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Abstract 

The planting and conservation of biodiverse habitat in urban contexts has been proposed as a 

public health intervention aimed at reducing the prevalence of non-communicable diseases 

via microbiome rewilding (Mills et al. 2017; Mills et al. 2019). However, our understanding 

of the effect of urban biodiversity interventions on the human microbiota remains limited, 

especially on the skin (Hui et al. 2019; Roslund et al. 2020) and in the context of permanent 

green spaces (Lehtimäki et al. 2018; Selway et al. 2020). Here, we test the short-term 

response of experimentally disturbed bacterial communities on the skin of healthy children 

exposed to different school environments – either a ‘classroom’, a ‘sports field’, or a 

biodiverse ‘forest’ – to understand how exposures to different types of biodiversity may 

influence skin microbiota. Children exposed to the ‘forest’ had significantly increased skin 

microbiota diversity when compared to pre-exposure, an effect that increased over three days 

suggesting long-term effects. The microbiota on children exposed to the ‘forest’ had the 

largest structural and compositional community change compared to children exposed to 

‘sports fields’, which in turn was larger than those who remained in ‘classrooms’. Children 

exposed to ‘sports fields’ and ‘forests’ also acquired new core bacteria after exposure to 

green spaces, potentially buffering against disturbances to the skin microbiota’s diversity, 

while individuals who remained in the ‘classroom’ lost microbes throughout the experiment. 

Overall, we conclude that urban green spaces can have an enriching influence on the diversity 

of skin microbiota, including core members shared between all children. These findings have 

important implications for the design and construction of new school yards and public spaces 

with respect to biodiversity, health, and human microbiota. 

 

Main 

There is increasing awareness that the skin microbiota is mechanistically important for 

human health, including immune and physiological responses (Byrd et al. 2018; Chen et al. 

2018). The microbiota on the skin, and at other sites in the body, develop mostly through 

environmental factors and acquirement during early life following principles of community 

ecology and successional theory (Costello et al. 2012; Arrieta et al. 2014; Byrd et al. 2018; 

Leung et al. 2018). These environmentally acquired microbiota, in particular the co-evolved 

‘old-friends’ microbiota (Rook 2013), have the potential to shape life-long health trajectories 

(Rackaityte & Lynch 2020).  

However, there are everyday medical and lifestyle pratices that can disturb skin 

microbiota and disrupt diversity and composition (e.g., hand-sanitisation; SanMiguel et al. 
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2018), and contribute to the development and outcomes of skin diseases (Van Rensburg et al. 

2015; Byrd et al. 2018). Moreover, exposure to biodiversity and rich environmental sources 

of microorganisms has become severely limited in modern cities, as humans spend more time 

indoors under clean or industrial conditions, which is linked to a decrease in microbial 

diversity within the human body (Sonneberg and Sonneberg, 2020). Overall, these decreases 

in microbial exposure can have a number of potential health implications (von Hertzen et al. 

2011). 

We recently proposed the ‘microbiome rewilding hypothesis’, which suggests that 

exposures to highly biodiverse urban environments may provide a means to increase 

microbial diversity in the human body (Mills et al. 2017). Recent experimental research has 

shown that children in nature-based day-care facilities show increases in bacterial diversity 

on their skin and in immune function relative to children in conventional or city-based day-

care centres (Lehtimäki et al. 2018; Roslund et al. 2020). This provides evidence that simple 

urban biodiversity interventions could constitute a positive health intervention. However, this 

has not yet been examined in connection to outdoor environments and outside play, which is 

critial for our understanding of the mechanistic interactions between a healthy skin 

microbiota and the broader environment. Specifically, we need to understand the effect of 

urban green spaces and relative biodiversity quality (e.g., the functional diversity of 

ecological communities) on the microbial communities, including those of the skin. We 

hypothesise that exposure to green space will increase diversity and change the composition 

of the skin’s microbial communities more than staying inside, and that exposure to a more 

biodiverse green space would have an even greater effect than a less biodiverse area.  

To test our hypotheses, we first assigned three participating classes of 10-11 year-old 

students from a single primary school to one of three different treatment environments of 

varying biodiversity quality within the school grounds: 1) an indoor ‘classroom’ control (n = 

20, n females = 10), 2) a low vegetation complexity ‘sports field’ (n = 14, n females = 7), or 

3) a high vegetation complexity ‘forest’ (n = 23, n females = 8). We swabbed the left volar 

wrists of each group of students before environmental exposure. These swabs gave us pre-

exposure information on their skin’s bacterial communities and also acted as an experimental 

disturbance (i.e., swabbing is an act of cleaning or removing a fraction of the microbiota). We 

then exposed the students to their assigned environment for 45 minutes – a standard time 

period spent on individual academic activities in a school setting in Australia. Following 

environmental exposure, we re-swabbed the same patch of skin to see how environmental 

exposure had affected the bacterial communities. We repeated this regime at the same time 
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for three consecutive days, always swabbing the same patch of skin. Based on amplicon 

sequence variants (ASVs) of the bacterial V3-V4 16S rRNA marker gene (Table S1), we 

performed ecological analyses on whole and core bacterial communities of the skin. 

We first tested pre-existing differences between the groups, given that each group of 

students had been together in their respective classrooms prior to this study for approximately 

nine months of the 2019 school year (Leung et al. 2018). There was no statistical support for 

differences in the alpha diversity of the bacterial communities between treatment groups prior 

to exposure on any of the sampling days (Table S2). However, we did find statistically 

significant differences in the bacterial community structure between the ‘classroom’ group 

when compared to the the ‘sports field’ and ‘forest’ groups prior to environmental exposure 

(weighted-UniFrac, Figure 1b & 1c, Table S4), and we found all three treatment groups were 

significantly different in their pre-exposure community composition (unweighted UniFrac; 

Figure 1d & 1e, Table S4). Further, the class assigned to the ‘forest’ exposure treatment had a 

significantly less diverse core community (i.e., ASVs present in at least 50 % of samples 

within a group) prior to exposure on days one and three when compared to equivalent 

samples of the ‘classroom’ group (Figure 3a, Table S3). The structure of the core skin 

microbiota of the ‘classroom’ group was also significantly different to the ‘sports field’ and 

‘forest’ groups (Figure 3b & 3c, Table S5), and each group’s core bacterial composition was 

significantly different prior to exposure (Figure 3d & 3e, Table S5). These results show that 

for some community measurements there were unique signatures for the skin microbiota of 

each group prior to environmental exposure during this experiment. The group uniqueness is 

consistent with another study suggesting that increasing time spent together can normalize 

skin microbiota of individuals within groups (Leung et al. 2018). Therefore, we focused our 

analysis on the impact of environmental exposure within each treatment group.  

We next investigated the effect that environmental biodiversity quality had on the 

diversity of the disturbed skin microbiota. The group that spent their class time in the ‘forest’ 

was the only group to have a significant increase in alpha diversity, as observed richness, 

effective number, and Faith’s phylogenetic diversity of ASVs were all higher in post-

disturbance samples compared to pre-disturbance (Figure 1a, Table S2). This effect also 

appeared to compound from day one to day three (Figure 1A, Table S2). The school forest is 

likely a richer source of environmental bacteria than a classroom and sports field, as previous 

studies have shown that floristically diverse urban green spaces have a richer soil microbiota 

than less diverse spaces (Hui et al. 2017; Mills et al. 2020). Therefore, we examined the 
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diversity of microbial communities present in each of the these three environments (i.e., 

swabs from the classroom bench tops (not the student’s tables) and tables (desks), sports field 

turf, forest soil, and forest leaves). The alpha diversity in our environmental samples from the 

classroom bench tops were comparable with forest soil and leaves (Figure S1). In this 

respect, there may be other dynamics, such as indoor and outdoor air-flow differences 

influencing aerial entrainment of microorganisms or the lack of touch contact to particular 

surfaces, that can contribute to increases in alpha diversity in disturbed skin microbiota of 

school age children in some environments relative to others (Robinson et al. 2020).  

We next analysed the phylogenetic structure and composition of the bacterial 

communities of childrens’ skin using weighted and unweighted UniFrac distance matrices. 

The ‘forest’ and ‘sports field’ treatment groups had statistically significant changes in their 

bacterial community structure after exposure to their respective environments, while the 

‘classroom’ group did not (Figure 1b & 1c, Table S4). Composition of the skin’s bacterial 

communities had a significant interaction between the factors ‘treatment group’, ‘exposure’, 

and ‘day’ (Figure 1d & 1e, Table S4), as the composition changed significantly for the 

‘forest’ and ‘sports field’ groups after each exposure (Figure 1d & 1e, Table S4). However, 

the ‘classroom’ group’s skin microbiota became less variable over the repeated days 

(dispersion P < 0.05, Figure 1d), and this did not occur in the other groups (dispersion P > 

0.05).  

We explored ASVs shared between human and environmental samples, as these likely 

represent microorgansims that were transferred onto the skin of children from these 

exposures. The group that went to the ‘forest’ lost 26.2 % (632 of 2,410) of their ‘before’ 

exposure ASVs, but gained 1,420 for a total of 3,198 ASVs ‘after’ exposure. For the ‘forest’ 

group, 171 of the acquired ASVs were also found on forest leaf surfaces, 343 in forest soil, 

and 342 on either forest leaves or in soil, while 564 had an unknown origin during 

environmental exposure (Figure 2b). In contrast, the group that went to the ‘sports field’ lost 

38.5 % (742 of 1,929) of their ‘before’ exposure ASVs and gained 692 during exposure for a 

total of 1,889 ASVs after-exposure, with 212 found on the sports field leaves (turf grass) and 

480 from an unknown origin (Figure 2c). Further, the ‘classroom’ group lost (33.6 %) 780 of 

2,318 (33.6 %) ASVs from their ‘before’ exposure samples but gained only 657 ASVs 

(totalling 2,195 ASVs ‘after’ exposure) found on bench tops (174), tables (14), either bench 

tops or tables (11), or unknown origin (458) (Figure 2d). We observed more total ASVs from 

unknown origin when we split the samples by treatment group (i.e., Figures 2b-d) than when 
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they were pooled (i.e., Figure 2a), suggesting that some ASVs are either moving between 

these environments, likely through the air, and colonising children in other spaces or that we 

are not detecting some of the rarer bacteria in all samples. Nevertheless, these results indicate 

a strong human skin-environment interaction with their respective exposure environment. 

While significant differences in composition are observed within 45 minutes of exposure, the 

compounding effect over successive days (Figure 1a) suggests that exposure to more 

biodiverse areas could have longer term effects on diversifying children’s skin microbiota. 

Together, these results suggest that biodiversity quality of green space can play a role in the 

enrichment of skin bacteria over time.  

Core microbiota are taxa that may be temporally stable, keystones to their 

communities, functional to their hosts as facultative symbionts, host-adapted as obligate 

symbionts, or common across a host population (Risely 2020). Here, we defined the core 

community as ASVs common to at least 50 % of skin samples of each exposure category 

(‘before’ or ‘after’) within each treatment group. In total, there were thirty-nine core ASVs in 

our study. We found the observed ASV richness of the core community was reduced for the 

‘classroom’ group after exposure on days two and three (Figure 3a), suggesting minimal 

recovery in common bacterial associates was possible within a classroom setting (n.b., 

effective number and Faith’s phylogenetic diversity of ASVs were not significant, Table S3). 

In contrast, core richness was not different for the ‘sports field’ nor ‘forest’ groups (Figure 

3a) after exposure nor across days. However, the compositional change of bacterial 

communities was strongest in the ‘forest’ group when comparing ‘before’ and ‘after’ 

exposure samples (R2 = 0.33) relative to the ‘sports field’ (R2 = 0.26) and ‘classroom’ (R2 = 

0.24) groups (Figure 3c, Table S5). This indicates that ASV turnover in the ‘forest’ and 

‘sports field’ groups’ core skin microbiota buffered any decrease in diversity from the 

disturbance. We also note that core bacterial community structure on the skin of the 

‘classroom’ (R2 = 0.01, P > 0.05, Figure 3e, Table S5) and ‘sports field’ (R2 = 0.04, P > 0.05) 

groups did not have significant changes ‘before’ and ‘after’ exposure, although the ‘forest’ 

group did (R2 = 0.07, P < 0.05). In line with our study hypothesis, exposure to green spaces 

thus enabled the recovery and enrichment of a diverse core community within a short space 

of time (i.e., 45 mins). Further, exposure to a higher biodiversity setting (i.e., forest) provided 

a stronger effect compared to a lower biodiversity setting (i.e., sports field or classroom).  

Lastly, we investigated the community turnover and transfer of new ASVs into the 

core microbiota that occurred through green space exposure. We first identified which 
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bacterial ASVs were lost from the core community. Of the original 29 core ASVs across the 

three groups, eight were lost, while ten were gained from the exposure to treatment 

environments (Figure 3a). In the ‘forest’ group, seven core ASVs were gained from the 

environment (six were found in forest soil and on leaves; one on forest leaves), after losing 

seven from pre-disturbance (Figure 3b). The ‘sports field’ group gained seven new core 

ASVs (six were found on sports field leaves; one of unknown origin), after losing nine 

(Figure 3c). The ‘classroom’ group lost six core ASVs, and only gained two (Figure 3d) (one 

found on classroom benchtops and one on tables, with one of these belonging to the 

potentially pathogenic group Escherichia-Shigella (Peng et al. 2009; Figure 3e). The 

potential health effect of the higher core ASV turnover on the skin microbiota for the ‘forest’ 

treatment group remains unclear.  

While the long-term health impacts of the rapid changes in the skin microbiota seen 

here require futher study, a diverse microbiota has often been correlated to positive health 

outcomes (Hanski et al. 2012; Stein et al. 2016; Birzele et al. 2017; Egert et al. 2017; Roslund 

et al. 2020). Indeed, our findings have implications for the quality and diversity of plantings 

to be used in urban green spaces, especially in school grounds. The quality of biodiversity in 

our environments is most likely what provides the human microbiota with enrichment of 

diverse microbes and resilience to disturbance – the ability to maintain diversity in a dynamic 

ecology between environment, host, and microorganisms (Shade et al. 2012). However, the 

factors and mechanisms that underpin this environmentally enabled resilience and how this 

may be related to long-term health outcomes require further investigation. Nevertheless, we 

are confident that biodiversity interventions of urban green space will have a positive effect 

on public health that can transcend socio-economic boundaries for health care (Mills et al. 

2019). It is also important to note that if measures are not taken to prevent ‘green 

gentrification’ – the increasing exclusivity of urban greening linked to socioeconomic status 

– then biodiversity interventions will not help those that are the most in need of cost-effective 

primary health preventions (Jelks et al. 2021). The first place to start ensuring that people 

receive adequate access to diverse environmental microorganisms is in schools. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448749


 

 
Figure 1. Bacterial ASV communities of children’s wrists ‘before’ and ‘after’ exposure 

to school yard environments repeatedly sampled across three days. a. Observed richness, 

effective number (exponent of Shannon’s diversity), and Faith’s phylogenetic diversity of 

ASVs are shown from the wrists of children exposed to three different school yard 

environments over three consecutive days. Points are means ± 95 % confidence interval. 

Significantly different pairs are listed in Table S4. ‘1’, day 1; ‘2’, day 2; ‘3’, day 3; ‘C’, 

classroom; ‘S’, sports field; ‘F’, forest. b. & d. PCoA analyses of weighted-UniFrac and 

unweighted-UniFrac values, respectively, from all skin samples taken ‘before’ and ‘after’ 

outdoor exposure. Sampling ‘day’ is shown in the unweighted-UniFrac PCoA because it 

significantly interacted with ‘treatment group’ and ‘exposure’ in the PERMANOVA (Table 

S4). c. & e. Bar plots ranking R2 values to show strength of difference between pairs of 

environmental exposure groups (i.e., classroom group ‘after’ exposure vs. classroom group 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448749doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448749


‘before’ exposure, CA – CB) from the weighted-UniFrac and unweighted-UniFrac PCoAs, 

respectively. C, ‘classroom’; F, ‘forest’; S, ‘sports field’; B, ‘before’ exposure; A, ‘after’ 

exposure. Grey bars represent no significant difference between pairs with α = 0.05, while 

black bars represent significant difference.  
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Figure 2. Shared and unshared bacterial community ASVs between human samples and 

environmental samples. a. Total shared and unshared bacterial ASVs between 

environmental samples and human samples collected ‘before’ and ‘after’ exposure. b. Total 

shared and unshared bacterial ASVs between the ‘forest’ environmental samples (soil and 

leaf surfaces) and human samples from the ‘forest’ treatment group collected ‘before’ and 

‘after’ exposure. c. Total shared and unshared bacterial ASVs between the ‘sports field’ 

environmental samples (leaf surfaces) and human samples from the ‘sports field’ treatment 

group collected ‘before’ and ‘after’ exposure. d. Total shared and unshared bacterial ASVs 

between the ‘classroom’ environmental samples (bench tops and work tables) and human 

samples from the ‘classroom’ treatment group collected ‘before’ and ‘after’ exposure. e. 

Heatmap of detected community bacterial ASVs by sample type with clustering representing 
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Pearson correlation between columns (samples) and between rows (ASVs). H and E on the x-

axis represent human and environmental sample types, respectively. 
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Figure 3. Core bacterial ASV communities of children’s wrists before and after 

exposure to school yard environments. a. Observed richness, effective number (exponent 

of Shannon’s diversity), and Faith’s phylogenetic diversity of ASVs are shown from the 

wrists of children exposed to three different school yard environments over three consecutive 

days. Points are means ± 95 % confidence interval. Significantly different pairs are listed in 

Table S5. 1, day 1; 2, day 2; 3, day 3; C, ‘classroom’; S, ‘sports field’; F, ‘forest’. b. & d. 

PCoA analyses of weighted-UniFrac and unweighted-UniFrac values, respectively, from all 

skin samples taken ‘before’ and ‘after’ outdoor exposure. c. & e. Bar plots ranking R2 values 

to show strength of difference between pairs of environmental exposure groups (i.e., 

‘classroom’ group ‘after’ exposure vs. ‘classroom’ group ‘before’ exposure, CA – CB) from 

the weighted-UniFrac and unweighted-UniFrac PCoAs, respectively. C, ‘classroom’; S, 
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‘sports field’; F, ‘forest’; B, ‘before’ exposure; A, ‘after’ exposure. Grey bars represent no 

significant difference between pairs, black bars represent significant difference where α = 

0.05. 
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Figure 4. Shared and unshared core bacterial community ASVs between human 

samples and environmental samples. a. Total shared and unshared bacterial ASVs between 

environmental samples and human samples collected ‘before’ and ‘after’ exposure. b. Total 

shared and unshared bacterial ASVs between the forest environmental samples (soil and leaf 

surfaces) and human samples from the ‘forest’ treatment group collected ‘before’ and ‘after’ 

exposure. c. Total shared and unshared bacterial ASVs between the ‘sports field’ 

environmental samples (leaf surfaces) and human samples from the ‘sports field’ treatment 

group collected ‘before’ and ‘after’ exposure. d. Total shared and unshared bacterial ASVs 
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between the ‘classroom’ environmental samples (bench tops and work tables) and human 

samples from the ‘classroom’ treatment group collected ‘before’ and ‘after’ exposure. e. A 

heatmap of detected community bacterial ASVs by sample type with clustering representing 

Pearson correlation between columns (samples) and between rows (ASVs). H and E on the x-

axis represent human and environmental sample types, respectively. Y-axis lettering 

represents detection in environmental (E), human-before exposure (B), and/or human-after 

exposure (A) samples. All ASVs are named by their lowest identified taxonomic rank, and S. 

s. ssp. thermophilus is Streptococcus salivarius ssp. thermophilus. 

 

 

Methods 

Ethics 

This project was done under ethics approval by The University of Adelaide’s Human 

Research Ethics Committee (approval number H-2019-064) and by the South Australian 

Government’s Department for Education (approval number 2019-7388569). 

 

Metadata 

Prior to participating in sampling, the school students and their parents or guardians were 

asked to complete a questionnaire about exclusion criteria: antibiotic use in the previous six-

months, allergies to sampling materials, and skin conditions.  

 

Design and sampling 

The study site was a primary school in Adelaide, Kaurna Country, South Australia, Australia. 

Participants were 10- to 11-year-old children, who were students of the school. We requested 

consent for 90 participants with an uptake rate of 80% (n = 72). Fifty-seven students (n 

female = 24) participants passed our exclusion criteria. 

The participants were already divided into three classes and had spent approximately 

nine months of the 2019 school year in this configuration before sampling. We assigned the 

classes to one of three treatment groups, or schoolyard locations – ‘classroom’, ‘sports field’, 

or ‘forest’ – based on their teachers pre-existing proclivity to spend time in these 

environments to not disrupt their normal scheduling. We then followed a ‘before’ and ‘after’ 

exposure sampling regime, where the ‘before’ sampling also acted as a disturbance event to 

the skin microbiota and therefore provided pre-disturbance information. Participants were 

swabbed before and after a forty-five-minute exposure to their assigned treatment locations. 

The combinations of the treatment groups with the exposure created the variable of exposure 
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groups (i.e., treatment group level + exposure level, e.g., ‘classroom before’, ‘classroom 

after’). 

The experiment was repeated three times over three days, 13th November to 15th 

November 2019, where we ran 1-hour sampling sessions from 9am to 10am each day. After 

spending approximately 30-60 minutes in the classroom, the sampling sessions started with a 

‘before’ sample in the classroom, followed by 45-minutes of standard school activities in 

their treatment locations followed by an ‘after’ sample back in the classroom. The ‘before’ 

exposure samples on day one allowed us to test for differences in long-term microbiota 

divergence between groups over the course of the 2019 school year.  

Samples were a skin swab collected by applying 2 drops of sterile saline solution 

(Reclens Saline Solution, Aaxis Pacific, Blacktown, Australia) to the inside of the 

participant’s left wrist (as in Selway et al. 2020) followed by having them rub a nylon FLOQ 

swab (COPAN, Brescia, Italy) according to manufacturer’s instructions in an area 3 cm in 

diameter. The environments were also sampled for comparison to the human samples with 

swabs taken of the classroom tables (desks) and benches (sideboards) (n = 8), the sports field 

grass (n = 6), and the forest leaf-surfaces (n = 4) and soil (n = 4). The swab tips of human and 

environmental samples were collected in 1 mL eNAT DNA stabilisation solution (COPAN, 

Brescia, Italy) and stored at -20 ºC until DNA extraction. 

 

DNA Extraction, PCR, Library Preparation, and Bioinformatics 

DNA extractions were done across two different laboratories with different technicians due to 

COVID-19 restrictions. Samples were randomly assigned to the extraction labs. The first lab, 

Australian DNA Identification and Forensic Facility (ADIFF), randomly selected one sample 

from each sampling group (i.e., ‘treatment group’ x ‘exposure’ x ‘day’, or environmental 

sample) for each extraction batch done in that lab (n samples extracted at ADIFF = 140) and 

the remainder (n samples = 202) were sent to the second lab, the Australian Genome 

Research Facility (AGRF). DNA was extracted from human and environmental samples in 

both laboratories using DNeasy PowerSoil Pro Kit (QIAGEN) as per the manufacturer’s 

instructions. Extraction blank controls (EBCs) were used for all ADIFF processed samples. 

 

PCR amplification and sequencing of all samples were done by the AGRF. Bacterial 16S V3-

V4 PCR amplicons were generated using the primers and conditions outlined in Table S1. 

Thermocycling was completed with an Applied Biosystem 384 Veriti and using Platinum 

SuperFi II master mix (Invitrogen, Australia) for the primary PCR. The first stage PCR was 
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cleaned using magnetic beads (Beckman Coulter, SPRI), and samples were visualised on 2 % 

Sybr Egel (Thermo-Fisher). A secondary PCR to index the amplicons was performed with 

the same polymerase master mix. The resulting amplicons were cleaned again using magnetic 

beads, quantified by fluorometry (Promega Quantifluor) and normalised. The equimolar pool 

of all amplicons was cleaned a final time using magnetic beads to concentrate the pool and 

then measured using a High-Sensitivity D1000 Tape on an Agilent 2200 TapeStation. The 

pool was diluted to 5 nM and molarity was confirmed again using a Qubit High Sensitivity 

dsDNA assay (ThermoFisher). This was followed by sequencing on an Illumina MiSeq (San 

Diego, CA, USA) with a V3, 600 cycle kit (2 x 300 base pairs paired-end). 

 

Bioinformatics 

Pre-processing was done by AGRF using QIIME2 (Bolyen et al. 2019) version 2019.7. 

Samples were demultiplexed using Illumina scripts. Raw sequences were searched and 

trimmed for template-specific primers using Cutadapt with default quality settings (Martin 

2011). Amplicon sequence variants (ASVs) were then generated at 240 bases using DADA2 

(Callahan et al. 2016). Taxonomy was assigned to ASVs with the Silva 132 ‘sklearn’ 

classifier using a trained database for the 16S V3-V4 gene region (Quast et al. 2012).  

We removed ASVs that were 100 % biased to one extraction lab or the other. Further, 

we identified contaminant ASVs from non-template EBC and PCR controls using the 

prevalence method within the decontam package (v 1.8.0; Davis et al. 2018) in R (v 4.0.0; 

RCoreTeam 2019) and with a threshold probability of 0.5. Any identified contaminants were 

removed from all biological samples before downstream analysis. Additionally, ASVs 

assigned to mitochondria, chloroplast, Archaea, or ‘unknown’ were removed, and ASVs 

found in fewer than two biological samples in the dataset or with fewer than 9 reads (Edgar 

2016) across all samples were also excluded. After pre-processing there were 5,412 ASVs 

with reference sequences and a total 18,835,659 sequences across 342 samples. Unrooted 

phylogenetic trees were constructed using the msa package version 1.16.0 (Bodenhofer et al. 

2015) for multiple sequence alignment and the phangorn package version 2.5.5 (Schliep 

2010) for phylogenetic tree building. 

 

Core-community of human skin samples  

Due to the inherent variability between individuals, we determined core bacterial 

communities to test for experimental changes to the wrist community. To determine the core 

community, we divided the main dataset of human skin samples into six subsets based on the 
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six exposure groups (i.e., treatment group by exposure combinations) – ‘classroom before’, 

‘classroom after’, ‘sports field before’, ‘sports field after’, ‘forest before’, and ‘forest after’ – 

with the ‘subset_samples’ function of the phyloseq package (v 1.32.1; McMurdie & Holmes 

2013). We then used the ‘ps_prune’ function of the MicEco package to keep only those ASVs 

that were present in at least 50 % of the samples within each of these subsets. Once the ≥ 50 

% prevalent ASVs were identified, they were merged back into a single dataset using the 

‘merge_phyloseq’ function of the phyloseq package. This process identified 39 ASVs as core 

to the skin samples of this project at ≥ 50 % prevalence. We constructed an unrooted 

phylogenetic tree for the core community as above. We then merged the data of those 39 

ASVs from the environmental samples into the human core community dataset for 

comparison between human and environmental sample types. From the 39 core ASVs, there 

were 6,451,217 total sequences across human and environmental samples. 

 

Statistics 

All statistics were calculated in R (v 4.0.0; RCoreTeam 2019). Three datasets were analysed, 

human skin communities (from skin swabs), core human skin communities (from skin 

swabs), and environmental communities (from soil, leaf surface, and classroom surface 

swabs). 

 Before alpha diversity was calculated, the filtered ASV datasets were rarefied to 

3,124 reads for the human skin communities, 1,103 reads for the core human skin 

communities, and 10,933 reads for the environmental communities with the 

‘rarefy_even_depth’ function of the phyloseq package (v 1.32.1; McMurdie & Holmes 2013). 

Alpha diversity was calculated as observed ASV richness and Shannon’s diversity with the 

‘estimate_richness’ function in phyloseq and Faith’s phylogenetic diversity was calculated 

with the ‘pd’ function of the picante package (v 1.8.1; Kembel et al. 2010). We converted 

Shannon’s diversity to effective number of ASVs by taking its exponent (Jost 2006). We used 

generalized linear mixed models (GLMMs) to test for difference in alpha diversity by 

crossing the fixed factors of ‘treatment group’, ‘exposure’, and ‘day’ and adding the random 

factors of ‘student id’, ‘student id interacting with day’ to account for repeat sampling, and 

‘student id interacting with exposure’ to account for repeat exposures. GLMMs were done 

with the ‘glmer’ function of the lme4 package v 1.1-25 (v 1.1-25; Bates et al. 2007). 

Distributions for the GLMMs were negative-binomial for observed ASV richness (count 

data) and Gamma for Faith’s phylogenetic diversity and effective number of ASVs 

(Shannon’s), which were positive, non-integer, and non-parametric. Main effects of the 
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GLMMs were tested by Type II Wald Chi2 tests with the ‘Anova’ function of the car package 

(v 3.0-10; Fox et al. 2012). Pairwise comparisons of ‘treatment group’, ‘exposure’, and ‘day’ 

combinations were done by z-tests with Tukey P-value adjustment with the ‘emmeans’ 

function of the emmeans package (v 1.6.0; Lenth 2018).  

Ordinations of beta diversity on the three datasets were done with the ‘ordinate’ 

function in phyloseq. Ordinations were based on unrarefied data in principal coordinates 

analysis (PCoA) with weighted-UniFrac and unweighted-UniFrac distance matrices. We used 

PERMANOVA, with 999 iterations, with the ‘adonis’ function of the vegan package (v 2.5-

6; Oksanen et al. 2017) to test the model of ‘treatment group’ by ‘exposure’ by ‘day’. 

Pairwise comparisons between exposure groups (e.g. ‘forest before’ vs. ‘forest after’) were 

tested by PERMANOVA with 999 iterations with the ‘pairwise.adonis2’ function of the 

pairwise.adonis package (v 0.0.1; Arbizu 2017). 

Shared ASVs between environmental, ‘before’ exposure, and ‘after’ exposure human 

samples were tallied using the ‘ps_venn’ function of the MicEco package (v 0.9.15; Russel 

2021). ASVs were plotted by sample type into detected/undetected heatmaps using the 

‘pheatmap’ function of the pheatmap package (v 1.0.12; Kolde & Kolde 2015). The heatmap 

cells were clustered based on Pearson correlation between rows and columns.  

 

Data access 

Raw sequence data is stored on the Sequence Read Archive server with the BioProject ID: 

PRJNA738964. Find the Phyloseq compatible metadata, ASV table, taxonomy table, ASV 

reference sequences, and R script used in this analysis, along with relevant ethics approvals 

on Figshare with the DOI: 10.25909/14787867.  
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