
Title: Functional Redundancy in Ocean Microbiomes Controls Trait Stability 1 

 2 

Authors: Taylor M. Royalty1 and Andrew D. Steen1,2
 3 

Affiliations: University of Tennessee Departments of Microbiology1 and Earth and Planetary 4 

Sciences2  5 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448980doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448980
http://creativecommons.org/licenses/by/4.0/


Abstract: 6 

Advances in nucleic acid sequencing technology have revealed that, in many microbial 7 

ecosystems, the same ecosystem function or trait is performed by multiple species or taxa. 8 

Theory, developed in the context of macroecology, predicts that communities with high 9 

functional redundancy are less likely to lose functions due to species extinction compared to 10 

communities with low functional redundancy. It is not clear whether this is the case for microbial 11 

communities, particularly on the landscape scale. In part, the lack of quantitative measures for 12 

functional redundancy in microbial ecosystems has been prohibitive in addressing this question. 13 

We recently proposed a quantitative functional redundancy metric, contribution evenness, which 14 

measures how evenly taxa in a community contribute to an ecosystem function or trait. Using 15 

transcriptomes deposited in the Ocean Microbial Reference Gene Catalog (OM-RGC.v2), a 16 

catalog of genes and transcripts sequenced by the TARA Ocean expedition, we quantified the 17 

functional redundancy for 4,314 KEGG Orthologs (KOs) across 124 marine sites. Functional 18 

redundancy was highly correlated with a latent variable reflecting few ocean physiochemical 19 

parameters and was systematically higher at the poles than in non-polar regions. Functional 20 

richness β-diversity among non-polar sites was higher than that among polar sites, indicating that 21 

microbial ecosystem functions are more similar among polar sites than among non-polar sites. 22 

These observations combined provide evidence that functional redundancy influences microbial 23 

ecosystem function stability on spatiotemporal scales consistent with surface ocean mixing. We 24 

suggest that future changes in ocean physiochemistry will likely influence this stability.   25 
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Main Text: 26 

 The ability to resolve complete genomes in microbial communities via contig binning and 27 

single-cell genome sequencing has revealed that metabolic functions, or traits, are often present 28 

in multiple taxa within a microbiome (1–4). The practical consequences of functional 29 

redundancy, in terms of community composition and function, are not well understood for 30 

microbial communities. Theoretical predictions, developed in the context of macroecosystems, 31 

suggest that functional redundancy can buffer a community against function loss due to species 32 

extinction (5–9). Foundational work on grassland ecosystems validated these theoretical 33 

predictions by showing that plant community biomass stability increased with higher functional 34 

redundancy (10). Mesocosm experiments provide empirical evidence that function replication 35 

among species may also buffer microbial ecosystem function from species loss. For instance, 36 

microbial density and biomass was less variable for assemblages with redundant populations 37 

occupying different trophic guilds in a food web (11), and reduction-oxidation conditions in 38 

sediment communities were more stable with increased bacterial diversity and niche overlap 39 

(12). Although existing theoretical and empirical evidence suggests functional redundancy may 40 

enhance ecosystem function stability, small-scale and mesocosm experiments with microbial 41 

communities may not reflect the most important processes on ecosystem scales (13). 42 

Establishing whether functional redundancy stabilizes traits is important for understanding how 43 

environmental fluctuations, most notably climate change, may influence microbially-mediated 44 

biogeochemistry stability.   45 

 We used contribution evenness (14) to measure functional redundancy for KEGG 46 

ortholog (KO)-annotated genes from 180 and 124 TARA Oceans metagenomes and 47 

metatranscriptomes, respectively (15). Contribution evenness uses genes (contribution evenness 48 
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with respect to genes) or transcripts (contribution evenness with respect to transcripts) as traits 49 

(16, 17) and measures the evenness how evenly taxa in community contribute to these traits as a 50 

whole. The TARA Oceans dataset was appealing because sample collection was largely 51 

standardized for biological sequences and physiochemistry while simultaneously covering a 52 

diverse range of sample sites. After calculating contribution evenness for metagenomes (Fig. 1A) 53 

and metatranscriptomes (Fig. 1B), we found that functional redundancy varied substantially 54 

among metabolism type and sites. In total, individual gene and transcript functional redundancy 55 

spanned over three orders of magnitudes and exhibited differences in distributions among the 56 

selected metabolism types. Furthermore, distribution of transcript abundance within ocean 57 

microbiomes correlated well with the distribution of gene abundance at the same site (Fig. 1C; 58 

R2=0.45, p<0.001). That is, risk of transcription loss is strongly influenced by the fate of genes. 59 

This relationship was not surprising considering previous reports that metagenome gene 60 

abundances strongly influenced metatranscriptome transcript abundances across TARA Oceans 61 

microbiomes (15). Although the nature of these observations is similar, the ecological 62 

implication is different. Specifically, the observation of Salazar et al. shows correlation in 63 

absolute genes abundance and transcription abundance, whereas our observation indicates that 64 

when genomic traits that are more evenly distributed across a community, transcription is also 65 

more evenly distributed across a community. 66 

In order to better understand the relationship between environmental characteristics and 67 

functional redundancy, we used redundancy analysis (RDA) to model the functional redundancy 68 

of each KO at each site as a function of the seven environmental parameters: salinity, depth, and 69 

concentrations of nitrate, phosphate, and silicate ions, oxygen, and chlorophyll A (Fig. 1). The 70 

first canonical axis of this model explained 19.8% of the total functional redundancy variance in 71 
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4,314 transcripts annotated as KOs. An ANOVA demonstrated that the first canonical axis 72 

explained significantly more variability in KO functional redundancy than a null model (p<0.01) 73 

(18). Although the total explanatory power for individual KOs was low, we found that the 74 

average functional redundancy of all KOs at each TARA Oceans site was accurately predicted 75 

very by the first canonical axis alone (93.2% of total variance explained; ordinary least squares 76 

regression.  77 

Factor loadings of this first canonical axis were dominated positively by oxygen and 78 

chlorophyll A and negatively by sample depth and salinity (Fig. 2B). Thus, this canonical axis 79 

appears to be a proxy for photosynthesis rate, or the extent to which an environment is 80 

dominated by copiotrophs versus oligotrophs. The strong predictive power of the photosynthesis 81 

was not surprising given that carbon export mediated by primary productivity is known to be a 82 

good predictor for community composition and genomic composition in the ocean (19). Higher 83 

functional redundancy was positively correlated with higher photosynthesis (i.e., positive 84 

scores). We compared the performance of our factor-based model to a best subset (based on an 85 

AIC criteria) OLS regression using the original seven physiochemical variables (NO3
-, PO4

3-, 86 

salinity, depth, O2, Si, and ChlA) that generated our factor (Fig. 2C). In contrast to the factor 87 

model, the best subset model (O2, Si, and depth) explained only 32.4% of the variance in mean 88 

functional redundancy.  89 

 The high explanatory power by the environmental data justified extrapolating our factor 90 

model onto a global scale. Utilizing global predictions of ocean nutrient concentrations, we 91 

calculated factor scores at a 0.25°x0.25° resolution and predicted functional redundancy across 92 

Earth’s oceans using the derived coefficient from our OLS regression of mean functional 93 

redundancy versus the first canonical axis of the RDA. Our model predicts that functional 94 
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redundancy is highest in polar regions and near river outflows, and lowest in subtropical gyres 95 

(Fig. 3A). Variance was highest in polar regions, coastal regions, and river outflows (Fig. 3B). 96 

The transition from high to low functional redundancy between polar and non-polar latitudes was 97 

consistent with previously reported ecological boundaries for ocean microbiomes, where the 98 

transition from non-polar to polar latitudes corresponded to compositional changes in 99 

metatranscriptomes and metagenomes (15). 100 

 We hypothesized that this latitudinal gradient in functional redundancy would correlate 101 

with trait stability, or intra-regional (i.e., polar and non-polar regions) variance in the absence 102 

and/or presence of traits. Again, theory predicts functional redundancy can buffer communities 103 

from changes in functional composition when multiple taxa perform said functions (5–9, 14). 104 

Regions with higher functional redundancy should have less inter-site variance in trait 105 

composition functional redundancy promotes stability. One approach to test this idea is to 106 

compare functional redundancy to functional richness β-diversity, where regional measures of 107 

functional richness β-diversity should inversely relate to functional redundancy. We performed a 108 

bootstrap subsampling analysis on polar and non-polar metatranscriptomes and measured the 109 

functional richness β-diversity (20) within the respective groups. Functional richness β-diversity 110 

was significantly higher at lower latitudes based on an ANOVA (p<0.001) (Fig. 4). We take this 111 

as evidence that functional redundancy supports higher trait stability in ocean microbiomes. 112 

 Trends suggest that major ocean currents are slowing (21), oxygen minimum zones are 113 

expanding (22), and there will be future changes in regional primary productivity (23). Notably, 114 

ocean currents mediate microbial dispersion across Earth’s oceans. Reduction in dispersion rates 115 

will theoretically lower and increase α- and β-diversity in metacommunities, respectively (24), 116 

which should result in higher heterogeneity in microbially-mediated biogeochemistry. With 117 
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respect to oxygen and primary productivity, these variables are important in our factor model and 118 

suggests future changes in these parameters will influence ocean microbiome functional 119 

redundancy. Although we demonstrated that surface ocean microbiome functional redundancy 120 

and trait stability relate to one another, new questions arose about how environment directly 121 

influences this functional redundancy, and thus, trait stability. This will be a point of future 122 

exploration.  123 

Materials and Methods: 124 

TARA Oceans Genes and Environmental Data 125 

We downloaded the entire Ocean Microbial Reference Gene Catalog v2 (OM-GRC.v2) 126 

on 1 Feb 2021 from EMBL-EBI (BioStudy: S-BSST297) and the environmental data from 127 

https://doi.org/10.5281/zenodo.3473199 (15). With OM-RGC.v2, we evaluated gene and 128 

transcript profiles isolated from biological sequences collected on filters with size ranges. Each 129 

profile corresponded to filtration collected from 100L of seawater in the size range 0.22-1.6 μm 130 

or 0.22-3.0 μm (26). Profiles were filtered for sequences annotated to KEGG orthologs 131 

(KO)(27). Our preference of KO annotations versus cluster of orthologous groups (COGs) or 132 

gene clusters (GC) pertains to KOs mapping to specific metabolic processes. We interpreted 133 

length-normalized short-read mapping frequencies as abundances. These values are synonymous 134 

to the quantity, or abundance, of any sequence in a metagenome or transcriptome, given a fixed 135 

sequencing effort. Gene abundances for KO single copy marker genes (list below) annotated to 136 

the same genus were averaged to estimate the abundance of a given genus. Our selection of 137 

genus level analysis was to mitigate noise associated with analyzing functional redundancy of 138 

ASVs, which is theoretically possible. To allow for meaningful comparisons of functional 139 

redundancy at different sites, we rarified sequencing effort at each site. Relative abundances 140 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448980doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.3473199
https://doi.org/10.1101/2021.06.18.448980
http://creativecommons.org/licenses/by/4.0/


were then used as weights during random sampling, with replacement. Each site was sampled 141 

3358334 and 472163 times for gene and transcript profiles, respectively. These values 142 

corresponded to the lowest sampling effort among all metagenomes and transcriptomes, 143 

respectively.  144 

KO Functional Redundancy and Diversity 145 

 Functional redundancy was calculated for each KO, at each site. Functional redundancy 146 

was calculated as contribution evenness (14), a measure of how evenly taxa contribute to an 147 

ecosystem level process (e.g., photosynthesis, sulfate-reduction, glycolysis, etc.). Here, we treat 148 

KOs as proxies for metabolic potential. To determine how evenly taxa contribute to an 149 

ecosystem-level process, taxa abundances are multiplied onto taxa-specific trait levels (genes per 150 

cell and transcripts per cell) and normalized to sum to one. This distribution reflects the relative 151 

contribution to a metabolism process. As the OM-RGC.v2 gene profiles reflect abundances in 152 

metagenomes and transcriptomes, we did not need to multiple taxa abundances onto taxa-153 

specific trait levels. To obtain KO functional redundancy, the effective number of “contributors” 154 

is calculated from profiles (after rarifying) using effective diversity (28, 29). The effective 155 

number of contributors is then normalized by taxa richness and adjusted so that the minimum 156 

and maximum evenness equal 0 and 1, respectively (30). As such, contribution evenness is 157 

calculated as: 158 

𝑅 =
𝐷𝑞−1

𝑆−1
                               (1 159 

where R is functional redundancy, Dq is the effective number of contributors (of the qth diversity 160 

order), and S is taxa richness. Consistent with Royalty & Steen (2021), we used a diversity order 161 

q=0.5 as this diversity order corresponded to minimizing the mean absolute error between 162 
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functional redundancy and trait resilience to taxa extinction. Here, taxa richness was calculated 163 

using KO single copy marker genes. The richness of taxonomic families was determined by 164 

determining number of the average abundance of K06942, K01889, K01887, K01875, K01883, 165 

K01869, K01873, K01409, K03106, and K03110 was greater than zero Salazar et al. (2019).  166 

Last, each KO functional redundancy, from all sites, was normalized by the KO’s respective 167 

variance (standard deviation) in functional redundancy. This variance was calculated using the 168 

KO’s functional redundancy from across all sites. Normalizing the functional redundancy of 169 

individual KOs by their variance was necessary as mean functional redundancy is correlated to 170 

KO functional redundancy variance (Figure S1). Low functional redundancy does not necessarily 171 

imply that a function is ecologically unimportant. This is particularly true for traits with low 172 

functional redundancy that strongly correlate to phylogeny. Such examples include 173 

Thaumarchaeota and diazotrophs which act as the primary nitrifiers and nitrogen fixers in the 174 

ocean, respectively (14). To the contrary, small changes in functional redundancy for traits with 175 

nominally low functional redundancy might reflect key ecological processes, and thus, 176 

comparisons of community functional structure should account for the differences in functional 177 

redundancy magnitude. Thus, changes in KO functional redundancy reflected changes with 178 

respect to the KO’s observed variance while not reflecting the KO’s order of magnitude, which 179 

spanned five orders of magnitude.  180 

 Diversity was calculated as effective richness (28, 29). The abundance of each genus was 181 

determined by taking the average abundance of KO single copy marker genes (see above). The 182 

average abundance of KO single copy marker genes were normalized by the total average KO 183 

single copy marker gene abundance. Effective richness was then calculated using a diversity 184 

order q=1, which corresponds to taking the exponential of Shannon’s Index. This value 185 
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corresponds to the minimum number of evenly abundant families necessary to obtain an 186 

observed entropy.  187 

Global Modeling of Functional Redundancy 188 

 We sought to characterize spatial trends in the functional structure of microbial 189 

communities. To do this, we performed redundancy analysis using the rda function from the R 190 

package, vegan (31). In this analysis, the functional structure of microbial communities was 191 

treated as a response variable and physio-chemical variables were treated as predictor variables. 192 

For sites where a given KO was absent, the KO was assigned a value of zero. This situation 193 

occurred ~13.6% and 18.5% of the time for gene and transcript profiles, respectively. For this 194 

analysis, we used salinity (PSU), nitrate (mmol m-3), phosphate (mmol m-3), oxygen (mmol m-3), 195 

chlorophyll A (mg m-3), depth (m), and silicate (mmol m-3). We chose these variables as they 196 

were in situ measurements (26) and could scale with models that predict global ocean chemistry. 197 

We imputed missing data, as removing incomplete cases can bias datasets (32). Random forest 198 

imputation was performed using the missForest function, from the R package, missForest (33). 199 

Next, each variable was converted into a normal distribution using a boxcox transformation via 200 

the boxcox function in the R package, MASS (34). Variables were then centered to have a mean 201 

of zero. The significance of each variable as well as the first two canonical axes was verified 202 

using the anova.cca function in the R Package, vegan (31). 203 

 The first canonical axis derived from the redundancy analysis was used to predict mean 204 

transcript functional redundancy from the individual metatranscriptomes (sites) using OLS 205 

regression. This model was compared to an OLS regression using salinity, nitrate, phosphate, 206 

oxygen, chlorophyll A, depth, and silicate as predictors of mean transcript functional 207 

redundancy. Similar to before, missing data were imputed using missForest (33), variables were 208 
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transformed with a boxcox transformation (34), and variables centered so the mean distribution 209 

was zero prior to regression. The best predictor subset was determined using the regsubsets 210 

function from the R package, leaps (35). The criteria defining the best model was minimizing 211 

AIC.  212 

 The monthly-averaged data products spanning from Jan 2013 to Dec 2018 for 213 

GLOBAL_REANALYSIS_BIO_001_029 and GLOBAL_REANALYSIS_PHY_001_031 were 214 

downloaded from https://marine.copernicus.eu/ on 7 May 2021. Data products had a grid 215 

resolution of 0.25°x0.25°. The OLS regression using the first canonical axis as a predictor 216 

substantially outperformed the best subset OLS when predicting mean transcript functional 217 

redundancy. As such, we converted the predicted data product chemistry for each grid cell into a 218 

score for the first canonical axis. Then, the mean transcript functional redundancy was predicted 219 

for each grid cell, for each month, utilizing the coefficient derived from the canonical axis OLS 220 

regression. The median, 5th percentile, and 95th percentile of mean functional redundancy was 221 

taken across the six-year window. Variance was measured as the difference between the 95th and 222 

5th percentile divided by the median. 223 

Comparing Metatranscriptome α-Diversity, β-diversity, and γ-Diversity Between Polar and Non-224 

polar Latitudes 225 

 We performed a bootstrap analysis to compare the α-diversity, β-diversity and γ-diversity 226 

among polar and non-polar sites. In brief, we randomly sampled, with replacement, 10 epipelagic 227 

(<200m deep) polar (n=38) and non-polar (n=74) metatransciptomes, respectively. The α-228 

diversity and γ-diversity were calculated as the mean richness and total richness, respectively, 229 

among the 10 randomly sampled sites. Then, we solved for β-diversity (20) for both the polar 230 

and non-polar metatranscriptomes such that: 231 
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𝐷(𝐻𝛽) =
𝐷(𝐻𝛾)

𝐷(𝐻𝛼)
                  (2 232 

We sampled in this fashion for 1,000 iterations prior to comparing α-diversity, β-diversity and γ-233 

diversity. 234 
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Figures: 337 

 338 

Fig. 1: Variation in functional redundancy for KOs across 180 TARA Oceans metagenomes (A), 339 

129 TARA Oceans transcriptomes (B), and a pairwise comparison of functional redundancy 340 

(n≈415,000) for KOs annotated the same at the same site (C). Density curves (A,B) were 341 

generated with a kernel density estimate (gaussian kernel with a bandwidth 0.0803). The vertical 342 

black lines correspond to 5th, 50th, and 95th quantiles. The metagenomes and metatranscriptomes 343 

functional redundancy regression (C) followed a log10-log10 model (solid black line). Prior to 344 

regression, all values were offset by 10-4 and high leverage data was removed based on high 345 

Cook’s distance (>
4

𝑛
). The color gradient and black dashed line correspond to data density and a 346 

one-to-one relationship, respectively.  347 
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 348 

Fig. 2: Metatranscriptome rank-functional redundancy curves across all TARA Oceans sites 349 

(n=129) analyzed in this study (A). The black line corresponds to the median while the shaded 350 

area corresponds to the range spanning between the 5th and 95th percentiles. Proposed models 351 

were evaluated for accuracy in predicting mean (μ) and standard deviation (σ) of individual rank-352 

functional redundancy curves. The O2-Si-Depth model was selected as a best subset (minimum 353 

AIC) among the seven predictor variables. Canonical axis 1 loadings (scaling = 0) derived from 354 

the redundancy analysis (B). Dashed red lines in panel (B) correspond to the “equilibrium line of 355 

descriptors” (√𝑑/𝑝 = √1/7), a threshold for defining significant variable contribution to factor 356 

loadings (25). A comparison in residual error of mean functional redundancy predicted by the 357 

O2-Si-Depth OLS regression model and the canonical axis OLS regression model (C).   358 
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 359 

Fig. 3: Mean functional redundancy of all KOs at a 5m depth across Earth’s oceans (0.25° x 360 

0.25° resolution). Panels (A) and (B) correspond to the median and variance of predictions 361 

spanning Jan 2013 to Dec 2018, respectively. Dark and light grey correspond to regions absent 362 

of predictor data and land, respectively.  363 
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Fig. 4. Boxplots showing metatranscriptome α-diversity (A), β-diversity (B), and γ-diversity (C) 364 

for polar and non-polar sites. Distributions are based 1,000 iterations of randomly sampling 10 365 

metatranscriptomes, with replacement, from non-polar and polar latitudes. 366 
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