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Abstract 

Background 

Transcription factor(TF) interactions are known to regulate target gene(TG) expression in 

eukaryotes via TF regulatory modules(TRMs). Such interactions can be formed due to co-

localizing TFs binding proximally to each other in the DNA sequence or over long distances 

between distally binding TFs via chromatin looping. While the former type of interaction has 

been characterized extensively, long distance TF interactions are still largely understudied. 

Furthermore, most prior approaches have focused on characterizing physical TF interactions 

without accounting for their effects on TG expression regulation. Understanding TRM based TG 

expression regulation could aid in understanding diseases caused by disruptions to these 

mechanisms. In this paper, we present a novel neural network based TRM detection approach 

that consists of using multi-omics TF based regulatory mechanism information to generate 

features for building non-linear multilayer perceptron TG expression prediction models in the 

GM12878 immortalized lymphoblastoid cells. 

 

Results 

We estimated main effects of 149 individual TFs and interaction effects of 48 distinct 

combinations of TFs forming TRMs based on their influence on TG expression. We identified 

several well-known and discovered multiple previously uncharacterized TF interactions within 

our detected set of TRMs. We further characterized the pairwise TRMs using long distance 

chromatin looping and motif co-occurrence data. We found that nearly all the TFs constituting 

TRMs detected by our approach interacted via chromatin looping, and that these TFs further 

interacted with promoters to influence TG expression through one of four possible regulatory 

configurations.  

Conclusion 

Here, we have provided a framework for detecting TRMs using neural network models 

containing multi-omics TF based regulatory features. We have also described these TRMs based 

on their regulatory potential along with presenting evidence for the possibility of TF interactions 

forming the TRMs occurring via chromatin looping.  
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Background  

Concerted and combinatorial binding of transcription factors (TF) within the cis-

regulatory elements of target genes (TG) in humans gives rise to transcriptional regulatory 

modules(TRMs), which are essential for regulating TG expression[1]. These TRMs influence TG 

expression both additively and non-additively as seen in model systems[2], [3]. Physical 

interaction among TFs, which is the basis for the formation of these TRMs, has been theorized to 

occur based on different models[4]. “Enhanceosome” and “Billboard” models represent linear 

co-operative interactions among TFs brought about by their DNA sequence based motif 

proximity, with “Billboard” models allowing a more flexible motif orientation and spacing than 

the “Enhanceosome”[4][5]. Alternatively, the “TF collective” model comprises of non-linear TF 

interactions, independent of the DNA sequence motif composition. While this model was 

originally based in part on protein-protein interactions among TFs, it may also be due to distally 

binding TFs brought together via chromatin looping[4]. Previous computational approaches have 

mainly focused on characterizing TF interactions using the “Enhanceosome” and “Billboard” 

models[6]–[9]. However, the influence of TFs interacting via the non-linear “TF collective” 

model on TG expression is not well understood. Disruption in TRM based TG expression 

regulation, caused by genetic mutations in the TFs forming these TRMs, has been associated 

with several diseases. For instance, genes encoding TFs forming the BAF chromatin remodeling 

complex and the cohesin complex are found mutated in some congenital disorders[10]. Similarly, 

mutations in the TFs mediating the interaction of distally binding TFs with TG promoters and in 

those present within the heterochromatin forming polycomb-repressive complex(PRC) have been 

shown to cause different types of tumors[11]. Genetic disruption in the AP-1 factor complex 

based TG regulation has been found to cause neurodevelopmental disorders as well as 

autoimmune diseases [12][13]. While most of these examples have been studied in isolation, a 

systems-wide understanding of TG expression regulation driven by TRMs will likely unravel 

regulatory mechanisms underlying a range of other diseases.  

Availability of high-throughput ChIP-Seq datasets, which provide the sequence specific 

binding information for each TF, has enabled researchers to detect TF interactions across the 

whole genome. Gerstein et al. analyzed the co-localization maps of different TFs in K562 and 

GM12878 cell lines to detect significantly co-associating TFs using a discriminative machine 

learning approach[6]. They detected several well-characterized TF interactions such as the 

GATA1-complex(GATA1-GATA2-TAL1), MYC complex(MYC-MAX-E2F6) and the AP1-

factors (FOS-JUN-JUND-FOSL) as well as some novel TF interactions such as GATA1-

CCNT2–HMGN3 and GATA1-NRSF-REST using their approach. Others have used non-

parametric modeling approaches to identify pairwise or higher-order interactions of TFs[7], [9]. 

For example, Guo and Gifford developed a topic modeling approach called Regulatory Motif 

Discovery(RMD) that identifies different TF interactions utilizing TF co-localization 

information.[7] They detected multiple well known TF interactions such as the cohesin complex 

(CTCF-RAD21-SMC3) complex, the transcription pre-initiation complex (POL2-TBP-TAF1) 
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and the AP1 factor complex. Bailey et. al. identified several literature-annotated interactions by 

identifying closely binding TFs based on significant spacings between their sequence motifs[8]. 

Lastly, soft and hard clustering methods such as k-means clustering, non-negative matrix 

factorization and self-organizing maps have also been used to identify co-localizing TFs across 

the genome[14]–[17]. Although these studies have helped in systems-wide detection and 

characterization of TF interactions, they have the following limitations: 1) Interactions that non-

additively influence TG expression via distally binding TFs caused by chromatin looping (the 

“TF collective” model) cannot be detected using the abovementioned methods, as they rely upon 

TF co-localization information to identify proximally co-binding TFs (more consistent with the 

“Enhanceosome” and “Billboard” models). 2) The unsupervised clustering and topic modelling 

methods require the user to pre-determine the number of TF interactions to be identified 

preventing the agnostic discovery of TF interactions. 3) Lastly, and most importantly, for most of 

these studies the quantitative impact of TF interactions on TG expression remains unknown. 

In this study, we use a multi-omics machine learning framework to model the impact of 

multiple TF based regulatory mechanisms on TG expression and detect TRMs based on the 

interaction effects learned from these models. We generated a gene regulatory network(GRN) 

containing information from datasets representing TF-TG, TF cooperativity and TG co-

regulation. The TF-TG interactions in our multi-omic GRN were also weighted based on 

chromatin looping interactions made by distally binding TFs with the TG promoters to 

appropriately capture their effect on TG regulation. We used the features from this GRN to 

predict TG expression values in the GM12878 lymphoblastoid cell line(LCL) using non-linear 

deep learning multilayer perceptron(MLP) prediction models. By aggregating interaction effects 

among different combinations of TFs from our learned models, we were able to identify specific 

TRMs that had high impact on TG expression. We validated the TF interactions, that we 

discovered within these TRMs, based on long distance chromatin looping contacts between their 

distal binding sites and significant spacing between their motifs for proximal binding sites. We 

also characterized the transcriptional regulatory programs for these modules based on the 

orientation and interaction of the corresponding ChIP-seq peaks relative to the promoters of TGs. 

Using our flexible multi-omics machine learning framework, we were able to detect TRMs 

significantly influencing TG expression, while characterizing their regulatory architectures using 

biologically relevant information.  

Results 

Target gene expression could be better predicted by modelling complex non-linear 

interactions among transcription factors.  

We hypothesized that information beyond sequence co-localization of TFs would be 

useful for detecting TRMs, formed by the “TF collective” model described in Background, 

essential for TG expression regulation.  As a basis to examine this hypothesis, we developed a 

multi-omics machine learning framework shown in Figure-1, which modelled the influence of 

multiple TF based regulatory mechanisms (TF co-operativity, TF-TG binding and TF-TG co-

regulation) on TG expression, in the GM12878 LCL,  by using features derived from a gene 

regulatory network(GRN) built using the PANDA algorithm[18]. We have shown previously that 

features obtained from such a GRN explain more variance in TG expression compared to using 

TF-TG binding information alone.[19] 
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 In order to generate these GRNs, we first extracted all the cis-regulatory and intronic TF 

binding sites(TFBS) corresponding for 149 TFs for each TG. Next, we created an adjacency 

matrix weighted by the number of chromatin looping interactions between each TF and the TG 

promoter based on GM12878 high throughput chromatin capture(Hi-C) data. We used this 

weighted adjacency matrix to create a motif network reflecting GM12878 specific co-expression 

and PPI networks.   

We used the TF-TG edge-weights from this GRN to build our prediction models where 

we tested for purely additive as well non-additive influence of TF features on TG expression. As 

a baseline comparison, we first built ElasticNet(ENET) regularized regression models which 

assume an additive(linear) influence of TF features over TG expression without considering any 

non-additive effects of TF interactions. We next used a traditional neural network based 

multilayer perceptron(MLPs) capable of modelling non-additive(non-linear) interaction effects 

of TFs on TG expression, which we hypothesized will help identify “TF collective” based 

TRMs. We further evaluated a hybrid model (MLP-U) that can decompose the effects into 

additive and non-additive components.  This model was composed of set of univariate MLP 

models capturing individual TF influence over TG expression along with a traditional MLP to 

capture all possible interaction effects (see Supplementary Figure S1). Thus, we used 3 different 

prediction models :1) an ENET to model TF main effects only 2) an MLP to model complex 

interaction effects, and 3) an MLP-U model that can be decomposed into additive and non-

additive components. Further details about these models, especially the MLP and MLP-U 

Figure 1:Using a multi-omics GRN framework to predict gene expression. We downloaded ChIP-seq data for 149 GM12878 TFs from the ENCODE 

consortium whose accession numbers are provided in Supplementary table S1. We used the peaks that passed the optimal IDR(Irreproducible Discovery Rate) 

threshold defined by the consortium and mapped them onto the regulatory region of each gene to define TFBs. We used CTCF peaks within a 50Kb window 

upstream and downstream of the gene body in order to demarcate the regulatory boundaries. Furthermore, we weighted the TF-TG interactions based on the 

number of contacts made by the corresponding peaks with the promoter of TGs. We used a weighting scheme where promoter TFBS were automatically up-

weighted because of the inability of HiC data to capture them due to limited resolution. We created PANDA GRNs using the weighted adjacency matrices, the 

PPI data corresponding to the TFs obtained from BioGRID and the lymphoblastoid co-expression data obtained from GEUVADIS. After generating the 

PANDA GRN, we built elastic net(ENET) and multilayer perceptron(MLP) models that used them as input features to predict log FPKM values(gene 

expression) of an independent dataset. We used two different internal cross-validation strategies to train the ENET and the MLP models and assessed their 

accuracy by computing Pearsons correlation coefficient(PCC) between observed and predicted expression.  
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architectures have been provided in the MLP network architecture and building the 

prediction models section of the Methods.  

We used an independent GM12878 LCL expression dataset(accession: ENCSR889TRN) 

to train and test the prediction models. We used 80% of the total TG set for training the models 

as well as for internal cross validation and used the remaining 20% for testing the prediction 

accuracy (Figure 1).  We performed the prediction task for 20 iterations, each time using a 

different set of test TGs. We used the median Pearson’s correlation coefficient(PCC) aggregated 

across all of these iterations to compare the performance of the 3 different models. As shown in 

Figure-2A, the models capable of capturing interaction effects of TFs (MLP and MLP-U) 

perform significantly better (median PCCMLP = 0.68; median PCCMLP-U = 0.63) compared to the 

ENET models (median PCCENET = 0.57), which model linear influence of individual TFs on gene 

expression. This improvement in performance was also statistically significant (median PCCMLP 

vs. median PCCENET p-value = 1.91e-06; median PCCMLP-U vs. median PCCENET p-value = 1.91e-

06) as calculated by performing paired Wilcoxon sign rank tests. We have shown the PCC for 

the three types of models obtained from each prediction iteration in Supplementary table S2. 

Furthermore, we observed that over all the prediction iterations for the MLP-U models, the main 

effects, obtained from their univariate component, were more predictive of TG expression, 

explaining about 34% of the variance on average, than the interaction effects, captured by their 

MLP component, which explained 23% of the variance in TG expression(see Partitioning TG 

expression variance explained by the univariate and MLP components from the MLP-U 

models of Supplementary Methods and Supplementary Figure S2).  

In conclusion, accurate prediction of TG expression requires efficient modelling of main 

effects of individual TFs as well as interaction effects of TRMs.  
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Context dependent influence of individual transcription factors on target gene expression 

could be discerned from our models.  

The MLP-U architecture, described in Supplementary Figure S1, allowed us to model 

main effects of individual TFs separately from the interaction effects of TF combinations. We 

used equations(1)-(18) to calculate these  main and interaction effects from the trained MLP-U 

models(see Obtaining main and interaction effects from the MLP-U models of the Methods 

section).  

Our learned MLP-U models contained individual univariate MLPs corresponding to each 

one of the 149 TFs. We aggregated all the learned connection weights at the first layer of these 

MLPs and multiplied them with the nodal influence score for each node in that layer. After 

averaging these nodal scores, we calculated an average main effect for each TF across all the 

prediction iterations followed by scaling it in the range (-1,1). We have provided the scaled and 

the raw main effects for each of the 149 TFs (Supplementary table S3A).  

A B 

Figure 2: Learning global transcriptional regulatory patterns from multi-omics GRN based machine learning approach. A) Boxplot 

showing the performance of the MLP, MLP-U and ENET models obtained from the prediction of 2356 TGs over 20 iterations (****p-

value < 0.0001). B) Barplot showing the sizes of the 48 TRMs, defined as the number of TFs in each of them,  detected from the 

learned MLP-U models based on the NID algorithm. C) Heasumap showing the strength of the interactions for 32 pairwise TFs 

calculated based on the Log2 NID scores. 

C 
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In order to examine the validity of our main effects aggregation approach, we divided the 

TFs into 5 bins based on their scaled main effects (Supplementary Figure S3 and 

Supplementary table S3A). The bin placement of the TFs derived from their main effects 

reflected their functional roles. For instance, activating TFs such as TAF1, MYC, TBLXR1, 

RELA and BCL11A were present in the right most bin(5) because of their highly positive main 

effects. On the other hand, transcription repressors such as MXI1, HDAC2, SMC3, MAZ and 

ZNF592 had strongly negative main effects placing them in the left most bin (1). We compared 

the main effects obtained from the MLP-U models to those obtained from the ENET model by 

computing the difference in ranks(DIR) of the TFs based on their effects for the two modelling 

approaches (Supplementary table S3A). Positive DIR for a TF reflected decrease in the MLP-U 

main effect, while a negative DIR represented increase in the MLP-U main effect, compared to 

that obtained from the ENET models. 

We found that TFs with extremely negative DIR based on their MLP-U main effects, 

such as ZNF143(-128), TBLXR1(-121), DPF2(-115), E4F1(-115) and YY1(-110), were 

transcriptional activators in specific contexts representing their interactions with other TFs[20]–

[22]. Alternatively, TFs with extremely positive DIR , such as ZBTB40(112), HDAC2(112), 

SIN3A(124), SMAD1(98) and KDM1A(125) could act as repressors when interacting with other 

TFs[23]–[27]. We also found an extremely positive DIR for the well-known transcriptional 

activator TBP(125), which requires other promoter binding TFs such as the TBP-associating 

factors(TAFs) to recruit RNA polymerase II and to exert its effect[28]. Thus, while ENET 

models captured influence of TFs assuming independent effects on TG expression, main effects 

obtained from the MLP-U models are adjusted for context in which the TF binding event occurs 

(see equation (1)) .  

Interaction effects aided the detection of well-known and novel transcription factor 

regulatory modules.  
 The MLP component of the MLP-U models quantify the non-additive interaction effects 

of different combinations of TFs on TG expression. These effects could reflect the influence of 

non-linear “TF collective” interactions on TG expression. We applied the NID algorithm[29] to 

compute interaction effects in the form of NID scores for such TRMs. This calculation is done at 

each node of the first layer, for all the possible combinations/orders of the interactions and only 

the top ranked interactions for each order are retained. The interactions are aggregated such that 

lower order redundant interactions are removed and higher order top ranking interactions are 

retained giving a final set of highly impactful interactions of different orders. We defined these 

interactions along with their average NID scores as TRMs. We applied Log2 normalization to 

the average NID scores calculated for each TRM across all the 20 prediction iterations 

(Supplementary table S3B).  

We detected 48 unique TRMs out of which 32 were pairwise interactions, 12 were 3-way 

and 4 were 4-way interactions as shown in Figure-2B. The pairwise TRMs were formed by 36 

unique TFs, 3-way TRMs were formed by 22 TFs and the 4-way TRMs were formed by 12 TFs. 

Furthermore, we observed that among the higher order (3-way or higher) TRMs, the 

“nestedness” or the proportion of all the possible pairwise TRMs being also detected was never 
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100%(Supplementary Figure S4). We found that JUND formed the largest number of 

TRMs(11) followed by GATAD2B(10), RELB(10) and ATF2(9). All of these TFs are versatile 

DNA binding proteins capable of affecting cell proliferation, division and apoptosis, which 

explains their presence in a large number of TRMs. 

Multiple literature annotated TF interactions were present in the TRMs we detected. For 

instance the pairwise TRM of ATF2-JUND(Log2NID score = 2.57) where both the TFs are part 

of the well-known AP-1 factor complex, which is involved in expression regulation of multiple 

TGs[30]–[32].  TF GATAD2B is known to form a repressive complex involving nucleosome 

remodeling and deacetylase activity with the CHD family of TFs[33]. We discovered that 

GATD2B and CHD1 were present in two different TRMs: ARID3A-CHD1-

GATAD2B(Log2NID score = 2.64) and ARID3A-CHD1-GATAD2B-RELA(Log2NID score = 

2.63). The presence of ARID3A and RELA in these TRMs has not been validated by the existing 

literature, although both of them have been associated with immune cell proliferation[34], [35]. 

We also discovered the three way TRM EZH2-KDM5A-SUZ12(Log2NID score =2.40, where 

the methyltransferase EZH2 and scaffolding protein SUZ12 are known to form the polycomb-

repressive complex PRC2 , which interacts and competes with H3K4me3 demethylase KDM5A 

during the process of angiogenesis and hematopoiesis[36]. We also discovered the pairwise 

TRM KDM5A-SUZ12(Log2NID score = 2.47) indicating that KDM5A and SUZ12 may be the 

primary interactors within the three-way TRM.  

We also detected several TRMs containing previously uncharacterized TF interactions. 

For example, the TRM with the highest influence over TG expression was RELB-STAT1 with 

the largest Log2NID score of 3.18. Both of these TFs play an important role in immune response 

and lymphocyte development [37], [38]. Thus, their closely related functions could point to the 

possibility of their interaction in vivo. Another intriguing, albeit unvalidated interaction, that we 

discovered was EP300-TAF1(Log2NID score = 2.39). Both of these TFs are well known lysine 

acetyltransferases and are responsible for activating and regulating transcription of several TGs 

and were also found to have the highest frequency of oncogenic mutations among all the other 

lysine acetyltransferases[39]. The Log2NID scores for all pairwise TRMs are shown in the form 

of a heat-map in the Figure 2C (all scores are available in Supplementary table S3B). Thus, we 

detected TRMs containing many previously uncharacterized as well as some well-known TF 

interactions using the NID algorithm.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.18.449031doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449031
http://creativecommons.org/licenses/by/4.0/


Chromatin looping plays an essential role in forming transcription factor regulatory 

modules and in mediating their regulation of target genes.  

Apart from some well-known interactions, our discovered TRMs contained a significant 

number of previously uncharacterized TF interactions. As described in the Background, TRM 

formation can be brought about by either co-localization of proximally binding TFs based on 

motif proximity or by distally binding TFs brought in close proximity by long distance chromatin 

looping. Thus, to characterize the TRMs, we used chromatin looping and TF motif co-occurrence 

information to identify TFs interacting with each other via chromatin looping (long-distance 

interactions) or by binding in close proximity(see Detecting co-binding TF ChIP-Seq peaks 

and Detecting TF ChIP-Seq peaks interacting via chromatin looping sections of the 

Methods). 

A 

B 

Figure 3: Pairwise TRMs interact via long distance chromatin looping. A) We overlapped the GM12878 Hi-C data at 5Kb 

resolution with the ChIP-seq peak pair regions corresponding to the 32 pairwise TRMs within the cis-regulatory regions of 

the TGs. B)Barplot showing the mean log10 Hi-C contacts(5Kb resolution) between peak regions of the pairwise TRMs 

shaded according to the respective Log2 NID scores across all the TG. We weren’t able to detect any HiC contacts between 

the peak pairs of the TRM SUZ12-ZNF284 
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Using GM12878 specific high throughput chromatin capture(Hi-C) data, we looked for 

long distance interactions between ChIP-seq peaks, present within TG’s cis-regulatory regions, 

corresponding to all pairwise TF modules we detected (Figure 3A). We compared the 

enrichment of Hi-C contacts for these peaks with that obtained from a background set of peak 

pairs, within the TG’s cis-regulatory regions, corresponding to random pairwise combinations of 

TFs not present in the detected set of pairwise TRMs using a chi-square test (see Supplementary 

table S4A). We observed significant enrichment of Hi-C contacts at 5Kb resolution among 

36,734 ChIP-seq peak pairs corresponding to 31 pairwise TF modules (χ2 p-value = 9e-04) 

within TG’s cis regulatory region as shown in Figure 3B and provided in Supplementary table 

S4B.  The only pairwise TRM that did not contain any Hi-C contact points between the peak 

pairs was SUZ12-ZNF284. The enrichment of Hi-C contacts at 1Kb resolution was not 

statistically significant, however with the χ2 p-value of 0.3423(see Supplementary Figure S3).  

In order to identify co-localizing TF interactions based on their sequence/motifs,  we used 

the SpaMo tool from the MEME suite(v.5.1.1)[8] to examine pairwise TRMs,. We looked for 

significant spacing between TF motifs occurring within their overlapping peak pair regions. We 

found significant motif co-occurrence for 60 peak pairs corresponding to 6 pairwise modules 

(adjusted p-value < 0.05, see Supplementary table S4C). Additionally, we did not find these co-

binding TRMs in the set of modules previously described by other approaches[6], [7], [9], [40].  

 To further characterize the regulatory architecture of the TRMs, we defined four 

transcription regulatory programs shown in Figure 4A based on their interactions with TG 

promoters. We first identified 2,038 TGs where TFs peaks were interacting with each other 

either via Hi-C or via motif co-occurrence. We then determined the regulatory programs 

followed by the TRM peak pairs for each TG (see Supplementary table S5). As shown in Figure 

4B, on an average 95% of the peak pairs corresponding to each pairwise TRM followed a 

configuration where at least one is interacting with the TG promoter and  the two peaks interact 

with each other via long distance chromatin looping. Furthermore, TRMs HDAC2-PAX8, 

KDM5A-SUZ12 and SREBF1-ZNF274, for which the TFs are not known to directly bind to the 

A 
B 

Figure 4: Pairwise TF TRMs follow different regulatory programs for different TGs. A) We utilized HiC and co-binding data to define 4 TF 

regulatory patterns/programs for the pairwise modules for different TGs. B) Barplot shows  the proportion of the total peak pairs for each pairwise 

TRM following each of the 4 transcription regulatory programs shown in A 
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TG promoters, regulated all their TGs using this program exclusively. We observed that for the 

remaining TRMs, about 4.5% of the peak pairs followed the second regulatory program which 

constituted one of them being present directly within the TG promoter while interacting with the 

other one via chromatin looping. About 17% of the peak pairs corresponding to the TRM EZH2-

MYC, which contained TFs with known TG promoter binding activity, followed this regulatory 

program. Lastly, we found only 25 co-localizing peak pairs corresponding to 4 pairwise modules 

(RELB-SPI1, JUND-RELB, FOXM1-PKNOX1 and MAZ-PBX3) interacting with the promoters 

of 15 TGs via chromatin looping and 1 instance of co-localizing peak pair for the TRM RELB-

SPI1 directly binding the promoter of 1 TG. Hence, only RELB-SPI1, which contained TFs 

important for lymphocyte development, contained peak pairs following all four types of 

transcription regulatory programs. 

Thus, based on the above analyses, we conclude that the pairwise TRMs identified from 

the MLP-U learned models almost exclusively contained TF peak interactions occurring over 

long distance via chromatin looping. In addition, these TRMs mostly regulated their TGs also via 

long distance chromatin interactions with the TG promoters.  

Discussion 

In this study, we designed a machine learning prediction framework for identifying TRM 

for the GM12878 immortalized LCL utilizing multiple big “omics” data sources. We used a 

modified form of the neural network MLP architecture called MLP-U in order to account for the 

influence of individual TFs as well as of TF interactions on TG expression within the same 

model. We found that accounting for both these effects resulted in more accurate TG expression 

prediction compared to accounting for just the linear effects of TFs using the ENET regularized 

regression models. The traditional MLP models produced better prediction than the MLP-U 

models because of the recapitulation of the main effects of TFs. In other words, both main effects 

and interaction effects were being modelled using complex non-linear functions in the traditional 

MLP architecture leading to perhaps an overestimation of the main effects resulting in the better 

TG expression prediction.  

One of the biggest drawbacks of a neural network model is that it is usually considered a 

“black-box” as features learned during the training as well as testing of the models are difficult to 

interpret. We overcome this limitation and extracted biologically relevant information using the 

NID algorithm[29]. We calculated main effects of individual TFs as well as interaction effects of 

TF combinations. We observed that the direction of the TF main effects correlated well with 

their known functional roles. However, these effects were largely different compared those 

obtained from ENET models as the MLP-U captured context/interaction dependent TF main 

effects, while the ENET models estimate TF main effects only.  

Furthermore, we also detected highly influential TF interactions forming TRMs via 

statistical interactions in models of TG expression. We derived literature-based annotations for 

some of these TRMs, while many were novel TF interactions not identified by other approaches. 

This could be due to two reasons.  First, the non-additive non-linear nature of the TF 

interactions, reflecting the “TF collective model” we detected is fundamentally different from 

that of the linear, co-localizing TFs, reflecting the “Enhanceosome” and “Billboard” models 

identified by the previous approaches. Second, our strategy for identifying TF interactions was to 

model their influence on TG expression, which was largely ignored by the previous approaches. 
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Thus, a co-localizing set of TFs not significantly impacting TG expression would be missed 

using our approach, though these TFs presumably have little influence on the expression of 

nearby genes. Additionally, we found that a significant proportion of the TF peaks for the 

pairwise TRMs interacted with each other and with the promoters of the TGs they regulated via 

chromatin looping. Therefore, long distance chromatin interactions likely play a large role in 

formation of TRMs as well as in their regulation of the TGs. This further validates the idea that 

TF interactions are not limited to proximally binding co-localizing sets of TFs. We used Hi-C 

chromatin looping data in two mutually independent contexts; we first included  Hi-C contacts 

made by distal TFs with the TG promoters while building our GRNs, and further validated these 

chromatin interactions by examining Hi-C contact enrichments between the TF peak regions 

themselves. While the former Hi-C data aggregation was done to quantify the influence of 

distally binding TFs on TG regulation via promoter interaction, the latter instance reflected 

characterization of pairwise TFs interacting over long distances.  

 We focused our analyses on the GM12878 LCL in this study due to the density of TF 

binding data available, however our approach is flexible enough to analyze TRM based TG 

regulation in other commonly studied human cell-lines when these data are available A key 

limitation of our approach is the need for high-density omics assay data that often require large 

input DNA quantities that likely limit their application to cell-lines only. In different cellular 

contexts and environmental conditions, additional higher order TRMs may exist, and the precise 

models underlying these interactions will be difficult to elucidate.  However, we did identify 

pairwise TF interactions that form a basis for higher order interactions that could act as a starting 

point for further experimental validation or examination under different environmental 

conditions.   

  

Conclusions 

In this study, we have detected TRMs significantly impacting TG expression using neural 

network based prediction models containing multi-omics GRN derived TF regulatory features. 

We have demonstrated multiple ways in which long distance chromatin looping plays a role in 

TRM based TG regulation. Our approach for detection, characterization and validation of TRMs 

provides a roadmap for a multi-omics analysis to study the complex phenomenon of transcription 

regulation genome-wide, and may provide insights into the impact of transcriptional 

dysregulation in the genetic basis of human phenotypes. 

Methods 

All the published algorithms and datasets used in this study have been described in 

Supplementary information.  

 

Building multi-omics GRN 

We utilized the Passing Attributes between Networks for Data Assimilation (PANDA) 

algorithm to build the GRN. This algorithm uses a TF binding site(TFBS) based motif network, a 

PPI network and a co-expression network for building the GRN(Figure-1). We generated these 

three networks using the following approach: 

Motif network: We isolated all the ChIP-Seq peaks within a 50Kb window upstream of the TSS 

of the longest transcript and downstream of the body of each protein coding TG. We then used 

the most distant CTCF peaks to demarcate the cis-regulatory boundaries for these TFBS, as it is 
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a well-known insulator protecting the enhancers of TG gene from acting upon the promoters of 

another as shown in Figure-1. Furthermore, we added the TFBS found in the intronic regions of 

each TG to this set in order to capture the effect of introns on transcriptional regulation. We have 

shown previously that inclusion of intronic TFBS in the GRN framework ultimately improves 

the model prediction accuracy[41], as introns are hypothesized to have regulatory influence over 

TG expression[3], [42]. We then weighted each TFBS based on the number of Hi-C 

contacts(1Kb) it makes with the TG’s promoter(Figure-1) using the weighting scheme described 

in Generating Hi-C Weightings of the Supplementary Methods. Using such a weighting 

scheme helps to capture regulatory information provided by long distance interactions of distal 

TFBS with TG promoters created via chromatin looping while preserving the influence of 

proximal promoter based TFBS[41]. We created a weighted motif network using the unique TF-

TG interactions and the average Hi-C weight for them.  

PPI network: We downloaded PPI data from the BioGRID database(v.3.5.188) to generate the 

PPI network. 

Co-expression network: We extracted expression residuals for the 462 LCL samples within the 

GEUVADIS datasets using a genome-wide genetic relationship matrix(GRM) based mixed-

linear regression model and used them to generate the co-expression network (see Building co-

expression network for the PANDA GRN of Supplementary Methods). This was done to 

adjust out the genetic effect of the variants in the dataset.   

  

We used the above networks to generate GRN utilizing the R(v.3.4.2) implementation of the 

PANDA algorithm. After 25 iterations, we obtained convergence by setting the threshold for 

Hamming’s distance at 0.001 and by using the value of 0.1 for the update parameter.   

MLP network architecture and building the prediction models 

We utilized two different MLP architectures in our paper: 1)MLP-U(MLP-Univariate) 

and 2)Traditional MLP as shown in Supplementary Figure S1. The MLP-U architecture 

contained individual univariate MLPs receiving inputs corresponding to each TF in addition to 

the traditional MLP. All the univariate MLPs had 3 layers containing 10 nodes each and the 

traditional MLP also contained 3 layers with 800, 500 and 1000 nodes for each model. The non-

linear activation function for all the layers was Rectified Linear Unit(ReLU).  

We built the ENET and the MLP prediction models using log10 FPKM expression values 

of 11,780 protein coding TGs, where we used 80% of the data(9,424 TGs) for training the 

models and the remaining 20%(2356 TGs) to test the models and assess their prediction 

accuracy.  We used two different internal cross-validation strategies to train the two types of 

models: 1) For the MLP-U and MLP models, we further divided the training data into 85% 

training and 15% validation sets. We then trained these models using the backpropagation 

algorithm. Additionally, we summed the output from all the individual univariate MLPs and the 

traditional MLP at the last node for training the MLP-U models. We note here that the traditional 

MLP architecture was only used as a comparison in the paper and most of the analyses were 

done using the trained MLP-U models. 2) For the ElasticNet(ENET) prediction model, we used 

an alpha of 0.5 and trained the models based on 20 fold inner cross-validation. We trained and 

tested the models for 20 iterations(Figure-1), and computed Pearson’s Correlation 

Coefficient(PCC) each time to assess model performance.  
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Thus, we had an input matrix X of size N × T, containing N TGs and T TFs. The values 

in this matrix were scaled edge-weights corresponding to the vertex TFt ⟶TGn, where n ϵ{N} 

and t ϵ {T} derived from the learned PANDA GRN network. The output was a column vector y 

of size N containing scaled and centered log FPKM (Fragments per kilobase per million) 

expression values of the N genes. For the MLP-U models, it was derived based on a generalized 

additive model: 

 

𝐲(𝐗) =  ∑ 𝑔𝑖𝑥𝑖  

𝑇

𝑖=1

+  ∑ 𝑔𝑖
′(𝒙𝑰)

𝐾

𝑖=1

 

(1) 

 

Obtaining main and interaction effects from the MLP-U models 

For each trained MLP-U model, we performed an additional 5-fold prediction task in 

order to capture the prediction performance over all the TGs within each iteration. Thus, we 

essentially conducted 100 prediction rounds for which we stored the model weights learned 

during the training process.  

In order to calculate the main effect corresponding to each TF, we utilized the learned 

MLP-U models. Specifically, we extracted layer weights from each one of the univariate MLP 

corresponding to each TF feature and aggregated them across all the prediction iterations. These 

iterations corresponded to a set S of 20 random numbers s each representing an instance/state for 

bootstrapping test set genes for each prediction task.  

 

For each random state 𝑠,  we picked 5 non-overlapping sets of test genes  

 𝐺𝑠𝑖   = {𝑔𝑠𝑖|𝑔𝑠𝑖 ∈ 𝑁}; 𝑠 ∈ 𝑆;  1 ≤ 𝑖 ≤ 5 ; 

|𝐺𝑠𝑖| =  
|𝑁|

5
 

 

(3) 

For each 𝐺𝑠𝑖   , we then used the remaining genes as the training set 𝐺𝑠𝑖_𝑡𝑟𝑎𝑖𝑛   such that 

  𝐺𝑠𝑖_𝑡𝑟𝑎𝑖𝑛 =  {𝑔𝑠𝑖_𝑡𝑟𝑎𝑖𝑛|𝑔𝑠𝑖𝑡𝑟𝑎𝑖𝑛
∈ 𝑁} ; 𝐺𝑠𝑖  ⊄ 𝐺𝑠𝑖_𝑡𝑟𝑎𝑖𝑛 

 

(4) 

We then predicted the expression values of Gsi   genes according to the following equation: 

 

𝒚(𝑿𝒔𝒊) =  ∑ 𝛷𝑀𝑠𝑖𝑡
𝑥𝑠𝑖𝑡 

𝑇

𝑡=1

+ 𝛷𝑀𝑠𝑖𝐾
(𝒙𝑲) ; 

𝑠 ∈ 𝑆;  1 ≤ 𝑖 ≤ 5 

(5) 

 S = { s | s ϵ ℝ, k > 0 } and |S| = 20 (2) 
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Here 𝒚(𝑿𝒔𝒊) is the vector  containing predicted expression for gene set 𝐺𝑠𝑖  using the input 

matrix 𝑿𝒔𝒊 by the model trained using the input from genes in set 𝐺𝑠𝑖_𝑡𝑟𝑎𝑖𝑛. The first part of 

equation (5) captures the main effect of each one of the TF 𝑡 with 𝑀𝑠𝑖𝑡 representing the 

corresponding univariate MLP while the second part captures the interaction effect of K  
interactions, via the traditional MLP 𝑀𝑠𝑖𝐾,on the gene expression trait. Thus, for each iteration 𝑠, 

the expression vector of gene set 𝐺𝑠𝑖   𝒚(𝑿𝒔𝒊) is derived from a generalized additive model 𝑀𝑠𝑖 

containing main effects and interaction effects derived from a collection of complex non-linear 

functions Φ𝑀𝑠𝑖𝑡
 and 𝛷𝑀𝑠𝑖𝐾

 respectively. The parameters for this model were learned during the 

training process using the training set 𝐺𝑠𝑖_𝑡𝑟𝑎𝑖𝑛. Furthermore, we had 5 models for each random 

iteration each containing a different set of test genes. 

 𝑀𝑠 =  {𝑀𝑠𝑖|1 ≤ 𝑖 ≤ 5};  |𝑀𝑠| = 5 

 

(6) 

The architecture for each model, w.r.t the number of hidden units in each layer and the number 

of hidden layers was similar. Each model 𝑀𝑠𝑖𝑡  and 𝑀𝑠𝑖𝑘 contained 𝑳 hidden layers, and there 

were 𝑝𝑙 units/neurons in the 𝑙-th layer. The input layer for the univariate MLP 𝑀𝑠𝑖𝑡 was the 

vector 𝒙𝑠𝑖𝑡 containing edge-weights for TGs corresponding to TF 𝑡 (𝑝𝑀𝑠𝑖𝑡

0 =  𝒙𝑠𝑖𝑡). On the other 

hand, the input layer for the traditional MLP  𝑀𝑠𝑖𝐾 was the matrix 𝑿𝒔𝒊 containing the edge-

weights corresponding to all the TFs(𝑝𝑀𝑠𝑖𝐾

0 = 𝑿𝒔𝒊). In each model, there were 𝑳  weight matrices 

containing the weights learned during the training process such that 𝑾𝑀𝑠𝑖𝑡

(𝑙)
, 𝑾𝑀𝑠𝑖𝐾

(𝑙)
∈

ℝ𝒑𝒍×𝒑𝒍−𝟏 , 𝑙 = 1,2, . . 𝐿 and 𝐿 + 1 bias vectors 𝑏𝑀𝑠𝑖𝑡

(𝑙)
, 𝑏𝑀𝑠𝑖𝐾

(𝑙)
𝜖 ℝ𝑝𝑙 , 𝑙 = 0,1,2. . 𝐿. Furthermore, there is 

a non-linear activation function 𝜙(. ) associated with each unit and weights 𝒘𝑀𝑠𝑖𝑡

𝑦
, 𝒘𝑀𝑠𝑖𝐾

𝑦
 and 

biases 𝑏𝑀𝑠𝑖𝑡

𝑦
 , 𝑏𝑀𝑠𝑖𝐾

𝑦
 associated with the output layer for each model. The hidden units𝒉𝑀𝑠𝑖𝑡

(𝑙)
 , 

𝒉𝑀𝑠𝑖𝐾

(𝑙)
 and the outputs 𝑦𝑀𝑠𝑖𝑡

 , 𝑦𝑀𝑠𝑖𝐾
for the models can be mathematically described as : 

                                                          𝒉𝑀𝑠𝑖𝑡

(0)
= 𝒙𝑠𝑖𝑡; 𝒉𝑀𝑠𝑖𝐾

(0)
= 𝑿𝒔𝒊;                      (7) 

                                      𝑦𝑀𝑠𝑖𝑡
=  (𝒘𝑀𝑠𝑖𝑡

𝑦
)

𝑇
𝒉𝑀𝑠𝑖𝑡

(𝑳)
+ 𝑏𝑀𝑠𝑖𝑡

𝑦
;  𝑦𝑀𝑠𝑖𝐾

=  (𝑤𝑀𝑠𝑖𝐾

𝑦
)

𝑇
𝒉𝑀𝑠𝑖𝐾

(𝑳)
+ 𝑏𝑀𝑠𝑖𝐾

𝑦
        (8) 

                                                                                                                            

                          𝒉𝑀𝑠𝑖𝑡

(𝑙)
 =  𝜙(𝑾𝑀𝑠𝑖𝑡

(𝑙)
𝒉𝑀𝑠𝑖𝑡

(𝑙−1)
+  𝑏𝑀𝑠𝑖𝑡

(𝑙)
)     𝒉𝑀𝑠𝑖𝐾

(𝑙)
 =  𝜙(𝑾𝑀𝑠𝑖𝐾

(𝑙)
𝒉𝑀𝑠𝑖𝐾

(𝑙−1)
+  𝑏𝑀𝑘𝑖

(𝑙)
),           (9) 

                                                ∀𝑙 = 1,2 … 𝐿.          

We note here that the 𝑳 = 3 for all the models in our case.  

We utilized the learned models 𝑀𝑠𝑖𝑡 and 𝑀𝑠𝑖𝐾 to calculate the main effect for each TF 𝑡 and the 

interaction effect of 𝐾 interactions respectively. We used an extension of the neural interaction 

detection(NID) developed by Tsang et al. in order to compute these effects[29].  

For each random state 𝑠, we first aggregated the layer weights across all the models 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.18.449031doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449031
http://creativecommons.org/licenses/by/4.0/


                                       𝑾𝑠𝑡
(𝑙)̅̅ ̅̅ ̅̅

=  
𝟏

|𝑀𝑠|
∑ 𝑾𝑀𝑠𝑖𝑡

(𝑙)𝟓
𝒊=𝟏  ;  𝑾𝑠𝐾

(𝑙)̅̅ ̅̅ ̅̅
=  

𝟏

|𝑀𝑠|
∑ 𝑾𝑀𝑠𝑖𝐾

(𝑙)𝟓
𝒊=𝟏                               (10) 

       

                                    𝒘𝑠𝑡
𝑦̅̅ ̅̅ ̅ =  

𝟏

|𝑀𝒔|
∑ 𝒘𝑀𝑠𝑖𝑡

𝑦𝟓
𝒊=𝟏  ;    𝒘𝑠𝐾

𝑦̅̅ ̅̅ ̅ =  
𝟏

|𝑀𝐾|
∑ 𝒘𝑀𝑠𝑖𝐾

𝑦𝟓
𝒊=𝟏         (11) 

             1 ≤ 𝑖 ≤ 5, ∀𝑙 = 1,2 … 𝐿 

Here, 𝑾𝑠𝑡
(𝑙)̅̅ ̅̅ ̅̅

, 𝑾𝑠𝐾
(𝑙)̅̅ ̅̅ ̅̅

  and 𝒘𝑠𝑡
𝑦̅̅ ̅̅ ̅ , 𝒘𝑠𝐾

𝑦̅̅ ̅̅ ̅  represent the weights of each hidden layer and the output layers 

respectively averaged across all the models in  𝑀𝑠.   

The main effect for each TF 𝑡 and the interaction effect of the 𝑇𝐹𝑚-𝑇𝐹𝑛 interaction at unit 𝑗 of 

the first layer across all the models for a random state 𝑠 was calculated using the following 

equations: 

 wst = zst
1 w(st)

1̅̅ ̅̅ ̅̅     (12) 

                                                                                                                                              

 𝑤𝑗(𝑠𝐾:𝑚,𝑛) = 𝑧𝑗(𝑠𝐾)
1 𝑚𝑖𝑛(|𝑤𝑗(𝑠𝐾:𝑚)

1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑤𝑗(𝑠𝐾:𝑛)
1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |)   (13) 

                                  

Here, w(st) is the main effect of the transcription factor t obtained from the first layer of 

univariate model corresponding to random state s, wj(st)
1̅̅ ̅̅ ̅̅ ̅ is the mean weight of all the 

connections made by the input node in the first layer. Similarly, wj(sK:m,n) is the interaction 

effect for  the interaction between 𝑇𝐹𝑚and  𝑇𝐹𝑛  at the hidden unit 𝑗 of the first layer aggregated 

across all the models in 𝑀𝑠  and 𝑤𝑗(𝑠𝐾:𝑚)
1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑤𝑗(𝑠𝐾:𝑛)

1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the aggregated weights corresponding 

to the connections(indices) of  𝑇𝐹𝑚and  𝑇𝐹𝑛  respectively at node 𝑗. zst
1  and zj(sK)

1  represent the 

influence of the input node and the hidden unit 𝑗 respectively, which are calculated using the 

following formulae: 

                                          

 
𝑧𝑗(𝑠𝐾)

1 = |𝒘𝑠𝐾
𝑦̅̅ ̅̅ ̅|

𝑇
|𝑾𝑠𝐾

(𝐿)̅̅ ̅̅ ̅̅
| |𝑾𝑠𝐾

(𝐿−1)̅̅ ̅̅ ̅̅ ̅̅ ̅
| … |𝑾𝑗(𝑠𝐾)

(1)̅̅ ̅̅ ̅̅ ̅̅
| , 𝑗 ∈  𝑝1 

          (14) 

 
z(st)

1 = |𝐰st
y̅̅ ̅̅̅|

T
|𝐖st

(L)̅̅ ̅̅ ̅̅
| |𝐖st

(L−1)̅̅ ̅̅ ̅̅ ̅̅ ̅
| … |𝐖(st)

(1)̅̅ ̅̅ ̅̅ ̅
| 

 

          (15) 

The aggregated weight of interaction between 𝑇𝐹𝑚and  𝑇𝐹𝑛  across all the nodes in the first layer 

was calculated using the following equation: 
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w(sK:m,n) = |∑ wj(sK:m,n)

|p1|

j=1

| 

             (16) 

                                                                        

This step was not necessary for the main effects calculation since we only had one input node in 

each univariate MLP corresponding to each TF.   

Since we averaged the calculations over all the models that contained different sets of test genes 

for each random state, we assumed that w(sK:m,n) and wst represented average interaction effect 

between  𝑇𝐹𝑚and  𝑇𝐹𝑛 and average main effect of TF t respectively over all the genes. We then 

averaged this effect over all the random states to produce the final NID interaction effects and 

main effects:  

 
𝑤(𝐾:𝑚,𝑛) =  

1

|𝑆|
∑ w(sK:m,n)

𝑠 ∈𝑆

 

 

    (17) 

 
𝑤(𝑡) =  

1

|𝑆|
∑ w(st)

𝑠 ∈𝑆

 
   (18) 

 

Calculating TF average ENET main effects. 

We calculated the average effect estimate for TF T  �̅�𝑇 using the following equation: 

 
�̅�𝑇 =

1

|𝑁|
∑ 𝛽𝑇,𝑛

𝑛𝜖𝑁

 

 

(19) 

Here, 𝑁 is the set of random instances that we used to build our ENET prediction models and 

𝛽𝑇,𝑛 is the effect estimate of T  for instance 𝑛. We calculated these effect estimates for each one 

of the 149 TFs and tabulated them in Supplementary table S3B.  

Detecting co-binding TF ChIP-Seq peaks 

In order to identify statistically significantly co-binding pairs of TF ChIP-Seq peaks, we 

utilized the SpaMo algorithm (meme suite version 5.1.1)[8], which looks for significantly 

enriched spacings between a primary motif and a secondary motif by within a set of sequences. 

We isolated all the overlapping peak pairs corresponding to the 32 pairwise TF modules present 

within the TG’s cis-regulatory regions. We centered and modified these regions so that they are 

no longer than 500bp, which is the required size for sequences for SpaMo. We utilized the 

position weight matrices(PWMs) downloaded from HOCOMOCO(v.11)and JASPAR(v.2020) in 

order to scan the sequences for motifs corresponding to TFs in each pairwise TRM. We ran the 

SpaMo command line version and extracted peak pairs representing co-localizing TFs at a p-

value threshold of 0.05.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2021. ; https://doi.org/10.1101/2021.06.18.449031doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449031
http://creativecommons.org/licenses/by/4.0/


Detecting TF ChIP-Seq peaks interacting via chromatin looping 

We used the Hi-C data downloaded for GM12878(GEO accession: GSM1551688) in order to 

look for TF peaks interacting via chromatin looping. We used data corresponding to 1Kb and 

5Kb resolution, and overlapped the peak pairs of pairwise TRMs with the Hi-C contact points. 

We also generated a random set of peak pairs corresponding to pairwise TFs not forming a 

pairwise TRM representing the background set for performing χ2 test of enrichment (see 

Supplementary Table S4B). We tested for enrichment of Hi-C contacts within the peak pairs 

corresponding to the TRMs detected using this test at a p-value threshold of 0.05.  
 

List of  abbreviations 

TF: Transcription Factors 

TG: Target Gene 

ChIP-Seq: Chromatin Immunoprecipitation Sequencing 

PANDA: Passing Attributes between Networks for Data Assimilation  

GRN: Gene Regulatory Network 

TFBS: Transcription Factor Binding Site/s 

ENET: ElasticNet 

FPKM: Fragments per kilobase of transcripts per million 

PCC: Pearsons Correlation Coefficient 

PPI: Protein-protein interactions 

ENCODE: Encyclopedia of DNA elements 

IDR: Irreproducible Discovery Rate 

TRM: TF regulatory module 

MLP: Multilayer Perceptron 

MLP-U: Univariate MLPs with traditional MLP 

SpaMo: Spaced motif analysis 

LCL: Lymphoblastoid cell line 

NID: Neural Interaction Detection 
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