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Abstract 
Engineered nanoparticles are advantageous for numerous biotechnology applications, including 
biomolecular sensing and delivery. However, testing the compatibility and function of nanotechnologies in 
biological systems requires a heuristic approach, where unpredictable biofouling often prevents effective 
implementation. Such biofouling is the result of spontaneous protein adsorption to the nanoparticle surface, 
forming the “protein corona” and altering the physicochemical properties, and thus intended function, of the 
nanotechnology. To better apply engineered nanoparticles in biological systems, herein, we develop a 
random forest classifier (RFC) trained with proteomic mass spectrometry data that identifies which proteins 
adsorb to nanoparticles. We model proteins that populate the corona of a single-walled carbon nanotube 
(SWCNT)-based optical nanosensor. We optimize the classifier and characterize the classifier performance 
against other models. To evaluate the predictive power of our model, we then apply the classifier to rapidly 
identify and experimentally validate proteins with high binding affinity to SWCNTs. Using protein properties 
based solely on amino acid sequence, we further determine protein features associated with increased 
likelihood of SWCNT binding: proteins with high content of solvent-exposed glycine residues and non-
secondary structure-associated amino acids. Furthermore, proteins with high leucine residue content and 
beta-sheet-associated amino acids are less likely to form the SWCNT protein corona. The classifier 
presented herein provides an important tool to undertake the otherwise intractable problem of predicting 
protein-nanoparticle interactions, which is needed for more rapid and effective translation of 
nanobiotechnologies from in vitro synthesis to in vivo use. 
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Introduction 
Engineered nanoparticles are poised to transform how we undertake biological sensing,(1–3) imaging,(4–
6) and delivery:(7–9) nanoscale materials enable localization within otherwise inaccessible biological 
environments and exhibit highly tunable physicochemical properties to tailor function. Different nanoparticle 
platforms offer application-dependent advantages, such as near-infrared fluorescent nanoparticles for 
through-tissue imaging(10, 11) or biodegradable nanoparticles for in vivo delivery.(12–14) In particular, 
single-walled carbon nanotubes (SWCNTs) are well-suited for biological sensing and imaging due to their 
tissue-transparent and photostable near-infrared fluorescence, in addition to their readily modifiable 
surface.(15–17) As such, SWCNTs have been functionalized with biomolecules including single-stranded 
DNA to create neurotransmitter nanosensors,(18–20) with peptide mimetics to form protein 
nanosensors,(21) and with proteins to construct viral nanosensors.(22) Similarly, the large SWCNT surface 
area enables cargo attachment such that SWCNTs can be loaded with DNA plasmids or small interfering 
RNAs, translocating these functional biomolecules into cells for gene expression and silencing 
applications.(23–26) Optimizing these biomolecule-nanoparticle interactions is key in enhancing 
nanotechnology function, and a deeper understanding of these interfacial interactions would enable more 
rational conjugate designs. As such, the capability to predict nano-bio interactions would aid the design 
phase of nanobiotechnologies by lessening the need to experimentally test innate interactions of each 
biomolecule with each nanoparticle of interest. 
 
Although such aforementioned nano-bio interactions are required for function, biofouling of 
nanobiotechnologies results from undesired nano-bio interactions that often inhibit intended nanoparticle 
function. Functionalized SWCNTs and other nanotechnologies more broadly suffer from as-of-yet 
unpredictable interactions with the biological environments in which they are applied. When engineered 
nanoparticles are introduced into biological systems, endogenous proteins rapidly bind to the nanoparticle 
surface.(27–29) This phenomenon is known as protein corona formation. Protein adsorption often 
decreases the ability of the nanoparticle to interact with its surrounding environment, such as sensing 
nearby analytes or navigating biological barriers.(30, 31) For sensing applications, protein corona formation 
sterically hinders access of target analytes to the nanosensor surface and unpredictably changes the 
sensor baseline required for accurately calibrating and quantifying analyte levels.(32–34) For imaging and 
delivery applications, the protein corona modifies the in vivo trafficking, biodistribution, biocompatibility, and 
overall functionality of nanotechnologies.(35, 36) Consequently, the corona often reduces the efficiency 
with which nanoparticle-based contrast agents or cargo-filled vehicles reach their intended locations.(37–
39) Passivation with anti-biofouling ligands such as polyethylene glycol (PEG) is a promising technique to 
reduce protein-binding on foreign surfaces and to retain the pristine, as-designed nanoparticle 
properties.(39–44) Still, the protein corona remains as a complex and poorly understood phenomenon 
limiting the efficacious application of nanotechnologies in biological systems. Knowledge of the proteins 
adsorbed in this corona phase would enable better prediction of the biological identity, and thus fate, of the 
applied nanotechnologies.(45, 46) Limitations in our understanding of corona formation arise from a 
convolution of diverse nanoparticle properties (dominated by surface characteristics) and the complexity of 
biological environments.(28, 41) Experimental testing to fully characterize the protein corona on all 
synthesized nanoparticle constructs within all intended biological environments is laborious and costly. 
While recent work has made headway toward high-throughput experimental methods,(47, 48) the most 
common strategies still rely on labor-intensive mass spectrometry-based proteomics.(41, 49) The ability to 
predict the protein corona that will form on nanoparticles in vivo remains a challenge that, if overcome, 
would move the field toward better clinical translatability. 
 
Pattern recognition techniques, including those of machine learning, offer a route to characterize protein-
nanoparticle interactions in a high-throughput manner across this extensive design space of nanoparticles 
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applied in different biological systems. Previous work pioneering this idea applied random forest 
classification to predict what proteins adsorb to silver nanoparticles in biologically relevant 
environments,(49) and has been since expanded to larger nanoparticle libraries.(50) However, certain 
aspects stand to be refined, such as setting the threshold of whether a protein is classified as in or out of 
the corona. Other work has examined protein-nanoparticle complexes using a fluorometric assay to guide 
prediction of corona formation, though issues arise in characterizing fluorophore interactions on graphene-
based substrates.(51) More broadly, most predictive modeling efforts involving nanoparticles applied in 
biology consider cellular- or organism-level responses, such as cellular association,(52, 53) toxicity,(54) in 
vivo fate,(46) and therapeutic efficacy.(53, 55) Toward protein-SWCNT conjugate design, some predictive 
modeling has informed protein candidates that exhibit natural affinity for the graphitic SWCNT surface.(23) 
For example, Di Giosia et al. implemented a molecular docking model to determine a panel of proteins that 
interact with the carbon nanotube surface.(56) Yet, this strategy of predicting protein corona identity 
requires protein structural information and is low throughput, both computationally and in experimental 
validation. 
 
Herein, we develop a classifier to predict protein-nanotube association based on physicochemical 
properties of proteins. Our purpose is two-fold: as one objective, we aim to predict which protein-SWCNT 
interactions to expect in true biological environments. This knowledge will inform implementation of anti-
biofouling strategies toward effective biological application of nanoparticles. Our second objective is to 
predict high-affinity protein binders to SWCNTs and protein features associated with such binding affinity, 
to improve the process of protein-nanoparticle construct design.(23) Toward these ends, we build and 
validate a random forest classifier to predict protein adsorption to SWCNTs. We relate protein properties 
(derived from protein sequence data) to whether proteins are in or out of the corona phase on SWCNTs 
(experimentally determined by quantitative mass spectrometry-based proteomics). Specifically, we focus 
on protein corona formation on (GT)15-SWCNTs due to their demonstrated applicability for dopamine 
sensing, however, the workflow is generalizable to other nanoparticles.(18, 19) We train our classifier using 
mass spectrometry-based proteomic data characterizing the corona formed on (GT)15-SWCNTs in two 
relevant bioenvironments: the intravenous environment (blood plasma) and the brain environment 
(cerebrospinal fluid).(57) We find that our classifier can precisely target a small number of proteins that 
adsorb to our nanoparticle. Furthermore, we identify population distribution changes among the most 
important protein properties to gain insight on how our classifier identifies positive targets. Namely, high 
content of glycine residues (particularly solvent-exposed residues) and amino acids not associated with 
secondary structure domains (alpha helix, beta sheet, and turns) lead to favorable SWCNT binding, 
whereas high content of leucine residues and amino acids associated with planar beta-sheet domains lead 
to unfavorable SWCNT binding. Finally, we test our model with an entirely new set of proteins and perform 
quantitative protein adsorption experiments to validate the model’s in vs. out of corona predictions.(33) Our 
results suggest that this classifier can serve as a valuable method to both overcome the high failure rate in 
translating nanotechnologies from in vitro validation to in vivo deployment, and to aid in rational design of 
future nano-bio tools. 
 
Results 
Experimentally determined protein corona composition on (GT)15-SWCNTs 
The training data was experimentally generated from a selective adsorption assay that quantifies proteins 
present on (GT)15-SWCNT nanoparticles incubated in either human blood plasma or cerebrospinal fluid 
(CSF) of the brain, characterized using liquid chromatography tandem mass spectrometry (LC-MS/MS).(57) 
This experimental dataset reveals the corona components with quantitative protein amounts. The absolute 
protein abundance and relative enrichment or depletion (compared to the control sample of the biofluid 
alone) was used to indicate whether a particular protein was considered to be in the corona, as will be 
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described in a later section. We included four training datasets: (GT)15-SWCNTs in either blood plasma, 
cerebrospinal fluid, total biofluid datasets, and total naïve. Total and total naïve only differ by one variable, 
namely, the former contains the biofluid phase from which the protein originated. Although we focus on 
protein corona characterization with one nanoparticle type, SWCNTs, it is worthwhile to note that these 
protein datasets do not require any information regarding the nanoparticle itself. The only location where 
nanoparticle data is included is the named class (i.e., in or out of the corona). 
 
Protein property database development from protein sequence 
We next curated a protein property database to use with our classifier. We used the amino acid sequence 
of each protein from the annotated protein database, UniProt,(58) to construct an array of predicted 
physicochemical protein properties with the BioPython package (Table S1).(59) Our protein property 
database requires access to only the amino acid sequence, enabling expansion to new proteins as needed 
for future experimental datasets or nanoparticle-binding proteins of interest. Although UniProt also provides 
biological protein properties (such as gene ontology, sequence annotations, and specific functional 
regions), our final classifier was based solely on amino acid sequence data to avoid potential issues of less 
well-studied proteins that have no empirically derived properties and/or no annotated features (classifier 
performance comparison in Figure S1). Importantly, developing a database in this manner expands the 
number of possible proteins that can be tested because the classifier does not require prior information on 
the annotated protein sequence nor interactions between the protein and nanoparticle. 
 
The amino acid sequence of a protein provides valuable information including the percentage of a specific 
amino acid within the full protein; however, spatial organization is disregarded. To complement the 
sequence-derived dataset, we added the parameter of solvent accessibility that estimates the exposed 
protein surface area. We implemented NetSurfP 2.0(60) to predict the number of exposed residues of a 
particular protein using the amino acid sequence, normalized by either the total number of amino acids or 
the total number of exposed amino acids. These two choices of normalization provide information on amino 
acid content on the surface relative to the full protein or relative to only other surface-exposed residues, 
respectively. To collate this data, we programmatically created submissions from UniProt protein sequence 
entries and rapidly collected data, aligning with our goal of creating an easily expandable database. 
 
Thresholding to determine protein placement: in or out of the corona 
The decision of whether a protein was categorized as in or out of the corona was made using the protein 
abundance data from LC-MS/MS experiments. Proteins were placed into the corona based on two criteria: 
(i) relative change and (ii) an abundance threshold. First, if a protein was more abundant in the nanoparticle-
bound case than it was in the control solution of the native biofluid without any nanoparticles present (i.e., 
enrichment on nanoparticle), then it was classified as in the corona. Second, the remaining proteins were 
ordered by abundance and fit to an exponential distribution. Increasing the power of the exponential leads 
to a higher in-corona threshold, placing fewer proteins in the corona. Importantly, this thresholding approach 
reflects that lower abundance of a protein in the corona relative to its abundance in the biofluid (i.e., 
depletion on nanoparticle) does not necessarily qualify a protein as out of the corona: a protein that is 
significantly depleted can still be present in the corona with a high absolute quantity. The thresholding 
method that we have developed is discussed further in the Methods section, with comparison to Otsu’s 
method as a common form of thresholding applied in image analysis. 
 
Random forest classifier development using established protein property database 
In line with previously published work, we implemented a random forest classifier (RFC) to classify proteins 
as in or out of the corona phase on (GT)15-SWCNT nanoparticles. We chose to pursue ensemble methods 
due to the concern of overfitting the classifier. To confirm the choice of RFC over other potential classifiers, 
we tested an assortment of classifier types (Figure S2). The highest performing classifiers were the RFC 
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and a Bagging classifier using decision trees based on a sum of accuracy, precision, and recall. We 
selected the RFC for this study because the precision (0.671) and accuracy (0.747) values were superior 
to that of the Bagging tree, while retaining similar area under the receiver operating curve (AUC; 0.700). 
AUC is a frequently used measure for understanding sensitivity and specificity of the classifier. Moreover, 
the RFC provided the highest precision (positive predictive value), which is favorable for the most 
straightforward application of classifier output for nanobiotechnology optimization. However, the Bagging 
tree did perform better than the RFC in recall (Bagging Tree, 0.528; RFC 0.505).  
 
Due to the imbalance in our LC-MS/MS experimental dataset (i.e., unequal number of proteins in either 
class), we up-sampled our minority class (in corona; ~30% in corona without up-sampling in combined 
dataset). This up-sampling ensures that each time the classifier was trained, we were able to recover an 
appropriate amount of the minority class. For this reason, the classifier was validated using a stratified 
shuffle split repeated 100 times. Moreover, we noticed that generalization of this classifier could also be 
quite poor, especially when considering recall which was below 0.5. To address this issue, a synthetic 
minority over-sampling technique (SMOTE)(61) was implemented to generate new “proteins” in the minority 
class (in corona). This analysis revealed that the most precise and accurate results for our classifier were 
obtained when the minority/majority ratio in SMOTE was 0.5/1.0 (Figure S3; precision 0.678 and accuracy 
0.749). The recall of our classifier was improved marginally to from 0.497 to 0.512. Introducing the 
described methods widely expanded the number of proteins that were placed in the corona, thus enhancing 
the classifier’s generalization ability. However, this SMOTE ratio offers a tunable handle: if an experimenter 
preferred higher recall values, a ratio of 1 provides a recall of 0.587, although reducing precision to 0.571. 
 
RFC verification 
Using an RFC, classification tests were run on the total naïve dataset of proteins marked as being in or out 
of the corona using the aforementioned thresholding method. The classifier performance was scored  for a 
range of thresholding powers (Figure 1a). The classifier was then refreshed and the standard protocol for 
training the classifier was repeated to gather metrics related to classification: accuracy, area under the 
receiver operating curve (AUC), precision, and recall. The metrics were recorded until a thresholding power 
of 3.5, at which point higher powers considerably reduce the number of proteins counted in the plasma 
corona and many metrics drastically decline in their performance. We ultimately selected a power of 2.25 
because this power provided the best compromise between accuracy (0.747), AUC (0.691), and precision 
(0.648), while only suffering slightly in recall (0.570). All reported results for the remainder of this work use 
a power of 2.25 for placing proteins in the nanoparticle corona. 
 
During the development of our classifier, stratified shuffle split validation was used to check the success of 
our classifier regarding accuracy, area under the receiver operating curve, recall, and precision. The dataset 
was divided into a training and test set at the beginning of each split, then the training data was fit to an 
untrained classifier. Next, the test set was used to make predictions and compared with our true answers. 
The result of this classifier was saved and the process was repeated with the classifier naïve at the 
beginning of each iteration, as graphically depicted in Figure 1b. This method was used to ensure that the 
subset of proteins generated more accurate metrics for the classifier, considering each protein revolves 
into the testing set during one of the folds. Statistics represented in this work are generated from the n trials 
used in this verification step. 
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Figure 1. Random forest classifier (RFC) development and workflow for determining proteins as in vs. 
out of the corona phase on (GT)15-SWCNTs. (a) Metrics of accuracy, area under the receiver operating 
curve (AUC), precision, and recall recorded as a function of threshold power for classifying proteins as 
in vs. out of the corona. A threshold power value of 2.25 was selected for subsequent analyses due to 
the optimal combination of the recorded metrics. Shaded error bars represent 95% confidence intervals. 
(b) RFC workflow used in splitting-based predictions. Liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) experimentally provides protein corona composition. LC-MS/MS data is combined with 
protein properties derived from the protein sequence (UniProt database) to form a total dataset. The total 
dataset is split 90% into training data and 10% into test data. Training data trains a reset classifier then 
test data is used to score the trained classifier. Results are recorded and the process is repeated. 

 
Throughout this process, results were collated from each round of the classifier. The first trial was the 
difference of two datasets, total vs. total naïve (Figure 2a). The only difference between these two datasets 
was the inclusion of one Boolean column that dictates from which biofluid a protein originated. We observe 
that the inclusion of this “biofluid of origin” information does not improve the classification ability on our 
complete dataset. Thus, we deemed this column unnecessary to include for future runs. Moreover, keeping 
this column would have made our classifier less generic when selecting new proteins that may not be 
present in blood plasma or CSF.  
 
We next trained the classifier on corona proteins present in one biofluid and attempted to predict corona 
proteins present in another biofluid. For this case, instead of splitting the training data 90%/10%, the 
classifier was trained on one complete dataset, then the second complete dataset was subset into a testing 
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set. We repeated this approach 100 times to generate statistics for the classifier. We notice similar results 
in AUC (CSF: 0.702, plasma: 0.691) and accuracy (CSF: 0.687, plasma: 0.706) independent of which 
biofluid the classifier was trained on (Figure 2a). However, there is a difference in precision (CSF: 0.469, 
plasma: 0.649) and recall (CSF: 0.676, plasma: 0.577) for each of these classifiers, arising from the 
inclusion of a few of proteins that are present in the corona formed on (GT)15-SWCNTs from one biofluid 
and are not present in the corona formed on (GT)15-SWCNTs from the other biofluid (e.g., serotransferrin 
found in the CSF corona and haptoglobin found in the plasma corona). This discrepancy occurs because 
our classifier has no context of which proteins are in the corona formed from which biofluid, and thus no 
manner of adjusting to proteins portraying contradicting adsorptive behavior across biofluids. However, this 
classification discrepancy only occurs for a few proteins (13 proteins out of 38 duplicate proteins, within 174 
total proteins). 
 

 
Figure 2. Classifier results on varied training datasets and with varied feature inputs. (a) RFC is trained 
on the full protein set (with or without the label of origin biofluid) or each individual biofluid (plasma or 
CSF). Negligible differences arise between the RFC’s ability to classify the total set with or without the 
biofluid label (total set labeled compared to total set naïve), denoting that this biofluid label feature does 
not resolve the cross-fluid classification problem. Training the RFC on one biofluid and testing against 
the second biofluid produced similar metrics except for precision, attributable to a few proteins labeled in 
the corona of one biofluid but not the other. Error bars represent 95% confidence intervals. (b) RFC is 
trained on the total naïve protein corona set, with features sorted by ANOVA and added to the classifier 
from highest to lowest importance. At approximately 40 features, classification ability begins to plateau 
for all metrics except recall. By 89 features, there is a decline in recall but marginally enhanced precision. 
Shaded error bars represent 95% confidence intervals. 

 
Feature analysis for importance and correlation with class predictions 
During the development of our model, 89 protein features were mined as potentially important to classify 
these proteins as in vs. out of the nanoparticle corona (Table S1). Each feature was examined for the extent 
of contribution to the overall classification ability of the system using an ANOVA test. Features were added 
in one-by-one until the classifier had scored all 89 features (Figure 2b). This analysis indicates that there 
is a minimum number of features of approximately 10 to result in sufficient classification ability. We also 
note that use of approximately 40 features provides a maximum for recall and AUC metrics. If we include 
up to 89 features, we see a marginal increase in the precision ability of our classifier with a marginal 
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decrease in AUC and recall. As such, experimenters can tune the number of features depending on whether 
precision or recall is more important: more precise results will be better for experimenters using this tool to 
correctly identify new nanoparticle-binding proteins, while higher recall results will be better when the 
opportunity cost of missing a positive corona contributor is more problematic than including a false positive. 
 
Using the feature ranking by ANOVA, the top ten protein features influencing protein adsorption to (GT)15-
SWCNTs were identified (Table 1). Since RFCs do not provide correlational information (i.e., whether a 
high importance ranking positively or negatively influences protein adsorption), we calculated basic kernel 
density estimates on distributions of these features and we examined how these distributions changed to 
hypothesize correlations (Figure 3; top ten feature distributions in Figure S4). We find that the fraction of 
solvent-exposed amino acid glycine (normalized to either the total exposed amino acid count or the total 
amino acid count), the fraction of amino acid glycine, and the fraction of predicted non-secondary structure-
associated amino acids correlate positively with the protein being in the corona. Conversely, the fraction of 
amino acid leucine and the fraction of beta-sheet secondary structure-associated amino acids correlate 
negatively with being in the corona. Previously, we linearly regressed the log-fold change (ratio of protein 
amount in the corona vs. in the native biofluid) against physicochemical protein properties to understand 
protein features that govern corona formation, using these same nanoparticle and biofluid data sets.(57) In 
this experimental dataset, high leucine content was similarly determined to be less favorable for protein 
adsorption. High glycine content was found to be associated with more favorable protein adsorption when 
included in the regression analysis. However, glycine contribution was not evaluated in the original 
regression due to correlation with other protein features, as the calculated variance inflation factor was 
greater than the set threshold value.(57) As such, glycine content impact could not be deconvoluted from 
other protein properties. This analysis highlights a benefit of the current RFC over the previously applied 
linear regression approach, where co-dependent variables must be proactively excluded in the latter case. 
It should further be noted that secondary structure features were not included in the protein property 
database for the linear regression analysis due to data sparsity, a problem that is overcome with the current 
study by implementing BioPython to predict such features from the amino acid sequence without relying on 
protein structure annotations. 
 
Our analysis of the top protein features promoting corona binding indicates that more flexible proteins are 
favorable to bind to (GT)15-SWCNTs, as inferred by high glycine content and less strict secondary structural 
domains. This result is in agreement with previous experimental work demonstrating that peptides and 
small molecule ligands possessing more conformational flexibility bind more readily to carbon 
nanotubes.(62, 63) Increased adsorption propensity suggests that more flexible proteins are able to 
maximize favorable surface contacts with the highly curved SWCNT, in comparison to rigid proteins with 
energetic penalties associated with adopting new surface-adsorbed conformations. Interestingly, flexibility 
itself appears in the bottom ten most important protein features for protein corona formation (Table S2). 
This measure of flexibility was calculated by Vihinen et al. using normalized B-factors (i.e., Debye–Waller 
factors) for each residue. B-factors incorporate the dependence on neighboring amino acids with a 9-
residue sliding window averaging approach.(64) With this method, glycine is only the top 8th most flexible 
residue, posited to be because glycine frequently appears on the protein surface and interior, as well as in 
tight turns. The restricted mobility of glycine in the interior and turn motifs may reduce the overall flexibility 
value. As such, our result that high glycine content specifically located on the protein surface is an enriched 
feature in the corona phase indicates that protein flexibility leads to higher protein corona binding on 
SWCNTs. In comparison to previous literature, glycine has been found to display a relatively low magnitude, 
yet still favorable, free energy change upon binding to pristine SWCNTs, as determined by enhanced 
sampling molecular dynamics.(65) However, this study was done at the scale of single amino acid analogs. 
Accordingly, this study disregards the full-protein structural context of each amino acid. Finally, intrinsically 
disordered proteins have been demonstrated to disperse SWCNTs stably in the aqueous phase even under 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.19.449132doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.19.449132


9 
 

mild sonication conditions.(66) Although the non-structure-associated amino acid content that we report is 
not equivalent to intrinsically disordered domains, our result is in line with these previous experimental 
findings. 
 
In contrast, our analysis of top protein features that deter corona binding reveals that proteins high in the 
aliphatic, hydrophobic amino acid leucine and proteins with more planar beta-sheet character are not 
expected to bind to (GT)15-SWCNTs. The finding that hydrophobic leucine does not increase SWCNT 
binding is not necessarily intuitive, considering that the SWCNT surface is highly hydrophobic. However, 
this result recapitulates prior literature that nonspecific hydrophobic interactions alone do not drive corona 
binding;(62, 65, 67, 68) rather, aromatic, hydrophobic amino acids, especially tryptophan, are repeatedly 
found to be the highest binders to SWCNTs.(62, 67–70) For physical context, (GT)15 ssDNA is observed to 
wrap helically around SWCNTs based on both experiment(71, 72) and modeling,(73, 74) though only 
covering ~2-25% of the aromatic SWCNT surface.(73, 75–77) Interestingly, the RFC did not highlight 
aromatic amino acid content (tryptophan, tyrosine, or phenylalanine) as top features for corona binding, 
although the fraction of exposed tryptophan is the fifth most favorable feature. In studies of isolated amino 
acids or short peptide sequences, aromatic amino acids seemingly drive adsorption to SWCNTs via π−π 
interactions with the SWCNT surface. However, in the full protein context, these π−π interactions may not 
be sufficient to drive initial protein contact with the SWCNT surface, as these hydrophobic amino acids are 
expected to be predominately buried in the folded protein core. Finally, the finding that high content of 
amino acids associated with beta-sheet structures leads to low protein adsorption to SWCNTs indicates 
the difficulty for planar protein secondary structures to adapt to the highly curved nanoparticle surface. This 
result is in line with previous work demonstrating that the extremely high curvature of carbon nanotubes 
must be aligned at the amino acid level of proteins, much less the secondary structure level:(62, 67) typical 
amino acid side chain lengths are on the order of 0.1-0.5 nm, in comparison to the SWCNT diameter of 
approximately 1 nm. Overall, the identification of these features is important in helping to predict high 
biofouling protein types or rationally selecting proteins to bind to nanoparticles prior to testing them 
experimentally. 
 

Table 1. Ordered importance of protein features by ANOVA. 

Ranking Feature 

1 % Amino acid - leucine 

2 % Exposed relative to total exposed amino acids - glycine 

3 % Secondary structure-associated amino acids - non-structure associated 

4 % Exposed relative to total amino acids - glycine 

5 % Amino acid - glycine 

6 % Secondary structure-associated amino acids - sheet 

7 % Exposed relative to total amino acids – tryptophan 

8 % Exposed relative to total amino acids – histidine 

9 % Exposed relative to total exposed amino acids - alanine 

10 % Exposed relative to total exposed amino acids - tryptophan 
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Figure 3. Distribution of the top four normalized feature values for proteins characterized as out of the 
corona phase (red) vs. in the corona phase (blue) on (GT)15-SWCNTs. Protein features that (a) positively 
influence or (b) negatively influence the probability of a protein being classified as in the corona are 
denoted by distribution shifts toward 1 or 0, respectively. (a) Positive features include (left) the fraction of 
solvent-exposed amino acid (AA), glycine, relative to only the solvent-exposed amino acids and (right) 
the fraction of amino acids not associated with any specific secondary structure motifs. (b) Negative 
features include (left) the fraction of amino acid, leucine, and (right) the fraction of amino acids associated 
with a beta-sheet secondary structure. 

 
Experimental validation of protein binding to SWCNTs  
To test the predictive value of our supervised learning model, we applied our classifier to rank new 
nanotube-binding proteins and next experimentally tested the expected protein binding order. The classifier 
was used to predict interaction affinity of over 2,000 total proteins (available for batch download through 
the UniProt database(58)) with (GT)15-SWCNT nanoparticles. Importantly, these proteins represent a broad 
class of functions and sub-cellular locations, and are distinct from those present in the plasma and CSF 
training datasets. Protein binding propensity was determined with associated binding probabilities, as 
summarized in Table S3. We then implemented a corona exchange assay to measure real-time, in-solution 
protein binding dynamics on the nanotube surface, as described previously.(33) Briefly, the ssDNA 
originally adsorbed on the SWCNT surface is fluorescently labeled with a Cy5 fluorophore. When near the 
SWCNT surface, the fluorophore is in a quenched state. Upon addition of proteins, proteins will differentially 
bind to the SWCNT and cause various degrees of ssDNA desorption, as denoted by de-quenching of the 
Cy5 fluorophore. Thus, fluorescence tracking of the Cy5-ssDNA provides a proxy for protein binding on the 
SWCNT without requiring fluorescent labeling or other modification of the protein. 
 
The corona exchange assay was used to test a panel of proteins predicted to be in the corona (probability 
> 0.5) vs. out of the corona (probability < 0.5). Specifically, we tested the protein panel: CD44 antigen and 
TAR DNA-binding protein 43 (TDP-43) (predicted to adsorb to (GT)15-SWCNTs) and transgelin, lysozyme 
C, ribonuclease pancreatic (RNase A), syntenin-1, L-lactate dehydrogenase A chain (LDH-A), and 
glutathione S-transferase (GST) (predicted to not adsorb to (GT)15-SWCNTs) (classifier results listed in 
Table S3). Protein adsorption based on the end-state fluorescence values matched classifier predicted 
outcomes of in vs. out of the corona: addition of CD44 antigen and TDP-43 both resulted in sizeable ssDNA 
desorption from the SWCNT surface, whereas all proteins predicted to be out of the corona produced less 
ssDNA desorption (Figure 4a). However, deviations from exact orderings of predicted outcomes arise 
within both groups of proteins. For example, the relative ordering of CD44 antigen as the top binding protein 
followed by TDP-43 is reversed. However, the predicted in-corona probabilities of these two proteins differs 
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by less than 2%. To provide a metric of predicted vs. measured monotonicity, the Spearman’s rank-order 
correlation coefficient was calculated to be 0.619 in comparison with 0.750 for a previous protein panel 
comparing DNA desorption end-state vs. proteomic mass spectrometry-derived end-state (Figure 4c).(57) 
Predicted protein binding probabilities were also compared to rate constants fit to the ssDNA desorption 
dynamics from the SWCNT surface for each injected protein (kinetic model and fits in SI, Figure S5). It is 
expected that more protein binding would correlate with a larger ssDNA desorption rate constant. However, 
there is poor correlation between the RFC-predicted end-state and experimental dynamics of protein-
SWCNT interactions, which may be reconciled with the fact that the RFC was trained on the end-state 
protein corona rather than the corona composition at earlier time points. 
 
Experimental validation was repeated for the protein panel with Cy5-(GT)6-SWCNTs, as the shorter ssDNA 
oligomer is displaced more readily and thus displays a greater spread in desorption rates and values 
between protein species (Figure 4b). The resultant protein panel binding order was largely the same as 
that of Cy5-(GT)15-SWCNTs, with a slightly higher Spearman’s correlation coefficient of 0.667 (Figure 4d). 
These results confirm that the protein binding observed experimentally is mainly driven by the protein 
interacting directly with the SWCNT nanoparticle surface. Comparison of fit rate constants vs. predicted in-
corona probabilities reveals a better correlation then that of (GT)15, with the exception of RNase A (Figure 
S5d).  
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Figure 4. Protein corona dynamics assessed for binding of predicted proteins to (GT)x-SWCNTs. (a-b) 
A corona exchange assay determines binding of a protein panel (each at 80 mg L-1 final concentration) 
to (a) (GT)15-SWCNTs or (b) (GT)6-SWCNTs (each at 5 mg L-1 final concentration). ssDNA desorption 
from the SWCNT serves as a proxy for protein adsorption. Proteins are predicted by the RFC to be in 
the corona (probability > 0.5; blue-green colors) or out of the corona (probability < 0.5; purple-pink colors). 
The protein panel includes: CD44 antigen and TAR DNA-binding protein 43 (TDP-43) (predicted to be in 
the corona) and transgelin, lysozyme C, ribonuclease pancreatic (RNase A), syntenin-1, L-lactate 
dehydrogenase A chain (LDH-A), and glutathione S-transferase (GST) (predicted to be out of the 
corona). Phosphate-buffered saline (PBS) is injected as a control and desorbed ssDNA is normalized to 
this initial value. Shaded error bars represent standard error between experimental replicates (N = 3). (c-
d) End-state desorbed ssDNA is compared to the RFC predicted in-corona probability for (c) (GT)15-
SWCNTs and (d) (GT)6-SWCNTs. 
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Examining the protein identities, it is interesting to note that lysozyme has previously been demonstrated 
to strongly interact with and disperse pristine carbon nanotubes, whereby hydrophobic aromatic amino 
acids (tryptophan and tyrosine) and cationic amino acids (arginine and lysine) are hypothesized to drive 
adsorption.(78–82) Yet, here we find that lysozyme interacts less with pre-dispersed ssDNA-SWCNTs 
based on the corona exchange results. Therefore, strong lysozyme-SWCNT interaction may hinge upon 
energetic input employed during the initial SWCNT dispersion process, which likely denatures lysozyme to 
expose more aromatic residues. Another protein of note is CD44, which is overexpressed in cancerous 
states including upregulation in cancer stem cells.(83) The innate affinity for CD44 to the SWCNT surface 
could be applied to construct a CD44-cell targeted nanotube delivery system. These results are important 
in suggesting that some proteins can only be adsorbed to SWCNT nanoparticles in a partially or fully 
denatured state, likely compromising their enzymatic activities or protein functions. 
 
Conclusions 
In sum, we developed a classifier to predict protein adsorption on ssDNA-functionalized SWCNTs with 75% 
accuracy and 68% precision. Ensemble methods performed better in the corona classification task and a 
random forest classifier scheme was ultimately chosen and optimized. We expand upon prior predictive 
protein corona work by (i) leveraging quantitative protein corona data,(57) (ii) redefining corona 
thresholding, with corresponding prediction probabilities, (iii) establishing a method for classifying proteins 
based solely off of the amino acid sequence of the protein of interest, and (iv) experimentally confirming 
adsorption in real-time, solution phase with unmodified proteins.(33) We find that no single nor small group 
of protein physicochemical features best determine placement in the corona. Rather, over 40 features are 
useful for protein classification when optimizing all four metrics of accuracy, AUC, precision, and recall. We 
confirm the need for these protein features by staging them into the classifier feature-by-feature and 
revalidating our model. Using kernel density estimates, we elucidate protein feature correlation with proteins 
binding or not binding to SWCNTs. Interestingly, proteins with high solvent-exposed glycine content and 
more non-structure-associated amino acid content (serving as proxies for protein flexibility) are found to 
bind in the SWCNT corona, while proteins with high leucine content and beta-sheet-associated amino acid 
content are not. The classifier then enabled rapid determination of proteins predicted to enter the corona 
phase from a new protein set, as validated experimentally with a corona exchange assay. The use of our 
machine learning algorithm allows us to quicky parse protein properties from a publicly available database 
to determine protein features of interest for corona formation, in turn informing heuristics to rationally select 
proteins for nanoparticle complexation in the future, or to predict biofouling of nanotechnologies. 
 
Our supervised learning model uses amino acid sequence-based prediction of protein corona formation, 
which could be generalizable across a wide range of nanoparticles and bioenvironments. In silico protein 
corona prediction will ensure that nanotechnologies can be more seamlessly implemented in biological 
systems without the need for experimental mass spectrometry-based proteomic characterization and 
analysis. In the extension of this work, nanoparticle features may be included to further enhance 
classification ability on different nanoparticles. However, such nanoparticle features should be readily 
accessible to retain the triviality of classifying new systems. Recent advances in prediction of protein 
properties from protein sequences alone are promising toward refinement of the protein database we have 
curated for this classifier, enabling inclusion of biological and annotated sequence-based protein properties 
that are not reliant on experimental study.(84) The ability to predict adsorption of specific proteins will enable 
connection to downstream cellular responses, toxicity outcomes, and overall nanotechnology functionality. 
The developed classifier provides a tool for both predicting key proteins expected to take part in in vivo 
biofouling and rapid prescreening of protein candidates in rationally designed nanobiotechnologies. 
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Methods 
Database development 
Protein information was downloaded from UniProt,(58) including amino acid sequences and sequence 
annotations. Amino acid sequences were used to generate a series of physicochemical protein properties 
using BioPython’s Protein Analysis module Table S1.(59) Amino acid sequences were additionally 
analyzed by NetSurfP 2.0(60) to determine solvent accessibility, including relative solvent accessibility 
(RSA), absolute solvent accessibility (ASA), and fractions of each amino acid exposed surface area relative 
to either all amino acids or only other exposed amino acid surface area. The resulting data was processed 
and merged with the BioPython analysis. The complete database was run normalized with a Min Max Scalar 
from Scikit-Learn(85) before being subset and fit to the classification model. This database development 
method was chosen to enable facile expansion with new protein datasets. Code for this and all subsequent 
sections can be found in the GitHub link provided. 
 
Criteria for in-corona placement 
Using the method described previously for protein corona studies by LC-MS/MS,(57) data was obtained for 
proteins adsorbing to (GT)15-SWCNTs in two different human biofluids: blood plasma and cerebrospinal 
fluid. First, proteins with abundances (𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) greater than the control of protein abundances in biofluids 
alone (𝐴𝐴𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) were assigned as in the corona (i.e., enriched in the corona relative to the biofluid). Second, 
an exponential decay, 𝑛𝑛 = 𝑛𝑛0 exp(−𝑘𝑘𝐴𝐴), was fit to the distribution of abundances for the remaining proteins, 
where 𝑛𝑛0 and 𝑘𝑘 are fitting parameters. An abundance threshold (𝐴𝐴𝑡𝑡ℎ𝑐𝑐𝑟𝑟𝑟𝑟ℎ𝑐𝑐𝑏𝑏𝑏𝑏) was selected at a value where 
the exponential decay fell to a value of 𝑛𝑛0exp (−𝑝𝑝), or 𝐴𝐴𝑡𝑡ℎ𝑐𝑐𝑟𝑟𝑟𝑟ℎ𝑐𝑐𝑏𝑏𝑏𝑏 = 𝑝𝑝/𝑘𝑘, where 𝑝𝑝 was an optimization 
parameter. Proteins with an abundance greater than 𝐴𝐴𝑡𝑡ℎ𝑐𝑐𝑟𝑟𝑟𝑟ℎ𝑐𝑐𝑏𝑏𝑏𝑏 were assigned as being in the corona. We 
varied 𝑝𝑝 between 0 and 3.5 and chose the value 2.25, which optimized the performance of the classifier 
following training (Figure 1a) and was used for the remainder of the analysis. Corona thresholding was 
originally completed with Otsu’s method, a technique generally implemented for image thresholding.(86) 
However, employing Otsu’s method resulted in only 3-5 proteins placed in the corona for each biofluid. 
Although the classifier was highly accurate at identifying these proteins, the number of proteins selected 
was not fully representative of the corona and we accordingly implemented our modified thresholding 
method described above. 
 
Classifier selection 
The use of a random forest classifier (RFC), logistic regression, bagging classifier, gradient boosting 
classifier, AdaBoost classifier, and XGBoost classifier were evaluated. The RFC, logistic regression, 
bagging classifier, gradient boosting classifier, and AdaBoost classifier were imported from Scikit-
Learn.(85) The XGBoost classifier was imported from XGBoost(87) for use with Scikit-Learn. AdaBoost and 
bagging classifiers were tested with an underlying support vector machine, decision tree, and logistic 
regression. The gradient boosting classifier was tested with an underlying decision tree. XGBoost was 
tested with an underlying decision tree as well as 100 parallel trees.  
 
As expected from previous literature, better performance was demonstrated with the RFC and this classifier 
was accordingly chosen for the remainder of the work. The classifier was next validated using a stratified 
shuffle split (100 repeats) validation to ensure high levels of the minority class. The minority class here is 
the in-corona class which has less proteins than the out-of-corona class. The shuffle split retained 10% of 
the dataset for corona validation. Results were collected for each fold.  
 
Hyperparameter tuning 
Using Scikit-Learn’s GridSearchCV,(85) a wide range of hyperparameters, such as number or depth of 
trees, were tested with the classifier. With each set of hyperparameters the model was validated using the 
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method dictated in the Classifier Selection section and scored. The classifier was chosen with the 
hyperparameters optimized for precision using GridSeachCV.  
 
Dimensionality reduction  
To understand the effects of each feature (i.e. variable describing the protein of interest) on the total system, 
features were ranked using Scikit-Learn’s SelectKBest function.(85) Using the ranking established from 
SelectKBest, the database features were unmasked one-by-one running the classifier as described in the 
Classifier Selection section until all features had been added in. Metric results were saved, and statistics 
were calculated.  
 
New prediction targets 
The classifier was tested against a list of 996 cytoplasmic proteins and 999 nuclear proteins (available for 
batch download through the UniProt database(58)), together with 45 readily accessible proteins or proteins 
of interest for SWCNT-based sensing and delivery applications. Amino acid sequences for these proteins 
were downloaded from UniProt and processed through the database development workflow described 
above. This new complete protein database was then processed through the classifier k+1 times. The first 
k times were completed through the described k-fold validation using the combined datasets for (GT)15-
SWCNTs in plasma and cerebrospinal fluid as the training and verification data. Predictions were recorded 
at the end of each fold. The last time new proteins were run, all available data was used to train the classifier; 
this last classifier then provided predictions on the new proteins, as listed in Table S3. 
 
Synthesis of ssDNA-SWCNTs 
Suspensions of single-walled carbon nanotube (SWCNTs) with fluorophore-labeled single-stranded DNA 
(Cy5-(GT)15 or Cy5-(GT)6) were prepared with 0.2 mg of mixed-chirality SWCNTs (small diameter HiPco™ 
SWCNTs, NanoIntegris) and 20 µM of ssDNA (3’ Cy5-labeled custom ssDNA oligos with HPLC purification, 
Integrated DNA Technologies, Inc.; excitation 648 nm, emission 668 nm) added in 1 mL total volume of 
0.1X phosphate-buffered saline (PBS; note 1X is 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 
KH2PO4).(33) This mixture was probe-tip sonicated for 10 min in an ice bath (3 mm probe tip at 50% 
amplitude, 5-6 W, Cole-Parmer Ultrasonic Processor). Cy5-ssDNA-SWCNT suspensions were centrifuged 
to pellet insoluble SWCNT bundles and contaminants (16.1 krcf, 30 min). The supernatant containing 
product was collected and Cy5-ssDNA-SWCNT concentration was calculated with measured sample 
absorbance at 910 nm (NanoDrop One, Thermo Scientific) and the empirical extinction coefficient, 
ε910nm=0.02554 L mg-1 cm-1.(88) Cy5-ssDNA-SWCNTs were stored at 4°C until use, at which point the 
solution was diluted to a working concentration of 10 mg L-1 in 1X PBS ≥ 2 h prior to use. 
 
Preparation of proteins 
Proteins were sourced as listed in Table 2. Lyophilized proteins were reconstituted to the listed 
concentration in PBS, tilting intermittently to dissolve for 15 min, and filtering with 0.2 μm syringe filters 
(cellulose acetate membrane, VWR International). All proteins were purified with desalting columns (Zeba 
Spin Desalting Columns, 0.5 mL with 7 kDa MWCO, Thermo Fisher Scientific) by washing with PBS three 
times (centrifuging 1500 rcf, 1 min), centrifuging with sample (1500 rcf, 2 min), and retaining sample in flow-
through solution. Resulting protein concentration was measured with the Qubit Protein Assay (Thermo 
Fisher Scientific). 
 
Corona exchange assay 
Corona dynamics were measured as described previously.(33) Briefly, equal volumes (25 μL) of ssDNA-
Cy5-SWCNT and FAM-protein at 2X working concentration were added via multichannel pipette into a 96-
well PCR plate (Bio-Rad) and mixed by pipetting. The PCR plate was sealed with an optically transparent 
adhesive seal (Bio-Rad) and briefly spun down on a benchtop centrifuge. Fluorescence was measured as 
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a function of time using a Bio-Rad CFX96 Real Time qPCR System, scanning all manufacturer set color 
channels (FAM, HEX, Texas Red, Cy5, Quasar 705) every 30 s at 22.5 °C, with lid heating off. Fluorescence 
time series were analyzed without default background correction. 
 

Table 2. Purchased protein specifications. 

Protein Manufacturer Catalog # Lot # Source Notes 

CD44 antigen Acro Biosystems CD4-H5226 616-784F1-G8 Human, expressed in 
HEK293 

6X His tag; 
>95% purity 

TAR DNA-binding 
protein 43 (TDP-43) R&D Systems AP-190 22675420A Recombinant human, 

expressed in E. coli >85% purity 

Transgelin (TAGLN) MyBioSource MBS144070 1011PTAGLN30 Recombinant human, 
expressed in E. coli 

20X His tag; 
>85% purity 

Lysozyme C Sigma L2879  SLCF2361 From chicken egg 
white ≥80% purity 

Ribonuclease pancreatic 
(RNase A) 

New England 
BioLabs T3018L   Purified from cow 

pancreas  

Syntenin-1 Novus Biologicals NBP1-50893 1082301 Recombinant human, 
expressed in E. coli 

6X His tag; 
>90% purity 

L-lactate dehydrogenase 
A chain (LDH-A) Sigma-Aldrich 10127230001 42032824 From rabbit muscle  

Glutathione S-
transferase (GST) Abcam ab86775 GR3377596-1 Recombinant mouse, 

expressed in E. coli >95% purity 
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