
Dynamical differential covariance recovers directional
network structure in multiscale neural systems

Yusi Chen,1,2∗ Burke Q. Rosen,4 Terrence J. Sejnowski1,2,3∗

1Computational Neurobiology Laboratory,
Salk Institute for Biological Sciences, La Jolla, CA, 92037
2Section of Neurobiology, Division of Biological Sciences,

University of California San Diego, La Jolla, CA, 92093
3Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093
4Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093

∗To whom correspondence should be addressed: cyusi@ucsd.edu(Y.C.); terry@salk.edu(T.J.S.)

Investigating causal neural interactions are essential to understanding sub-

sequent behaviors. Many statistical methods have been used for analyzing

neural activity, but efficiently and correctly estimating the direction of net-

work interactions remains difficult (1). Here, we derive dynamical differential

covariance (DDC), a new method based on dynamical network models that

detects directional interactions with low bias and high noise tolerance with-

out the stationary assumption. The method is first validated on networks with

false positive motifs and multiscale neural simulations where the ground truth

connectivity is known. Then, applying DDC to recordings of resting-state func-

tional magnetic resonance imaging (rs-fMRI) from over 1,000 individual sub-

jects, DDC consistently detected regional interactions with strong structural

connectivity. DDC can be generalized to a wide range of dynamical models

and recording techniques.
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Understanding the neural mechanisms underlying behavior requires knowing how neurons

interact with each other. Direct circuit tracing by connectomics studies (2–4) provides ground

truth, but at high cost and the resulting static connection matrix does not by itself reveal the

dynamical aspects of neural communication. This has motivated statistical methods (1, 5) to

estimate functional connectivity (FC). (We refer here to all methods based on correlation or

causation as FC (6)).

FC is often evaluated by estimating pairwise correlations, a symmetric measure that can-

not detect directional coupling or disambiguate two unconnected nodes confounded with high

correlation due to a common input (1, 7). Though far from causality, correlation provides an

intuitive description of co-variations between time series averaged across all samples. DDC

was also motivated by such measure of co-variations. More sophisticated methods including

Granger causality (8), cross convergent mapping (CCM) (9) and cross-dynamical delay dif-

ferential analysis (DDA) (10) use predictability to identify causal relationship between time

series. Other generative methods such as dynamic causal modeling (DCM) (11) and Bayes net

models (12, 13) search all possible causal graphs and fit the entire dataset to every hypothesis.

These mathematically involved methods work under particular assumptions, require a prodi-

gious amount of computation and does not scale well.

We previously introduced differential covariance (dCov) (14, 15), a directed FC estimation

method, and highlighted the performance of two matrices, ∆c, which calculates the correlation

between the derivative signal and the signal itself, and ∆p, which evaluates the partial covari-

ance between them. In simulated test cases, they detected network connections with higher

sensitivity than many of the methods reviewed in Smith et al (1). However, like many other FC

methods, dCov is empirical and does not depend on how the network activity was generated. In

this paper, we derive a direct link between dCov and dynamical network models, which leads

to a new class of estimators called dynamical differential covariance (DDC).
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Models of neural systems span a wide range of scales. At the microscopic level, the voltage

trace, calcium dynamics and firing rate of a single neuron are highly nonlinear. These dynamics

are often modeled using biophysical models based on voltage-gated ion channels. In contrast, at

the macroscopic level the collective activity of a population of neurons and interactions between

brain regions is often be approximated by linear dynamics because of ensemble averaging (5,

16, 17). For example, Abdelnour et al (16), used a linear forward model to predict correlations

in resting-state fMRI activity based on connectivity from diffusion MRI (dMRI). Their linear

model significantly outperformed nonlinear neural mass models, arguing for the linearity of

large-scale brain activities, especially when measured by fMRI BOLD signals dominated by

low frequencies.

We first derive DDC from a linear dynamical model in Eq. 1 for global recordings and a

nonlinear dynamical model in Eq. 2 for local neural recordings:

dx

dt
= Wx (1) dx

dt
= WR(x) (2)

The column vector x is the neural activity, such as the membrane voltage or fMRI signal, W is

the square connectivity matrix and R(x) is a nonlinear response function. Combining the above

equations with x yields:

〈dx
dt
,x〉 = W〈x,x〉

∆L := 〈dx
dt
,x〉〈x,x〉−1

(3)
〈dx
dt
,x〉 = W〈F (x),x〉

∆R := 〈dx
dt
,x〉〈R(x),x〉−1

(4)

where ∆L and ∆R are DDC estimators for W and the operator 〈, 〉 takes the outer product of

two vectors and performs time averaging.

The origin of the linear DDC estimator ∆L from a dynamical model provides an intuition

for its effectiveness in estimating W as the product of two matrices: The first is differential

covariance, which carries information about inputs. In a neuron this is the inward current from

synaptic inputs and in brain imaging it is related to changes in surrogates for local brain ac-
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tivity; In the second term, an entry in the partial covariance matrix is zero if and only if the

partial correlation between xi and xj is zero, which cancels the influence of common sources.

By combining information from input sinks and canceling information coming from common

sources it becomes possible to robustly estimate directional interactions.

A family of estimators arises from the DDC estimator ∆R for nonlinear dynamical systems

depending on R(x). Estimators can be adapted to the filtering effects from different recording

techniques, such as the slow kinetics of calcium signals, by choosing the nonlinear function

R(x) appropriately. Here, we use the rectified linear unit (ReLU), often used in artificial neural

networks (18), parameterized by a threshold (θ), and ∆ReLU is the corresponding nonlinear

DDC estimator. Intuitively, this threshold function should rectify low magnitude “noise” and

retain large signals.

In the Supplementary Material 1.3.1, we show analytically that in systems governed by

stochastic differential equations, DDC gives unbiased estimates of W and is robust to added

Brownian motion noise. Even when the simulated dynamics do not match the actual dynamics,

we find empirically that the DDC only has a small bias. This suggests that DDC can decrease

the systematic inference error due to model mismatch (19). We also prove that DDC can be

used to analyze nonstationary data whose higher-order statistics vary with time.

As a proof of principle, we first applied DDC to three-node networks with varying dynamics

and network structures (Fig. 1). The chain motif (Fig. 1A,B) and confounder motif (Fig. 1C)

were chosen because they both have a node pair (red dashed line) that is highly correlated but

with no physical connection, which is an ideal test of whether DDC can “explain away” spurious

correlations. We simulated both linear and sigmoid based nonlinear dynamics (Methods). Both

∆L and ∆ReLU correctly inferred the existence and direction of the ground truth connections

(Fig. 1) while the covariance matrix (Cov) failed to explain away false positive connections and

partial covariance (P) was not able to determine the directionality of connections (Fig. S2).
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We also quantified the variance and bias over a range of data size and observational noise

(Fig. S1). DDC consistently had the least estimation error regardless of the size of the dataset

(Fig. S1A). In contrast, inference bias for Cov, P and ∆p diverged as data volume increased

(Fig. S1A), introducing a systematic error. Regarding noise tolerance (Fig. S1B), the perfor-

mance of dCov matrices (∆c and ∆p) rapidly deteriorated with increasing noise, but DDC (∆L

and ∆ReLU) remained robust. For models with highly nonlinear dynamics and low randomly

driven input, the performance of the DDC estimators (Fig. S1C) was significantly better than

∆c and ∆p (Fig. S1D).

DDC was also applied to a larger network consisting of 50 nodes and structured by a com-

bination of confounder and chain motifs (Fig. S2). As in the small network case, ∆L and

∆ReLU cleanly estimated the existence and direction of connections (Fig. S2B). Estimation

performance increased with larger data sets (Fig. S2C).

Can DDC track the information flow in a nonlinear Rössler system, which is deterministic

but chaotic? The three equations for this system in Fig. 1D have a nonlinear bidirectional con-

founder motif. ∆L and ∆ReLU correctly identified direct connections, and correctly ignored

the strong correlations between x2 and x3.

Next, we tested DDC on spiking data from a network model with 200 Leaky Integrate-and-

Fire (LIF) neurons (20). These neurons integrate exponentially filtered synaptic inputs until the

membrane potential reaches a threshold, which triggers a spike and a reset to resting membrane

potential. The connectivity matrix was a Erdős–Rényi random graph with uniform connection

strengths, emphasizing the existence and direction of network edges (Methods). Graphs with

a range of sparsity and connection strengths were simulated and DDC was applied to the sub-

threshold membrane potentials (Methods). Performance was quantified by the area under the

curve (AUC) of specificity versus sensitivity (Fig. 2A,B). ∆L and ∆ReLU were significantly

(p<0.001, rank-sum test) better than all other methods. This was partly due to DDC’s additional
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Figure 1: DDC recovers ground truth connectivity across multiple 3-node networks.

(A)(B)(C) Left: ground truth network structure. Black solid lines are directed physical con-

nections and red dashed lines are false positive connections commonly inferred by covariance

estimation; The edges label (i, j) stands for the matrix entry at the i-th row and j-th column.

Right: estimated ∆L and ∆ReLU. (D) Left: phase diagram of x1 and x2 of the Rosseler sys-

tem governed by system equations shown above; Right: estimated ∆L and ∆ReLU. For a clear

illustration, we removed the diagonal values from estimated matrices.
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capacity to estimate direction since the ground truth matrices are not symmetric. Interestingly,

∆p had very high sensitivity (true positive rate) even when very few connections were thresh-

olded as positive. This might due to the sparse estimation of ∆p (14). DDC was robust to a

broad range of network configurations (Fig. S3D).

We also tested the methods on simulated recordings of macroscopic neural activities based

on the reduced Wong-Wang model of the resting state (21). The connectivity matrix used

short-range local interactions and DSI (diffusion spectrum imaging) measurements of long-

range structural connectivity (22) (Fig. 2C). The overall performance was quantified by c-

sensitivity (Methods), which measured the separation of estimated values between true positive

connections and true negative connections. C-sensitivity = 1 means the estimated matrix com-

pletely separated true positives from the others. ∆L had the highest performance followed by

∆ReLU (Fig. 2D), probably because the reduced Wong-Wang model exhibited linear fluctua-

tions around the stable point (21). The raw ∆L and ∆ReLU matrices uncovered the strongest

connections (red arrows) in the ground truth matrix (Fig. S4B). (Only the strongest long-range

connections were included, because all methods failed to reach significance for graded anatom-

ical connectivity (Fig. S5).)

A critical test of DDC is performance on real data. We applied DDC to resting-state fMRI

(rs-fMRI) recordings obtained from the Human Connectome Project (HCP). The imaging vox-

els were parcellated through group ICA (Methods), where each independent component (IC)

parcellation, shared across subjects, is composed of voxels with similar dynamics. ICs are

mainly composed of spatially proximate voxels, forming anatomically recognizable brain re-

gions (Fig. S7). In addition, we focused on the first 46 ICs that had over 40% cortical voxels

(Fig. S6A) to match dMRI cortical measurements. Dual regression (Methods) assigned unique

ICA-parcellated BOLD signals to each subject, which were treated as nodes for DDC analysis.

The average and standard deviation of the estimated DDC matrices across subjects are
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Figure 2: Microscopic level: LIF network (A) Receiver operating curves (ROC) quantifying

classification performance of true connections. The curves for ∆L and ∆ReLU were identical

due to threshold selection process (Methods). (B) Area under ROC (AUC) across 50 realizations

of the random graph. * p<0.001, rank-sum test. Macroscopic level: Resting-state brain surface

model (C) Long-range structural connectivity. The block structure represents the left and the

right hemisphere. (D) C-sensitivity of the estimators. Control values in (B)(D) were calculated

using a different random graph realization served as GT.
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shown in Fig. 3A and B where ∆L and ∆ReLU were sparser than the covariance matrix. Two

nodes (indicated by red arrow) in ∆L appeared to have a broader range of interactions. They

were anatomically registered as “occipital pole” and “medial occipitotemporal gyrus”, reflect-

ing the large proportion of visual ICs in the network (Fig. S7 and Table S2). To increase noise

tolerance, we binarized the estimated matrices based on significance levels as determined by an

auto-regressive bootstraping procedure that preserved the signature power spectrum properties

of BOLD signals (Methods). The significant ∆L connections (yellow entries, p < 0.01) across

subjects were shown in Fig. 3C. These “backbone connections” shared across a majority of the

subjects could be flexibly tuned for network sparsity level. We adopted a strict criterion because

we were interested in the most conserved connections shared by over 90% subjects (red dashed

vertical line in Fig. 3C). Their IC parcellations were registered on an MRI template and plotted

in Fig. 3D. In this case, “Backbone connections” were identified between ICs from the same

anatomical region (marked in red) as well as inter-regional interactions.

To quantify the extent to which estimated FCs matched the structural connectivity, we fur-

ther processed dMRI measurements from the HCP dataset (23) to obtain individual-level IC-

based dMRI matrices (Fig. S6, Methods). At the IC level, dMRI strengths were bimodal (Fig.

4A), indicating a clear separation between the strong and weak connections. ∆L identified

connections with higher dMRI strength compared those chosen by the covariance matrix (Fig.

4B). Fig. 4C shows the increasing average dMRI strength for decreasing binarization threshold,

linking the significance of rs-fMRI to dMRI connectivity for all methods and confirming their

biological relevance. DDC uncovered connections with significantly higher dMRI strength val-

ues than covariance-based methods and also identified a larger proportion of strong connections

(Fig. 4D).

Dynamical Differential Covariance is a promising new family of estimators for analyzing

the structural connectivity of neural interactions underlying large-scale brain recordings. Be-
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Figure 3: DDC consistently recovered known connections across HCP subjects. (A)(B)

Average/Standard deviation of estimated FC matrices averaged across HCP subjects. (C) Indi-

vidual level binarized significant (p-value<0.01) ∆L connections. Each column is a binarized

matrix reshaped to a column vector. The summation of each row, shown on the right, repre-

sents the number of individuals that highlighted a specific connection. “Backbone connection”

are those shared by most individuals (example threshold indicated by the red dashed line). (D)

∆L “backbone connection” shared by over 90% subjects and their IC parcellations registered

on an MRI template. Arrows indicated the estimated connection direction and the red ones

emphasized the IC pairs that are anatomically close to each other.10
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Figure 4: DDC picked up connections with strong dMRI values. (A) Distribution of IC-level

dMRI strengths. Connections to the right of the cutoff value (red dashed line) were classified as

strong connections. (B) The dMRI strength distribution of significant ∆L and Cov connections

(p-value<1e-9). Note the log scale on the y axis presented due to the large abundance of weak

connections. (C) Average dMRI strength value of significant connections picked by different

methods with stricter binarization thresholds. (D) Proportion of strong connections. Since

dMRI strength distribution is bimodal, the proportion of strong connections was also used as a

supplementary statistics to compare the distributions.
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cause DDC is derived directly from dynamical system equations that govern neural interactions,

no optimization or model fitting is required. DDC is a practical and intuitive method that can

be computed rapidly and scales well with the number of recording. Unlike methods based on

covariance, which are inherently symmetrical, DDC can detect directional interactions and ob-

tain statistical estimates of causality. DDC uncovered ground truth when applied to dynamical

simulations of network models and significantly improved estimates of dMRI connectivity from

rs-fMRI recordings.

In conclusion, DDC has a number of favorable mathematical properties that should ensure

robust estimation of FC for a wide range of recordings. Access to the directionality of neural

connections opens new avenues for interpreting the causal flow of information through net-

works. Identifying functional connectivity based on dynamical systems models makes direct

contact with similar approaches in many other disciplines such as bioengineering, control the-

ory and network science. DDC should have a broad impact on studies in these areas whenever

there is need for estimates of directional network connectivity.
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Supplementary Methods and Materials

Dynamical differential covariance recovers directional
network structure in multiscale neural systems

Yusi Chen, Burke Rosen and Terrence J. Sejnowski

1 Functional Connectivity Estimators

All estimators and abbreviations are summarized in Table S1.

Table S1: Summary of estimators

Estimator Notation
Cov Covariance matrix
P Partial covariance matrix
∆c Differential covariance matrix
∆p Partial differential covariance matrix
∆L Linear DDC
∆R General nonlinear DDC
∆ReLU Nonlinear DDC with ReLU nonlinearity

1.1 Covariance based estimators

The covariance (Cov) and partial covariance (P) matricies are:

Cov = 〈x,x〉 (1)

P = Cov−1 (2)

where x is a column vector of the system variable and the operation 〈, 〉 takes the outer product

of two vectors and averages across time. In this paper, all time traces were z-scored, thus, the
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covariance matrix is equivalent to correlation. The calculation of partial covariance matrix (P)

regressed out the confounding factors and is equivalent to the partial covariance matrix [2]. The

covariance matrix only reveals pairwise correlations but the partial covariance matrix controls for

confounding effects, one step closer to causal estimation.

1.2 Differential Covariance (dCOV) estimators

Differential covariance (∆c) was calculated as Eq.3 where dx
dt

was numerically computed using

a symmetric difference quotient [1]. The evaluation of partial differential covariance (∆p) was

derived in parallel to partial covariance. The calculation was performed element-wise as in Eq.4

where Cov refers to the covariance matrix, K denotes the set of all nodes except i and j.

∆c = 〈dx
dt
,x〉 (3)

∆pij = ∆cij − CovjKCov−1KK∆cTiK (4)

1.3 Dynamical Differential Covariance (DDC)

The definitions of ∆L, ∆R and ∆ReLU can be found in the main text. The parameter θ for ∆ReLU,

was varied from the 5-th percentile to the 95-th percentile of the z-scored data. The optimal value

was chosen based on either the estimation errors (Fig.1, Fig.S1 and Fig.S2) or the AUC values

(Fig.2). In the brain surface model θ was set to zero.

1.3.1 DDC derivation for stochastic network models

To model the randomness in the recorded neural activities, we used stochastic differential equations

(SDE) and evaluated DDC in this stochastic framework:

dx

dt
= Wx + D

dβ

dt
(5)
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where β is a multi-dimensional Brownian motion with Q unit variance and noise structure D

influencing the state variable x. See Eq. 1 in the main text for the definitions of the other terms. The

time averages may be different from ensemble averages for E(xyT) and 〈x,y〉 :=
∑T

t=0 x(t)y(t)T

under nonstationary conditions, as analyzed in the next section.

Operating on both sides of this equation with 〈,x〉:

〈dx
dt
,x〉 = W〈x,x〉+ D〈dβ

dt
,x〉

E〈dx
dt
,x〉 = WE〈x,x〉+ DE〈dβ

dt
,x〉

(6)

To evaluate 〈dβ
dt
,x〉, we first write down the explicit solution of the linear SDE starting at t = 0,

then time average both sides.

xt = exp(Wt)x0 +

∫ t

0

exp(W(t− τ))Ddβτ

〈dβ
dt
,x〉 = 〈dβ

dt
, exp(Wt)x0〉+ 〈dβ

dt
,

∫ t

0

exp(W(t− τ))Ddβτ 〉

= WT + BT

(7)

The first term WT is the summation of time-dependent linear Brownian increments, thus the mean

is zero and the variance is a time-dependent scaling of the Brownian variance:

E(WT ) = 0

Var(WT ) = Q〈exp(Wt)x0, exp(Wt)x0〉
(8)

The second term BT was evaluated using the Ito integral. Because Brownian motion is nowhere

differentiable on its path we numerically approximated the time derivative as we used in the simu-

lations. If we assume {tk}∞k=1 as a partition of [0, t] whose partition size is infinitesimal as n→∞,

we can compute Ito integral in the limit. For simplicity, define Φτ = exp(W(t− τ))D. Then the
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two terms are composed of nonoverlapping Brownian increments:

(
dβ

dt
)t =

βt+dt − βt
dt∫ t

0

Φτdβτ = lim
n→∞

∑
k

Φ(tk)[βtk+1
− βtk ]

(9)

from which it follows that E(Bt) = 0 because Brownian motion has independent and stationary

increments.

BT ∝
∑
t

lim
n→∞

∑
k

(βt+dt − βt)[Φ(tk)(βtk+1
− βtk)]T

E(BT ) = 0

(10)

Taken together, the first order statistics of our linear DDC estimator become:

E〈dx
dt
,x〉 = WE〈x,x〉

E(∆L) = E(〈dx
dt
,x〉〈x,x〉−1) = W

(11)

This derivation confirms that DDC is unbiased in the presence of noise from Brownian motion.

Simulations of the linear three neuron model revealed that 〈dβ
dt
,x〉 is at least ten times smaller

in magnitude than 〈x,x〉 even for very Q. This result is remarkable and means that even if the

recordings have correlated noise structure (D in Eq.5), DDC can still recover the ground truth

connectivity.

1.3.2 Nonstationary conditions

A continuous time stochastic solution of the SDE, {xt}Tt=0, is stationary when its finite-dimensional

joint distribution is time-invariant, which implies that its mean and covariance remain constant

across time. The covariance matrix can then be estimated by the time-averaged sample covariance.

The above SDE framework allows the mean and covariance of state variables to vary with time
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according to the Ito formula:

dm

dt
= Wm

dP

dt
= WP + PWT + DQDT

(12)

where m = E(x) and P = Var(x). The process is stationary if the right hand sides are zero.

Under nonstationary conditions, 〈x,x〉 is no longer a valid estimate of the covariance matrix.

Because we did not assume stationarity in the derivation of DDC in the SDE framework, our DDC

estimators remain valid and unbiased. These properties make DDC a robust and efficient estimator

of functional conectivity.

2 Simulations of neural systems

2.1 Neural motif dynamics

We tested the performance of these methods in networks structured to have typical false posi-

tive motifs - chain (Fig.1A,B) and confounder (Fig.1C) - with different dynamics and in another

Rosseler chaotic system. To stabilize the simulation, all nodes had decaying dynamics and they

were linked by inhibitory connections. Specifically, the diagonal entries in the ground truth matrix

was set to -1 and connection strength was set to -0.5. We tested connection strength from -0.1 to

-1 and it didn’t affect the estimation results qualitatively.

For linear dynamics, system variable x was simulated through Euler integration according to

Eq.13 where u the is Gaussian distributed random drive and ε is the Gaussian distributed obser-

vational noise, both independent from x. The integration step is 0.01 seconds and the length of

simulation is 1000 seconds unless otherwise specified.

dx

dt
= Wx + u, u ∼ N (0, σ2)

xobs = x + ε, ε ∼ N (0, σ2
obs)

(13)
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For nonlinear dynamics, simulation was governed by Eq.14 where we used a centered sigmoid

function to simulate the nonlinearity. The sigmoid function was shifted to have mean of zero be-

cause otherwise the inhibitory signal would be too strong in the network and the signal would

decay to zero in a short time interval. In the expression of R(x), slope α controls the level of

nonlinearity in the network. Note the mismatch between simulation nonlinearity and the estima-

tion nonlinearity. The integration step is 0.1 ms and signals were downsampled to 100 Hz after

estimation. Simulation length is 1000 seconds unless otherwise mentioned.

dx

dt
= WR(x) + u, u ∼ N (0, σ2)

R(x) =
1

1 + e−αx
− 1

2

(14)

The equations for the Rössler system are:

dx1
dt

= −x2 − x3
dx2
dt

= x1 + ax2

dx3
dt

= b+ x3(x1 − c)

(15)

where x = [x1, x2, x3]
T , a = b = 0.2 and c = 5.7. This set of parameters was originally used by

Rössler to study the behavior of its chaotic dynamics. The signal was integrated at the step of 0.01

seconds for 1000 seconds. The first 100 seconds of transient dynamics was discarded.

2.2 Sparse Leaky Integrate-and-Fire (LIF) network

The connectivity matrix was constructed as an Erdős–Rényi random graph: two nodes being con-

nected has probability equal to network sparsity. All connected edges were assigned to have the

same strength. The connectivity matrices were parameterized by only sparsity level and connec-

tion strength. Leaky-Integrate-Fire neurons could be described by Eq.16 with double-exponential

filtered synapses [13]. Once membrane voltage V reaches a threshold Vthres, the neuron will emit a
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spike and reset the membrane potential to Vreset. The spike train was described by
∑

tk<t
δ(t− tk)

and then filtered to generate synaptic current ri. We used sub-threshold membrane potential as the

system variable (x) of interest. We simulated networks with 200 neurons. The integration process

was performed at the step of 0.05 ms, down-sampled to 2000 Hz and simulated for 20 seconds.

τ
dV

dt
= −V + Wr + IBIAS

dri
dt

= − 1

τd
ri + hi

dhi
dt

= − 1

τr
hi +

1

τdτr

∑
tk<t

δ(t− tk)

(16)

2.3 Anatomically supported brain surface model

The anatomic connection used here is the group average structural connectivity obtained through

diffusion spectrum imaging (DSI) [10]. It involves 78 cortical regions from both hemispheres.

The connectivity matrix contained both local proximity based connections and long-range DSI

measured connections. It was simulated using a reduced Wong-Wang model [4] (Eq.6-8 in the

reference) using the Virtual Brain Simulator [17]. All physiological parameters were followed

from the reference [4]. Simulated population firing rates were down-sampled to 1000Hz and the

simulation length was 100 seconds.

3 Estimator performance quantification

3.1 Variance and bias

Following Das et al [3], we decomposed the estimation error into variance and bias (Fig.S1). In

most cases, the estimation is different from the ground truth matrix by a scale. So we normalized

both estimated and ground truth matrices between -1 and 1. In addition, dCov based estimators are

directed estimators while covariance based ones are not. For fair comparison, we only considered
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the estimation of the lower triangle part where all ground truth connections are located.

After scaling and lower triangle restriction, estimation error, variance and bias were calculated

as Eq.17 where W, Ŵ and W̄ are ground truth matrix, estimated matrix and the average of

estimated matrices across trials and ||.|| is the vector L2 norm. It’s easy to verify that Error2 =

Bias2 + Variance2 and the vector form of bias and variance are orthogonal to each other. We

measure the relative contribution of bias by the angle (θb, Eq.18) between the vectors associated

with bias and variance. 50 repetitive trials were used across all simulations.

Error =
||W − Ŵ||
||W||

Bias =
||W − W̄||
||W||

Variance =
||Ŵ − W̄||
||W||

(17)

θb = tan−1(
Bias

Variance
) (18)

3.2 Sensitivity and specificity

To evaluate the estimation performance in LIF networks, connection recovery sensitivity and speci-

ficity were calculated since the networks have sparse connection and the connection strength are

uniform. To be more specific, the estimated matrices were binarized based on their absolute values

to determine the existence of connections, which were then compared with the ground truth con-

nections. We used the absolute value because we only cared about the presence of a connection.

Sensitivity and specificity were calculated as the true positive rate and one minus false positive

rate. Varying the binarization threshold gave rise to the receiver operator curve (ROC). The area

under ROC, calculated by trapezoidal integration, indicates the methods general performance in

classifying connections.

For performance evaluation in the brain surface model, c-sensitivity [20] (Eq.17 in [11]) was

adopted. It’s defined as the fraction of the true positives that are estimated with higher connections
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strengths than the 95th percentile of the false positive distribution. Like ROC, c-sensitivity quanti-

tatively estimated how sensitive methods are to the estimating the presence of a connections. Thus,

the absolute value of the estimated matrices were used here.

4 HCP dataset

4.1 Extracting time traces from rs-fMRI recordings

We used the extensively processed “HCP1200 Parcellation + Timeseries + Netmats (1003 Sub-

jects)” dataset available through the website (https://www.humanconnectome.org). De-

tailed pre-processing and study design could be easily accessed through the website. In this release,

1003 healthy adult human subjects (ages 22-37 years, 534 females) were scanned on a 3-T Siemens

connectome-Skyra scanner (customized to achieve 100 mT m−1 gradient strength). Each subject

underwent 4 × 15 minutes recording sessions with temporal resolution of 0.73 second and spatial

resolution of 2 mm isotropic.

For imaging data processing, each 15-minute run of each subject’s rs-fMRI data was pre-

processed according to Smith et al [18]; it was minimally-preprocessed [8], and had artefacts

removed using ICA+FIX [16] [9]. Inter-subject registration of cerebral cortex was carried out us-

ing areal-feature-based alignment and the Multimodal Surface Matching algorithm (‘MSMAll’)

[14] [7]. Each dataset was temporally demeaned and had variance normalization and then fed

into the MIGP algorithm, whose output is the top 4,500 weighted spatial eigenvectors from a

group-averaged PCA (a very close approximation to concatenating all subjects’ timeseries and

then applying PCA) [19]. The MIGP output was fed into group-ICA using FSL’s MELODIC tool,

applying at several different dimensionalities (D = 25, 50, 100, 200, 300). In our analysis, we used

the 100-dimension decomposition.

For a given parcellation (group-ICA map), the ICA spatial maps were used to derive one repre-

sentative time series per IC per subject. This process was fulfilled by the standard ”dual-regression

stage-1” approach, in which the full set of ICA maps was used as spatial regressors against the full

9
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data [6]. This results in an N × T (number of components × number of time points) matrix for

each subject. Thus, we consider each IC as a network node.

4.2 Significance test of the estimated connections

To assess the statistical significance of the estimated connection, we used an autoregressive (AR)

bootstrap procedure [5, 12] to preserve the power spectrum density (PSD) of BOLD signals. For a

specific estimated connection, denoted as element (i, j), our null hypothesis was that signal xi and

xj are independent regardless of other nodes’ influence. To generate null time series, we fit separate

AR processes of model order q to node-specific time traces. The model order q was determined

according to the Bayesian information criterion (BIC). A higher order model was rejected if it could

not decrease BIC by more than 2. Using the estimated AR coefficients of empirical time series, we

generated 1000 surrogate null time series and then computed the associated functional connectivity

corresponding to the null hypothesis. For each connection, we assumed a Gaussian distribution

of the null connectivity values generated from null time traces. P value was calculated as the

probability of the empirical value appeared under the null Gaussian distribution. In this paper, we

adopted a sequence of significance level to binarize the matrix so that we could investigate the

network behavior asymptotically.

4.3 Individual level dMRI strength

In order to compare the functional connectivity metrics to the underlying corticocortical white mat-

ter connectivity, we reorganized our previously published diffusion-MRI based structural connec-

tome [15] in which connectivity was assessed among the 360 cortical areas of the HCP-MMP1.0

atlas [7]. Of the 100 IC nodes, 46 are composed of at least 40% cortical voxels (Fig.S6A) and as

the dMRI connectome was restricted to corticocortical relationships, we limited the scope of our

analyses to these nodes. Because the IC nodes have a greater spatial extent than the atlas areas,

each is composed of several areas, in whole or in part (mean = 28.3 areas). For each IC node
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pair, dMRI connectivity was assessed by obtaining the average of the nodes’ constituent interareal

connectivity weighted by fraction of the node pair’s voxels assigned to each areal pair. In cases

where an atlas area was partially present in both IC nodes of a pair, that area was excluded from

the mean as short-range intra-areal anatomical connectivity was not available.
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Table S2: Anatomic annotations of the 46 ICs. First column is the index number of ICs. Second column is the manually registered anatomical
region. DMN: default mode network; NA: no reasonable region identified

Component number Anatomical Region Sub-network
1 Occipital Pole Visual Network
2 Inferior Parietal Lobe DMN
3 Lateral Occipital Cortex Visual Network
4 Cuneal Cortex/Occipital Pole Visual Network
5 Supramarginal Gyrus DMN
6 Lateral Occipital Cortex Visual Network
7 Supramarginal Gyrus DMN
8 Lateral Occipital Cortex Visual Network
9 Inferior Parietal Lobe DMN
10 Medial Prefrontal Cortex/Anterior Cingulate Cortex/Lateral Temporal Cortex DMN
11 Lingual Gyrus/medial occipitotemporal gyrus Visual Network
12 Angular Gyrus DMN
13 Occipital Pole Visual Network
14 Lateral Occipital Cortex - Left Visual Network
15 Precuneous Cortex Other Network
16 Occipital Pole Visual Network
17 Lingual Gyrus/medial occipitotemporal gyrus Visual Network
18 Lateral Occipital Cortex Visual Network
19 Occipital Pole Visual Network
20 Inferior Parietal Lobe DMN
21 Precentral Gyrus sensorimotor network
22 Orbital Frontal Cortex DMN
23 Postcentral Gyrus sensorimotor network
24 Lateral Occipital Cortex - Right Visual Network
25 Occipital Pole - Left Visual Network
26 Frontal Pole Attention Network
27 Superior Parietal Lobule Attention Network
28 Hippocampus/Parahippocampal Cortex DMN
29 Lateral Temporal Cortex DMN
30 Lateral Occipital Cortex Visual Network
31 Orbital Frontal Cortex/Lateral Temporal Cortex Other Network
32 Occipital Pole Visual Network
33 Inferior Parietal Lobe – Left DMN
34 Lateral Occipital Cortex Visual Network
35 Postcentral Gyrus sensorimotor network
36 Medial Prefrontal Cortex/Anterior Cingulate Cortex DMN
37 Orbital Frontal Cortex/Lateral Temporal Cortex DMN
38 Precentral Gyrus / Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex) sensorimotor network
39 Occipital Pole Visual Network
40 Middle Frontal Gyrus Attention Network
41 Postcentral Gyrus - Left sensorimotor network
43 Postcentral Gyrus - Right sensorimotor network
44 Orbital Frontal Cortex DMN
45 Superior Temporal Gyrus sensorimotor network
47 NA NA
48 Frontal Pole Attention Network
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Figure S1: Estimator variance and bias towards data limit and noise limit. (A) Left: Influence
of data volume calculated across 50 trials simulated using linear dynamics and the confounder
motif; Right: Contribution of estimation bias (θb). θb = 0.25π refers to equal bias and variance.
In general estimation errors decreased with data volume and covariance based estimators are more
biased. (B) Influence of observational noise (horizontal axis is σobs in Eq.13) across 50 trials sim-
ulated using linear dynamics and the confounder motif. ∆c and ∆p performance deteriorated with
larger amount of noise while ∆L and ∆ReLU remained robust under the influence of observa-
tional noise. (C) Influence of random input strength (horizontal axis is σ in Eq.13) across 50 trials
simulated using linear dynamics and the confounder motif. Input strength had limited effect on es-
timator performance since DDC is an unbiased estimator. (D) Influence of random input strength
across 50 trials simulated using highly nonlinear dynamics (α=50 in Eq.14) and the confounder
motif. In general, the higher the input strength, the worse the estimation performance. Note the
superior performance of ∆L and ∆ReLU over all other estimators when the random input strength
was relatively low.
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Figure S2: Estimator performance scaled up to larger networks. (A) Ground truth connectivity
pattern of a 50-node network. The connected edges were shown as yellow entries and they were
assigned negative strength to stabilize simulation. Time traces were simulated using nonlinear
dynamics (Eq.14), which is the harder scenario according to Fig.S1. (B) Estimated matrices using
a sufficiently large data volume (106 data points). ∆L and ∆ReLU had cleaner estimation of the
ground truth matrix. (C) Influence of data volume
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Figure S3: DDC has high sensitivity and specificity in recovering sparse connections in spik-
ing neural networks. (A) Selected membrane potential traces simulated using LIF neurons with a
sparse connectivity matrix. Connections were generated randomly using a Bernoulli process with
probability equal to sparsity level (Erdős–Rényi random graph). Connection strength was set to a
fixed value. (B) Receiver operating curves (ROC) of different methods. True positive rate and false
positive rate were calculated by comparing absolute value thresholded matrices with the ground
truth matrix. (C) Area under ROC (AUC) across 50 realizations of the random graph. Control
values were calculated by comparing estimated matrices to a different realization of Erdős–Rényi
random graph with same sparsity. Note the superior performance of ∆L and ∆ ReLU. * p<0.001,
rank-sum test. (D) AUC values of networks with various sparsity and connection strength. As-
terisks indicate the scenario shown in (C). Note ∆L and ∆ ReLU are robust to different network
configurations.
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Figure S4: DDC is sensitive to strong anatomic connections at macroscopic level (A) Intra-
hemisphere strong connections (yellow entries) identified by Diffusion Spectrum Imaging (Node
definition followed from Hagmann et al [10]). Time traces were generated using using both inter-
and intra-hemisphere connections. (B) Estimated intra-hemisphere connections. Note the esti-
mated strong connections (red arrow) in ∆L and ∆ReLU correspond to true connections in (A).
(C) Performance quantified by c-sensitivity (Observed values). Control values were evaluated by
comparing the estimation to a shuffled ground truth matrix. Note the superior performance of ∆L
and ∆ReLU
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Figure S5: Macroscopic model supported by graded anatomical connections (A) Intra-
hemisphere anatomical connectivity. (B) Estimated intra-hemisphere connections. (C) Perfor-
mance quantified by c-sensitivity. The overall low c-sensitivity indicates the difficulty of connec-
tion estimation.
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Figure S6: Individual level dMRI statistics. (A) Corticality was defined as the proportion of
cortical voxels within each IC. Since dMRI measurements are only available for cortical surface
voxels. Our analysis was restricted to the first 46 ICs with corticality greater than 40%. (B) Average
of the dMRI matrices across the entire 998 subjects. (C) Standard deviation.
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Figure S7: Group ICA parcellation shown on an MRI template
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