; Yu et al., 2008) and genetic interactions (GI)

(Schuldiner et al., 2005; Costanzo et al., 2016, 2019) has provided a foundation for understand-

ing the functional organization of cellular networks (Barabasi, 2004). Most proteins function

through direct contact, i.e. PPIs. Accordingly, clusters of high interconnectivity in PPI networks

have revealed strong hierarchical modularity (Han et al., 2004) that ranges from protein com-

plexes (Gavin et al., 2006) to sets of functionally related proteins (Ravasz et al., 2002; Huynen

et al., 2003; von Mering et al., 2003). Significant efforts have been undertaken to identify such

network modules from the network structure (Park and Bader, 2011) and link them to observ-

able phenotypes (Wang et al., 2012; Vinayagam et al., 2014). In contrast, GIs inform on the

functional relationships between genes by quantifying epistatic fitness effects of their deletion

mutants (Mani et al., 2008). Positive GIs are often linked to dependencies within the same func-

tion while negative GIs are frequently observed between redundant and compensatory processes

(Beltrao et al., 2010). However, many GIs have complex and non-trivial origins (Crona et al.,

2017; Pirkl et al., 2017; Kuzmin et al., 2018) that await to be further characterized. Similar

to PPIs, GI networks also display strong hierarchical modularity (Beltrao et al., 2010; Cornish

and Markowetz, 2014; Fang et al., 2019) that confers robustness and versatility (Fortuna et al.,

2017).
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The smallest yet arguably most important recurring unit of modularity in biological net-

works are network motifs (Milo et al., 2004; Kashtan and Alon, 2005). Network motifs were ini-

tially defined as small graphlets of size k ≈ 3−6 nodes that occur more frequently than expected

by chance, thus assuming that their selection indicates importance (Milo et al., 2004). Enabled

by efficient algorithms for their discovery (Kashtan et al., 2004; Schreiber and Schwöbbermeyer,

2005; Wernicke and Rasche, 2006; Przulj, 2006; Kashani et al., 2009), network motifs have dra-

matically improved our understanding of biological networks. Through their detailed charac-

terization it has become clear that motifs often encode important feedback circuits with distinct

functionality (Alon, 2007) such as feed-forward signaling (Goentoro et al., 2009), control of

system states (Elowitz and Leibler, 2000), and coordination of decision making (Brandman

et al., 2005). In complement, the large-scale analysis of motifs in networks has helped to con-

nect network topology to function (Vázquez et al., 2004), for instance in transcription regula-

tion (Jothi et al., 2009; Wang and Chen, 2010; Song et al., 2017; Teixeira et al., 2017), stress

responses (Kim et al., 2012; Hahn et al., 2006), and development (Freeman, 2000).

Importantly, network motifs are primed to encode the evidently pervasive but so far largely

elusive feedback and cross-talk pathways within cellular networks required to understand their

complexity. However, the usefulness of network motifs to systematically identify regulatory

interactions has so far been limited (Konagurthy and Lesk, 2008). Specifically, motifs are rou-

tinely found in very large numbers, which renders the selection of promising candidates for de-

tailed follow-up characterization challenging. Moreover, despite statistical over-representation

of their topology most individual network motifs are not evolutionarily conserved (Mazurie

et al., 2005), suggesting that only a small fraction of the network motifs may indeed carry func-

tion. We therefore hypothesized that an improved definition of network motifs that takes into

consideration their individual biological contexts may offer additional insights into the func-

tioning and organization of biological networks.
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Here, we defined functional network motifs (FNMs) based on integrating GIs as direct mea-

sure of functional relationships between genes into the discovery of motifs in the yeast PPI

network. Remarkably, with occurrences of FNMs about two orders of magnitude less frequent

than conventional network motifs, we found FNMs significantly enriched in genes known to be

functionally related. Moreover, our comprehensive analyses of FNMs in yeast showed that they

are powerful at re-identifying known regulatory interactions as well as discovering interesting

new ones. Our work highlights a promising avenue to harness genomic network data towards

systematically identifying regulatory interactions and further breaking down biological com-

plexity.

RESULTS

The identification of regulatory interactions is critically important for understanding cellular

complexity. Network motifs have made a foundational impact on our understanding of the

regulation of biological networks. We here hypothesized that an expanded definition of network

motifs based on both PPIs as record of protein activity as well as GIs that quantify functional

relationships should improve their usefulness for biological discovery. To test this idea, we

defined functional network motifs (FNMs) as graphlets in the yeast PPI network that were also

enriched in GIs. Specifically, for a graphlet to be considered an FNM we required the presence

of GIs between the source node and all nodes in the most distant layer, i.e. GIs that span the

full graphlet, as well as overall in ≥ 50% of all possible non-self edges (Figure 1A, S1A).

We next implemented an algorithm for the efficient and exhaustive enumeration of all motifs

of size k = 3, 4, 5, 6 in the yeast PPI network (see Methods). Two deliberate constraints were

imposed to reduce computational cost while increasing biological interpretability. Because the
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most highly connected nodes in the yeast PPI are usually protein interaction hubs rather than

specific regulators, we omitted the highest degree nodes from the network. Moreover, we only

considered at most one protein complex subunit per motif as we were interested in links between

functional units rather than the architecture of protein complexes.

Remarkably, we counted about two orders of magnitude fewer FNMs than conventional

network motifs independent of motif size (Figure 1B). For comparison, we generated all con-

ventional motifs in the yeast PPI and randomized PPI networks as well as FNMs upon random-

ization of the GI network (Figure S1B, see Methods). The obtained results followed expected

trends. Illustrated for the most populated topologies, motifs occurred more frequently in the

PPI network than in randomized PPI networks, thus could also be considered classical network

motifs (Figure 1C). Similarly, FNMs were substantially more frequent than in randomized GI

networks, suggesting that the selection of motifs based on high GI density is selective and mean-

ingful (Figure 1C, S1C,D). Taken together, FNMs collectively identify the same topologies as

conventional network motifs but their individual occurrences are substantially more rare.
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Figure 1 Definition of functional network motifs (FNMs). (A) Exemplary schematic of an FNM. Black

edges represent protein-protein interactions (PPI) and define a graphlet. Green edges represent genetic

interactions (GI). The source node and most distant layer in the motif are highlighted. A network motif

becomes an FNM if GIs are present in at least 50% of all non-self edges, and between the source node

and all nodes in the most distant layer. (B) Counts of conventional network motifs (PPI) and FNMs as

function of the motif size k. The occurrences of FNMs are two orders of magnitude lower than that of

classical network motifs. (C) Counts of motifs in the yeast protein and genetic networks for the most

represented motif topologies. Shown are the total motif counts based only on the PPI network (PPI), for

randomized PPI networks (PPI random), as well as for FNMs and and FNMs computed from randomized

GI network (FNM random). Motif topologies are indicated both graphically and in compressed graph6

format.
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FNMs are enriched in functionally related genes

Naturally, a more selective definition of network motifs resulted in lower counts. To test whether

our definition of FNMs was indeed meaningful, we evaluated if they preferentially contained

functionally related and important genes. One intriguing example of functionally related genes

is given by genetic suppressors, pairs of genes where the phenotypic effect of a mutation in one

gene is compensated by the other. Importantly, while yeast suppressors genetically interact (van

Leeuwen et al., 2016), a single GI alone would not bias a motif towards an FNM. Strikingly, we

found a significant enrichment of suppressor interactions in FNMs compared to conventional

PPI network motifs (p � 10−16, Fisher’s Exact Test, Figure 2A). Thus, FNM were directly

enriched in functional interactions.

Further support for our definition of FNMs was drawn from an analysis of essential genes

and genes code for protein complex subunits. Essential genes are functionally indispensable

and their deletion mutants are by definition not viable. However, GIs of essential genes can

be measured for instance with DAmP alleles that perturb their expression, and are often pro-

nounced. Similarly, protein complex subunits are important due to the functional importance of

the complex as well as the high fitness cost of mutants in individual subunits that can destabi-

lize the whole complex. We found FNMs to contain a higher fraction of both essential genes

(p � 10−16, Wilcoxon-Mann-Whitney (WMW) test, Figure 2B) and genes coding for protein

complex subunits (p � 10−16, WMW test, Figure 2B) than conventional PPI network motifs.

To estimate redundancy in the large number of FNMs, we next clustered them based on

node overlap (see Methods). We found that 93.6%, i.e. the vast majority of FNMs concentrated

in clusters of sizes ≈ 7− 70, while 26078 FNMs did not cluster (Figure 2C). Of note, very few

genes were found responsible for this agglomeration of FNMs. While only 6.4% of FNMs did

not cluster, they represented 87.7% of all genes and proteins found in FNMs (Figure 2C). The

genes in clustered FNMs had a significantly higher representation in different motifs compared
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to genes only found in non-clustered FNMs (p = 5.3 · 10−134, WMW test, Figure 2D) because

they also had on average a significantly higher degree (p = 2.3 · 10−30, WMW test, Figure

2D). Importantly, the non-clustered FNMs retain their enrichment in suppressor interactions,

essential genes and complex subunits. Thus, FNMs defined through integration of PPIs and

GIs are indeed representing collections of important functional interactions. While clusters of

FNMs share strong similarity to larger modules in the PPI network, the FNMs that do not clus-

ter should be particularly interesting.

A B

DC

Cluster
No cluster

Figure 2 FNMs are enriched in functionally important and related genes. (A) Fractions of FNMs and

classical network motifs (PPI) that contain suppressor interactions as proxy for functionally related
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genes. (B) Fractions of essential genes and genes coding for protein complex subunits in FNMs and in

classical network motifs (PPI). (C) Numbers of FNMs that do not cluster compared to all FNM, together

with the number of genes (ORFs) in all FNMs and only in those that do not cluster. (D) Distributions of

the number of motifs per gene for the genes in FNMs that cluster vs. those that do not cluster together

with the network degree for the same groups of genes.

Genetic interactions in FNMs are orthogonal to protein interactions

Having established that FNMs indeed reflect known functional dependencies between genes, we

next sought to better understand the composition of their genetic interactions. Overall, negative

GIs were clearly more prevalent in FNMs (Figure 3A) but we could not identify any trends that

link subsets of FNMs to predominantly positive or negative GIs. This was not unexpected as

GIs are known to be complex and strongly context dependent (Markowetz et al., 2007; Kuzmin

et al., 2018).

To test any consistency and correlation of GIs and PPIs, we generated a protein complex

interaction network by considering all interactions contained in the non-clustering FNMs and

mapping them onto joint nodes for the annotated yeast protein complexes. Protein complexes

are a good test case because they form important functional units but may interact through

multiple subunits. For each pairwise interaction between two complexes, we collected all GIs

contained in the corresponding FNMs. While these included both repeated occurrences of the

same GI edge from different FNMs and GIs between different complex subunits, almost all

pairs of complexes had multiple different GIs. Remarkably, the consensus GIs between protein

complexes extracted from the FNMs showed almost perfect consistency towards negative or

positive interactions (Figure 3B).
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The full yeast protein complex interaction map highlighted important functional connec-

tions as well as the orthogonal nature of PPIs and GIs (Figure 3C). Some of the most central

protein machines required for genome maintenance such as DNA polymerases dominated the

observed negative GIs. Complexes with positive GIs included examples of protein targeting and

translocation such as the ESCRT complexes involved in endosomal sorting or the Vam3/Vam7

complex that functions in vacuolar trafficking. Only some complexes shared both PPIs and GIs.

Notably, only 25.9% of protein complex pairs that interacted physically also interacted genet-

ically (Figure 3D). In turn, 29.8% of edges between protein complexes were only PPIs, while

44.3% GIs (Figure 3D). Thus, the GIs captured by the FNMs were both consistent and largely

orthogonal to the PPIs.

In the extreme, an FNM of size k = 6 can connect six different protein complexes, for

instance complexes that function in DNA replication and repair (Figure 3E). In this exemplary

FNM, SLD5 of the GINS complex that is important for DNA replication connected with both

PPIs and negative GIs to DPB3 of the DNA polymerase epsilon subunit, DPB11 as scaffolding

protein of the Dpb11p/Sld2p complex important for DNA replication initiation, and TOF1 of

the replication pausing checkpoint complex. Further connections were observed from DPB11

to MMS4 of the Holiday-junction-resolvase that functions in recombination and DNA repair,

as well as a PPI and positive GI between DBF4, which is the regulatory subunit of a kinase

complex important for the initiation of DNA replication, and TOF1. The interplay between the

regulation of DNA replication and repair is in general well established and this motif was just

one example highlighting the potential of FNMs to identify strong candidates for regulatory

interactions from genomic network data.
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A

B

DC

E

Figure 3 Genetic interactions in functional network motifs. (A) Fractions of positive (yellow) and nega-

tive (blue) genetic interactions in FNMs. (B) Consensus genetic interactions between protein complexes.

(C) Consensus PPI and GI map of yeast protein complexes. PPIs are shown with straight black lines,

positive GIs in yellow and negative GIs in blue. The line width reflects the number of interactions ob-

served between the complex pair. (D) Fractions of pairwise interactions between protein complexes that

included both PPIs and GIs, only PPIs and only GIs. (E) Exemplary FNM that connects six different

protein complexes involved in DNA replication and repair. Both the gene and complex names are indi-

cated.

FNMs identify strong candidates for feedback regulation

Having shown that FNMs capture consistent and meaningful interactions, we next sought to test

the potential of FNMs to identify putative regulatory or cross-talk motifs. While some protein

complexes come into direct contact, others only communicate through additional proteins with
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auxiliary roles such as sensing, regulation, or signalling. The betweenness centrality is an

established network metric that quantifies the relative fraction of shortest paths that transverse

through a node thus indicating its importance for instance for the flow of information across a

network. Using the protein complex network generated from merging the FNM interactions of

protein complex subunits into joint nodes, we therefore computed the betweenness centrality

for all auxiliary nodes, i.e. non-complex nodes, as defined by the shortest paths between all

pairs of protein complexes (Figure 4A).

To test whether the betweenness centrality of the auxiliary nodes identified by the FNMs

differed, the corresponding betweenness centralities were also computed for all proteins in the

yeast PPI network filtered at maximum degree dmax < 50, the network used to generate the

FNMs. Moreover, we also computed as control betweenness centrality values for all auxiliary

nodes in the full yeast PPI network. Betweenness centrality values were significantly higher

for FNMs compared to the filtered PPI network (p = 1.06 · 10−6, WMW test, Figure 4B),

and significantly higher for the filtered PPI network than for the full PPI network (p = 9.24 ·

10=174, WMW test, Figure 4B). In part this observation scaled with the corresponding network

sizes wherein the shortest paths between protein complexes concentrated to fewer nodes in

smaller networks (Figure 4D). However, considering only contributing nodes with betweenness

centrality values > 0 suggested that the differences in betweenness centralities for the filtered

and full PPI networks was independent of the effective network size and rather a function of the

presence of very highly connected network hubs (Figure 4D). The higher betweenness centrality

for the FNM network must be the result of both a smaller network and the lack of hubs.

The investigation of the the auxiliary nodes with the highest betweenness centrality values

in the FNM network lead to several proteins known for their regulatory or cross-talk roles (Fig-

ure 4E). BOL1 is a mitochondrial matrix protein and assembly factor involved in the transfer

of [4Fe-4S] clusters from the ISA complex to client proteins (Uzarska et al., 2016). TOM71 is
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assumed to aid in the targeting of proteins to mitochondria (Schlossmann et al., 1996). TAH1

is a HSP90 chaperone co-factor required for C/D small nucleolar ribonucleoprotein assem-

bly (Jiméenez et al., 2012). The mitochondrial thioredoxin peroxidase PRX1 is important for

sensing and countering oxidative stress (Pedrajas et al., 2000). And the membrane transporter

PDR15 contributes to the cross-talk between stress response and the pleiotropic drug resistance

network for cellular detoxification (Wolfger et al., 2004).

To explore potentially novel regulatory interactions in a more controlled test scenario, we

next identified all FNMs that connect two of the most important and best-characterized subnet-

works in the cell, namely the set of transcription factors (TFs) forming the transcription regu-

latory network, and the yeast metabolic network. The metabolic network engages in extensive

cross-talk to maintain overall energy homeostasis, predominantly through reporter metabolites

that bind to regulatory proteins such as transcription factors or metabolic enzymes, but also

mediated through PPIs (Grüning et al., 2010). Remarkably, we only found 11 FNMs or groups

of interlinked FNMs that connect these large and important systems, each with distinct patters

of PPIs and GIs between TFs and metabolic enzymes (Figure 4E).

The FNMs included the well characterized response to glucose repression where the TF

MIG1 directly inhibits the expression of the sucrose hydrolyzing enzyme SUC2. Both were

additionally found to genetically interact with the pre-mRNA splicing machinery. The global

regulator of respiratory gene expression HAP3 was linked to the enzyme ALG9 involved in

N-linked glycosylation in the endoplasmic reticulum via two sensors of alkaline pH, RIM8 and

RIM21, as well as USA1, the scaffold protein of the ubiquitin ligase HRD1. It is plausible to

speculate about a feedback circuit that involves pH sensing and selective degradation. Simi-

larly, the specialized proteasome and stress response TF RPN4 was found to interact not only

with the core proteasome subunit PRE7, but via the E3 ligases UBR1 and UBR2 as well as

the E2 RAD6 also with the metabolic enzyme DFR1 involved in tetrahydrofolate biosynthe-
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sis within respiratory metabolism. RAD6 is known to form complexes with UBR1 and UBR2

respectively with different substrate specificities, thus may well contribute to the coordination

of RPN4 and DFR1 protein levels. As such, this FNM appeared as an exceptionally strong

candidate for contributing to the coordination of transcription regulation and metabolism under

stress. In summary, the FNMs have revealed very promising candidates for putative regulatory

interactions in low enough numbers that render them immediately amenable for biochemical

characterization.

A B

C

D

E

Metabolism

TF
PPI
pos GI
neg GI

Figure 4 FNMs identify known and novel feedback and cross-talk interactions. (A) Yeast protein com-

plex interaction network based on the interactions in the FNMs. Protein complex subunits are merged

into joint nodes (black squares). Auxiliary, non-complex, nodes (purple circles) are scaled based on their
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betweenness centrality. (B) Distributions of the betweenness centrality of the auxiliary nodes connecting

protein complexes. Shown are the values for the network derived from the FNMs, from the PPI network

with dmax < 50 as used to derive the FNMs, and from the full PPI network (PPI all). (C) Network sizes

of the FNM, PPI and PPI all networks. Also shown are the effective network sizes that only include

auxiliary nodes with non-zero betweenness centralities (dashed borders). (D) Ranking of the auxiliary

nodes with the highest betweenness centrality in the FNM network. (E) All FNMs that connect the yeast

consensus transcription factors to the yeast metabolic network.

Transcriptionally co-regulated FNMs are rare but important

Finally, cellular systems are highly dynamic and constantly rewire their networks (Pe’er et al.,

2001), complexes (de Lichtenberg et al., 2005), and also network motifs (Prill et al., 2005;

Doyle and Csete, 2005) under changing conditions. For instance, dynamically adapting mo-

tifs temporally coordinate the global transcription regulation of metabolism (Chechik et al.,

2008). Without knowledge of the network states under perturbation, the inference of dynami-

cally changing network motifs and their activity under different conditions is challenging and

at most approximate. However, the identification of strongly co-regulated motifs offered an

indication of which motifs retain their activity under changing conditions.

Specifically, by analyzing the transcriptional responses to environmental perturbations we

found that co-regulated FNM were rare (Figure 5A). In fact, less than 1% of FNMs were what

can be considered very strongly co-regulated, and about 5% as strongly co-regulated (Figure

5B). Moreover, while smaller motifs of size k = 3 naturally had higher fraction of strongly

co-regulated FNMs, co-regulation was else not biased by motif size (Figure 5C).

Some of the co-regulated FNMs were interlinked and clustered into well-characterized mod-
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ules, for example the core RNA splicing machinery that was found systematically co-regulated

in response to several stress conditions (Figure 5D). But the small individual FNMs highlighted

the more interesting connections. For instance, the nuclear and exosome-associated RNA bind-

ing protein MPP6, involved in pre-mRNA surveillance, linked through PPIs to both AIR2, an

RNA-binding protein of the TRAMP nuclear RNA surveillance complex, and the non-catalytic

exosome core component RRP4 (Figure 5E). Moreover, RRP4 was interacting through negative

GIs with both MPP6 and AIR2, underlining substantial cross-talk between RNA surveillance

and quality control (Lisbeth-Carolina et al., 2020).

Last, many motifs likely alter their activity under changing conditions. For instance, the

previously identified FNM of the stress response TF RPN4 that is linked by an E2/E3 ligase

system to the metabolic enzyme DFR1 showed a distinct pattern of expression changes. RPN4

as well as the direct TF target PRE7 were strongly induced under heat stress (Figure 5F). In

turn, the RPN4-facing E3 UBR2 was initially mildly down-regulated, but overall the expression

of the E2 and E3 ligases did not change while DFR1 was strongly down-regulated to no longer

detected (Figure 5F). It is plausible to speculate that this FNM contributes to the coupling of

transcription and protein levels in adaptation to heat stress by shifting the protein degradation

activity to the RAD6-UBR1 complex for the degradation of DFR1. Of note, while UBR1 is

normally nuclear, it readily becomes cytosolic under stress (Breker et al., 2013) where it could

target DFR1 and other proteins to maintain cellular homeostasis. FNMs are no finitive blueprint

of cellular regulation, but offer a most promising glimpse into putative regulatory interactions

from already available genomic data that warrant further investigation.
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Figure 5 Transcriptional co-regulation of FNMs in response to environmental perturbations. (A) Heatmap

of co-regulation expressed through average pairwise cosine similarity of the expression profiles of the

individual nodes in the motif. The top 5% and 1% are color coded. Rows of motifs with no co-regulation

in at least the top 5% are not shown. (B) Distribution of the FNM co-regulation scores. The top 5%

and 1% are indicated in the far right tail of the distribution. (C) Cumulative distribution curves of the

co-regulation scores as function of motif size k. (D) An exemplary cluster of motifs that is strongly

transcriptionally co-regulated during heat stress identifies the core splicing machinery. (E) An exem-

plary FNM that is strongly co-regulated during heat stress highlights extensive cross-talk between RNA

surveillance and quality control. (F) An FNM that connects the transcription regulatory network to the

metabolic network may indicate a regulatory function of the E2-E3 complexes formed by RAD6, UBR1

and UBR2 in coupling transcript and protein levels during heat stress.
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DISCUSSION

Network motifs have revolutionized our understanding of feedback circuits and the organization

of cellular networks. However, solely defined through statistical over-representation they often

lack biological context. Here, we have defined functional network motifs, or FNMs, through the

integration of genetic interaction data that directly informs on functional relationships between

genes and encoded proteins. By capturing known and novel regulatory interactions, FNMs

have been found a very promising strategy towards the systematic identification of feedback

and cross-talk in cellular regulation. Importantly, the description as ’functional’ is intended as

categorical rather than definite. Any notion of biological function itself is strongly context-

dependent and subject to debate (Keeling et al., 2019). More opportunities await for further

improving any definition of FNMs.

Ultimately, causation can only be established through targeted perturbations. Large-scale

perturbation studies (McIsaac et al., 2012; Hackett et al., 2016; Caldera et al., 2019; Hackett

et al., 2020) offer a promising outlook. However, even in absence of control perturbations,

additional information, especially the directionality of interactions (Vinayagam et al., 2014), can

be very informative as it allows to explore functional parameter ranges through the modeling of

motif dynamics. As more genomic data are generated under non-standard laboratory conditions,

it will certainly become easier to dissect the intricacies of cellular regulation.

Already now, FNMs offer many interesting insights and a strategy through the motif-based

integration of omics data that is readily extendable to additional data types. Support for this

rationale is given by the GIs observed in the FNMs. Similar to other genome-scale measurables,

GIs are inherently noisy. Consequently, GIs are routinely analyzed through correlations of their

genomic interaction profiles rather than as individual interactions (VanderSluis et al., 2018).

Through small clusters of GIs between functionally related genes, the FNMs achieve more
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confidence than would be offered by single GIs but are less generic than genome-wide profiles.

To this end, regulatory events in the cell extend far beyond physical interactions between

macromolecules as captured by PPI networks. Signaling can involve feedback through temporal

(Harrigan et al., 2018) and spatial organization (Santos et al., 2012), the dynamic activation and

deactivation through modification (Hirano et al., 2016), and even the folding of proteins and

RNA (Rutherford and Zuker, 1994). Moreover, some systems are truly determined by collective

behavior that can only be understood at a systems level. For instance, the cellular protein

folding capacity balances the proteome with available quality control pathways (Draceni and

Pechmann, 2019) wherein the competition for the shared folding capacity is governed through

differential interaction specificities (Pechmann, 2000). Central to many aspects of cell integrity,

protein homeostasis is a particularly important example where integrative approaches have been

very promising with a lot of open opportunity (Rizzolo et al., 2017).

An orthogonal approach to the discovery of critical regulators follows recent advances in

control and systems theory to identify the controlling nodes of networks from their topology

(Liu et al., 2011; Zanudo Tejeda et al., 2017) and even dynamics (Baggio et al., 2021). Such

avenues currently remain challenging for genome-scale networks, predominantly due to strong

assumptions as well as insufficient and incomplete data, but will most certainly continue to gain

in importance. Even stronger poised will be the synthesis of these ideas from genomics, systems

biology, and control. Due to their simplicity, FNMs can immediately contribute to the system-

atic identification of cross-talk and regulatory interactions. Iterative cycles of improvement will

continue to refine the prioritization of genes for follow-up characterization (Kuang et al., 2020),

decipher complex regulatory logic (Buchler et al., 2003), and support the re-engineering of crit-

ical protein sense-response systems (Glasgow et al., 2020).

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.20.449037doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449037
http://creativecommons.org/licenses/by-nc/4.0/


METHODS
Data and code availability

Project data and computer code generated for this study are available at

https://www.github.com/pechmannlab/FNM.

Data sources

The S. cerevisiae protein interaction network was obtained from BIOGRID release 3.5.185

(Oughtred et al., 2019) and filtered for physical protein interactions. Yeast genetic interactions

were retrieved from (Costanzo et al., 2016). The top and bottom 5% of all pairwise interac-

tion scores were considered significant and used to build a genetic interaction network. The

set of curated suppressor interactions from (van Leeuwen et al., 2016) was used as benchmark

example of functionally related genes. We further used the annotations of yeast protein com-

plexes from the MIPS database (Güldener et al., 2006), the consensus transcription factors from

YEASTRACT (Teixeira et al., 2017; Monteiro et al., 2020), and the metabolic network model

Yeast8 (Lu et al., 2019). Co-expression in response to environmental perturbations was assessed

with the expression data from (Gasch et al., 2000).

Enumeration of FNMs

Network motifs were generated through exhaustive enumeration of graphlets in the S. cerevisiae

protein-protein interaction (PPI) network. Our approach followed the algorithm developed by

(Kashani et al., 2009) wherein each motif class of numbers of nodes per layer, defined through

the integer compositions of the motif size k, was enumerated by standard depth-first-search. We

considered a graphlet, i.e. a motif in the PPI network, as a ’functional network motif’ (FNM) if

at least 50% of all possible non-self genetic interaction edges within the graphlet were present,

and the source node had direct genetic interactions with all nodes in the most distant layer. All
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motifs of sizes k = 3, 4, 5, 6 were generated.

Two deliberate constraints served to improve both computational tractability and biological

interpretability. Proteins that interact with hundreds or thousands of other proteins play im-

portant roles in the organization of cellular networks but rarely exhibit strong specificity and

selectivity. To identify functional network motifs that may be involved in specific feedback

circuits rather than network hubs, we only considered proteins of degree dmax < 50, while

thresholds of dmax < 25 and dmax < 100 were also tested. Importantly, the excluding of the

most highly connected network hubs made the exhaustive motif enumeration in the yeast PPI

computationally feasible up to a motif size of k = 6. Moreover, we only considered interac-

tions between protein complexes but not between subunits of the same protein complexes. The

rationale for this was that we wanted to identify putative feedback links that connect biological

function rather than understand the architecture of protein complexes that often act as functional

unit. Network randomizations were performed with the R package BiRewire (Iorio et al., 2016).

Motifs were generated for randomized PPI networks, and randomized genetic interaction net-

works. 30 randomizations were found to yield sufficiently converging reference values (Figure

S1B).

Analysis of FNMs

Motifs were clustered by iteratively identifying and merging maximally overlapping individ-

ual motifs. A complex-based motif interaction network was generated by considering all yeast

genes/proteins from the FNMs and merging protein complex subunit genes into joint nodes.

Genes encoding proteins that are part of more than one protein complex were omitted. Tran-

scriptional co-regulation of genes from the same motif was quantified through their average

pairwise cosine similarity between the time-course expression changes in response to environ-

mental perturbations (Gasch et al., 2000). All visualization was done in R.
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A B

C D

Figure S1 Definition and analysis of FNMs. (A) Fractions of GIs observed in classical network motifs as

function of motif size k and the maximum degree of the initial PPI network. (B) Expected counts of clas-

sical network motifs obtained from randomized networks as function of the number of randomizations

and motif size k. Shown are mean (black line) and standard deviation (grey shaded area). Random-

izations are computationally costly and 30 randomizations appear sufficient for stable estimates. (C)

Counts of FNMs and classical network motifs as function of motif size k and maximum degree in the

PPI network. (D) Percentages of FNMs relative to classical network motifs as function of motif size k

and maximum degree in the PPI network.
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