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ABSTRACT (limit 250 words)

Late lung development is a period of alveolar and microvascular formation, which is pivotal in
ensuring sufficient and effective gas exchange. Defects in late lung development manifest in
premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD).
Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and
umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very
little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during
normal development and in BPD. In this study we aimed to characterize the L-MSC population
in homeostasis and upon injury. We used single-cell RNA sequencing (sScCRNA-seq) to profile in
situ Ly6a® L-MSCs in the lungs of normal and O»-exposed neonatal mice (a well-established
model to mimic BPD) at three developmental timepoints (postnatal days 3, 7 and 14). Hyperoxia
exposure increased the number, and altered the expression profile of L-MSCs, particularly by
increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes.
In order to identify potential changes induced in the L-MSCs transcriptome by storage and
culture, we profiled 15,000 Ly6a" L-MSCs after in vitro culture. We observed great differences
in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy
lungs. Additionally, we have identified the location of L-MSCs in the developing lung and
propose Serpinfl as a novel, culture-stable marker of L-MSCs. Finally, cell communication
analysis suggests inflammatory signals from immune and endothelial cells as main drivers of

hyperoxia-induced changes in L-MSCs transcriptome.
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1. INTRODUCTION

Late lung development represents an important period in lung maturation marked by an
exponential increase in the gas exchange surface area by forming the most distal respiratory
units, the alveoli. Within these units, respiration takes place across a thin (0.2 - 2um) alveolo-
capillary barrier. Formation of alveolar structures, a process known as alveolarization, is
facilitated by spatially and temporarily coordinated interactions between diverse cell types and
the pulmonary microenvironment [1]. Defects in late lung development in humans manifest as
bronchopulmonary dysplasia (BPD), a multifactorial disease occurring as a consequence of
premature birth, respiratory distress, and associated treatments in neonatal intensive care. BPD is
the most common chronic disease in children and a leading cause of death in children under the
age of 5 [1,2]. BPD is also associated with neurodevelopmental delay, increased incidence of

asthma, re-hospitalizations and early-onset emphysema [3,4].

To date, multiple studies have demonstrated the lung protective effects of exogenous,
bone marrow (BM)- or umbilical cord (UC)-derived, mesenchymal stromal cells (MSCs) in
experimental BPD models [5-10]. The discovery of lung resident (L-)MSCs prompted questions
regarding the apparent insufficient regenerative capacity of L-MSCs in lung injury [11].
Characterizing the L-MSC population in homeostasis and upon injury is pivotal in understanding
the apparent contradiction between the therapeutic effects of exogenous MSCs, while the
resident population fails to prevent neonatal lung injury from occurring. However, very little is
currently known about the role of L-MSCs in postnatal lung development and in BPD. Lung
stromal cells, including lipofibroblasts, myofibroblasts and matrix fibroblasts are a potent source
of inter-cellular signaling and are known to play an important role in BPD pathogenesis [12].
However, how L-MSCs communicate with other cell populations and contribute to the

development of BPD remains unknown.

While most authors report that L-MSCs can differentiate, to some extent, into
chondroblasts, osteoblasts and adipocytes [13], form colonies in vitro [13,14], and express
classical MSC markers THY1 (CD90), NT5E (CD73) and ENG (CD105) [13,15], no L-MSC-
specific marker has yet been established. Due to the lack of standardization for L-MSC
identification, as well as differences in expression profiles between species, no single marker has

been broadly accepted. Lung mesenchymal progenitor cell markers have been proposed [13,15—
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18], including LY6A, often referred to as SCA-1 (Stem cell antigen 1) [16-19]. LY6A was
proposed as a defining progenitor marker for mesenchymal cell lineages in the lung [19] and
LYBA" mesenchymal lung cells were shown to promote colony formation, proliferation and
differentiation of epithelial progenitor cells [20].

In the study presented here we identify, for the first time, the transcriptome of Ly6a* L-
MSCs in heathy and diseased developing mouse lungs. We hypothesized, that O.-exposure (a
well-established model to mimic BPD) significantly impacts the phenotype and function of L-
MSCs, as well as cellular communication between L-MSCs and other cell populations in the
developing lung. We identify perturbations to the phenotype and functional properties of L-
MSCs in this model. Furthermore, we report extensive single-cell RNA sequencing (SCRNA-seq)
profiling of L-MSCs in the lungs of 36 healthy and O>-exposed mice at three developmental
timepoints (P3, P7, and P14). Finally, we investigate cultured Ly6a" L-MSCs and Ly6a" mouse
lung stromal cells by scRNA-seq. We identify changes in L-MSCs transcription profile induced
by storage and culture and present novel, culture-stable marker for this rare progenitor

population.
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91 2. MATERIALS AND METHODS
92 2.1 Experimental animals

93  Pregnant C57BL/6N mice were purchased from Charles Rivers Laboratories, Saint Constant,
94  QC, Canada at embryonic day (E)15. Mice were housed by the Animal Care and Veterinary
95  Service of the University of Ottawa in accordance with institutional guidelines. All study
96 protocols were approved by the animal ethics and research committee of the University of
97  Ottawa (protocol OHRI-1696) and conducted according to guidelines from the Canadian Council
98  on Animal Care (CCAC). Mouse pups born on the same day, were randomized at the day of birth
99  [postnatal day (P)0] and divided into equal-sized litters of 6-8 pups/cage. Cages were then
100  maintained either in room air (normoxia, 21% O>), or in normobaric hyperoxia (85% O) until
101 the day of harvest. The hyperoxic environment was maintained in sealed plexiglass chambers
102 with continuous oxygen monitoring (BioSpherix, Redfield, NY). Mice were maintained in 12/12
103 hours light/dark cycle and received food ad libidum. In order to avoid confounding factors
104  associated with oxygen toxicity, nursing dams were rotated between normoxic and hyperoxic
105  group every 48 hours. Euthanasia was performed by an intraperitoneal (i.p.) injection of 10 pl/g
106  Pentobarbital Sodium (CDMV, Saint-Hyacinthe, QC, Canada).

107

108 2.2 Lung isolation

109 Mouse pups designated for mean linear intercept (MLI) assessment or fluorescent in situ
110  hybridization (FISH) were euthanized at P7 and P14, respectively. Following euthanasia, the
111 chest was opened, mice were tracheotomized and lungs were installation-fixed for 5 minutes at
112 20cm H20 hydrostatic pressure. Lungs designated for histological assessment were fixed with
113 1.5% (w/v) paraformaldehyde (PFA) (Sigma-Aldrich, Oakville, ON, Canada) and 1.5% (w/v)
114  glutaraldehyde (Sigma-Aldrich, Oakville, ON, Canada) in 150mM HEPES (Sigma-Aldrich,
115  Oakville, ON, Canada). Lungs designated for FISH were fixed with 4% (w/v) PFA (Sigma-
116  Aldrich, Oakville, ON, Canada). In both instances, lungs were kept in the fixation solution for 48
117  hours at 4°C and collected for embedding in paraffin. Paraffin-embedded tissue blocks
118  designated for histological analyses were sectioned at 3 or 4um as needed. Tissue dehydration,
119  paraffin embedding and sectioning were performed by the University of Ottawa Louise Pelletier

120  Histology Core Facility.
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121 Mouse pups designated for lung cells isolation and fluorescence activated cell sorting
122 (FACS) analyses were euthanized at P7. Mice also received an i.p. injection of 10 mU/g Heparin
123 Sodium (LEO Pharma INc., Thornhill, ON, Canada). Following euthanasia, the chest was
124  opened and the left atrium was perforated. Lungs were perfused through the right ventricle with
125 5 ml of 25 U/ml Heparin Sodium in DPBS supplemented with Mg?*/Ca?* (ThermoFisher
126 Scientific, Burlington, ON, Canada) until white. Lungs were removed from the thoracic cavity,
127  dissected into individual lobes, and digested in enzyme mix at 37°C by gentleMACS™ Octo
128  Dissociator (Miltenyi Biotech, Bergisch Gladbach, Germany). The detailed procedure, as well as
129  enzyme mixture contents are provided in Supplementary Method S1. The suspension was then
130  centrifuged and the resulting pellet was washed with 5 ml of 5% FBS (Sigma-Aldrich, Oakville,
131 ON, Canada) in 1x DPBS (Lonza, Basel, Switzerland), filtered through 70 um filter (Corning
132 Life Sciences, Tewksbury, MA, USA) and centrifuged again. The resulting pellet was
133 resuspended in 1ml of cold RBC lysis buffer (ThermoFisher Scientific, Burlington, ON, Canada)
134  for 3 minutes at room temperature (RT). The cell suspension was then diluted with 5ml of 5%
135  FBS solution, centrifuged and washed twice.

136 A detailed flowchart illustrating the allocation of each mice to respective experimental
137  groups is depicted in Supplementary figure 1.

138

139 2.3 Mean linear intercept (MLI) measurement

140  Paraffin-embedded tissue blocks were sectioned at 4um, stained with hematoxylin and eosin
141  (H&E) stain, and scanned using the Axio Scan.Z1 (Zeiss, Oberkochen, Germany). The mean
142  linear intercept (MLI) was estimated with Fiji/ImageJ software using a 64-point grid as described
143  previously [21]. A total of 20 randomly selected 500umx500um fields of view were assessed in

144  each lung.
145
146 2.4 Fluorescent activated cell sorting (FACS)

147  The number of cells in the single-cell suspension was estimated using the EVE NanoEnTek
148  automatic cell counter and a total of 1x10° cells/sample were resuspended in 550 ul of FACS
149  buffer (5% (v/v) FBS and 1mM EDTA in 1xDPBS). Cells were then incubated at RT in the dark
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150  with 2 ul/1x10°® cells of CD16/32 antibody for 15 minutes. Following blocking, cells were
151  centrifuged and pellets were resuspended in 1:100 mixture of panel of antibodies: FITC-CD31,
152  AF647-CD45, Pe/Cy7- CD326, and BV421- LY-6A/E (Supplementary table 1). Cells were
153  incubated with antibodies for 20 minutes in dark at RT, pelleted and washed 3x with FACS
154  buffer. FACS was performed immediately using a MoFlo XDP (XDP, Beckman Coulter,
155  Fullerton, CA, USA) and compensation and analysis was done using Summit v.5.4 at the Ottawa

156  Hospital Research Institute (OHRI) StemCore facility.

157

158 2.5 Cell culture and storage

159  The detailed procedure is provided in Supplementary Method S2.
160

161 2.6 Colony formation assay

162  The detailed procedure is provided in Supplementary Method S3.
163

164 2.7 MSCs surface marker profiling

165  Cultured, passage 3 CD31/CD45/EpCAM/LY6A" L-MSCs were profiled for MSC surface
166  markers by flow cytometry. Briefly, 3x10° cells/sample were resuspended in 200 pl of FACS
167  buffer in 96-well plate and incubated at RT in the dark with 2 ul/1x10° cells of CD16/32
168  antibody for 15 minutes. Cells were then divided to 3 equal fractions, centrifuged and
169  resuspended in one of the following 1:100 mixture of antibodies: i) BV421-CD31, Pe/Cy7-
170  conjugated CD326, PE-CD73, and AF488- D105; ii) AF647- CD45, BV421-LY-6A/E, PE-
171 conjugated CD34, and AF488-CD146; iii) PB-CD90.2 (Supplementary table 1). Cells were
172 incubated with antibodies for 20 minutes in dark at RT, pelleted and washed 3x with FACS
173 buffer. Flow cytometry was performed immediately using a MoFlo XDP (XDP, Beckman
174  Coulter, Fullerton, CA, USA) and compensation and analysis was done using Summit v.5.4 at

175  the OHRI core facility.

176


https://doi.org/10.1101/2021.06.18.448928

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.448928; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

177 2.8 Osteogenic differentiation

178  The detailed procedure is provided in Supplementary Method S4.
179

180 2.9 Adipogenic differentiation

181  The detailed procedure is provided in Supplementary Method S5.
182

183  2.10 Chondrogenic differentiation

184  The detailed procedure is provided in Supplementary Method S6.
185

186  2.11. Fluorescent in situ hybridization

187  The detailed procedure, as well as a list of used probes are provided in Supplementary Method
188  S7.

189
190  2.12. Multiplexing samples for sScRNA-seq

191  Multiplexing was performed according to the MULTI-seq protocol [22]. The detailed procedure
192  is provided in Supplementary Method S8.

193
194  2.13. scRNA-seq library preparation and sequencing

195  Single-cell suspensions were processed using the 10x Genomics Single Cell 3° v3 RNA-seq kit
196 by Ottawa Hospital Research Institute Stem Core Laboratories. Gene expression libraries were
197  prepared according to the manufacturer’s protocol. MULTI-seq barcode libraries were retrieved
198  from the samples and libraries were prepared independently, as described previously[22]. Final
199 libraries were sequenced on the NextSeg500 platform (Illumina) to reach an approximate depth
200 of 20,000-25,000 reads/cell.

201
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202  2.14. scRNA-seq data analyses and quantification
203  Processing and demultiplexing

204  Raw sequencing reads were processed using CellRanger v3.0.2 for lung homogenate sample and
205  v3.1.0 for cultured cells, aligning reads to the mm10 build of the mouse genome. Except for
206 explicitly setting --expect-cells=25000, default parameters were used for all samples. MULTI-
207  seq barcode libraries were trimmed prior to demultiplexing to 28bp using Trimmomatic (v0.36).
208  Demultiplexing was performed using the deMULTIplex R package (v1.0.2) as described
209  previously[22,23]. Only cells positive for a single barcode were kept for further analysis and
210  sample annotations were added to all cells in the data set.

211
212 Quality control, integration, and clustering

213 All main processing steps were performed with Seurat v.4.0.0[24]. Quality control was
214  performed independently on each library to find appropriate filtering thresholds. Expression
215  matrices were loaded as Seurat objects into R. Only cells with > 200 genes detected and < 20%
216  of UMIs mapped to mitochondrial genes were retained. Each unique sample was split based on
217  MULTI-seq sample barcodes into a separate Seurat object. SCTransform[25] was used to
218 normalize samples, select highly variable genes, and to regress out cell cycle and cell stress
219 effects. To eliminate batch effects or biological variability effects on clustering, the data
220 integration method implemented by Seurat for SCTransform-normalized data was performed,
221 using the SelectintegrationFeatures(), PrepSCTIntegration(), FindIntegrationAnchors(), and
222 IntegrateData() functions. PCA was performed on the top 3000 variable genes and the data was
223 clustered at a low resolution (dims=1:30, resolution=0.2 for lung homogenate data and 0.1 for
224  cultured MSCs) with the Louvain algorithm implemented in the FindClusters() function in
225  Seurat. Cell populations were identified with a simple Wilcoxon rank sum test with the
226 FindAllMarkers() function in Seurat.

227 In the case of stromal cells from lung homogenates, a previously published, publicly
228 available scRNA-seq dataset from newborn mice was re-analyzed[23]. A novel Ly6a® L-MSC
229  population was identified based on the expression of Ly6a. New cell type labels for stromal

230  populations were then added to the Seurat object containing all data.
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231

232 Differential expression analysis (DSA), gene set enrichment analysis (GSEA) and functional

233 enrichment analysis

234  To identify differentially expressed genes in response to hyperoxia or as a result of mouse age,
235  we used the R package muscat (v1.4.0). Pseudobulk expression profiles were generated for each
236 sample in each cluster and differential expression was tested between groups associated with the
237  experimental conditions. Genes with an adjusted p-value < 0.05 and a detection rate > 10% in at
238 least one of the conditions tested were considered significant. To further identify gene sets
239  associated with differentially expressed genes, we used the R package fgsea (v1.16.0). List of
240 gene sets comprised all GO terms, KEGG pathways, Reactome pathways, and the MSigDB
241 Hallmark gene sets acquired from the Molecular Signatures Database (v7.2)[26]. Gene sets with
242 an adjusted p-value < 0.05 were considered significantly enriched. Normalized enrichment score
243 (NES) was used to assess whether gene sets were associated with upregulated or downregulated
244  genes. Functional enrichment analysis (FEA) for selected ligands produced by Ly6a+ L-MSCs
245  were performed using the online Metascape tool[27]. Summary pathways relevant to lung were

246  considered.
247
248  Cell communication inference

249  To explore cell communication networks behind the developmental age, or hyperoxia-specific
250 effects, we utilized the R package nichenetr (v1.0.0), which uses information about expression of
251  cognate ligands, receptors, signaling pathways, and genomic targets to infer cell communication
252  patterns[28]. Differential gene expression analysis for P3 vs. P14, or hyperoxia vs. normoxia
253 groups were used in the NicheNet analysis. To prioritize results, analysis was limited to signaling
254  contributing to the effects in receiver cell types with >200 differentially expressed genes at P14
255  or in response to hyperoxia, but included all cell types as potential ligand senders. Background
256  expression of genes was specified with default approach used in NicheNet’s pipeline, using all
257 genes with >10% detection in a given cluster. While using cells from both experimental
258  conditions, developmental age, or hyperoxia-induced ligands from cell types that increase in

259  proportion with age or in hyperoxia samples were prioritized. For each “receiver” cell
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260  population, top 10 ligands predicted to drive developmental age, or hyperoxia-induced responses
261  were selected based on the Pearson correlation coefficient between the ligand-target regulatory
262  potential score of each ligand and the target indicator vector. Further, we assessed whether the
263  expression of ligands and receptors was upregulated, or whether the populations expressing the
264 ligands increased in proportion in P14 or hyperoxia samples, respectively. Finally, potential
265 target genes were inferred. Summaries of ligand-receptor interactions are represented in circos

266  plots.
267
268  2.15. Statistical analysis

269  All statistical analyses were performed with GraphPad Prism 8.0. The presence of potential
270  statistical outliers was determined by Grubbs’ test. Data are presented as means + SD.
271 Differences in case of two-member groups were evaluated either by unpaired Student’s t-test, or
272 multiple unpaired Student’s t-test with correction for multiple comparisons using the Holm-
273 Sidak method. P values < 0.05 were considered as significant and depicted as following: P values

274  <0.05: *; P values < 0.01: **; P values < 0.001: ***; P values < 0.0001: ****,
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275 3. RESULTS

276 3.1 The developing murine lung contains a population of L-MSC marked by the expression
277  of Ly6a

278  In order to understand the expression patterns unique to LY6A™ L-MSCs in the developing lung,
279  we took advantage of a publicly available sScCRNA-seq dataset from newborn mice[23]. Within
280 this dataset, we analyzed 7,994 stromal cells from normoxia or hyperoxia-exposed developing
281  mouse pups on postnatal days (P)3, 7, and 14, clustered into 6 distinct populations (Fig. 1A).
282  Based on the expression pattern of commonly used MSC markers (Supplementary fig. 2A) we
283  selected Ly6a as most suitable marker to identify L-MSC in lung stroma. We then subsetted the
284  Ly6a* cells, belonging almost exclusively to the Coll4al* fibroblasts, as a separate, seventh
285  cluster (Fig. 1B). Differential gene expression analysis revealed that Ly6a® L-MSCs could be
286  characterized by the expression of additional markers, including Lum, Serpinfl, or Dcn, with
287  Lum being the single most unique identifier of the population (Fig. 1C, Supplementary table 2).
288 It was previously shown to inhibit migration, invasion, and tube-formation in BM-MSCs[29],
289 and was implicated in epithelial-mesenchymal transition and fibrocyte differentiation[30]. While
290 Ly6a* L-MSCs expressed additional MSC markers Mcam, Alcam and Eng, their expression did
291  not serve as a reliable indicator of Ly6a™ L-MSCs (Fig. 1D).

292

293 3.2 The transcription profile and signaling activity of Ly6a* L-MSCs change significantly

294  during postnatal lung development

295  We first aimed to understand how the L-MSC population changes in the postnatal developing
296  lung. While the size of the population remained unchanged between P3 and P7, the second week
297  of lung development in healthy mice was associated with an increase in the size of the Ly6a*
298  stromal population (Figure 1E-F, Supplementary table 3). Similarly, differential state analysis
299  (DSA) in normally developing lungs revealed that most changes in gene expression occurred in
300 L-MSC between P7 and P14 (Fig. 1G, Supplementary table 4). Although the expression of genes
301 such as Apoe, Inmt, KIf9 and Abcal was drastically increased in L-MSCs, these genes were also
302  considerably upregulated in Ly6a” stromal cells (Supplementary table 4). The largest L-MSC -
303  specific expression changes were observed for Mmp3, C1sl, Podn, DIk1, and Agtr2 (Fig. 1H).
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304  Gene set enrichment analysis (GSEA) identified extracellular matrix (ECM) formation, vascular

305 development, and wound healing among the activated pathways (Fig. 11, Supplementary table 5).

306 Next, to further understand how L-MSCs send and receive signals during postnatal
307 development, we performed a cell communication analysis. We inferred developmental age-
308 induced cellular communications between Ly6a® L-MSCs and other lung populations using the
309 NicheNet tool [23,28] (Fig. 2A, Supplementary fig. 3-5, Supplementary table 6). During
310 development L-MSCs received signals from several cell populations, including endothelial cells,
311 interstitial macrophages (Int Mf), alveolar epithelial type 2 (AT2) cells, and stromal cells (Fig.
312 2A). Coldal, Fatl, Hmgb2, Vcaml and Hc were identified as most potent ligands, targeting
313  numerous downstream genes in the developing L-MSCs, including KIf9, Top2a and other
314  strongly de-regulated genes (Fig. 2A-B, Figure 1G, Supplementary table 4). Furthermore, L-
315 MSCs produced numerous ligands, targeting most lung cell populations, including itself (Fig.
316  2A), Among the most broadly acting ligands were Agt, App, and Apoe (Fig. 2C). Functional
317  enrichment analysis (FEA) revealed, that the expression of the L-MSC-produced ligands was
318  associated with pathways related to angiogenesis, cell migration, adhesion and chemotaxis, and

319 ECM organization (Supplementary fig. 2B, Supplementary table 7).
320

321 3.3 The transcription profile and signaling activity of Ly6a* L-MSC change significantly
322 during postnatal lung development in response to hyperoxia

323  Hyperoxia induced an increase in proportion of Ly6a* stromal cells as determined by scRNA-seq
324 analysis at P14 (Fig. 1F, Supplementary table 3). This was consistent with increased proportion
325 of LY6A" stromal cells in hyperoxia-exposed lungs at P7 as measured by flow cytometry
326  (Supplementary fig. 2C-D). In order to identify hyperoxia-induced changes in gene expression
327  specific to Ly6a® L-MSCs, we performed a DSA for both, Ly6a* L-MSC population and non-
328  progenitor Ly6a  stromal cells (Supplementary table 8). Hyperoxia-induced expression changes
329 most distinctive of Ly6a® L-MSCs are illustrated in Fig. 3A. Exposure to hyperoxia was
330 associated with Ly6a* L-MSCs - specific increase in expression of multiple pro-inflammatory
331 (Cxcl1, Ccl2), as well as pro-fibrotic and anti-angiogenic (Timpl, Serpina3n) genes (Fig. 3A,
332 Supplementary table 8). GSEA of hyperoxia-induced changes in gene expression revealed an

333  activation in inflammatory pathways, as well as decrease in pathways associated with arterial
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334  development and morphogenesis (Fig. 3B, Supplementary table 9). When inspecting pathways
335 altered by hyperoxia exclusively in Ly6a*, but not Ly6a" stromal cells, activation of cytokine and
336 chemokine signaling, cell cycle regulation, and senescence were most noticeable (Supplementary
337  fig. 2E, Supplementary table 9).

338 To further understand the faith of Ly6a® L-MSCs in hyperoxia-induced injury, we
339  performed a cell communication analysis using the NicheNet tool, inferring hyperoxia-induced
340 cellular communications[23,28] (Fig. 3C, Supplementary fig. 6-7, Supplementary table 10).
341 Ly6a* L-MSCs in hyperoxia-exposed lungs received signals from several cell populations,
342 including immune cells, capillary and arterial endothelial cells, mesothelial cells and Col13al*
343  fibroblasts (Fig. 3C). Further, we inferred genes in Ly6a* L-MSCs most likely to be targeted by
344  the received signals (Fig. 3D). Multiple ligands, such as Apoe, llla, Ifng and Mmp9 were
345  predicted to target the expression of pro-inflammatory, pro-fibrotic and anti-angiogenic genes
346  discussed above, including Timpl, Cxcll and Icaml (Fig. 3D). Expression of these target genes
347  was elevated in Ly6a™ L-MSCs by hyperoxia exposure (Fig. 3A). Finally, ligands produced by
348 Ly6a" L-MSCs affected multiple cell populations, including alveolar macrophages, ciliated and
349  AT2 cells, capillary and vein endothelium and other stromal populations. Among the most
350 broadly acting ligands produced by Ly6a® L-MSCs were Bmp4, Bmp5, Col4al and Tnc (Fig.
351  3A). Inferred target genes in receiving cells targeted by majority of these ligands included
352 Ccndl, Cdknla, lcaml and Hmox1 (Fig. 3E). According to FEA, expression of the L-MSC-
353  produced ligands were associated with pathways related to vessel morphogenesis, epithelial cell
354  proliferation, cell chemotaxis, and immune homeostasis and response (Supplementary fig. 2F,

355  Supplementary table 11).
356
357 3.4 Murine LY6A* L-MSCs localize to perivascular regions of the developing lung

358  Next, we aimed to localize the Ly6a* L-MSCs in the developing lung using FISH. L-MSCs were
359 identified as Ly6a*/Coll4al® cells. L-MSCs in both, normally and aberrantly-developing lungs
360 localized to perivascular regions of large vessels with more double-positive cells observed in

361  hyperoxia-exposed lungs (Fig. 4A).
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362 Additionally, we aimed to validate some of the novel normoxic and hyperoxic L-MSC
363  markers as suggested by scRNA-seq analysis (Fig. 1C, Fig. 3A). Ly6a" L-MSCs were co-stained
364  for the hyperoxia-associated markers Timpl and Serpina3n (Fig. 4B and 4C, respectively). In
365 both instances triple-positive cells were observed in the regions adjacent to large vessels
366  (highlighted by white squares in low-magnification panels). These cells were not only more
367 abundant in the lungs from BPD mice, but the expression levels of both, Timpl and Seprina3n

368  were increased in the diseased lungs (see higher-magnification panels Fig. 4B-C).
369

370 3.5 Hyperoxia exposure does not impact clonal or differentiation potential of LY6A* L-
371  MSCs

372 In order to verify their progenitor cell-like properties, we isolated and studied LYBA"™ L-MSCs
373  from healthy and hyperoxia-exposed developing mouse pups. An arrest in lung development was
374  induced by exposing newborn mouse pups to normobaric hyperoxia (85% O>) (Fig. 5A). CD31"
375 /CD45/EpCAMT/LYBA* L-MSCs were isolated from seven days-old healthy (21% O2-exposed)
376  or diseased (85% O-exposed) mouse pups (Fig. 5B) and examined for the hallmarks of the MSC
377  phenotype in vitro. While lungs of hyperoxia-exposed pups consistently yielded higher numbers
378  of LYBA" L-MSCs (Fig. 5B), no differences in the appearance (Fig. 5C), differentiation capacity
379  (Fig. 5C), expression of surface markers (Fig. 5D), or clonal abilities (Fig. 5E) were observed
380  between the cells isolated from healthy and diseased animals. LY6A™ L-MSCs isolated from
381 both healthy and hyperoxia-exposed mice had a fibroblast-like appearance and expressed
382  classical markers of MSCs in vitro (Fig. 5C-D). In order to investigate their differentiation
383  capacity, LYBA" L-MSCs were induced to differentiate along the osteogenic, chondrogenic, and
384 adipogenic lineages. Both normoxia and hyperoxia-derived LY6A* L-MSCs produced
385  osteogenic and chondrogenic matrix (Fig. 5C). However, only a single sample of normoxia-
386 derived LYBA™ L-MSCs produced a small number of adipocytes, and no lipogenic
387 differentiation was observed in hyperoxia-derived LY6A" L-MSCs (data not shown). Postnatal
388  hyperoxia exposure had no effect on colony-forming capacity of LYBA™ L-MSCs as assessed by
389  single-cell plating colony-forming assay. Both normoxia and hyperoxia-derived LYBA* L-MSCs
390 produced colonies of various sizes. While larger colonies consisted of fibroblast-like spindle-

391 shaped cells, smaller colonies were formed by cells with a large cytoplasm (Fig. 5E).
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392  Inconsistent differentiation capacity and colony formation might suggest a heterogeneous nature
393  of the LY6A"™ L-MSCs population.

394
395 3.6 Cell culture alters the gene expression profile of LY6A* L-MSCs

396  For therapeutic applications, MSCs are typically culture expanded, then frozen, over the short-,
397  or long-term and thawed prior to administration. These various steps may alter the properties of
398 the cell product. In order to understand changes in the L-MSCs expression profile induced by
399  storage and culture, we performed a scRNA-seq analysis of cultured LYBA™ and LY6A™ lung
400 stromal cells isolated from seven days-old healthy (21% O2-exposed) or diseased (85% Oo-
401  exposed) mouse pups (Fig. 6A, Supplementary fig. 2C-D). We sequenced over 15,000 cultured
402 CD31/CD45/EpCAM/LYBA  and CD31/CD45/EpCAM/LY6A" cells and identified four
403  distinct clusters (Fig. 6A-C, Supplementary tables 12-13). While normoxia and hyperoxia-
404  derived LY6A" stromal cells contributed to all four clusters, very few LY6A* cells could be
405 found in clusters 2 and 3 (Fig. 6B). The presence of distinct clusters within the L-MSCs
406  population is consistent with the heterogeneous phenotype of cultured L-MSCs described above
407  (Fig. 5E). In line with this finding, the highest levels of routine MSC markers, such as Thyl,
408  Eng, Alcam or Mcam, were found in the largest cluster 0, while very little expression was seen in
409  the two smallest clusters (Fig. 6D). While still expressing routine MSC markers to some level,
410 cluster 1 was characterized by its distinct expression of Cck, previously found to attenuate p53-
411  mediated apoptosis in lung cancer [31] (Figure 3A-C). Cluster 2 was distinguished by the
412  expression of pro-adipogenic markers, such as Igfbp2 and Col4al, as well as markers of
413  myofibroblasts (Des) and alveolar epithelium (Krt8 and Prnp2) (Fig. 6C, Supplementary table
414  13). Cluster 3 was characterized by the expression of multiple osteogenic markers, including
415  Cryab, Postn and Ngfr. Interestingly, the expression of both Postn, as well as another cluster 3
416  marker Col18al, was previously reported in BPD patients and hyperoxia-exposed developing
417  mice [32,33].

418 Next, we aimed to identify the best markers for cultured L-MSCs (Supplementary tables
419  14-18). We compared the gene expression profiles of LY6A" and LY6A" stromal cells
420  (Supplementary tables 15-18) and identified differentially expressed genes between normoxia-

421  and hyperoxia-derived subsets of these populations (Supplementary tables 17-18). In comparison
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422  to LYBA" cells, LYBA™ cells were characterized by high expression of Actg2, Colla2, Serpinfl,
423  Prrx1 and Lxn, and by low expression of smooth muscle cell (SMC) marker TagIin2[34], alveolar
424  progenitor marker Tm4sf1[35], and Prdx6 (Fig. 6E, Supplementary tables 15-16). From these
425  markers hyperoxia exposure further specifically increased the expression of Actg2, and decreased
426  the expression of TagIn2, Tm4sfl and Prdx6 in LYBA" cells. Hyperoxic LYBA™ cells were
427  additionally distinguished by expression of Ptn, Adamts5, Rbp, and Col3al (Fig. 6E,
428  Supplementary table 17). Expression of Prrx1 and Serpinfl is known to favour an osteogenic
429  phenotype, and Serpinfl is known to inhibit adipogenesis[36,37].

430 In order to identify L-MSCs expression patterns maintained after cell culture and storage,
431  we next compared expression of the most promising markers of Ly6a* L-MSCs in both, in situ
432  and in vitro datasets from cells isolated at P7 (Supplementary fig. 2G-H). This analysis revealed
433 that a large portion of the expression profile characteristic for Ly6a* L-MSCs in situ
434  (Supplementary fig. 2G-H) is lost when cells are frozen and cultured, including the expression of
435  promising markers, such as Lum, Ptn, Dcn, or Pil6 (Supplementary fig. 2H). Furthermore, while
436  the expression pattern of some markers, such as Serpina3n or C3 persisted in cultured cells, the
437  portion of the cells expressing the gene was diminished (Fig. 7A-B). The most suitable in situ or
438 in vitro-specific identifying markers of Ly6a* L-MSCs are depicted in Fig. 4A-B. Among the
439  most stable markers of Ly6a™ L-MSCs, resistant to changes induced by culture, were Serpinfl
440 and Postn (Fig. 7A-B, Supplementary fig. 2G-H). In order to confirm the viability of Serpinfl as
441  potential novel marker for L-MSCs we performed FISH in developing lungs at P14. Triple-
442  positive cells could be found in lungs of both, normoxic and hyperoxic mice (Fig. 7C). No

443  differences were apparent in Serpinfl expression intensity between the two groups.

444 Finally, new expression patterns arose particularly in hyperoxia-derived Ly6a* L-MSCs
445  after cell culture. While a high Ptn, Lum, Dcn, Col3a2 and Coll4al expression was initially
446  characteristic of both, hyperoxia and normoxia-derived Ly6a* L-MSCs, in cultured L-MSCs this
447  was true only for the hyperoxia-derived Ly6a®™ L-MSCs (Supplementary fig. 2G-H). This
448  expression pattern denotes, that not only does the L-MSC transcriptome change in culture, but
449  that the cells isolated from lungs of diseased mice tend to retain their expression profile and,

450  potentially, progenitor-like nature longer.

451
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452  DISCUSSION

453  Our current knowledge regarding the identity and properties of tissue resident MSCs remains
454  limited. Most studies analyse L-MSCs in culture after isolation with one, or several MSC
455  markers. However, no explicit rules regarding which markers represent the L-MSC population
456  the best exist to date. The progenitor-like characteristics of these cells have been established in
457  culture [13,14], but it is not yet known why L-MSCs fail to prevent the lung injury or restore
458  damage in the lung. While L-MSCs were previously found in bronchoalveolar lavage of BPD
459  patients [50], it is not known whether this is due to increased apoptosis and subsequent shedding
460 from the lung or is a sign of activation and proliferation of L-MSC and hence of increased
461  numbers in BPD patients. Here, we provide an extensive SCRNA-seq based analysis of L-MSCs
462 in developing mouse lung, as well as in culture. We characterize the changes in trancriptomic
463  profile induced in L-MSCs by developmental age, exposure to hyperoxia, and culture. Our study
464  further provides an insight into communication between L-MSCs and other cell populations in
465 the normally and abnormally developing lung. Finally, we propose novel markers for
466  identification of L-MSCs in the developing lung.

467 The use of omics approaches to study tissue-specific MSCs in vivo has been previously
468  proposed [38]. In the study presented here, we utilize SSRNA-seq to study L-MSCs immediately
469 after isolation (in situ) without confounding procedures, such as FACS, cell culture and storage,
470 and hence preserve the in vivo activation status of the different lung populations as much as
471  possible. We selected Ly6a to identify L-MSCs for 2 reasons: i) Ly6a is one of the most
472 commonly used L-MSC markers and its expression has been shown in specific progenitor-like
473  populations, ii) Ly6a was the only known MSC marker forming a visible subcluster within the
474  lung mesenchyme of early postnatal mouse pups. We identified novel markers of L-MSCs,
475 including Lum, Serpinfl, and Dcn. Next, we showed how the L-MSC’s transcriptome changes
476  during the course of normal lung development and in hyperoxia, and explored the
477  communication between L-MSCs and other lung cell populations.

478 Hyperoxia-exposure, used as a model for BPD, was associated in Ly6a* L-MSCs with
479  increased expression of multiple pro-inflammatory (Cxcll, Ccl2), pro-fibrotic and anti-
480 angiogenic (Timpl, Serpina3n) genes. Similarly, increased expression of both, Timpl and Ccl2

481  was previously reported in hyperoxia-exposed rodents [39,40], and in plasma [41] or tracheal
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482  aspirates (TA) [42] of BPD patients. Timpl expression was further increased in fibrotic foci in
483  chronic BPD [43] and in the lungs of ventilated newborns [44]. GSEA further confirmed the
484  activation of inflammatory and pro-fibrotic pathways, and a decrease in sprouting angiogenesis
485 and vessel morphogenesis in the hyperoxia-exposed developing lungs. To further explore the
486  role L-MSCs play in cell signaling during the development, we performed a cell communication
487  inference analysis. L-MSCs in healthy developing lungs received ligands secreted mainly from
488  endothelial, immune and other stromal cells. L-MSCs signalled back to the majority of lung cell
489  populations with a selected set of ligands (Fig. 2). Upon hyperoxia exposure, L-MSCs received
490 ligands primarily from immune and endothelial cells, including I11a, Mmp9, Ifng, and Fasl (Fig.
491  3). Interestingly, multiple ligands received by L-MSCs were predicted to target the expression of
492  pro-inflammatory, pro-fibrotic and anti-angiogenic genes increased in hyperoxia-exposed L-
493  MSCs, such as Timpl, Cxcll and Icaml. IFNy and MMP9, which target the expression of both
494  Timpl and Cxcl1, were previously implicated in development of alveolar hypoplasia [45] and an
495 increased expression of IFNy was reported in TA of BPD patients [27,46]. Development of BPD
496  was also associated with increased TA and plasma protein levels of ICAM1 [47,48]. IL1A was
497  also shown to induce an inflammatory phenotype in lung fibroblasts [49]. Additionally, Fasl”
498 immune cells were shown to induce fibroblast cell death [50,51], and its overexpression was

499  associated with alveolar apoptosis and disturbed alveolar and vascular development [52].

500 Next, we investigated how the L-MSCs’ transcriptome changed due to culture and
501  storage, both necessary steps for the preparation of a cell therapeutic product. SCRNA-seq
502 analysis revealed, that following isolation, storage and culture, most L-MSCs retain the
503  expression of MSC markers, including Ly6a®. Cultured L-MSCs showed moderate ability to
504 differentiate into chondrocytes and osteoblasts. However, we observed only one instance of
505  successful differentiation along the adipogenic lineage, consistent with previous studies of L-
506 MSCs in developing rats [13]. Inconsistent differentiation capacity could be attributed to
507 heterogeneity within the L-MSC population as indicated by the variable size and morphology of
508 L-MSC-derived colonies (Fig. 5). Importantly, such heterogeneity could indicate the existence of
509 L-MSCs with varying progenitor-like capabilities, most likely impacting their therapeutic
510 efficacy. Further, more detailed characterization of different L-MSCs subpopulations might be
511  necessary in order to prepare a superior therapeutic product. SCRNA-seq revealed considerable
512  changes in the transcriptome of L-MSCs in culture, implying that the cells studied and
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513 maintained in vitro for the purposes of therapeutic interventions are appreciably altered
514 compared to L-MSCs in situ (Fig. 6). Interestingly, we observed that the culture-induced
515  transcription changes are less pronounced in L-MSCs derived from hyperoxia-exposed animals.
516  This might suggest that hyperoxia primes L-MSCs to maintain certain characteristics, potentially
517 in an attempt to trigger a repair mechanism. While the organism’s own resident L-MSCs fail to
518 prevent the hyperoxia-induced lung damage, a therapeutic use of injury-primed L-MSCs might
519 be more beneficial than L-MSCs from healthy individuals. Interestingly, tissue origin and
520  microenvironment were shown to significantly impact the behaviour and therapeutic efficacy of
521  MSCs [53,54]. Moreover, conditioned media from BM-MSCs exposed ex vivo to hyperoxia
522  exhibited superior therapeutic effects in the hyperoxia-induced rat BPD model when compared to

523  media from BM-MSCs which were not pre-conditioned [55].

524 The localization of L-MSCs in the developing lungs has not yet been described. Here, we
525 localized the L-MSC cells in the perivascular regions of both, heathy and diseased developing
526  lungs by FISH. The Ly6a" L-MSCs in the hyperoxia-exposed lungs co-expressed Timpl and
527  Serpina3e, confirming the results of sSCRNA-seq analysis. Finally, as Ly6a is not expressed in
528 human tissues, we aimed to identify additional markers to label L-MSCs, both in situ and in
529  vitro. Lum, identified as marker of L-MSCs in situ, is known to be produced by MSCs. Within
530 the lung, it’s expression was localized to peripheral lung and vessel walls [56]. While sScCRNA-
531  seq revealed Lum as a promising L-MSCs marker in situ, it’s expression in culture was preserved
532 only in a small fraction of L-MSCs isolated from hyperoxia-exposed animals (Fig. 7A). In
533  comparison, the expression of Serpinfl was well preserved in vitro, with the expression slightly
534 increased in hyperoxic cells. Interestingly, Serpinfl expression was previously reported to be
535 increased in hyperoxia-exposed newborn mice and Serpinfl” animals were protected from
536  hyperoxia-induced lung injury [57]. Serpinfl is also known as an anti-angiogenic and anti-
537  migratory marker associated with aging MSCs [57,58]. In situ, Serpinfl colocalized well with
538 Ly6a*/Coll4al” cells in both healthy and diseased lungs, suggesting Serpinfl as promising new
539  marker for L-MSCs (Fig. 7).

540 To our knowledge, this is the first detailed report studying the characteristics and
541  behaviour of L-MSC in situ and in vitro, during both health and disease. We unravelled the
542  transcriptome and cellular communication of this lung resident cell population by scRNA-seq in
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543  order to mechanistically understand its endogenous repair capabilities, as well as its potential use
544  as an exogenous cell therapeutic product. In addition, we have established several markers that
545 can be used to identify L-MSC in vitro and in vivo, both in healthy and diseased lungs.
546  Additional studies will be needed to further unravel the heterogeneity of this population, as well

547  as their therapeutic capabilities.
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Figure 1. Gene expression profile of Ly6a™ L-MSCs during late lung development. (A) Six
clusters of stromal cells were previously identified in developing lungs. In the dataset re-analyzed
here mice were exposed to room air (21% O2) or hyperoxia (85%0.) from P1 onwards and lungs
were harvested at P3, P7 and P14. (B) UMAP plots showing the expression of Ly6a mRNA (left
panel) within the lung stroma and new cluster identities, including the Ly6a” L-MSCs. (C)
Heatmap of top ten most differentially expressed genes across stromal clusters depicted in panel
(B). (D) Dotplot depicting expression of routine MSC markers in lung stromal populations. (E)
UMAP plots depicting the distribution of lung stromal cells based on the developmental age and
oxygen exposure. (F) Relative contribution of Ly6a" and Ly6a” cells in developing lung stroma at
P3, P7 and P14. n = 6 animals/group. Data are presented as means + SD. Statistical analyses were
performed with GraphPad Prism 8.0 and the presence of potential statistical outliers was
determined by Grubbs’ test. Significance was evaluated by multiple unpaired Student’s z- test with
Holm-Sidak correction for Ly6a* and Ly6a cells separately. P values < 0.05 were considered
significant and are depicted. (G) Dotplot depicting the expression of most differentially expressed
genes in Ly6a” L-MSCs during normal lung development. (H) Dotplot depicting the expression of
genes that are differentially expressed specifically in Ly6a” L-MSCs and not in other lung stromal
clusters during normal lung development. (I) Selected developmental age-associated signalling
pathways in the Ly6a” L-MSC cluster identified by gene set enrichment analysis (GSEA). All
terms are significantly enriched (adjusted p-value < 0.05). Normalized enrichment scores (NES)
values were computed by gene set enrichment analysis on fold change-ranked genes. Expression
values in Heatmap represent Z-score-transformed log(TP10k+1) values. Expression levels in
Dotplots and UMAP plots are presented as log(TP10k+1) values. Log(TP10k+1) corresponds to
log-transformed UMIs per 10k.

Data depicted in 1A were adapted from Hurskainen M, Mizikova I, Cook DP, et al. Single
cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat

Commun 2021;12:1565.

Figure 2. Age-associated gene expression and signalling in the developing Ly6a*” L-MSCs. (A)
Circos plot showing inferred cell communications between Ly6a” L-MSCs and other populations
in the developing mouse lung. Cell communications associated with increasing developmental age

are depicted. Cell types in the top right correspond to receiver populations with the largest
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expression changes in response to increasing age. These cell types are connected to the sender cell
types expressing ligands predicted to promote this response. Ligands expressed by the same cell
population are coloured the same. (B) Heatmap depicting predicted target genes for ligands most
likely to be received by normally developing Ly6a”™ L-MSC population as indicated in (A). The
intensity of expression is indicated as specified by the colour legend. (C) Heatmap depicting
predicted target genes for ligands sent by Ly6a” L-MSC population in normally developing lungs

as indicated in (A). The intensity of expression is indicated as specified by the colour legend.

Figure 3. Hyperoxia-induced gene expression and signalling in the developing Ly6a* L-
MSC:s. (A) Dotplot depicting the expression of markers specifically altered by hyperoxia exposure
in Ly6a” and Ly6a cells in the developing mouse lung. (B) Selected hyperoxia-regulated signalling
pathways in the Ly6a” L-MSC cluster identified by gene set enrichment analysis (GSEA). All
terms are significantly enriched (adjusted p-value < 0.05). Normalized enrichment scores (NES)
values were computed by gene set enrichment analysis on fold change-ranked genes. (C) Circos
plot showing inferred cell communications between Ly6a’” L-MSCs and other populations in the
developing mouse lung. Cell communications induced by exposure to hyperoxia are depicted. Cell
types in the top right correspond to receiver populations with the largest expression changes in
response to hyperoxia. These cell types are connected to the sender cell types expressing ligands
predicted to promote this response. Ligands expressed by the same cell population are coloured
the same. (D) Heatmap depicting predicted target genes for ligands most likely to be received by
Ly6a’ L-MSC population in hyperoxia as indicated in (C). The intensity of expression is indicated
as specified by the colour legend. (E) Heatmap depicting predicted target genes for ligands sent
by Ly6a’ L-MSC population in hyperoxia as indicated in (C). The intensity of expression is

indicated as specified by the colour legend.

Figure 4. Identification of Ly6a™ L-MSCs in the developing lung. (A) Fluorescent RNA in situ
hybridization showing localization of L-MSCs identified by the co-expression of Ly6a (white) and
Coll4al (green) in lungs of room air (21% O2) or hyperoxia (85%02)-exposed developing mice.
Scale bar = 200um for low-magnification (5%, top panels) windows, 50um for higher-
magnification (40x, bottom left panels) windows, and 20pum for high-magnification (63 %, bottom

right panels) windows. Four 14-days old animals/group were analysed. Expression levels in
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Dotplot are presented as log(TP10k+1) values. Log(TP10k+1) corresponds to log-transformed
UMIs per 10k. (B) Fluorescent RNA in situ hybridization showing co-expression of Ly6a (white),
Coll4al (green), and Timpl (pink) in lungs of room air (21% O2) or hyperoxia (85%0:)-exposed
developing mice. Scale bar = 200um for low-magnification (5x, top left) windows, 50um for
higher-magnification (40%, top right) windows, and 20um for high-magnification (63 %, bottom
panels) windows. Four 14-days old animals/group were analysed. (C) Fluorescent RNA in situ
hybridization showing co-expression of Ly6a (white), Coll4al (green), and Serpina3n (pink) in
lungs of room air (21% O3) or hyperoxia (85%02)-exposed developing mice. Scale bar = 200pm
for low-magnification (5%, top left) windows, 50um for higher-magnification (40x%, top right)
windows, and 20um for high-magnification (63, bottom panels) windows. Four 14-days old

animals/group were analysed.

Figure 5. Characterization of LY6A" L-MSCs in normal and impaired mouse lung
development. (A) Mouse pups were exposed to room air (21% Oz, grey) or hyperoxia (85%02,
blue) from P1 onwards. Mice were harvested on postnatal day (P)7. Representative histological
sections from lungs developing in 21% O or 85% Oa. Lung morphometry was quantified by the
mean linear intercept (MLI) measurement. n = 7 animals/group. Scale bar = 100pm. (B) LY6A"
L-MSCs were identified by flow cytometry as CD45-AF647/CD31-FITC/CD326(EPCAM)-
PeCy7/LY6A(SCA1)-BV421" cells and their proportion in lung homogenates was quantified. n =
8-9 animals/group. (C) Representative images of undifferentiated LY6A " L-MSCs and LY6A™" L-
MSCs differentiated towards osteogenic and chondrogenic lineages and stained with Alizarin Red
S or Alcian Blue, respectively. Scale bar = 250um. Experiments were performed in quadruplets.
(D) Expression of routine MSCs surface markers in cultured LY6A™ L-MSCs isolated from room
air (21% O., grey bars) or hyperoxia-exposed (85%0:, purple bars) developing pups as determined
by flow cytometry. n = 3-4 animals/group. (E) Quantification and representative images of colony
formation of cultured LY6A"™ L-MSCs isolated from room air (21% Oa, grey bars) or hyperoxia-
exposed (85%0;, purple bars). n = 4 animals/group. Scale bar =100pum. All data are presented as
means + SD. Statistical analyses were performed with GraphPad Prism 8.0. The presence of
potential statistical outliers was determined by Grubbs’ test. Significance was evaluated by

unpaired Student’s #-test for analysis in panels (A) and (B), and by multiple unpaired Student’s #-
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test with Holm-Sidak correction in panels (D) and (E). P values <0.05 were considered significant

and are depicted.

Figure 6. Gene expression profile of cultured normoxia and hyperoxia-derived LY6A™ L-
MSCs. (A) LY6A" and LY6A" stromal cells isolated from lungs of room air (21% O>) or hyperoxia
(85%02)-exposed developing mice were frozen, cultured and sequenced at passage 3. n = 3
animals/group. scRNA-seq identified four clusters of cultured LY6A™ and LY6A™ stromal cells.
(B) Relative distribution of room air (21% O.) or hyperoxia (85%0:)-derived LY6A" and LY6A"
cells to the four different clusters. n = 3 animals/group. (C) Heatmap of top ten most differentially
expressed genes across clusters depicted in panel (A). (D) Violin plots depicting expression of
routine MSC markers in cultured stromal populations. (E) Dotplot depicting expression of oxygen-
specific markers in LY6A" and LY6A™ cultured lung stromal cells. Expression values in Heatmap
and violin plots represent Z-score-transformed log(TP10k+1) values. Expression levels in Dotplot
and UMAP plot are presented as log(TP10k+1) values. Log(TP10k+1) corresponds to log-
transformed UMIs per 10k.

Figure 7. Identification of novel markers for in situ and cultured Ly6a* L-MSCs.

(A) Identifying markers were first established in the in situ, or cultured Ly6a” and Ly6a  lung
stromal cells based on Supplementary figures 1G-H. Dotplot depicts the expression levels of those
markers, most suitable for identification of Ly6a” and Ly6a” lung stromal cells in sifu in normoxic
or hyperoxic animals at P7. (B) Identifying markers were first established in the in situ, or cultured
Ly6a" and Ly6a” lung stromal cells based on Supplementary figures 1G-H. Dotplot depicts the
expression levels of those markers, most suitable for identification of normoxia-derived and
hyperoxia-derived LY6A" and LY6A™ lung stromal cells in culture. (C) Fluorescent RNA in situ
hybridization showing co-expression of Ly6a (white), Coll4al (green), and Serpinfl (pink) in
lungs of room air (21% O32) or hyperoxia (85%02)-exposed developing mice. Scale bar = 200um
for low-magnification (5%, top left) windows, 50um for higher-magnification (40x, top right)
windows, and 20pum for high-magnification (63%, bottom panels) windows. Four 14-days old

animals/group were analysed.

Supplementary figure 1. Flowchart depicting the allocation of mice to experimental groups.
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Flowchart illustrating the group identity of mice sacrificed for the purpuses of the present study.
Purple color depicts the groups allocated to hyperoxia (85% O2). Mice sacrificied as a part of

previously published scRNA-seq dataset from developing newborn mice are not included.

Supplementary figure 2. Identification of Ly6a* L-MSCs in the developing lung.

(A) UMAP plots depicting the expression of commonly used MSC markers in lung stromal cells
isolated from lungs of room air (21% O3) or hyperoxia (85%0:)-exposed developing mice. (B)
Metascape functional enrichment analysis for ligands indicated in Fig. 2C. Developmental age-
associated summary pathways relevant to lung are depicted. (C) Quantification of FACS results
in lung homogenates. n = 3 animals/group. Data are presented as means = SD. Significance was
evaluated by ordinary one-way ANOVA with Tukey multiple comparisons correction test. P
values < 0.05 were considered significant and are depicted. LY6A™ (D) L-MSCs were isolated
from developing mice at P7 and identified by flow cytometry as CD45/CD31/CD326(EPCAM)
/LY6A(SCAL1)" cells. n = 3 animals/group. (E) Selected hyperoxia-regulated signalling pathways
specific only to the Ly6a” L-MSC cluster identified by gene set enrichment analysis (GSEA). All
terms are significantly enriched (adjusted p-value < 0.05). Normalized enrichment scores (NES)
values were computed by gene set enrichment analysis on fold change-ranked genes. (F)
Metascape functional enrichment analysis for ligands indicated in Fig. 3E. Hyperoxia-regulated
summary pathways relevant to lung are depicted. (G) Identifying markers were first established in
the P7 in situ, or cultured Ly6a" and Ly6a” lung stromal cells based on Supplementary tables 4, 15,
16, 17 and 18, as well as Fig. 3A and 6E. The expression levels of these identifying markers are
depicted here in the in sifu lung stromal cells from the room air or hyperoxia-exposed mice at P7.
The intensity of expression is indicated as specified by the colour legend. (H) Identifying markers
were first established in the P7 in situ, or cultured Ly6a” and Ly6a” lung stromal cells based on
Supplementary tables 4, 15, 16, 17 and 18, as well as Fig. 3A and 6E. The expression levels of
these identifying markers are depicted here in the cultured lung stromal cells from the room air or
hyperoxia-exposed mice. The intensity of expression is indicated as specified by the colour legend.
Expression values in Heatmap represent Z-score-transformed log(TP10k+1) values.

Log(TP10k+1) corresponds to log-transformed UMIs per 10k.
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Supplementary figure 3. Developmental age-associated ligand and receptor activity affecting
lung endothelial and epithelial populations. Panels A-E relate to endothelial populations, panels
F-J relate to epithelial populations. (A, F) Heatmap depicting top 10 ligands predicted to affect the
listed lung cell populations (coloured red). (B, G) Heatmap depicting average log(TP10k+1)
expression values of ligands for each cell population in the P14 samples (depicted in violet). (C,
H) Heatmap depicting the log(fold change) expression of ligands in the P14 samples (depicted in
red/blue). (D, I) Heatmap depicting putative receptors for each ligand according to the prior
interaction potential in NicheNet’s model (depicted in green). (E, J) Heatmap depicting average
log(TP10k+1) expression values of receptors for each cell population (depicted in violet).
Expression values in violin plots represent Z-score-transformed log(TP10k+1) values. Expression
levels in UMAP plots and Dotplots are presented as log(TP10k+1) values. Log(TP10k+1)
corresponds to log-transformed UMIs per 10k.

Supplementary figure 4. Developmental age-associated ligand and receptor activity affecting
lung stromal and myeloid populations. Panels A-E relate to stromal populations, panels F-J
relate to myeloid populations. (A, F) Heatmap depicting top 10 ligands predicted to affect the
listed lung cell populations (coloured red). (B, G) Heatmap depicting average log(TP10k+1)
expression values of ligands for each cell population in the P14 samples (depicted in violet). (C,
H) Heatmap depicting the log(fold change) expression of ligands in the P14 samples (depicted in
red/blue). (D, I) Heatmap depicting putative receptors for each ligand according to the prior
interaction potential in NicheNet’s model (depicted in green). (E, J) Heatmap depicting average
log(TP10k+1) expression values of receptors for each cell population (depicted in violet).
Expression values in violin plots represent Z-score-transformed log(TP10k+1) values. Expression
levels in UMAP plots and Dotplots are presented as log(TP10k+1) values. Log(TP10k+1)
corresponds to log-transformed UMIs per 10k.

Supplementary figure 5. Developmental age-associated ligand and receptor activity affecting
lung lymphoid and mesothelial populations. Panels A-E relate to lymphoid populations, panels
F-J relate to mesothelial populations. (A, F) Heatmap depicting top 10 ligands predicted to affect
the listed lung cell populations (coloured red). (B, G) Heatmap depicting average log(TP10k+1)
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expression values of ligands for each cell population in the P14 samples (depicted in violet). (C,
H) Heatmap depicting the log(fold change) expression of ligands in the P14 samples (depicted in
red/blue). (D, I) Heatmap depicting putative receptors for each ligand according to the prior
interaction potential in NicheNet’s model (depicted in green). (E, J) Heatmap depicting average
log(TP10k+1) expression values of receptors for each cell population (depicted in violet).
Expression values in violin plots represent Z-score-transformed log(TP10k+1) values. Expression
levels in UMAP plots and Dotplots are presented as log(TP10k+1) values. Log(TP10k+1)
corresponds to log-transformed UMIs per 10k.

Supplementary figure 6. Hyperoxia-induced ligand and receptor activity affecting lung
stromal and epithelial populations. Panels A-E relate to stromal populations, panels F-J relate to
epithelial populations. (A, F) Heatmap depicting top 10 ligands predicted to affect the listed lung
cell populations (coloured red). (B, G) Heatmap depicting average log(TP10k+1) expression
values of ligands for each cell population in the hyperoxia samples (depicted in violet). (C, H)
Heatmap depicting the log(fold change) expression of ligands in hyperoxia samples (depicted in
red/blue). (D, I) Heatmap depicting putative receptors for each ligand according to the prior
interaction potential in NicheNet’s model (depicted in green). (E, J) Heatmap depicting average
log(TP10k+1) expression values of receptors for each cell population (depicted in violet).
Expression values in violin plots represent Z-score-transformed log(TP10k+1) values. Expression
levels in UMAP plots and Dotplots are presented as log(TP10k+1) values. Log(TP10k+1)
corresponds to log-transformed UMIs per 10k.

Supplementary figure 7. Hyperoxia-induced ligand and receptor activity affecting lung
endothelial and myeloid populations. Panels A-E relate to endothelial populations, panels F-J
relate to myeloid populations. (A, F) Heatmap depicting top 10 ligands predicted to affect the
listed lung cell populations (coloured red). (B, G) Heatmap depicting average log(TP10k+1)
expression values of ligands for each cell population in the hyperoxia samples (depicted in violet).
(C, H) Heatmap depicting the log(fold change) expression of ligands in hyperoxia samples
(depicted in red/blue). (D, I) Heatmap depicting putative receptors for each ligand according to
the prior interaction potential in NicheNet’s model (depicted in green). (E, J) Heatmap depicting

average log(TP10k+1) expression values of receptors for each cell population (depicted in violet).
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Expression values in violin plots represent Z-score-transformed log(TP10k+1) values. Expression
levels in UMAP plots and Dotplots are presented as log(TP10k+1) values. Log(TP10k+1)
corresponds to log-transformed UMIs per 10k.
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