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Abstract	
Single	molecule	localisation	microscopy	(SMLM)	generates	data	in	the	form	of	Cartesian	
coordinates	of	localised	fluorophores.	Cluster	analysis	is	an	attractive	route	for	extracting	
biologically	meaningful	information	from	such	data	and	has	been	widely	applied.	Despite	
the	range	of	developed	cluster	analysis	algorithms,	there	exists	no	consensus	framework	
for	the	evaluation	of	their	performance.	Here,	we	use	a	systematic	approach	based	on	two	
metrics,	the	Adjusted	Rand	Index	(ARI)	and	Intersection	over	Union	(IoU),	to	score	the	
success	 of	 clustering	 algorithms	 in	 diverse	 simulated	 clustering	 scenarios	 mimicking	
experimental	 data.	 We	 demonstrate	 the	 framework	 using	 three	 analysis	 algorithms:	
DBSCAN,	ToMATo	and	KDE,	show	how	to	deduce	optimal	analysis	parameters	and	how	
they	 are	 affected	 by	 fluorophore	 multiple	 blinking.	 We	 propose	 that	 these	 standard	
conditions	and	metrics	become	the	basis	for	future	analysis	algorithm	development	and	
evaluation.		
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Introduction	
Single	molecule	localisation	microscopy	(SMLM)	is	now	an	established	and	widely	used	
technique1.	The	assembly	of	biomolecules	into	aggregates	(clusters)	is	a	key	process	in	
cell	biology2,3,	 and	SMLM	provides	a	route	 to	study	 these	complexes1.	Different	SMLM	
modalities	can	be	distinguished	by	the	way	the	sparse	pointillistic	signal	 is	generated,	
either	through	photophysics,	e.g.,	(direct)	stochastic	optical	reconstruction	microscopy	
((d)STORM)4,5,	photoactivated	localization	microscopy	(PALM)6,	or	though	binding,	e.g.,	
points	accumulation	 for	 imaging	 in	nanoscale	 topography	(PAINT	and	DNA-PAINT)7-9.	
Regardless	of	the	method,	data	from	SMLM	experiments	may	be	represented	as	a	list	of	
Cartesian	coordinates	of	all	localised	fluorophores.	Thus,	these	data	are	suitable	for	the	
application	 of	 statistical	 methods	 that	 can	 identify	 characteristics	 about	 the	 spatial	
arrangement	of	such	data10.	One	of	the	most	common	methods	is	cluster	analysis11.			
Clustering	methods	 can	 be	 classified	 into	 two	 groups:	 global	 clustering	 and	 complete	
clustering.	 Global	 clustering	 analysis	 returns	 an	 ensemble	 result	 on	 whether	 a	 point	
pattern	is	clustered	or	not;	Ripley’s	K-function12,	nearest	neighbour	analysis	(NNA)13,	and	
the	 pair	 correlation	 function	 (PCF)14	 have	 all	 been	 applied	 to	 SMLM	 data15-19.	 For	
example,	Ripley’s	K-function	has	revealed	that	the	T-cell	adaptor	protein,	LAT	is	clustered	
at	the	immunological	synapse15,16.	Global	approaches	are	statistically	robust	but	provide	
a	limited	description	of	the	data.	Complete	clustering	approaches	have	therefore	gained	
popularity.	These	assign	every	 localisation	to	a	specific	cluster	or	 into	a	non-clustered	
population20-27.	Complete	clustering	methods	provide	rich	descriptions	of	the	data	such	
as	 the	 number	 of	 clusters,	 cluster	 shapes	 and	 so	 on.	 For	 example,	 the	 density-based	
spatial	clustering	of	applications	with	noise	algorithm	(DBSCAN)28	has	been	applied	to	
observe	the	clustering	of	the	T	cell	receptor	at	the	immune	synapse29,	RNA	polymerase	
organization	in	E.coli30,	and	dopamine	receptor	clusters	in	neurons31.	
A	consensus	framework	for	assessing	algorithms	used	to	generate	complete	clusterings	
of	SMLM	data	remains	to	be	developed.	Yet,	there	are	existing	mathematical	means	by	
which	 to	 assess	 the	 accuracy,	 or	 success,	 of	 clustering	 algorithms	 in	 general32	 by	
comparing	the	result	to	a	known	ground	truth,	simulated	data	set.	One	such	metric	is	the	
Rand	 Index	 (RI)32,	 which	 aims	 to	 determine	 which	 points	 have	 the	 same	 cluster	
classification	 in	 the	 ground	 truth	 and	 the	 analysed	 output.	 The	 Rand	 Index	 has	 been	
modified	 in	 order	 to	 account	 for	 correct	 classifications	 that	 may	 arise	 by	 chance33,	
resulting	in	the	Adjusted	Rand	Index	(ARI,	Figure	1a).		The	ARI	has	a	range	between	-1	
and	 1,	 with	 high	 positive	 values	 representing	 good	 clustering	 agreement	
(Supplementary	 Figure	 1a-c).	 Performance	 can	 also	 be	measured	 geometrically,	 for	
example,	by	taking	the	convex	hull	of	points	assigned	to	the	cluster	and	measuring	the	
overlap	between	the	output	and	the	ground	truth.	In	this	context,	points	at	the	edge	of	
the	identified	cluster	become	more	significant	(Figure	1b).	This	is	the	basis	for	another	
accuracy	metric,	the	intersection	over	union	(IoU,	Figure	1b)34-36	whose	value	runs	from	
0-1,	 1	 representing	 perfect	 overlap	 between	 cluster	 areas.	 As	 well	 as	 evaluating	
performance,	 these	tests	can	serve	as	a	basis	 for	assessing	the	suitability	of	clustering	
algorithm	parameters/settings	and	thus	inform	their	most	effective	use.	
Here,	 we	 implement	 ARI	 and	 IoU	 for	 the	 cluster	 analysis	 of	 simulated	 SMLM	 data	
mimicking	common	biological	scenarios.	To	demonstrate	the	framework,	we	analyse	the	
data	with	3	different	algorithms:	DBSCAN,	Topological	Mode	Analysis	Tool	(ToMATo),	
and	kernel	density	estimation	(KDE).	We	chose	a	range	of	different	values	for	the	user	
defined	inputs,	to	uncover	the	optimal	settings	for	these	algorithms.	Finally,	we	added	a	
common	 experimental	 feature	 of	 SMLM:	 multiple	 blinking.	 We	 again	 assessed	 the	
algorithms	in	order	to	evaluate	their	robustness	against	this	effect.	
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Results	
Data	simulation	and	pre-evaluation	
Data	generated	from	SMLM	experiments	can	exhibit	a	wide	range	of	spatial	organisation,	
owing	to	the	underlying	biology	and	sample	labelling.	This	may	include	varied	levels	of	
non-clustered	points,	sparse	data,	large	numbers	of	clusters	and	irregular	cluster	shapes.	

	
Figure	 1.	 Clustering	 performance	 metrics.	 a)	 The	 Adjusted	 Rand	 Index	 (ARI)	
computes	a	measure	of	performance	based	on	membership.	b)	The	intersection	over	
union	(IoU)	computes	a	measure	of	performance	based	on	spatial	overlap	of	clustered	
areas	in	the	analysed	data	(green)	and	the	ground	truth	(magenta).	
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These	properties	impact	both	the	optimal	algorithm	parameters	and	their	performance.	
We	simulated	9	different	ground	truth	molecule	arrangements	in	2000	x	2000	nm	regions	
(Table	1,	Figure	2a-i,	Online	Methods).	Scenario	1	 –	non-clustered	 single	molecules	
seeded	 at	 completely	 spatially	 random	 positions	 (CSR;	 Figure	 2a);	 Scenario	 2	 -	 20	
clusters	 of	 15	molecules	 per	 cluster	with	 50%	 of	 the	 total	molecules	 being	 clustered	
(Figure	2b);	Scenario	3	-	20	clusters	of	15	molecules	per	cluster	with	20%	of	the	total	
molecules	being	clustered	(Figure	2c);	Scenario	4	-	20	clusters	of	5	molecules	per	cluster	
with	50%	of	the	total	molecules	being	clustered	(Figure	2d);	Scenario	5	-	100	clusters	of	
15	molecules	per	cluster	with	50%	of	molecules	being	clustered	(Figure	2e);	Scenario	6	
-	20	elliptically	shaped	clusters	aspect	ratio	3:1	each	of	50	molecules	with	50%	of	the	
total	molecules	being	clustered	(Figure	2f);	Scenario	7	–	10	clusters	with	a	distribution	
width	of	25	nm	and	10	clusters	with	a	width	of	75	nm,	with	50%	of	the	total	molecules	
clustered	 (Figure	 2g);	 Scenario	 8	 –	 10	 clusters	 with	 5	molecules	 per	 cluster	 and	 10	
molecules	with	 15	molecules	 per	 cluster,	 	 with	 50%	 of	 the	 total	molecules	 clustered	
(Figure	2h);	Scenario	9	–	10	clusters	with	15	molecules	per	cluster	,	and	a	distribution	
with	of	25	nm,	and	a	further	10	clusters	with	135	molecules	and	a	distribution	width	of	
75	 nm,	 thus	maintaining	molecule	 density	with	 increased	 size,	with	 50%	of	 the	 total	
molecules	clustered	(Figure	2i).	Clustering	algorithms	will	produce	erroneous	clustering	
results	when	 used	 on	 data	 that	 has	 little	 inherent	 clustering.	 Ripley’s	 K-function	was	
computed	for	all	of	the	scenarios	above	(Figure	2a-i,	bottom	panels).	All	but	Scenario	1	
show	significant	deviation	from	a	simulated	curve	for	a	completely	random	distribution	
(Figure	2b-i,	bottom	panels,	red	dotted	line).	Therefore,	Scenario	1	 is	not	classified	as	
significantly	clustered	using	this	approach,	and	hence	not	appropriate	for	further	cluster	
identification.	
	
Performance	metrics	
We	 next	 analyzed	 the	 simulations	 with	 clustering	 algorithms	 and	 scored	 the	 results.	
Importantly,	given	the	breadth	of	clustering	algorithms	and	analyses	available,	selecting	
algorithms	that	differ	in	their	approach,	but	require	similar	user	guidance	was	important.	
To	this	end,	we	chose	DBSCAN28	(Supplementary	Figure	2a),	ToMATo	(Supplementary	
Figure	2b)25,	 and	kernel	density	estimation	 (KDE,	Supplementary	Figure	2c).	These	
algorithms	were	chosen	on	the	basis	that	they	differ	in	the	method	by	which	they	identify	
cluster	 assignments	 but	 have	 comparable	 parameters	 to	 be	 set	 by	 the	 user	
(Supplementary	Figure	2).	For	example,	DBSCAN	determines	cluster	and	cluster	edges	
by	the	number	of	neighbours	for	a	given	point	above	a	threshold,	whereas	KDE	uses	an	
image-based	approach	where	 the	pixel	 information	 represents	 the	kernel	density	and	
points	 are	 clustered	 using	 a	 threshold.	 All	 three	 algorithms	 require	 two	 user-defined	
inputs	to	be	set	in	order	to	function:	minPts	and	ε	for	DBSCAN,	a	threshold	on	density	
mode	 persistence	 and	 search	 radius	 for	 ToMATo,	 and	 kernel	 size	 (s)	 and	 density	
threshold	 for	 KDE.	 Clustering	 was	 performed	 for	 each	 algorithm	 by	 scanning	 the	
parameter	combinations.	This	was	repeated	for	50	simulations	within	each	scenario	and	
the	mean	scores	for	each	parameter	combination	calculated	along	with	the	variance.	The	
optimal	clustering	parameters	for	each	algorithm	within	each	scenario	and	cluster	metric	
are	summarised	in	Supplementary	Table	1.	
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Figure	 2	 –	 Examples	 of	 simulated	 data	 conditions	 and	 pre-evaluation	 of	
suitability.	a)	Scenario	1	b)	Scenario	2,	c)	Scenario	3,	d)	Scenario	4,	e)	Scenario	5,	f)	
Scenario	6,	g)	Scenario	7,	h)	Scenario	8,	 and	 i)	Scenario	9.	Top	panels	–	examples	of	
simulation	data,	Bottom	panels	–	linear	representation	of	Ripley’s	K	function	(L(r)-r),	
black	 line	 for	simulation	data,	red	 line	 -	mean	from	100	simulations	using	the	same	
number	 of	molecules	 placed	 completely	 randomly,	 with	 95%	 simulation	 envelopes	
(pink).	Scale	bars	–	200	nm	
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For	Scenario	 2	 (Fig.	 3a),	 the	 performance	 of	 the	 three	 algorithms	 is	 shown	 for	 every	
combination	of	user	analysis	settings	(Fig	3b-d).	The	data	shows	a	broad	maximum	of	
scores	across	the	parameter	space;	however,	a	rapid	drop-off	and	high-variance	region	
exists	for	small-scale	parameter	settings,	meaning	if	the	optimal	settings	are	not	known,	
it	is	safer	to	err	on	the	high-scale	side.	Fig	3e	shows	the	maximum	scores	(i.e.,	for	the	best	
user	settings)	for	each	of	the	algorithm.	The	full	performance	analysis	for	all	algorithms	
against	all	scenarios	assessed	by	both	metrics	is	shown	in	Supplementary	Figures	3-9.	
The	best	score	obtained	from	the	optimal	combination	of	input	parameters	in	each	case	
is	shown	in	Figure	4	and	Supplementary	Figure	10.	 	The	best	performing	algorithm	
can	depend	on	the	scenario.	With	high	levels	of	non-clustered	points	(Scenario	3,	Figure	
4a)	or	many	clusters	(Scenario	5,	Figure	4c	and	Supplementary	Figure	5c),	for	example,	
KDE	maintains	 higher	 scores	 than	 the	 other	 algorithms	 (Supplementary	 Figure	5c).	
Furthermore,	 KDE	 seems	 to	 deal	 well	 with	 scenarios	 with	 variable	 cluster	 size	 and	
density,	i.e.,	Scenarios	7	and	9	(Supplementary	Figures	7	and	9).	
	
Effect	of	multiple	blinking	on	optimal	clustering	parameters	
An	 inherent	 property	 of	 SMLM	data	 is	 the	 presence	 of	multiple	 points	 arising	 from	a	
single	 molecule.	 In	 PALM	 data,	 approximate	 correction	 is	 possible	 by	 grouping	
localisations	that	appear	close	in	space	and	time.	These	strategies	are	less	for	dSTORM	
data.	 Each	 ground	 truth	 fluorophore	 may	 therefore	 appear	 as	 a	 small	 cluster	 with	
membership	related	to	the	number	of	blinks	and	size	related	to	the	localisation	precision.	
We	tested	the	three	cluster	analysis	algorithms’	performance	against	simulated	data	in	
the	presence	of	multiple	emission	events.	Each	molecule	in	the	ground	truth	conditions	
was	assumed	 to	be	 stoichiometrically	 labelled	with	 a	 single	 fluorophore,	 and	 that	 the	
probability	of	that	fluorophore	blinking	followed	a	geometric	distribution20	set	such	that	
a	 single	 fluorophore	 would	 give	 4-5	 detections,	 on	 average.	 The	 optimal	 clustering	
parameters	for	each	algorithm	are	summarised	in	Supplementary	Table	1.	The	effect	of	
this	added	blinking	step	on	Scenario	2	is	shown	in	Figure	5,	together	with	the	complete	
performance	 evaluation	 for	 all	 three	 algorithms.	 There	 is	 an	 obvious	 drop	 off	 in	
performance	 for	 compared	 to	 the	 case	with	 no	 blinking.	 The	 stochastic	 nature	 of	 the	
blinking	 introduces	 greater	 heterogeneity	 into	 the	 data.	 However,	 DBSCAN	 is	 more	
robust	 to	 the	 effect	 than	 the	 other	 two	 algorithms.	 KDE	 and	 ToMATo	 have	 similar	
performance	by	the	ARI	measure,	but	ToMATo	is	superior	if	the	area	of	detected	clusters	
is	 the	 required	 output	 (Figure	5c,	 right).	 This	 is	 a	 nice	 illustration	 that	 the	 choice	 of	
algorithm	does	not	only	depend	on	the	nature	of	the	underlying	distribution,	but	also	on	
the	biological	question	being	asked	–	 i.e.,	which	cluster	descriptors	are	required	 to	be	
accurate.	The	full	performance	analysis	is	shown	in	Supplementary	Figures	11-17	and	
the	summary	in	Figure	6	and	Supplementary	Figure	18.	
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Figure	 3:	 Performance	 analysis	 of	 the	 three	 algorithms	 against	 Scenario	 2.	 a)	
Example	of	simulated	data	sets	showing	clustered	points	(orange)	and	cluster	maps	
generated	by	DBSCAN	(red),	ToMATo	(green),	and	KDE	(blue).	Zoom	of	single	cluster	
for	each	algorithm	(inset,	scale	bar	-	100	nm)	b)	Mean	and	variance	of	the	ARI	and	IoU	
scores	for	DBSCAN	for	all	combinations	of	analysis	parameters.	c)	Mean	and	variance	
of	the	ARI	and	IoU	scores	for	ToMATo	for	all	combinations	of	analysis	parameters.	d)	
Mean	and	variance	of	the	ARI	and	IoU	scores	for	KDE	for	all	combinations	of	analysis	
parameters.	e)	Maximum	ARI	and	IoU	scores	for	the	three	algorithms	with	the	mean	
and	standard	deviation.	
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Figure	4.	Performance	of	DBSCAN,	ToMATo	and	KDE	against	Scenarios	3-6.	Left:	
Representative	ground	truth	clustering.	Scale	bar	–	200	nm.	Right:	Maximum	ARI	and	
IoU	scores;	a)	Scenario	3,	b)	Scenario	4,	c)	Scenario	5,	d)	Scenario	6,	with	the	mean	and	
standard	deviation.	
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Figure	 5:	 Performance	 against	 Scenario	 2	 with	 the	 addition	 of	 fluorophore	
blinking.	 a)	 Example	 of	 simulated	 data	 sets	 showing	 the	 ground	 truth	 clusters	
(orange)	 and	 cluster	maps	 generated	 by	 DBSCAN	 (red),	 ToMATo	 (green)	 and	 KDE	
(blue).	b)	Mean	and	variance	of	the	ARI	and	IoU	scores	for	DBSCAN	for	all	combination	
is	 user	 analysis	 parameters.	 c)	 Mean	 and	 variance	 of	 the	 ARI	 and	 IoU	 scores	 for	
ToMATo	for	all	combination	is	user	analysis	parameters.	d)	Mean	and	variance	of	the	
ARI	 and	 IoU	 scores	 for	 KDE	 for	 all	 combination	 is	 user	 analysis	 parameters.	 e)	
Maximum	ARI	and	IoU	scores	 for	the	three	algorithms,	with	the	mean	and	standard	
deviation.	
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Figure	6.	Performance	of	DBSCAN,	ToMATo	and	KDE	against	Scenarios	3-6	 in	
the	presence	of	multiple	blinking.	Left:	 Representative	 ground	 truth	 clustering	
showing	localisations	arising	from	clustered	ground	truth	points.	Right:	Maximum	
ARI	and	IoU	scores;	a)	Scenario	3,	b)	Scenario	4,	c)	Scenario	5,	d)	Scenario	6,	with	the	
mean	and	standard	deviation.	
	

	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.19.449098doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.19.449098
http://creativecommons.org/licenses/by/4.0/


Discussion	
SMLM	produces	data	in	the	form	of	a	pointillist	set	of	localisation	coordinates.	A	frequent	
goal	is	the	cluster	analysis	of	such	data	to	extract	quantitative	information	on	molecular	
aggregation	 and	 to	 this	 end,	 a	 wide	 variety	 of	 algorithms	 have	 been	 deployed11.	 As	
development	of	new	algorithms	is	ongoing,	 it	 is	advantageous	to	have	a	 framework	in	
which	the	performance	of	these	can	be	systematically	evaluated.	Here,	we	provide	such	
an	environment.	Firstly,	we	propose	a	set	of	simulated	point	distributions	with	known	
ground	truth	clustering.	We	generated	the	same	conditions	with	the	presence	of	multiple	
blinking	to	provide	more	challenging	conditions.		
To	assess	the	performance,	we	deployed	two	metrics	designed	for	this	purpose,	ARI	and	
IoU,	which	test	different	facets	of	the	analysis	performance.	The	ARI	scores	the	analysis	
based	on	the	similarity	of	cluster	membership	between	the	output	and	the	ground	truth	
and	is	computed	based	on	whether	every	pair	of	points	shared	the	same	cluster	label	in	
each	case.	The	input	is	therefore	only	the	ordered	set	of	cluster	labels.	IoU	uses	a	measure	
of	spatial	overlap	between	the	ground	truth	and	detected	cluster	areas	and	takes	as	input	
the	x,y	coordinates	as	well	as	the	labels.	To	illustrate	the	applicability	of	both	metrics,	we	
demonstrated	them	with	the	results	from	three	cluster	analysis	algorithms	–	DBSCAN,	
ToMATo	and	KDE.	These	algorithms	are	diverse,	but	all	require	a	choice	of	parameters	
by	 the	 user.	We	 tested	 the	 performance	 of	 the	 algorithms	 over	 a	 range	 of	 parameter	
combinations	and	scored	the	results	using	ARI	and	IoU.	
ARI	typically	returned	higher	scores	than	IoU	for	the	majority	of	ground	truth	scenarios,	
without	multiple	blinking.	This	is	because	the	convex	hull	for	IoU	relies	on	a	small	number	
of	molecules	 at	 the	 periphery	 of	 the	 clusters.	 These	 are	 the	 points	most	 likely	 to	 be	
misassigned	by	the	algorithms.	Thus,	ARI	is	the	most	appropriate	metric	when	clusters	
have	a	 long	tail	 to	their	molecule	distribution.	However,	 it	 is	clear	that	the	ARI	metric	
operates	best	when	the	level	of	cluster	overlap	is	low,	and/or	the	size	of	the	clusters	is	
consistent	 as	 both	 these	 effects	 can	 lead	 to	 overlap	 of	 ground	 truth	 clusters.	 IoU	 is	
therefore	a	better	measure	of	performance	if	heavy	cluster	overlap	is	expected.	IoU	is	also	
more	 robust	 against	 multiple	 blinking	 than	 ARI	 due	 to	 the	 increased	 number	 of	
localizations	along	 the	edges	of	 the	clusters.	Similarly,	 the	emergence	of	new	clusters,	
emanating	from	blinking	monomers,	adds	new	cluster	indexes	to	the	result	classes	thus	
decreasing	the	overall	score,	although	the	true	clusters	are	classified	correctly.	Finally,	
since	the	IoU	takes	as	input	the	actual	x,y	coordinates	as	well	as	the	labels,	the	IoU	metric	
itself	 is	 dependent	 on	 the	 cluster	 analysis	 and	 the	 underlying	 distribution.	 It	 may	
therefore	be	less	useful	to	compare	IoU	scores	between	ROIs	and	scenarios	than	between	
algorithms.		
We	anticipate	the	framework	presented	here	can	be	used	to	evaluate	the	performance	of	
present	cluster	analysis	algorithms	designed	for	SMLM,	and	to	inform	the	development	
of	future	methodologies.	Further,	the	basis	of	both	metrics,	i.e.,	point	classification	and	
geometric	overlap,	are	easily	extendable	 to	3D,	 thus	widening	 the	applicability	of	 this	
framework.	
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Methods	
	
Ground	 Truth	 Cluster	 Simulations.	 Simulations	 of	 ground	 truth	 molecule	 point	
patterns	were	generated	using	scripts	written	in	R.	For	simulations	based	on	multivariate	
normal	distributions,	the	cluster	centres	are	randomly	generated	within	a	square	field	of	
interest	(here,	equivalent	to	2x2	µm).	At	each	centre,	molecules	are	then	placed	around	
it	according	to	the	random	multivariate	distribution.	For	symmetrical	clusters,	a	single	
value	of	25	nm	is	used	for	the	standard	deviation	of	the	multivariate	distribution	(unless	
stated	 otherwise,	 Table	 1),	 whereas	 for	 the	 elliptically	 shaped	 clusters	 two	 different	
standard	deviation	values,	for	the	minor	and	major	axes,	respectively,	25	and	75	nm,	are	
used.	Further	for	elliptical	clusters,	they	a	rotated	by	a	random	angle	around	the	centre	
of	mass	of	the	generated	cluster.	Each	cluster	generated	within	the	simulations	possesses	
a	unique	“cluster	index”	value,	i.e.,	molecules	from	the	same	cluster	will	have	the	same	
index	 value.	 Background	molecules	 are	 given	 the	 index	 value	 of	 “0”.	 For	 each	 cluster	
scenario,	50	simulations	were	generated.	
The	 different	 parameter	 values	 used	 to	 generate	 the	 simulations	 in	 this	 work	 are	
summarised	in	the	table	below;	
	
Table	 1.	 Properties	 of	 different	 simulated	 cluster	 scenarios.	Parameters	 used	 for	
simulation	of	Scenarios	1-9.	Red	indicates	deviations	from	Scenario	2	for	each	scenario,	
whilst	blue	and	red	in	Scenario	9	indicate	matching	cluster	parameters	in	that	scenario.	
	

Simulation	 No.	
clusters	

Molecules	per	
cluster	 Elliptical	 Cluster	width	(s)	

No.	
background	
molecules	

%	of	single	
non-clustered	
molecules	

Scenario	1	 0	 N/A	 N/A	 15	 300	 100	
Scenario	2	 20	 15	 N	 15	 300	 50	
Scenario	3	 20	 15	 N	 15	 1500	 80	
Scenario	4	 20	 5	 N	 15	 300	 50	
Scenario	5	 100	 15	 N	 15	 1500	 50	

Scenario	6	 20	 50	 Y	 x	=	25,	
y	=	75	 1000	 50	

Scenario	7	 20	 15	 N	 10	clusters	=	25	
10	clusters	=	75	 300	 50	

Scenario	8	 20	 10	clusters	=	5	
10	clusters	=	15	 N	 15	 200	 50	

Scenario	9	 20	 10	clusters	=	15	
10	clusters	=	135	 N	 10	clusters	=	25	

10	clusters	=	75	 1500	 50	

	
	
Fluorescence	Blinking	Cluster	Simulations.	The	positions	of	molecules/fluorophores	
in	the	ground	truth	cluster	scenarios	were	used	as	the	basis	for	simulating	data	which	has	
multiple	blinking	and	detection	precision	inherent	in	SMLM.	The	simulateSTORM.r	script	
from	 the	 RSMLM	package	 (available	 at:	 https://github.com/JeremyPike/RSMLM)	was	
used	to	generate	the	blinking	simulations25.	Briefly,	transition	between	the	fluorescent	
on-	and	off-state	were	modelled	using	a	geometric	distribution20,25	with	probability	of	
transition	to	the	dark	state	set	to	0.2,	generating	on	average	4-5	fluorescent	on-states,	
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and	 thus,	 detections	 per	 molecule.	 Blinking	 was	 applied	 to	 all	 molecules	 in	 the	
simulations,	 thus	 single	 background	 molecules	 were	 also	 prone	 to	 blinking	 here.		
Detections	owing	to	a	single	molecule	will	all	be	ascribed	the	index	value	of	that	molecule	
from	the	ground	truth,	e.g.,	if	detections	are	generated	from	a	ground	truth	molecule	with	
a	 cluster	 index	of	 “5”,	 then	 the	detections	 too	will	 retain	 the	 cluster	 index	of	 “5”.	The	
localisation	 uncertainty	 for	 each	 blinking	 event	 was	 determined	 using	 a	 normal	
distribution	 centered	 on	 the	 molecule	 position.	 Standard	 deviation	 for	 localisation	
uncertainty	was	set	using	a	log-normal	distribution	with	mean	2.8	and	standard	deviation	
0.2820.	
	
DBSCAN	clustering	and	parameter	scanning.	The	density	based	spatial	clustering	of	
applications	with	noise	(DBSCAN)	algorithm	was	implemented	in	R	using	the	dbscan	R	
package.	For	DBSCAN	there	are	two	parameters;	e,	which	is	the	radius	of	search	around	
each	point,	and	minPts,	which	is	the	minimum	number	of	neighbouring	points	within	that	
radius	for	the	point	to	be	assigned	to	the	cluster.	Points	within	ε	of	clustered	points	but	
failing	 to	 fulfil	minPts	 are	 designated	 the	 edge	 of	 the	 cluster.	 For	DBSCAN	parameter	
scanning,	 the	 ε	 (nm)	 and	minPts	 threshold	were	 varied.	 For	 epsilon	 values	 of	 from	 a	
minimum	of	5	nm	was	used	and	stepped	by	5	nm	up	to	a	maximum	value	of	100	nm	(20	
steps).	For	the	minPts	threshold	a	minimum	value	of	2	was	used	and	stepped	by	1	up	to	
a	maximum	value	of	50	(49	steps).	Therefore,	for	each	simulation,	980	total	combinations	
of	 epsilon	vs	minPts	 threshold	were	performed,	 and	 the	 resulting	 indexing	 from	each	
combination	retained	for	further	analysis.	
	
ToMATo	 clustering	 and	 parameter	 scanning.	 Topological	 Mode	 Analysis	 Tool	
(ToMATo)	algorithm	was	implemented	in	R	using	the	clusterTomato	function	from	the	
RSMLM	 library	 (available	 at:	 https://github.com/JeremyPike/RSMLM)25.	For	 ToMATo	
parameter	scanning,	the	search	radius	(nm)	and	birth	density	threshold	were	varied.	For	
the	search	radius,	a	minimum	of	5	nm	was	used	and	stepped	by	5	nm	up	to	a	maximum	
value	of	100	nm	(20	steps).	For	the	birth	density	threshold,	a	minimum	value	of	2	was	
used	 and	 stepped	 by	 1	 up	 to	 a	maximum	 value	 of	 50	 (49	 steps).	 Therefore,	 for	 each	
simulation,	 980	 total	 combinations	 of	 search	 radius	 vs	 birth	 density	 threshold	 were	
performed,	 and	 the	 resulting	 indexing	 from	 each	 combination	 retained	 for	 further	
analysis.	
	
Kernel	 Density	 Estimation	 clustering	 and	 parameter	 scanning.	 Kernel	 density	
estimation	(KDE)	was	performed	using	the	kde2d	function	form	the	MASS	R	package.	A	
2D	 matrix	 was	 generated	 using	 the	 minimum	 and	 maximum	 dimensions	 from	 the	
simulation	data,	with	each	element	in	the	matrix	corresponding	to	a	1	nm2	region.	The	
simulation	 coordinates	 are	 then	 convolved	with	 a	 2D	 Gaussian	 kernel	within	 this	 2D	
matrix,	and	densities	within	each	of	these	1	nm2	regions	after	convolution	calculated.	This	
2D	 density	matrix	 can	 then	 be	 thresholded	 according	 to	 a	 specific	 density	 value,	 and	
higher	density	regions	above	the	cut	off	are	considered	“clustered”.	These	regions	are	
then	used	to	assign	points	from	the	real	data	into	clusters.	For	KDE	parameter	scanning,	
the	2D	Gaussian	kernel	width	and	the	density	threshold	were	varied.	For	the	kernel	width	
values	of	a	minimum	of	50	nm	was	used	and	stepped	by	50	nm	up	to	a	maximum	value	of	
500	nm	(10	steps).	For	the	density	threshold	a	minimum	value	of	0.1e-07	was	used	and	
stepped	 by	 0.5e-07	 up	 to	 a	 maximum	 value	 of	 0.1e-06	 (10	 steps).	 Therefore,	 for	 each	
simulation,	100	total	combinations	of	kernel	size	vs	density	threshold	were	performed,	
and	the	resulting	indexing	from	each	combination	retained	for	further	analysis.		
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Adjusted	 Rand	 Index	 Scoring.	 Cluster	 indexes	 results	 from	 the	 clustering	 and	
parameter	 scanning	 are	 used	 to	 compute	 the	 adjusted	 Rand	 Index	 (ARI).	 The	 ARI	
calculation	was	implemented	in	R	using	the	function	mclustcomp	from	the	dbscan	library	
(full	ARI	R	script	can	be	found	here:	https://github.com/DJ-Nieves/ARI-and-IoU-cluster-
analysis-evaluation).	Briefly,	the	Rand	Index	(RI)	is	a	measure	of	the	similarity	between	
two	sets	of	cluster	indexes,	and	is	calculated	using;	
	

𝑅𝐼 = 	
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝑑	
	
where	𝑎 + 𝑏	 is	 the	 number	 of	 agreements	 between	 the	 ground	 truth	 and	 the	 cluster	
results,	whereas	𝑐 + 𝑑	 is	number	of	disagreements	between	 the	ground	 truth	and	 the	
cluster	results.		
	
The	ARI	corrects	for	the	random	chance	of	points	being	assigned	to	the	correct	clusters,	
and	is	calculated	as	follows;	
	

𝐴𝑅𝐼 = 	
∑ ,!!"" - − /∑ ,

#!
" -	$ ∑ ,%"" -	& 0$& ,!"-1

1
2	/∑ ,

#!
" - +$ ∑ ,%"" -	& 0 	− 	 /∑ ,#!" -	$ ∑ ,%"" -	& 0 ,!"-1

	

	
where	𝑛$& 	is	the	number	of	elements	in	common	between	clusterings	𝑖	and	𝑗,	𝑎$ 	is	the	sum	
of	the	contingency	table	for	row	𝑖,	and	𝑏& 	is	the	sum	of	the	contingency	table	for	column	
𝑗.	
	
For	 each	 parameter	 combination	 the	 clustering	 result	 (i.e.,	 the	 cluster	 indexes)	 is	
compared	 to	 that	 of	 the	 ground	 truth	 simulation,	 and	 the	 ARI	 is	 calculated	 for	 that	
parameter	combination.	For	fluorescent	blinking	simulations	data,	the	clustering	results	
are	compared	to	the	cluster	indexes	generated	by	the	simulateSTORM	algorithm	as	the	
“ground	truth”	condition.	This	is	repeated	for	all	parameter	combinations	to	generate	an	
ARI	matrix.	
	
Intersection	of	Union	Scoring.	Intersection	of	union	(IoU)	scoring	was	implemented	in	
custom	written	script	in	R	(https://github.com/DJ-Nieves/ARI-and-IoU-cluster-analysis-
evaluation).	A	convex	hull	was	used	to	identify	the	molecule	coordinates	at	the	edge	of	
each	ground	truth	cluster.	A	filled	polygon	for	each	cluster	was	then	generated	within	a	
binary	image	matching	the	limits	of	the	data	(pixel	area	=	1	nm2).	All	cluster	images	were	
then	 added	 together	 to	 generate	 a	 single	 image,	 and	 then	 the	 image	was	 flattened	 to	
generate	again	a	 combined	binary	 image.	This	process	was	performed	 for	 the	ground	
truth	 clustering	 as	 well	 as	 each	 of	 the	 clustering	 results	 from	 the	 cluster	 parameter	
scanning.	IoU	is	calculated	as	follows;	
	

𝐼𝑜𝑈 = 	
𝐴𝑟𝑒𝑎	𝑜𝑓	𝑜𝑣𝑒𝑟𝑙𝑎𝑝	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑡ℎ𝑒	𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑎𝑟𝑒𝑎	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠 	

	
For	 the	calculation	 from	our	binary	 images,	 the	ground	 truth	 image	was	added	 to	 the	
cluster	result	image,	thus	giving	a	single	image	where	the	overlapping	pixels	had	a	value	
of	2.	The	number	of	pixels	with	value	>	0	were	equal	to	the	combined	area	(nm2),	whereas	
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the	 number	 of	 pixels	 with	 value	 >	 1	 were	 equal	 to	 the	 area	 of	 overlap	 (nm2).	 For	
fluorescent	blinking	simulations	data,	the	clustering	results	are	compared	to	and	image	
generated	 form	 the	 convex	 hulls	 of	 cluster	 indexes	 generated	 by	 the	 simulateSTORM	
algorithm	 as	 the	 “ground	 truth”	 condition.	 This	 is	 repeated	 for	 all	 parameter	
combinations	to	generate	an	IoU	matrix.	
	
Data	Availability	
The	 simulation	 data	 used	 as	 the	 basis	 for	 this	 work	 is	 available	 for	 download	 at	
https://github.com/DJ-Nieves/ARI-and-IoU-cluster-analysis-evaluation	 without	
restriction.	All	other	data	are	available	upon	request.	R	Code	for	calculating	ARI	and	IoU	
for	clustering	results	against	a	ground	truth	scenario	 is	also	available	for	download	at	
https://github.com/DJ-Nieves/ARI-and-IoU-cluster-analysis-evaluation	 without	
restriction.	
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