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Abstract. Decoding brain states of the underlying cognitive processes via learn-
ing discriminative feature representations has recently gained a lot of interest
in brain imaging studies. Particularly, there has been an impetus to encode
the dynamics of brain functioning by analyzing temporal information avail-
able in the fMRI data. Long-short term memory (LSTM), a class of machine
learning model possessing a “memory" component, is increasingly being ob-
served to perform well in various applications with dynamic temporal behav-
ior, including brain state decoding. Because of the dynamics and inherent la-
tency in fMRI BOLD responses, future temporal context is crucial. However,
it is neither encoded nor captured by the conventional LSTM model. This pa-
per performs robust brain state decoding via information encapsulation from
both the past and future instances of fMRI data via bi-directional LSTM. This
allows for explicitly modeling the dynamics of BOLD response without any de-
lay adjustment. The two hidden activations of forward and reverse directions
in bi-LSTM are collated to build the “memory" of the model and are used to
robustly predict the brain states at every time instance. Working memory data
from the Human Connectome Project (HCP) is utilized for validation and was
observed to perform 18% better than it’s unidirectional counterpart in terms
of accuracy in predicting the brain states.

Keywords: brain decoding · recurrent neural networks · long short-term mem-
ory.

1 Introduction

Learning informative and discriminative representations of the brain states’ under-
lying various cognitive processes has gained a lot of interest in Brain-computer inter-
face (BCI) applications [11]. Advances in non-invasive neuroimaging methods such
as functional Magnetic Resonance Imaging (fMRI) are proving helpful in determin-
ing person’s cognitive or perceptual state [16]. e.g. in decoding motor functions [5],
in the classification of shifts in attention [6], and for “brain reading" [3]. As a result,
several techniques have been proposed for carrying-out brain-state decoding, from
multi voxel-pattern analysis to understanding the behavior using deep learning ar-
chitectures by integrating the spatio-temporal information.

Conventional decoding methods involved massive univariate analysis measuring
activity from thousands of brain locations, analysing each of them separately [14].
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The multivariate analysis takes into account the brain activity occurring at several
locations simultaneously. This helps in integrating the distributed but overlapping
information across the spatial domain [10]. Recent advances in time-sensitive ma-
chine learning frameworks have attracted remarkable attention for sequential mod-
elling. In particular, two variations of the general Recurrent Neural Networks (RNNs)
[20], namely, Echo-state Networks [19] and Long short-term memory models [12]
have shown to perform better than conventional decoding models in characterizing
dynamic fMRI information during both naturalistic and tasks conditions.

During the acquisition of fMRI data, the ratio of oxygenated to de-oxygenated
blood level at any location in the brain serves as the representative of the underlying
neuronal activation. Due to the time-lag observed in the peak of blood oxygen level
dependent (BOLD) response, it is typically not considered to be synchronized with
the presentation of stimuli [1]. Thus, in general, before training any brain-state de-
coding model, each time point is adjusted according to the the estimated delay of the
BOLD signal [13], assuming that all fMRI voxels have the same response delay [17].
Long short-term memory (LSTM) [9], a class of RNNs, have been shown to model
the temporal dynamic behaviour well. An LSTM model stores the information from
past that has already passed through it and uses it as the contextual information for
learning robust features for the intended task, say classification. Recently, some fMRI
studies have used these networks for integrating the temporal information from past
[12, 19].

Because of the variations in latency of the BOLD responses across time, we assert
that the temporal context from future is also important for capturing the dynamics
of BOLD response in order to generate accurate representations. In this paper, we
have employed a variant of LSTM architecture called Bidirectional LSTM [18], which
acquires the information from both the past and future time-instances. In particular,
the input sequence is fed in the normal time-order for one LSTM network and in the
reverse time-order for another. The two hidden activations are collated to generate
the hidden cell state features of the RNN. We evaluated this method for predicting
brain states in working memory fMRI data obtained from the Human Connectome
Project (HCP) [8]. The performance of the bi-LSTM network has been compared with
its conventional unidirectional counterpart in brain state decoding task. This is to
further note that this framework does not require any time-delay adjustment for the
synchronization of stimuli and BOLD response unlike the previous works.

2 Materials and Method

2.1 Data

We evaluated the bi-LSTM framework on task fMRI data of the working memory from
Human Connectome Project (HCP) [8]. We randomly selected N = 400 participants
from the N = 1200 data release. Participants performed a working memory task, in-
dicating if the current stimulus matches with the one presented two stimuli before,
called “2-back" task, or a control condition called “0-back". The working memory
task from HCP also combines the category representation task. Hence, participants
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were presented with separate blocks of trials consisting of 4 different types of stim-
uli namely tools, places, faces, and body parts, separated with the fixation period.
Data for two runs is available for each participant. Within each run, there were 8 task
blocks for every task (2-back or 0-back) and stimuli (places, tools, faces, body) com-
bination, each lasting for 27.5 seconds with 4 fixation blocks of 15 seconds each after
two task blocks. Thus, each scan is a 405 time-points long sequence of fMRI volumes.
More details about fMRI data acquisition and task paradigm are available at [8].

2.2 Data Preprocessing

The available preprocessed data [8] contains field-map based distortion correction,
functional to structural alignment, and intensity normalization. Additionally, motion-
related variables (6 translation parameters and their derivatives) were regressed-out
using the 3dDeconvolve with “ortvec” option in the AFNI software[4]. Changes in low
frequency signals were regressed out using 3dDeconvolve routine with the “polort”
option. Since our goal is to evaluate a general brain-state decoding methodology, we
used only the cortical data, which is directly available in surface representation as
a part of HCP preprocessing pipeline. To separate brain areas based on architecture
and functional connectivity, we employed the cortical parcellation developed by [7].
The parcellation method collates the individual voxels within each region by aver-
aging to generate 360 cortical regions of interest (ROIs). The region-averaged time-
series was used as the input feature vector for the temporal analysis. The generated
405 time-points sequence of 360 ROIs were structured in a 360 by 405 2D-tensor.
No stimuli and brain-state synchronization was performed to adjust for delay in the
BOLD response in bi-LSTM network. Each time-point in task blocks was marked as
present in one of the above mentioned brain-states and the time instants belonging
to the fixation blocks were labelled as "others", yielding a total of S = 9 brain states.

2.3 Bidirectional Long short-term memory RNNs

Brain-state decoding is essentially modelled as the task of classifying the brain state.
Given the time-series of ROI brain features xt at time t , RNN model predicts the brain
state of each time point based on input activation, xt and temporal dependency on
its preceding time points until time t −1. The LSTM, in particular, defines gated cells
that can act on the received input activation by passing or blocking the information
based on the importance of the feature for task. The learning process, called Back-
propagation through time (BPTT) [20], estimates the parameters, which allow the
data in the cells either to be retained or deleted. The transition equations for a LSTM
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l denote the output of forget gate, input gate, cell activation,
hidden activation, and the input activation of the l th LSTM layer at time point t .
σ denotes the sigmoid activation function. A schematic illustration of Bidirectional
LSTM [18] is provided in Fig. 1. It processes the time-series data in both the directions
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where dot (.) represents a merging scheme. The three possible ways of combining
the activations are vector concatenation (bi-LSTM-c), element-wise vector addition
(bi-LSTM-a), and element-wise averaging (bi-LSTM-µ). The input activations to the
layer l = 1 at time t , xt , are extracted from the 360 brain ROIs and the input to the
subsequent LSTM layers l = 2,3, .,n are the hidden activations of the previous l −1th

layer. The last layer of bi-LSTM is followed by a fully-connected layer having S neu-
rons and softmax activation, and is used to learn a mapping from the learned feature
representations to the brain states as:

st = so f tmax(Ws ht
n +bs ). (3)

3 Experimental Results and Discussion

For comparing the performance of the bi-LSTM with the conventional LSTM that
was earlier evaluated on the working memory task, bi-LSTM architecture with the
same specifications as in [12] was built. At any given time t , input activations xt pass
through two hidden bi-LSTM layers with each LSTM cell having 256 hidden acti-
vations to encode the temporal dependencies. This is followed by a fully-connected
layer containing S = 9 neurons predicting the brain states. We employed inter-subject
10-fold cross-validation. Data from N = 400 participants was divided into 10 parts,
of which 9 parts (N = 360 subjects) were kept for model development and the re-
maining one part (N = 40 subjects) was kept unseen for evaluating the model per-
formance. The development set (9 folds) was also randomly shuffled and split into
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Fig. 1. Schematic representation of the proposed framework for robust brain-state decod-
ing using Bidirectional LSTM. At time t , 360 regions of interest (ROIs) are passed in as input
activations, xt , to a 3-layer deep RNN architecture. The whole architecture has two stacked
bidirectional layers for encoding temporal dependencies, followed by a fully-connected layer
with softmax activation for predicting the brain-states. One bidirectional layer comprises of a
set of forward and backward layer of LSTM, and is highlighted using a dashed-line box. The
hidden activations from forward and backward LSTMs can be merged in three different ways.
The merging schemes are depicted in a box in the middle left. Based on this, the models can be
named as bi-LSTM-c, bi-LSTM-µ, and bi-LSTM-a. The output vector from the fully-connected
layer yt indicates the predicted brain-state corresponding to the input xt .
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80-20:training-validation sets. The validation data was generated to tune the hyper-
parameters and to prevent over-fitting. Since the task-paradigm for each run and
each subject was same during the acquisition of the working memory task data [12],
the full-length training data was windowed into small overlapping sizes with the win-
dow size w = 40 with an overlap of 10 points [12].

The proposed model was implemented in Keras [2] deep learning framework.
The model was trained on GeForce GTX 980 GPU with a batch size of 32, using ADAM
optimizer with a learning rate of 0.001. The model was trained for 100 epochs and no
early stopping was performed. To prevent the model from over-fitting, a dropout of
0.3 was applied in LSTM layers for training. The number of time-instances of class
"others" in the data were much more than any other class. Thus, in order to prevent
the model from predicting the states as per the underlying class distribution, weights
for the imbalanced classes were estimated using Sklearn’s "compute_class_weight"
[15] routine and were applied during loss function calculation, giving value to in-
stances that was inversely proportional to their frequency in the data.

Table 1. Comparative performance of different models in terms of cross-validated F1 score for
each brain state and the weighted-average performance using the unseen data of 40 partici-
pants from working memory task fMRI data.

Model
0-back
Body

0-back
Faces

0-back
Places

0-back
Tools

2-back
Body

2-back
Faces

2-back
Places

2-back
Tools Others

Weighted
Average

ff-NN 0.53 0.54 0.52 0.48 0.48 0.60 0.53 0.52 0.79 0.55

u-LSTM 0.68 0.64 0.69 0.62 0.56 0.70 0.69 0.61 0.71 0.66

bi-LSTM-µ 0.85 0.83 0.86 0.81 0.79 0.87 0.86 0.84 0.87 0.85

bi-LSTM-c 0.85 0.83 0.87 0.83 0.80 0.87 0.87 0.85 0.88 0.86

bi-LSTM-a 0.85 0.83 0.85 0.81 0.80 0.86 0.87 0.85 0.87 0.85

Note: Best classification performance for each brain-state is highlighted in bold.

We compared the proposed architecture (bi-LSTM) with its conventional unidi-
rectional counterpart LSTM and with a three layer feed-forward Neural Network (ff-
NN), which used ROIs at individual time points as features discarding temporal de-
pendencies. For better comparison, the number of layers and the number of neural
units in the layers for the other models were kept same as in the proposed model.
We also used different models of bi-LSTM Fig. 1 based on the combination of activa-

tions of the forward
−→
h

l
and backward

←−
h

l
hidden states, namely, bi-LSTM perform-

ing merging by concatenation (bi-LSTM-c), element-wise adding (bi-LSTM-a), and
by taking element-wise mean (bi-LSTM-µ). Results in Table-1 were obtained by eval-
uating the performance on the unseen test data of N = 40 subjects in each fold. The
averaged F1 score for each class are tabulated in Table-1. It is observed that the bidi-
rectional models outperform ff-NN and LSTM. Further, bi-LSTM-c seems to perform
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slightly better than the bi-LSTM-µ and bi-LSTM-a. Possibly, summation or averaging
may be merging the features activations leading to slightly inferior performance.
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Fig. 2. Brain-state decoding performance of (a) Long short-term memory (LSTM) and (b) Bidi-
rectional LSTM with feature concatenated merging (bi-LSTM-c) on the unseen data of 40 par-
ticpants from working memory task fMRI data. The color bar indicates mean accuracy across
10 cross-folds of validation.

Mean normalised confusion matrices on the classification accuracy are illustrated
in Fig. 2 for comparing the miss-classifications of both LSTM and bi-LSTM-c. The
overall accuracy of the unidirectional LSTM model was 0.66±0.18, whereas the clas-
sification accuracy of the bidirectional LSTM (bi-LSTM-c) was 0.84± 0.02. For ev-
ery brain-state, the LSTM model miss-classify to a larger extent compared to the bi-
LSTM-c model, although the misclassification is highest for both the models to the
“Others" class. Furthermore, the second highest confusion in case when participants
were stimulated with "faces" and "places" is with the task (0-back or 2-back), though
the stimuli was detected correctly. The model also gets confused between the stimuli
“body" and “tools".

4 Conclusions and Future Work
In this study, we propose to use Bi-directional LSTM network model for decoding
brain states from task fMRI data in order to appropriately capture the dynamics of
fMRI BOLD response. The experimental results on the working memory task fMRI
data demonstrated superior performance of Bi-LSTM compared to the unidirectional
LSTM. Further, this model works well without any hard-coded delay adjustment, em-
phasizing the availability of useful information in the immediate future samples as
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well. We worked with the fixed window length, although future work may involve
tuning the window-size and overlap for time-series chunking. The problem of class
imbalance, although, majorly handled, still requires more sophisticated handling.
From analysis point of view, it would be interesting to study about cortical regions
engaged in stimuli "body" and "tools" as the model sometimes gets confused be-
tween them.
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