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Highlights 8 

• Random error in amplicon sequencing method should be considered in diversity analysis 9 

• Clustering, amplification, and differential recovery distort sample diversity 10 

• The multinomial model for compositional count data is compromised by amplification 11 

• There are three types of zeros in amplicon sequencing data, including missing zeros 12 

• Source alpha diversity estimates are biased by unknown number of unique variants 13 
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Abstract 14 

Diversity analysis of amplicon sequencing data is mainly limited to plug-in estimates calculated using 15 

normalized data to obtain a single value of an alpha diversity metric or a single point on a beta diversity 16 

ordination plot for each sample. As recognized for count data generated using classical microbiological 17 

methods, read counts obtained from a sample are random data linked to source properties by a 18 

probabilistic process. Thus, diversity analysis has focused on diversity of (normalized) samples rather 19 

than probabilistic inference about source diversity. This study applies fundamentals of statistical analysis 20 

for quantitative microbiology (e.g., microscopy, plating, most probable number methods) to sample 21 

collection and processing procedures of amplicon sequencing methods to facilitate inference reflecting 22 

the probabilistic nature of such data and evaluation of uncertainty in diversity metrics. Types of random 23 

error are described and clustering of microorganisms in the source, differential analytical recovery 24 

during sample processing, and amplification are found to invalidate a multinomial relative abundance 25 

model. The zeros often abounding in amplicon sequencing data and their implications are addressed, 26 

and Bayesian analysis is applied to estimate the source Shannon index given unnormalized data (both 27 

simulated and real). Inference about source diversity is found to require knowledge of the exact number 28 

of unique variants in the source, which is practically unknowable due to library size limitations and the 29 

inability to differentiate zeros corresponding to variants that are actually absent in the source from 30 

zeros corresponding to variants that were merely not detected. Given these problems with estimation of 31 

diversity in the source even when the basic multinomial model is valid, sample-level diversity analysis 32 

approaches are discussed. 33 

Keywords: Amplicon sequencing, Shannon index, Markov chain Monte Carlo, Normalization, Rarefying 34 
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1.0 Introduction 35 

Analysis of microbiological data using probabilistic methods has a rich history, with examination of both 36 

microscopic and culture-based data considered by prominent statisticians a century ago (e.g., Student, 37 

1907; Fisher et al., 1922). The most probable number method for estimating concentrations from suites 38 

of presence-absence data is inherently probabilistic (e.g., McCrady, 1915), though routine use of tables 39 

(or more recently software) obviates consideration of the probabilistic link between raw data and the 40 

estimated values of practical interest. Both the analysis of microbiological data and the control of the 41 

methods through which such data are obtained are grounded in statistical theory (e.g., Eisenhart & 42 

Wilson, 1943). More recently, the issue of estimating microbial concentrations and quantifying the 43 

uncertainty therein when some portion of microorganisms gathered in an environmental sample are not 44 

observed by the analyst has added to the complexity of analyzing microscopic enumeration data 45 

(e.g., Emelko et al., 2010). These examples share the common theme that the concentration of 46 

microorganisms in some source of interest is indirectly and imprecisely estimated from the discrete data 47 

produced by microbiological examination of samples (e.g., counts of cells/colonies or the number of 48 

aliquots exhibiting bacterial growth). The burgeoning microbiological analyses grounded in polymerase 49 

chain reactions (Huggett et al., 2015) likewise feature discrete objects (specific sequences of genetic 50 

material) that are prone to losses in sample processing, but these methods are further complicated by 51 

the variability introduced through amplification and reading (e.g., fluorescence signals or sequencing). 52 

In next-generation amplicon sequencing, obtained data consist of a large library of nucleic acid 53 

sequences extracted and amplified from environmental samples, which are then tabulated into a set of 54 

counts associated with amplicon sequence variants (ASVs) or some grouping thereof (Callahan et al., 55 

2017). The resulting data are regarded as a quantitative representation of the relative abundance (i.e., 56 

proportions) of various organisms in the source rather than absolute abundance (i.e., concentrations), 57 

thus leading to compositional data (Gloor et al., 2017). Among the many categories of analyses 58 

performed on such data are (1) differential abundance analysis to compare proportions of particular 59 

variants among samples and their relation to possible covariates and (2) diversity analysis that concerns 60 

the number of unique variants detected, how the numbers of reads vary among them, and how these 61 

characteristics vary among samples (Calle, 2019). Conventional analysis of these data is confronted with 62 

several problems (McMurdie & Holmes, 2014; Kaul et al., 2017; McKnight et al., 2018): (1) a series of 63 

samples can have diverse library sizes (i.e., numbers of sequence reads), motivating “normalization”, (2) 64 

there are many normalization approaches from which to choose, and (3) many normalization and data 65 
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analysis approaches are complicated by large numbers of zeros in ASV tables. These issues can be 66 

overcome in differential abundance analysis through use of probabilistic approaches such as generalized 67 

linear models (e.g., McMurdie and Holmes, 2014) that link raw ASV count data and corresponding 68 

library sizes to a linear model without the need for normalization or special treatment of zeros. Diversity 69 

analysis, however, is more complicated because the amount of diversity exhibited in a particular sample 70 

(alpha diversity) or apparent similarity or dissimilarity among samples (beta diversity) is a function of 71 

library size (Hughes and Hellmann, 2005), and methods to account for this are not standardized. 72 

A variety of methods have been applied to prepare amplicon sequencing data for downstream diversity 73 

analyses, most of which involve some form of normalization. Normalization options include (1) rarefying 74 

that randomly subsamples from the observed sequences to reduce the library size of a sample to some 75 

normalized library size shared by all samples in the analysis (Sanders, 1968), (2) simple proportions 76 

(McKnight et al., 2019), and (3) a continually expanding set of data transformations such as centered-log 77 

ratios (e.g., Gloor et al., 2017), geometric means pairwise ratio (e.g., Chen et al., 2018) or variance 78 

stabilizing transformations (e.g., Love et al., 2014). Rarefying predates high throughput sequencing 79 

methods (including applications beyond sequencing of the 16S rRNA gene such as RNA sequencing) and 80 

originated in traditional ecology. Statistically, these approaches to estimation of sample diversity in the 81 

source treat manipulated sample data as a population because the non-probabilistic analysis of a sample 82 

(called a plug-in estimate) leads to a single diversity value or a single point on an ordination plot. 83 

While it would increase computational complexity to do so, it is more theoretically sound to 84 

acknowledge that the observed library of sequence reads in a sample is an imperfect representation of 85 

the diversity of the source from which the sample was collected and that no one-size-fits-all 86 

normalization of the data can remedy this. ASV counts would then be regarded as a suite of random 87 

variables that are collectively dependent on the sampling depth (library size) and underlying simplex of 88 

proportions that can only be imperfectly estimated from the available data. Analysis of election polls is 89 

somewhat analogous in that it concerns inference about the relative composition (rather than absolute 90 

abundance) of eligible voters who prefer various candidates. A key distinction is that such analysis does 91 

not presume that the fraction of respondents favouring a particular candidate or party (or some 92 

numerical transformation thereof) is an exact measurement of the composition of the electorate. 93 

Habitual reporting of a margin of error with proportional results (Freedman et al., 1998) exemplifies that 94 

such polls are acknowledged to be samples from a population in which the small number of eligible 95 

voters surveyed is central to interpretation of the data. Willis (2019) applies this approach to thinking 96 
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about amplicon sequencing data in the estimation of alpha diversity by estimating diversity in a source 97 

from sample data using knowledge about random error to characterize uncertainty in source diversity. 98 

Here, (1) the random process yielding amplicon sequencing data believed to be representative of 99 

microbial community composition in the source and (2) how this theory contributes to estimating the 100 

Shannon index alpha diversity metric using such data, particularly when library sizes differ and zero 101 

counts abound, are examined in detail. Theory applied to estimate microbial concentrations in water 102 

from data obtained using classical microbiological methods is extended to this type of microbiological 103 

assay to describe both the types of error that must be considered and a series of mechanistic 104 

assumptions that lead to a simple statistical model. The mechanisms leading to zeros in amplicon 105 

sequencing data and common issues with how zeros are analyzed in all areas of microbiology are 106 

discussed. Bayesian analysis is evaluated as an approach to drawing inference from a sample library 107 

about alpha diversity in the source with particular attention to the meaning and handling of zeros. This 108 

work addresses a path to evaluating microbial community diversity given the inherent randomness of 109 

amplicon sequencing data. It is based on established fundamentals of quantitative microbiology and 110 

provides a starting point for further investigation and development. 111 

2.0 Describing and modelling errors in amplicon sequencing data 112 

A theoretical model for the error structure in microbial data can be developed by contemplating the 113 

series of mechanisms introducing variability to the number of a particular type of microorganism (or 114 

gene sequence) that are present in a sample and eventually observed. This prioritizes understanding 115 

how random data are generated from the population of interest (e.g., the source microbiome) over the 116 

often more immediate problem of how to analyze a particular set of available data. Probabilistic 117 

modelling is central to such approaches, not just a data analytics tool. Rather than reviewing and 118 

attempting to synthesize the various probabilistic methods that have been applied to amplicon 119 

sequencing, the approach herein builds on a foundation of knowledge surrounding random errors in 120 

microscopic enumeration of waterborne pathogens (e.g., Nahrstedt & Gimbel, 1996; Emelko et al., 121 

2010) to address the inherently more complicated errors in amplicon sequencing data. This study 122 

addresses the foundational matter of inferring a source microbiome alpha diversity metric from an 123 

individual sample because dealing with more complex situations inherent to microbiome analysis 124 

requires a firm grasp of such simple scenarios. Accordingly, hierarchical models for alpha diversity 125 

analyses that link samples to a hypothetical meta-community (e.g., McGregor et al., 2020) and 126 

approaches for differential abundance analysis in which the covariation of counts of several variants 127 
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among multiple samples may be a concern (e.g., Mandal et al., 2015) are beyond the scope of this work. 128 

When random errors in the process linking observed data to the population characteristics of interest 129 

are integrated into a probabilistic model, it is possible to apply the model in a forward direction to 130 

simulate data given known parameter values or in a reverse direction to estimate model parameters 131 

given observed data. This reversibility is harnessed later in this paper to simulate data from a 132 

hypothetical source and evaluate how well Bayesian analysis of those data estimates the actual Shannon 133 

index of the source. 134 

2.1 Describing amplicon sequencing data as a random sample from an environmental source 135 

Microbial community analysis involves the collection of samples from a source such as environmental 136 

waters or the human gut (Shokralla et al., 2012). This study addresses the context of water samples 137 

because the plausibility that some sources could be homogeneous provides a comparatively simple and 138 

well understood statistical starting point for modelling—many other microbiomes are inherently not 139 

well mixed. When a sample is collected, it is presumed to be representative of some spatiotemporal 140 

portion of a water source such as a particular geographic location and depth in a water body and time of 141 

sampling. A degree of local homogeneity surrounding the location and time of the collected sample is 142 

often presumed so that randomness in the number of a particular type of microorganism contained in 143 

the sample (random sampling error) would be Poisson-distributed with mean equal to the product of 144 

concentration and volume. There are many reasons for which a series of samples presumed to be 145 

replicates from a particular source may yield microorganism counts that are over-dispersed relative to 146 

such a Poisson distribution (Schmidt et al., 2014), including (1) clustering of microorganisms to each 147 

other or on suspended particles, (2) spatiotemporally variable concentration, (3) variable volume 148 

analyzed, and (4) errors in sample processing and counting of microorganisms. Variable concentration 149 

and inconsistent sample volumes are not considered herein because the focus is on relative abundance 150 

(i.e., not estimation of concentrations) and samples that are not presumed to be replicates (i.e., analysis 151 

focuses on individual samples). Non-random dispersion could be a concern affecting estimates of 152 

diversity and relative abundance because clustering may inflate variability in the counts of a particular 153 

microorganism. For example, clustering could polarize results between unusually large numbers if a 154 

large cluster is captured and absence otherwise rather than yielding a number that varies minimally 155 

around the average. 156 

The remainder of this analysis focuses on errors in sample handling and processing, nucleic acid 157 

amplification, and gene sequence counting. To be representative of relative abundance of 158 
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microorganisms in the source, it is presumed that a sample is handled so that the community in the 159 

analyzed sample is compositionally equivalent to the community in the sample when it was collected 160 

(Fricker et al., 2019). Any differential growth or decay among types of microorganisms will bias diversity 161 

analysis. A series of sample processing steps is then needed to extract and purify the nucleic material so 162 

that the sample is reduced to a size and condition ready for PCR (polymerase chain reactions). Losses 163 

may occur throughout this process, such as adhesion to glassware, residuals not transferred, failure to 164 

extract nucleic material from cells, and sample partitioning during concentration and/or purification 165 

steps. These introduce random analytical error (because a method with 50% analytical recovery cannot 166 

recover 50% of one discrete microorganism, for example), and likely also non-constant analytical 167 

recovery if the capacity of the method to recover a particular type of microorganism varies randomly 168 

from sample to sample (e.g., 60% in one sample and 40% in the next). Any differential analytical 169 

recovery among types of microorganisms (e.g., if one type of microorganism is more likely to be 170 

successfully observed than another) will bias diversity analysis of the source. Varying copy numbers of 171 

genes among types of microorganisms as well as genes associated with non-viable organisms can also 172 

bias diversity analysis. PCR amplification is then performed with specific primers to amplify targeted 173 

genes, which may not perfectly double the number of gene copies in each cycle due to various factors 174 

including primer match. Any differential amplification efficiency among types of microorganisms will 175 

bias diversity analysis of the source, as will amplification errors that produce and amplify variants that 176 

do not exist in the source (unless these are readily identified and removed from sequencing data). 177 

Finally, the generated library of sequence reads is only a subsample of the sequences present in the 178 

amplified sample. Production of sequences that are not present in the original sample (e.g., chimeric 179 

sequences, misreads) is a form of loss if they detract from sequences that ought to have been read 180 

instead, and the resulting sequences may not be perfectly removed from the data (either failing to 181 

remove invalid sequences or erroneously removing valid sequences). Any differential losses at this stage 182 

will once again bias diversity analysis of the source, as will inadvertent inclusion of false sequences. 183 

Thus, the number of microorganisms gathered in a sample, the number of genes successfully reaching 184 

amplification, the number of genes after amplification, and the number of genes successfully sequenced 185 

are all random. Due to this collection of unavoidable random errors, the validity of diversity analysis 186 

approaches that regard samples (or normalized transformations of them) as exact compositional 187 

representations of the source requires further examination. 188 

2.2 Modelling random error in amplicon sequencing data 189 
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For all of the reasons described above, it is impractical to regard libraries of sequence reads as indicative 190 

of absolute abundance in the source. We suggest that it is also impossible to regard them as indicative 191 

of relative abundance in the source without acknowledging a suite of assumptions and carefully 192 

considering what effect departure from those assumptions might have. By presuming that sequence 193 

reads are generated independently based on proportions identical to the proportional occurrence of 194 

those sequences in the source from which the sample was collected, the randomness in the set of 195 

sequence reads will yield a multinomial distribution. [For large random samples from small populations, 196 

a multivariate hypergeometric model without replacement may be more appropriate]. This is analogous 197 

to election poll data (if the poll surveys a small random sample of voters from a large electorate), 198 

repeatedly rolling a die, or repeatedly drawing random lettered tiles from a bag with replacement. The 199 

binary equivalent is a binomial model, which may form the basis of logistic regression to describe the 200 

proportion of sequences of a particular type as a function of possible covariates, recognizing how count 201 

data are random variables depending on respective library sizes and underlying proportions of interest. 202 

Multinomial models are foundational to probabilistic analysis of count-based compositional data 203 

(e.g., McGregor et al., 2020), but mechanisms through which natural variability arises in the source (such 204 

as microorganism dispersion) and the sample collection and processing methodology (such as losses, 205 

amplification, and subsampling) must be considered because they may invalidate such a model for 206 

amplicon sequencing data—these need to be considered. Table 1 summarizes the random errors 207 

discussed above, contextualizes them in terms of compatibility with the multinomial relative abundance 208 

model, and summarizes the assumptions that must be made to use a multinomial model. 209 
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Table 1: Summary of random errors in amplicon sequencing and associated assumptions in the multinomial relative abundance model 210 

Error source Description of error and compatibility with multinomial model Assumptions 

Sample 

collection 

The random sampling error describing variability in the number of discrete 

objects captured in a sample yields a Poisson distribution if microorganisms 

are randomly dispersed in a large source. This error is compatible with a 

multinomial model for proportional abundance of variants. Clustering, 

including multiple gene copies per organism, leads to excess variability that is 

incompatible with a multinomial model. 

• All microorganisms are randomly dispersed 

(i.e., not clustered) with only one gene copy 

each
*

 

Sample 

handling 

The number of a particular type of microorganism may increase or decrease 

between sample collection and sample processing. Growth inflates the 

number of microorganisms at the level of diversity represented before 

growth occurred and is incompatible with a multinomial model. Decay is a 

form of random analytical error that is compatible with a multinomial model 

if it is consistent among variants. 

• No growth 

• No differential decay (analytical recovery) 

among variants 

Sample 

processing 

The number of gene sequences subjected to amplification may be lower than 

the number in the sample prior to processing due to losses (e.g., adherence 

to apparatus, not all genes extracted, sample partitioning). This is compatible 

with a multinomial model if analytical recovery is constant among variants. 

• No differential losses (analytical recovery) 

among variants 

Amplification The number of gene sequences is purposefully increased using polymerase 

chain reactions, inflating the number of gene sequences at the level of 

diversity represented before amplification occurred, and is incompatible with 

a multinomial model. Copy errors are a form of loss for the original sequences 

that were incorrectly copied and produces erroneous sequences that may 

then be further amplified. Erroneous sequences are incompatible with a 

multinomial model unless all of them are removed from the data. 

• Pre-amplification variant diversity is fully 

identical to source diversity and sequences 

are perfectly duplicated in each PCR cycle
*

 

• No differential amplification efficiency or 

potential for copy errors among variants 

• Data denoising must remove all erroneous 

sequence reads and no legitimate reads 

Amplicon 

sequencing 

Only a subsample of sequences are read, and all variants must be equally 

likely to be read. Sequence reading errors are a form of loss for the original 

sequences that were incorrectly read and also produces erroneous sequence 

reads. Sequence reading errors are incompatible with a multinomial model 

unless all resultant erroneous sequences are removed from the data. 

• No differential sequence reading errors 

among variants or differential losses 

• Data denoising must remove all erroneous 

sequence reads and no legitimate reads 

*

Without these difficult assumptions, the multinomial model describes post-amplification variant diversity rather than source microbial diversity 211 

.
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Based on some simulations (see R code in Supplementary Material), it was determined that random 212 

sampling error consistent with a Poisson model is compatible with the multinomial relative abundance 213 

model (using the binomial model as a two-variant special case). Specifically, this featured 214 

Poisson-distributed counts of two variants with means following a 2:1 ratio and graphical evidence that 215 

this process is consistent with a binomial model (also with a 2:1 ratio of the two variants) when the 216 

result was conditioned on a particular library size. It must be noted that this is not a formal proof, as 217 

“proof by example” is a logical fallacy (unlike “disproof by counter-example”). Critically, clustering of 218 

gene copies in the source causes the randomness in sequence counts to depart from a multinomial 219 

model, as proven by simulation in the Supplementary Material (following a disproof by counter-example 220 

approach). When the above process was repeated with counts following a negative binomial model that 221 

is over-dispersed with respect to the Poisson model, the variation in counts conditional on a particular 222 

library size was no longer consistent with the binomial model. Microorganisms having multiple gene 223 

copies is a form of clustering that invalidates the model.  224 

Any form of loss or subsampling is compatible with the multinomial model so long as it affects all 225 

sequence variants equally. If each of a set of original proportions is multiplied by the same weight 226 

(analytical recovery), then the set of proportions adjusted by this weighting is identical to the original 227 

proportions (e.g., a 2:1 ratio is equal to a 1:0.5 ratio if all variants have 50% analytical recovery). 228 

Growth and amplification must also not involve differential error among variants, but even in absence of 229 

differential error they have an important effect on the data and evaluation of microbiome diversity. 230 

These processes inflate the number of sequences present, but only with the potentially reduced or 231 

atypical diversity represented in the sample before such inflation. For example, a hypothetical sample 232 

with 100 variants amplified to 1000 will have the diversity of a 100-variant sample in 1000 reads, which 233 

may inherently be less than the diversity of a 1000-variant sample directly from the source. 234 

Amplification fabricates additional data in a process roughly opposite to discarding sequences in 235 

rarefaction; it resamples from a small pool of genetic material to make more whereas rarefaction 236 

subsamples from a larger pool of gene sequences to yield less (i.e., a smaller library size). Based on some 237 

simulations (see R code in Supplementary Material), it was proven that amplification is incompatible 238 

with the multinomial relative abundance model (following a disproof by counter-example approach). 239 

Specifically, the distribution of counts when two variants with a 2:1 ratio are amplified from a library size 240 

of four to a library size of six, the results differ from the distribution of counts obtained from a binomial 241 

model. 242 
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Representativeness of source diversity and compatibility with the multinomial relative abundance model 243 

can only be assured if the post-amplification diversity happens to be fully identical to the 244 

pre-amplification diversity and the observed library is a small random sample of the amplified genetic 245 

material. Such an assumption may presume random happenstance more so than a plausible 246 

probabilistic process, though it would be valid in the extreme special case where pre-amplification 247 

diversity is fully identical to source diversity and every sequence is perfectly duplicated in each cycle 248 

(with no erroneous sequences produced). Without making relatively implausible assumptions or having 249 

detailed understanding and modelling of the random error in amplification, observed libraries are only 250 

representative of post-amplification diversity and indirectly representative of source diversity. This calls 251 

into question the theoretical validity of multinomial models as a starting point for inference about the 252 

proportional composition of microbial communities using amplification-based data. Nonetheless, the 253 

multinomial model was used as part of this study in some illustrative simulation-based diversity analysis 254 

experiments. 255 

3.0 The many zeros of amplicon sequencing data 256 

As in other fields (Helsel, 2010), zeros in microbiology have led to much ado about nothing (Chik et al., 257 

2018). They are (1) commonly regarded with skepticism that is hypocritical of non-zero counts 258 

(e.g., assuming that counts of zero result from error while counts of two are infallible), (2) often 259 

substituted with non-zero values or omitted from analysis altogether, and (3) a continued subject of 260 

statistical debate and special attention (such as detection limits and allegedly censored microbial data). 261 

Careful consideration of zeros is particularly relevant to diversity analysis of amplicon sequencing data 262 

because they often constitute a large portion of ASV tables. They may or may not appear in 263 

sample-specific ASV data, but they often appear when the ASV table of several samples is filled out 264 

(e.g., when an ASV that appears in some samples does not appear in others, zeros are assigned to that 265 

ASV in all samples in which it was not observed). They may also be created by zeroing singleton reads 266 

(Callahan et al., 2016), but this issue (and the bias arising if some singletons are legitimate read counts) 267 

is not specifically addressed in this study. Zeros often receive special treatment during the normalization 268 

step of compositional microbiome analysis (Thorsen et al., 2016; Tsilimigras and Fodor, 2016; Kaul et al., 269 

2017), including removal of rows of zeros and fabrication of pseudo-counts with which zeros are 270 

substituted (to enable logarithmic transformations among other reasons). 271 

We propose a classification of three types of zeros: (1) non-detected sequences (also caused sampling 272 

zeros), (2) truly absent sequences (also called structural zeros), and (3) missing zeros. This differs from 273 
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the three types of zeros discussed by Kaul et al. (2017) because the issue of missing zeros (which is 274 

shown to be critically important in diversity analysis) was not noted in that study and zeros that appear 275 

to be outliers from empirical patterns are not considered in this study (because all random read counts 276 

are presumed to be correct). 277 

It is typically presumed that zeros correspond to non-detected sequences, meaning that the variant is 278 

present in some quantity in the source but happened to not be included in the library and is represented 279 

by a zero. A legitimate singleton that is replaced with a zero would be a special case of a non-detect 280 

zero. Bias would result if non-detect zeros were omitted or included in the diversity analysis 281 

inappropriately (e.g., substitution with pseudo-counts or treating them as definitively absent variants). It 282 

is conceptually possible that a particular type of microorganism may be truly absent from certain 283 

sources so that the corresponding read count and proportion should definitively be zero. If false 284 

sequences due to errors in amplification and sequencing are filtered from the ASV table but left as zeros, 285 

then they are a special case of truly absent sequences. Bias would result if such zeros were included in 286 

diversity analysis in a way that manipulates them to non-zero values or allows the corresponding variant 287 

to have a plausibly non-zero proportion. Missing zeros are variants that are truly present in the source 288 

and not represented in the data—they are not acknowledged to be part of the community, even with a 289 

zero in the ASV table. Bias would result from exclusion of these zeros from diversity analysis rather than 290 

recognizing them as non-detected variants. Thus, there are three types of zeros, two of which appear 291 

indistinguishably in the data and must be handled differently and the third of which is important but 292 

does not even appear in the data. In this study, simulation-based experiments are used to illustrate 293 

implications of the dilemma of not knowing how many zeros should appear in the data to be analyzed as 294 

non-detects. 295 

4.0 Probabilistic inference of source Shannon index using Bayesian methods 296 

The Shannon index (Equation 1; Shannon, 1948; Washington, 1984) is used as a measure of alpha 297 

diversity that reflects both the richness and evenness of variants present (number of unique variants 298 

and similarity of their respective proportions). When calculated from a sample, the Shannon index (S) 299 

depends only on the proportions of the observed variants (pi for the i
th

 of n variants) and not on their 300 

read counts. Critically, the Shannon index of a sample is not an unbiased estimate of the Shannon index 301 

of the source (even in scenarios without amplification); it is expected to increase with library size as 302 

more rare variants are observed until it converges asymptotically on the Shannon index of the source 303 

(Willis, 2019). Even if all variants in the source are reflected in the data, the precision of the estimated 304 
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Shannon index will improve with increasing library size. Building on existing work applying Bayesian 305 

methods to characterize the uncertainty in enumeration-based microbial concentration estimates (e.g., 306 

Emelko et al., 2010) and inspired by the need to consider random error in evaluation of alpha diversity 307 

that was noted by Willis (2019), a Bayesian approach is explored here for the simplified scenario of 308 

multinomially distributed data. It evaluates uncertainty in the source Shannon index given sample data, 309 

the multinomial model, and a relatively uninformative Dirichlet prior that gives equal prior weight to all 310 

variants (using a vector of ones). Hierarchical modelling that may describe how the proportional 311 

composition varies among samples is beyond the scope of this analysis. Such modelling can be beneficial 312 

when strong information in the lower tier of the hierarchy can be used to probe the fit of the upper tier; 313 

however, it can be biased if limited information in the lower tier is bolstered with flawed assumptions 314 

introduced via the upper tier. 315 

 � � �∑ �� � ln��
�

���  (1) 316 

Here, a simulation study is employed that is analogous to compositional microbiome data with small 317 

library sizes and small numbers of variants and that does follow a multinomial relative abundance 318 

model. The simulation uses specified proportions for a set of variants; for illustrative purposes, the 319 

simulation represents random draws with replacement from a bag of lettered tiles based on the game 320 

Scrabble
TM

. Randomized multinomial data (Table S1, Supplementary Content) were generated in R using 321 

varying library sizes and the proportions of the 100 tiles (including 26 letters and blanks), which 322 

correspond to a population-level Shannon index of 3.03. Markov chain Monte Carlo (MCMC) was carried 323 

out using OpenBUGS (version 3.2.3), with randomized initialization and 10,000 iterations following a 324 

1,000-iteration burn-in. The model specification code and a small sample dataset are included in the 325 

Supplementary Content. Due to the mathematical simplicity of a multinomial model with a Dirichlet 326 

prior, this number of iterations can be completed in seconds with rapid convergence and good mixing of 327 

the Markov chain. Each iteration generates an estimate of each variant proportion, and the set of 328 

variant proportions is used to compute an estimate of the Shannon index for the source inferred from 329 

the sample data. The Markov chain of Shannon index values generated in this way is collectively 330 

representative of a sample from the posterior distribution that characterizes uncertainty in the source 331 

Shannon index given the sample data and prior. The simulated data were analyzed in several ways, as 332 

illustrated using box and whisker plots in Figure 1: (1) with all non-detected tile variants removed, (2) 333 

with zeros as needed to reach the correct number of tile variants used to simulate the data (i.e., 27), and 334 

(3) with extraneous zeros (a total of 50 tile variants of which 23 do not actually exist in the source). 335 
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336 

Figure 1: Box and whisker plot of MCMC samples from posterior distributions of the Shannon index337 

based on analysis of simulated data. Data with various library sizes (Table S1) were analyzed in each of 3338 

ways: with zeros excluded (not applicable in some cases), with zeros included for non-detected variants,339 

and with extraneous zeros corresponding to variants that do not exist in the source. The true Shannon340 

index of the source from which the data were simulated is 3.03. 341 

The disparity in results between the three ways in which the data were analyzed exemplifies the342 

importance of zeros in estimating the Shannon index of the source from which samples were gathered343 

Omitting non-detect zeros in this Bayesian analysis characteristically underestimates diversity, while344 

including zeros for variants that do not exist in the source characteristically overestimates diversity. In345 

each case, the effect diminishes as the library size is increased. Notably, the approach that included346 

zeros for variants present in the source that were not detected in the sample allowed accurate347 

estimation of the source Shannon index, with improving precision as the library size increases348 

(exemplifying statistical consistency of the estimation process). Additional analysis (not shown)349 

indicated that using a prior with a vector of 0.1’s leads to underestimation of the source Shannon index350 

by all three methods. Given these results, the proposed Bayesian process appears to be theoretically351 

valid to estimate the source Shannon index from samples (for which the multinomial relative abundance352 
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model applies), and it does so without the need to normalize data with differing library sizes. Practically, 353 

however, it is not possible to know how many zeros should be included in the analysis estimating the 354 

Shannon index because the number of unique variants actually present in the source is unknown. This is 355 

a peculiar scenario that must be emphasized here because accurate statistical inference about the 356 

source is not possible: although the model form (multinomial) is known, the number of unique variants 357 

that should be included in the model is practically unknowable. Model-based supposition is not applied 358 

in this study to introduce information that is lacking; this can be a biased approach to compensating for 359 

deficiencies in observed data or flawed experiments in which “control variables” are not controlled (e.g., 360 

it is not possible to estimate concentration from a count without a measured volume) unless the 361 

supposition happens to be correct. 362 

Because the extent to which zeros compromised accurate estimation waned with increasing library size 363 

(Figure 1), a similar analysis was performed on amplicon sequencing data for six water samples from 364 

lakes. The samples (Cameron et al., 2020) featured library sizes between 10,000 and 30,000 and 365 

observation of 1,142 unique variants among the samples. All singleton counts had been zeroed and the 366 

completed ASV table had 3,342 rows (2,200 of which are all zeros associated with variants detected in 367 

other samples from the same study area). Each sample was analyzed three ways: (1) with all non-368 

detected sequence variants removed, (2) with zeros as needed to fill out the 1,142-row ASV table, and 369 

(3) with zeros as needed to fill out the 3,342-row ASV table. The appropriate number of zeros to be 370 

included for each sample cannot be known, but the Shannon index estimated with all non-detected 371 

sequence variants removed is very likely underestimated. The results (Figure 2) show that the number of 372 

zeros included in the analysis can have a substantial effect on the estimated Shannon index of the 373 

source, even with library sizes nearing 30,000 sequences. It is thus concluded that it is not statistically 374 

possible to estimate the Shannon index of the source (even if all the assumptions are met that enable 375 

use of the multinomial relative abundance model) unless the number of unique variants present in the 376 

source is precisely known a priori. 377 
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378 

Figure 2: Box and whisker plot of MCMC samples from posterior distributions of the Shannon index379 

based on analysis of amplicon sequencing data. Data with various library sizes between 10,000 and380 

30,000 were analyzed 3 ways: with zeros excluded, with zeros included in a 1,142-row ASV table (no381 

zero rows), and with additional zeros from the full 3,342-row ASV table including variants with rows of382 

zeros (detected in other samples from the same study area). 383 

5.0 Diversity Analysis in Absence of a Model to Infer Source Diversity 384 

Recognizing that amplicon sequencing of a sample provides only partial and indirect representation of385 

the diversity in the source (specifically partial representation of post-amplification diversity) and that386 

statistical inference about source diversity is compromised by clustering, amplification, and not knowing387 

how many zeros should be included in the data, the question of how to perform diversity analysis388 

remains. The approach should recognize the random nature of amplicon sequencing data, reflect the389 

importance of the library size in progressively revealing information about diversity, avoid normalization390 

that distorts the proportional composition of samples, and provide some measure of uncertainty or391 

error. Inference about source diversity is the ideal, but it is not possible with a multinomial relative392 

abundance model unless the number of unique variants in the source is precisely known and there are393 

many types of error in amplicon sequencing that are likely to invalidate this foundational model as394 
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discussed above. Rarefying repeatedly, a subsampling process to normalize library sizes among samples 395 

that is performed many times in order to characterize the variability introduced by rarefying (Cameron 396 

et al., 2020), satisfies these goals. When a sample is rarefied repeatedly down to a smaller library size 397 

(using sampling without replacement), it describes what data might have been obtained if only the 398 

smaller library size of sequence variants had been observed. It also does not throw out valid sequences 399 

because all sequences are represented with a sufficiently large number of repetitions. A value of the 400 

sample Shannon index may than be computed for each of the repetitions to quantify the diversity in 401 

samples of a particular library size. 402 

Figure 3 schematically illustrates the relationship between repeatedly rarefying to smaller library sizes 403 

and statistical inference about the source from which the sample was taken. Rarefying adds random 404 

variability by subsampling without replacement while statistical inference includes parametric 405 

uncertainty that is often ignored in contemporary diversity analyses. Because the extent to which 406 

diversity is exhibited by a sample depends on the library size, such sample-level analysis must be 407 

performed at the same level (analogous to converting 1 mm, 1 cm, and 1 km to a common unit before 408 

comparing numerical values) and any observations obtained about patterns in sample-level diversity are 409 

conditional on the shared library size at which the analysis was performed. On the other hand, current 410 

methods (including rarefying once), distort the data to facilitate use of compositional analysis methods 411 

that presume the data are a perfect representation of the microbial composition in the source; it is 412 

important to recognize that the detected library is only a random sample that is imperfectly 413 

representative of source diversity. 414 
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415 

Figure 3: Schematic diagram relating library size and diversity quantified therefrom to uncertainty in416 

statistical inference about source diversity and variability introduced by repeatedly rarefying to the417 

smallest obtained library size. In this case, rarefying repeatedly evaluates the extent of the diversity418 

(after amplification) exhibited if a library size of only n=5000 had been obtained from each sample. 419 

A simulation experiment was performed using the hypothetical population based on Scrabble
TM

 and420 

samples with varying library sizes (see R code in Supplementary Content) to explore rarefying repeatedly421 

and plug-in estimation of the Shannon index (Figure 4). A thousand simulated datasets with a library size422 

of 25 yielded Shannon index values between 1.86 and 2.87 (with a mean of 2.49), illustrating that the423 

source diversity (with a Shannon index of 3.03) is only partially exhibited by a sample with a library size424 

of 25. Five samples were generated with library sizes of 50, 100, 200, 500, and 1000, and corresponding425 

Shannon index values are shown in red (deteriorating markedly at library sizes of 100 or less). Each426 

sample was then rarefied repeatedly (1000 times) to a library size of 25, resulting in the box and whisker427 
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plots of the calculated Shannon index values. Although samples with larger library sizes exhibit more 428 

diversity, samples repeatedly rarefied down to the minimum library size of 25 exhibit very comparable 429 

diversity. The Shannon index at a library size of 25 is similar for all samples, as it should be given that 430 

they were generated from the same population. If rarefying had been completed only once without 431 

quantification of the error introduced, it may erroneously have been concluded that the samples 432 

exhibited different Shannon index values. 433 

 434 

Figure 4: Demonstration of normalization by rarefying repeatedly using simulated data. The box and 435 

whisker plot for the library size of 25 (*) illustrates how the Shannon index varies among simulated 436 

samples and is consistently below the actual Shannon index of 3.03 (red line). The Shannon index 437 

calculated from the samples with larger library sizes (red dots) deteriorates at small library sizes. The 438 

box and whisker plots for these library sizes illustrate what Shannon index might have been calculated if 439 

only a library size of 25 had been obtained (rarefying 1000 times to this level). In all cases, a Shannon 440 

index of about 2.5 is expected with a library size of 25. 441 

6.0 Discussion 442 

Diversity analysis of amplicon sequencing data has grown rapidly, adopting tools from other disciplines 443 

but largely differing from the statistical approaches applied to classical microbiology data. Most analyses 444 

feature a deterministic set of procedures to transform the data from each sample and yield a single 445 

value of an alpha diversity metric or a single point on an ordination plot. Such procedures should not be 446 

viewed as statistical analysis because the data are not a population (i.e., perfect measurements of the 447 

proportional composition of the community in the source); they are a random sample representing only 448 

a portion of that population. Acknowledging that the data are random and that the goal is to understand 449 
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the alpha and beta diversity of the sources from which samples were collected, it is important to 450 

describe and explore the error mechanisms leading to variability in the data and uncertainty in 451 

estimated diversity. 452 

This study provides a step toward such methods by describing mechanistic random errors and their 453 

potential effects, proposing a probabilistic model and listing the assumptions that facilitate its use, 454 

discussing various types of zeros that may appear (or fail to) in ASV tables, and performing illustrative 455 

analyses using simulated data. Several sources of random error were found to invalidate the 456 

multinomial relative abundance model that is foundational to probabilistic modelling of compositional 457 

sequence count data, notably including clustering of microorganisms in the source and amplification of 458 

genes in this sequencing technology. Future simulation studies could explore the effect of non-random 459 

microorganism dispersion, sample volume (relative to a hypothetical representative elementary volume 460 

of the source), differential analytical recovery in sample processing, amplification errors, and sequencing 461 

errors on diversity analysis more thoroughly and evaluate the potential for current normalization and 462 

point-estimation approaches to misrepresent diversity. 463 

This study also presents a simple Bayesian approach to drawing inference about diversity in the sources 464 

from which samples were collected (rather than just diversity in the sample or some transformation of 465 

it). Even under idealized circumstances in which the multinomial relative abundance model is valid, it 466 

was unfortunately found to be biased unless the number of unique variants present in the source was 467 

known a priori. This may have implications on analysis of any type of multinomial data, beyond 468 

microbiome data, in which the number of possible outcomes (or the number of outcomes with zero 469 

observations that should be included in the analysis) is unknown. It is plausible that a probabilistic 470 

model could be developed to account for errors that invalidate the multinomial model, though this 471 

would require many assumptions that would be difficult to validate and that could substantially bias 472 

inferences. In summary, probabilistic modelling should be used to draw inferences about source 473 

diversity and quantify uncertainty therein, but the simple multinomial model is invalidated by some 474 

types of error that are inherent to the method and inference is not possible even with the multinomial 475 

model unless the practically unknowable number of unique variants in the source is known. 476 

For lack of a reliable and readily available probabilistic approach to draw inferences about source 477 

diversity, an approach to evaluate and contrast sample-level diversity at a particular library size is 478 

needed. Rarefying once manipulates the data in a way that adds variability and discards data (McMurdie 479 

& Holmes, 2014), and (like other transformations proposed to normalize data) the manipulated data are 480 
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generally only used to obtain a plug-in estimate of diversity. Rarefying repeatedly, on the other hand, 481 

allows comparison of sample-level diversity estimates conditional on a library size that is common 482 

among all analyzed samples, does not discard data, and characterizes variability in what the diversity 483 

measure might have been if only the smaller library size had been observed. This approach is by no 484 

means statistically ideal, but it may be a distant second best relative to the Bayesian approach (or 485 

analogous frequentist approaches based on the likelihood function) presented in this study that cannot 486 

practically be applied in an unbiased way in many scenarios, especially due to the unknowable number 487 

of unique variants that are actually present in the source and complex error structures inherent to 488 

amplicon sequencing. 489 
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