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ABSTRACT

Across the cortico-basal ganglia circuit, the medial frontal cortex (MFC) communicates with the dorsal striatum (DS) during

learning and planning. How these two brain regions communicate with each other is, however, not fully understood. Here we

report the presence of synergistic information during information transfer across the frontal cortex-striatal pathway. Synergistic

information emerges from the positive interaction of DS and MFC neurons and provides the DS with additional cortical

information. This information is held latent in neuronal signals. To reveal it, we simultaneously record neuronal activities

from the MFC and DS of rats trained on an outcome-based decision-making task and determined whether past neuronal

activities of the DS positively influence communication rates. We detect a neuronal synergy that enables the MFC to boost its

communication rate to the DS. Our results suggest that past neuronal activities of the DS are not redundant but play a key

communication role in the MFC-DS network.

Introduction

The medial frontal cortex (MFC) and dorsal striatum (DS) work in tandem to bring about positive outcomes. Across the

cortico-basal ganglia circuit, the MFC projects monosynaptically to the DS1, 2, providing it with vital state information about

the external world, such as a reward has been acquired or at times a lack thereof. In this neuronal circuit, deliberation and choice

selection takes place during goal-directed behaviors3. The MFC communicates error signals to the DS and is likely to adjust

action by monitoring outcomes of prior decisions4–6. Based on the information the DS receives from the MFC, it associates a

specific selected action with a resultant outcome7–12. This is especially evident in laboratory studies, which demonstrate that

DS-lesions in rats notably compromise their performance in action selection tasks13.
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The activity of in vivo cortical neurons is highly irregular, and neuronal noise limits the amount of information that can

be conveyed from the MFC to the DS. Yet the DS can still make adequate behavioral decisions with such irregular and noisy

cortical inputs. This unique ability of the DS likely points to a decoding mechanism operating. In this study, we explore whether

such a mechanism operates in the DS to decode MFC signals. Precisely, we determine whether past neuronal activities of the

DS enable it to extract more information from MFC neuronal signals than otherwise without them.

Fundamentally, the more information the DS has from the MFC, the higher the chance an adequate decision is made. A

key question therefore is: how much information is the DS extracting from MFC signals? To answer this, we simultaneously

recorded neuronal signals from both the MFC and DS of rats voluntarily performing a left/right licking choice task. In this task,

rats had to consistently switch spouts after a reward was withheld 14.

An unexpected finding in this study is that past neuronal activities of the DS, in the millisecond regime, positively influence

communication rates between the MFC and DS. This finding is especially intriguing because it hints at the existence of a

consecutive decoding scheme at the DS, which uses past DS signals to better decode MFC signals. Crucially, the observation

that past neuronal activities of the striatum contain information needed for subsequent actions is expected 14, 15. What is

surprising here, however, is that this information is synergistic—more than merely additive (equation 5). This finding is

consistent with the hypothesis that the DS is not merely decoding instantaneous MFC signals but is also actively predicting the

future state of the MFC.

Results

Twelve head-restrained rats were trained to lick either a left or right spout to acquire a reward allocated to one of the spouts

(Fig. 1a). The location of the rewarding spout was fixed during a trial block and was reversed after a rat accumulated a total of

10 rewards (Fig. 1b). During this behavioral task, we simultaneously recorded neuronal activity from both the MFC and DS on

the left hemisphere of rats with a pair of silicon probes. A retrograde tracer confirmed the projection from the recording site at

the MFC to its corresponding recording site at the DS (Fig. 2). In-depth details of our experiment are available in our recent

report14.

Synergistic Information and its Implications in Neural Communication

We quantify the amount of synergy forming between the MFC and DS from an information-theoretic standpoint. We briefly

explain the information-theoretic measures employed in this study. In Fig. 3, X is a random variable (RV) that counts the

number of spikes generated by all MFC neurons within a time-window of duration τ1. Likewise, Y and Z are RVs that count the

number of spikes generated by all DS neurons within a non-overlapping sliding time-window of duration τ1 and τ2, respectively.

Herein, we evaluate the amount of synergistic information at the neural population level but not at that of single neurons, where

large noise may arise due to sparse neuronal firing.
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Figure 1. Experiment. a Schematic illustration of a single test trial: (1) A trial starts with a 3 kHz (1 sec) tone. (2) A random delay (0.7–2.3
sec) is then introduced. If a rat licks a spout during this delay period, the trial is aborted. (3) Next, a 10 kHz (0.1 sec) “Go” signal is presented.
(4) After this signal, a rat selects either a left or right spout. (5) This is followed by a second random delay (0.3–0.7 sec). (6) Lastly, a reward
is delivered if the selected spout location matches the reward block location; otherwise, a reward is withheld. After this step, a new trial
begins. b An example from our behavioral experiment. First, the rat selects a spout (left/right). Then, a reward is delivered if the rat selects a
spout location that matches the location (left/right) of a reward block. Otherwise, the reward is withheld. The location of the reward block
is reversed after the rat accumulates a total of 10 rewards. Throughout the experiment, we provided no sensory feedback to rats regarding
the location of rewards. In the above example, all the decisions made by the rat are correct except for trials #173, 184, 193, 196, and 197
(because the location of the selected spout does not match the location of the reward block). The incorrect choices made in trials #173, 184,
and 196 are highly expected as rats tend to select the same rewarding spouts until it does not provide a reward. After which, rats tend to
switch to an opposite spout, such as the decisions illustrated in trails #174, 185, 194, and 198 (that is to say, rats exhibit a win-stay/lose-shift
strategy). In trial #197, however, the rat made a consecutive incorrect choice despite not gaining a reward in the previous trial #196; this
case was not uncommon in our experiment. Additionally, in trial #193, the rat switched to an incorrect spout despite gaining a reward in the
previous trial #192; while this case is uncommon, we observed it in our experiment.
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Figure 2. Fluorescent images of brain sections. Bottom left: Fluoro-gold labelled MFC neurons and injection site of tracer (Fluoro-Gold) at
the DS. Top right: Expanded view of labelled MFC neurons in deep layers.
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Figure 3. An illustration of the electrophysiological recording and random variables (RVs) involved. The MFC spike train displays the
collective firing of all MFC neurons, rather than the firing of an individual MFC neuron, and likewise for the DS spike train. RV X counts the
number of spikes generated by all MFC neurons within a time-window of duration τ1. Similarly, RVs Y and Z count the number of spikes
generated by all DS neurons within a time-window of duration τ1 and τ2, respectively.

The mutual information quantifies the amount of information shared between two RVs and is defined as16, 17

I(X ;Y ) = H(X)−H(X |Y ) bits, (1)

where H(X) is the entropy of X and H(X |Y ) is conditional entropy of X given Y . The mutual information can be equivalently

interpreted as the amount of uncertainty remaining about X after observing Y . The mutual information, however, satisfies

I(X ;Y ) = I(Y ;X), implying that it does not describe the directional flow of information between two processes.
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Unlike mutual information, the transfer entropy captures the directional flow of information between X (e.g., neuronal

activity in the MFC) and Y (e.g., neuronal activity in the DS)18–21, and is defined as

I(X ;Y |Z) = H(X |Z)−H(X |Y,Z) bits, (2)

with Z being the history of Y (Fig. 3). Moreover, H(X |Z) is the conditional entropy of X given Z, and H(X |Y,Z) is the

conditional entropy of X given both Y and Z.

In this study, we test whether past neuronal activities, Z, give the DS the ability to extract more information from MFC

signals than otherwise without them. For this purpose, we need to measure the interaction influence of Z. We can quantify this

influence by computing the interaction information, S, which is defined as the extra transfer entropy remaining after subtracting

the mutual information22–24:

S = I(X ;Y |Z)− I(X ;Y ) bits. (3)

If S > 0, then Z positively influences communication rates and accordingly yields synergistic information (equation 5).

Otherwise, if S < 0, then Z gives redundant information. With some algebraic manipulation, we can express equation 3 as

S = I(X ;Y,Z)−
(
I(X ;Y )+ I(X ;Z)

)
bits. (4)

When S > 0, we have

I(X ;Y,Z)> I(X ;Y )+ I(X ;Z) . (5)

In words, equation 5 says that the whole, I(X ;Y,Z), is greater than the sum of the parts, I(X ;Y )+ I(X ;Z), or equivalently a

synergy is present—i.e., when Y and Z work together to decode X , more information about X is obtained than if they were to

work individually. As such, the interaction information reveals whether knowing Z enables us to extract additional information

from Y about X .

5/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.449072doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449072
http://creativecommons.org/licenses/by-nc-nd/4.0/


Positive interaction information can convey an important message about the neuronal communication between the MFC and

DS. When Z represents the history of Y in the immediate past, S is likely to be positive if the neuronal activities of the DS (Y

and Z) can, at least to some extent, predict the neuronal activity of the MFC (X). This hypothesis is worthwhile to examine: if

the hypothesis is true, the DS is not only processing the current state of the MFC during decision-making but is also predicting

future cortical states.

Presence of Synergistic Information

Figure 4 shows rates of synergistic information (bits/sec) obtained from the neuronal activity data of 12 rats in four different

trial conditions (reward versus non-reward, and left choice versus right choice). Here, we report rates of synergistic information

(S̄/τ1) as opposed to synergistic information alone
(
S̄
)

so as to put quantities in a time context. For the reason mentioned

later in this section, we examined synergistic information rates for all possible combinations of reward locations (left or right

spout) and outcomes (reward given or withheld). The magnitudes of the rates significantly varied from rat to rat due to certain

reasons such as differences in sample sizes and average firing rates of neurons. In the majority of cases (at the p = 0.05 level),

a synergistic information rate is present, that is, S̄
τ1

> 0. However, in Fig. 4c for rodent ID #1012 and at τ2 = 10 ms a faint

synergy was observed but not significant at the p = 0.05 level and therefore was discarded (and similarly, in Fig. 4d, for rat

#982 and at τ2 = 10 and 20 ms; as well as in Fig. 4d for rat #1012 and at τ2 = 20 ms). Additionally, Fig. 4 reveals that, by and

large, there is a gradual increase in rates of synergistic information as more history, τ2, is included.

We examined synergistic information rates during a behavioral task to rule out the possibility that the presence of synergistic

information might be reward reliant or hemisphere dependent. The reason being is that in our experiment, silicon probes were

inserted into rats’ left hemisphere. As such, in the behavioral task, we switched the location of rewards intermittently from left

to right and vice versa, giving a total of 4 possible combinations: left/right and reward/non-reward. In our analysis, we set

τ1 to 5 ms as this value is within the range of time it takes an MFC signal to reach the DS1. Additionally, we vary the value

of τ2 across a range of values (5−20 ms) because a small value of τ2 may risk under-estimating the transfer entropy, while a

large value of τ2 may, on the other hand, risk over-estimating the transfer entropy as a result of under-sampling the underlying

probability distribution function20. We emphasize that in nearly all cases, synergistic information is present.

Finally, we test whether synergistic information in the DS is related to the sequentiality of population activities observed in

DS neurons15. Neuronal populations in the MFC and DS often exhibit similar sequential firing patterns during behavioral tasks.

Recently, a notable difference between MFC and DS activity patterns was observed in rodents performing a two-interval timing

task15, and an outcome-based alternative choice task (in which the present data were recorded)14. In both studies, neuronal

dynamics of the DS showed a higher degree of sequentiality than those of the MFC. It is hypothesised that the higher the

sequentiality of a neuronal signal, the easier it is for downstream brain areas to monitor and read out time from such signal.

In the DS, monitoring time could potentially imply that it is tracking cortical inputs. However, no significant correlation was

found in the present study between synergistic information rates and sequentiality across rats (Supplementary Fig. 1).
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Figure 4. Synergistic information rates. a Reward acquired by rat, and the selected spout is left. b Reward acquired by rat, and the selected
spout is right. c Reward not acquired by rat, and the selected spout is left. d Reward not acquired by rat, and the selected spout is right. In
Fig. 4c, for rat #1012 at τ2 = 10 ms a faint synergy was observed but not significant at the p = 0.05 level and therefore was discarded (and
similarly, in Fig. 4d for rat #982 at τ2 = 10 and 20 ms; as well as in Fig. 4d for rat #1012 at τ2 = 20 ms). Here we set τ1 to 5 ms as this
value is within the range of time it takes an MFC signal to reach the DS1. Additionally, we vary the value of τ2 from 5 to 20 ms to observe
its influence on information rates. Boxes within plots represent the 25th–75th percentiles and middle lines of boxes mark median values.
Additionally, outlier points are beyond the ends of boxplots’ whiskers and marked with a ‘+’ symbol.
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Discussion

A synergistic information rate is present as past neuronal activities of the DS (Z) enables it to extract more information(
I(X ;Y |Z)

)
from MFC signals than otherwise without them

(
I(X ;Y )

)
. What is interesting about the data is that the DS can

decode information contained in MFC signals in a synergistic
(
I(X ;Y,Z)

)
rather than an additive manner

(
I(X ;Y )+ I(X ;Z)

)
.

Our results suggest that the history of DS activities plays a crucial role in the MFC-DS communication network because it

enhances the communication rate between the two brain regions. Whether past striatal activities contribute to the cortico-striatal

information transfer has not been previously explored.

Searching for synergistic information in a neural code has been undertaken and found in a variety of settings. In blowflies,

synergistic information was detected in H1-neurons. It was observed that two action potential spikes together, across time,

carry more than twice the amount of information of individual spikes23. In salamanders and guinea pigs, a similar synergy was

detected in a combinatorial code of neurons, whereby spiking and silent neurons jointly produce synergistic information in a

neural pattern25. Likewise, synergistic information in patterns of neuronal activities at the population level was further observed

in macaque monkeys26. The previously described studies examined synergistic information in neuronal representations within a

single brain region. What sets our work apart from prior research work is that we examine the synergy forming across brain

regions—the MFC and DS, the critical brain regions implicated in decision-making. Our results indicate that synergistic

information is also present in neural codes for cross-area communication.

The interaction between the MFC and DS has been gaining attention. Results from earlier studies revealed that ramping

activities of the MFC and DS are likely to represent temporal signals that encode the passage of time27. Additionally, it was

demonstrated that optogenetically stimulating MFC-to-DS axonal projections increase time-dependent ramping in the DS28. In

these studies, the linear relationship between the MFC and DS was studied. Our results are complementary to these studies in

that we examined a nonlinear relationship between the MFC and DS by means of information-theoretic tools. As such, a novel

interaction is observed, namely, the emergence of synergistic information once past neuronal activities of the DS are considered.

We propose that synergistic information, at least partially, emerges from the computational effort of the DS to predict

neuronal activity in the MFC in the immediate future—within the milliseconds range. We consider that this predictive role

of the DS is unrelated to reward prediction. A body of evidence shows that the striatum represents error signals of reward

predictions 29, 30 that modify the efficacy of neuronal signal transmission in the cortico-striatal pathway31, 32. The timescale of

this prediction is behaviorally relevant in the range of seconds, which is much shorter than the millisecond range timescale of

synergistic information at the DS. Additionally, no particular differences between rewarded and unrewarded trials in terms of

rates of synergistic information were observed in our experiment.
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Synergistic information gained by past DS activities is uncorrelated with the degree of sequentiality of the population

activity in the DS, suggesting that monitoring time and predicting cortical states are not conclusively related to each other in the

present study. This may simply reflect the fact that unlike the interval timing task15, the present outcome-based choice task

does not require an accurate estimation of time. However, we also noticed that the sequentaility index used in this and previous

studies is not robust against noise. The computational relationship between synergistic information and high sequentiality in

the DS and the behavioral implications of these observations require further clarifications.

From an energy perspective, synergistic information improves metabolic efficiency. In recent years, there has been a

particular interest in studying the energy efficiency of the mammalian brain. One line of research indicates that the mammalian

brain is structured in such a way as to maximize metabolic efficiency33–36—measured as bits transmitted per energy expended

to generate an information-carrying action potential. In other words, the brain is tuned to communicate economically in terms of

energy expended to transmit information. Our results are in line with the metabolic efficiency viewpoint because past neuronal

activities enable the DS to extract more information contained in MFC signals than without them. This, as a result, increases the

metabolic efficiency of the cortico-striatal circuit: more bits extracted from a neuronal signal gives a higher metabolic efficiency.

Additionally, it is useful to mention that the efficient use of metabolic energy is a widely accepted assumption behind the

development of the so-called predictive coding hypothesis for hierarchical cortical computing37–39, although counter-arguments

have also been given40.

A suggested hypothesis for the function of the basal ganglia proposes that the striatum selectively regulates (gates) cortical

information. When the DS regulates cortical information, task-relevant information has to be extracted from MFC signals

and subsequently transmitted to downstream brain regions. Such processing of cortical signals will filter out information

unnecessary for controlling voluntary movements41–44. Additionally, filtering at the DS is more likely to decrease rather than

increase the amount of information extracted from the MFC signals. Our results, however, suggest that more information flows

from the MFC to DS when past neuronal activities of the DS are considered than without them (i.e., I(X ;Y |Z)> I(X ;Y ) or

equivalently S > 0, equation 3). Although the gating hypothesis and the existence of synergistic information at the DS are not

mutually exclusive, they do not harmonize with each other.

A shortcoming of our study is that we only observed a small area of the MFC and DS using two probes. We used a retrograde

tracer to confirm the projection from the recording site at the MFC to its corresponding recording site at the DS. However, a

large-scale experiment covering a wide area of both the MFC and DS is necessary to solidify our results. Nonetheless, all the

rats examined in this study consistently supported the significant levels of synergistic information at the DS. We, therefore,

believe that our results are not mere noise arising from the limited sampling of MFC and DS neuronal signals but indicate a

novel predictive function operating in the frontal cortex-striatal pathway on short timescales.
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Methods

Animal preparation

All procedures followed in this study were carried out in accordance with the Animal Experiment Plan, which was reviewed

and approved by the Animal Experiment Committee of RIKEN. A total of 20 Long-Evans rats (6 weeks, male, 200 – 220 g,

Japan SLC Inc.) were used in our experiment. In-depth details of our methods are available in our recent report14. In the present

study, we analyse the data obtained from our recent work14.

Behavioral task

We used a customized multiple-rat training system14, 45 to train several rats in parallel to learn the spout-selection task and gave

them saccharin-water (0.1%, 15µl) as a reward. We analysed the neuronal activity of 12 rats out of the 20 we trained because

they provided a satisfactory number of units from both the MFC and DS.

Figure 1a provides a schematic illustration of a single test trial. A trial starts with a 3 kHz (1 sec) tone. Then, a random

delay (0.7–2.3 sec) is introduced; if a rat licks a spout during this period, the trial is aborted. The random delay is followed by a

10 kHz (0.1 sec) “Go” signal. After this signal, a rat selects either a left or right spout. Then, a second random delay (0.3–0.7

sec) is introduced before a fluid reward is either delivered or withheld; if a rat selects a correct spout location, a reward is

delivered for a period of 4 sec. On the other hand, if a rat selects an incorrect spout location, a reward is withheld; the duration

of this non-reward event is 5 sec. After a reward/non-reward phase is complete, a new trial begins.

Figure 1b provides an example from the behavioral experiment. First, a rat selects either a left or right spout. Then, a reward

is delivered if the rat selects a correct choice. A choice is declared correct if the selected spout location matches the location of

a reward block. Otherwise, the choice is declared incorrect, and a reward is withheld. The location of the rewarding spout was

fixed during a trial block and was reversed after a rat accumulated a total of 10 rewards. During the experiment, we provide no

sensory feedback to the rats regarding the location of the reward.

Electrophysiological recordings from the MFC and DS

Figure 3 shows an illustration of the electrophysiological recording. We inserted the pair of silicon probes (32-channels, 4

shanks separated 0.4 mm apart) that have tetrode-like electrodes (A4×2-tet-7/5 mm 500-400-312, NeuroNexus Technologies)

as follows:

• The first silicon probe was inserted vertically (depth from the pia mater: 1.2 mm) into the MFC (+2.4 – 4.2 mm from the

Bregma and 1.0 – 1.4 mm to the midline).

• The second silicon probe was inserted at an angle of 6°posteriorly into the DS through a cranial window (+0.6 – 1.0 mm

from the Bregma and 1.0 – 1.4 mm to the midline).
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Retrograde tracing

To confirm that the recording site at the MFC projects to that of the DS, we injected a retrograde tracer (Fluoro-Gold) into the

DS 3 days before a first electrophysiological recording session and checked the position of labelled neurons post hoc. Fig. 2

shows fluorescent images obtained after a recording experiment. We observed that corticostriatal projection neurons at the MFC

are labelled with fluoro-gold after injecting the retrograde tracer at the DS. We collected images with a fluorescent microscope

(Olympus AX70, Tokyo, Japan).

Measurements and calculations

Neuronal signals of our experiment are analysed from the moment a rat first licks a spout (after the onset of a “Go” signal) to

the end of a trial (Fig. 1a). During this period, the probabilities of events and synergistic information are computed as follows:

• Probabilities: Fig. 3 provides an illustration of the random variables (RVs) and time-windows considered herein.

Let X be an RV that counts the number of spikes generated by all MFC neurons within a time-window of duration τ1.

Likewise, let Y and Z be RVs that count the number of spikes generated by all DS neurons within a time-window of

duration τ1 and τ2, respectively.

Now let us describe how outcomes of RVs are obtained. In Fig. 3, all three time-windows jointly slide by increments

of τ1 to obtain an event (x,y,z), where x, y, and z are outcomes of X , Y , and Z, respectively. Namely, x, y, and z are the

number of spikes observed in time intervals [nτ1,(n+1)τ1], [(n+1)τ1,(n+1)τ1 + τ2], and [nτ1,(n+1)τ1], respectively;

where n ∈ {0,1,2, . . .} (see Supplementary Fig. 2 for a detailed illustration).

Probabilities are estimated by the relative frequency of occurrence of events. For instance, p(x,y,z) is the relative

frequency of occurrence of the event (X = x,Y = y,Z = z).

• Synergistic information: The amount of synergistic information is computed as follows:

S = I(X ;Y |Z)− I(X ;Y ) bits, (6)

where I(X ;Y |Z) is the transfer entropy18–21 and I(X ;Y ) is the mutual information16, 17, and are calculated as follows:

I(X ;Y |Z) = ∑
x,y,z

p(x,y,z) log2
p(x,y,z)p(z)
p(x,y)p(y,z)

bits (7)

and

I(X ;Y ) = ∑
x,y

p(x,y) log2
p(x,y)

p(x)p(y)
bits. (8)
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Statistical significance

This section is based in part on46–49. We test the statistical significance of our results by the following procedure:

• First, for each experimental trial, we generate null (surrogate) data of the MFC by the following method: consider the

illustration shown in Supplementary Fig. 3. The MFC spike train of each experimental trial is divided into two parts

by a random number, t∗, drawn from a uniform distribution U(tstart, tend), where tstart and tend are the start and end time

of the MFC spike train, respectively. Next, the two MFC parts are swapped to create null data. Ideally, this makes the

MFC and DS spike trains independent of each other—effectively disconnecting the MFC from the DS in terms of shared

information while preserving much of the statistical properties of the original MFC spike train. This randomization

procedure is repeated N = 104 to form null data for each experimental trial. Additionally, the DS spike train was left

unrandomized to preserve the statistical relationship between Y and Z49.

• Second, using the MFC null data generated in the previous step along with the intact DS spike train, we use equations 7

and 8 to compute the set Is(X ;Y ) and Is(X ;Y |Z) (the null hypothesis versions of I(X ;Y ) and I(X ;Y |Z), respectively).

• Third, the p-value of I(X ;Y ) is estimated as the fraction of Is(X ;Y ) values that are greater or equal to I(X ;Y ). Likewise,

the p-value of I(X ;Y |Z) is estimated as the fraction of Is(X ;Y |Z) values that are greater or equal to I(X ;Y |Z).

Calculation remarks

• After we calculate I(X ;Y ) and I(X ;Y |Z), and their associated p-value for each experimental trial, we take the average of

all S values for which both I(X ;Y ) and I(X ;Y |Z) have a p-values≤ 0.05. We denote this average by S̄.

• Consider Fig. 1b. If a trial before an incorrect choice is as well incorrect, then it is discarded in our calculations. For

example, trial #196 in Fig. 1b was discarded while trial #197 was retained. Such events are not uncommon in our

experiment, and we discard them to preserve consistency.
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