bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448894; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	
2	Light-induction of endocannabinoids and
3	activation of Drosophila TRPC channels
4	
5	Takaaki Sokabe ^{1,2,3,*} , Heather B. Bradshaw ⁴ , Makoto Tominaga ^{2,3} ,
6	Emma Leishman ⁴ , and Craig Montell ^{1,*}
7	
8	¹ Department of Molecular, Cellular, and Developmental Biology and the Neuroscience
9	Research Institute, University of California, Santa Barbara, California 93106, USA
10	² Division of Cell Signaling, National Institute for Physiological Sciences, and Thermal
11	Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS),
12	National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
13	³ Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi, Japan
14	⁴ Department of Psychological and Brain Sciences,
15	Indiana University, Bloomington, Illinois, 47405, USA
16	*Correspondence: T.S. (<u>sokabe@nips.ac.jp</u>) or C.M. (<u>cmontell@ucsb.edu</u>)
17	
18	Running title: Endocannabinoids and phototransduction
19	Character count (including spaces): 63,181
20	ORCID: CM, 0000-0001-5637-1482; TS, 0000-0003-1280-9424

21 Abstract

22	Drosophila phototransduction represents a classical model for signaling cascades
23	that culminate with activation of TRP channels. TRP and TRPL are the canonical TRP
24	(TRPC) channels, which are gated by light stimulation of rhodopsin and engagement of
25	Gq and phospholipase C β (PLC). Despite decades of investigation, the mechanism of
26	TRP activation in photoreceptor cells is unresolved. Here, using a combination of
27	genetics, lipidomics and Ca ²⁺ imaging, we found that light increased the levels of an
28	abundant endocannabinoid, 2-linoleoyl glycerol (2-LG) in vivo. The elevation in 2-LG
29	strictly depended on the PLC encoded by norpA. Moreover, this endocannabinoid
30	upregulated TRPC-dependent Ca ²⁺ influx in a heterologous expression system and in
31	dissociated ommatidia from compound eyes. We propose that 2-LG is a physiologically
32	relevant endocannabinoid that activates TRPC channels in photoreceptor cells.
33	

33

34 Keywords

Drosophila melanogaster/endocannabinoid/lipidomics/phototransduction/TRP channel
 36

37 Introduction

Phototransduction is crucial in animals ranging from worms to humans as it enables 38 positive or negative phototaxis, entrainment of circadian rhythms and reception of visual 39 information from the surrounding environment. In some photoreceptor cells, such as 40 mammalian rods and cones, the phototransduction cascade culminates with closing of 41 cation channels (Yau & Hardie, 2009). In contrast, the cascade in Drosophila 42 photoreceptor cells and in mammalian intrinsically activated retinal ganglion cells leads 43 to opening of the cation channels (Montell, 2012; Montell, 2021; Yau & Hardie, 2009). 44 In *Drosophila*, the main site for light reception and transduction is the compound eye, 45 which is comprised of ~800 repeat units called ommatidia. A single ommatidium harbors 46 eight photoreceptor cells, each of which includes a rhabdomere. This specialized 47 portion of the photoreceptor cells consists of thousands of microvilli, thereby enabling 48 rhodopsin to be expressed at very high levels for efficient photon capture (Montell, 49 50 2012; Montell, 2021; Yau & Hardie, 2009).

The Drosophila phototransduction cascade has been studied for over 50 years 51 beginning with the seminal work by Pak and colleagues (Pak et al, 1970). This has led 52 to the elucidation of the critical signaling proteins that transduce light into an electrical 53 signal (Hardie & Juusola, 2015; Montell, 2021). Light-activation of rhodopsin engages a 54 heteromeric Gq protein and stimulation of the phospholipase C (PLC) encoded by 55 norpA (Bloomquist et al, 1988), which in turn induces opening of the Ca²⁺ permeable 56 cation channels. These include the Transient Receptor Potential (TRP) channel, which 57 is the classical member of the TRP family (Hardie & Minke, 1992; Montell & Rubin, 58 1989), and a second canonical TRP channel (TRPC), TRPL (Niemeyer et al, 1996; 59

60	Phillips et al, 1992). Related TRP channels are conserved from flies to humans (Wes et
61	al, 1995; Zhu et al, 1995). Extensive studies of fly photoreceptor cells have also
62	revealed mechanisms underlying the dynamic movements of signaling proteins, as well
63	as proteins that function in the visual cycle, post-translational modification of signaling
64	proteins, and the composition of the signalplex, which is a large macromolecular
65	assembly that clusters together many of the key proteins that function in
66	phototransduction through interactions with the PDZ-containing protein, INAD (Hardie $\&$
67	Juusola, 2015; Montell, 2012; Montell, 2021). The fly eye has also provided an
68	outstanding tissue to model human diseases (Lin et al, 2018; Liu et al, 2017; McGurk et
69	<i>al</i> , 2015; Pak, 1994; Warrick <i>et al</i> , 1998; Zhuang <i>et al</i> , 2016).
70	Stimulation of PLC is essential for activation of the TRP and TRPL channels.
71	However, the mechanism linking activity of PLC to opening of TRP and TRPL is still
72	under debate. PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP_2) to release
73	inositol phosphate 1,4,5 trisphosphate (IP ₃), a H ⁺ and diacylglycerol (DAG). Consistent
74	with this conclusion, in fly heads light exposure causes a decrease in PIP_2 levels and an
75	increase in DAG (Huang <i>et al</i> , 2004). IP ₃ and the release of Ca^{2+} from the endoplasmic
76	reticulum does not seem to play a role in Drosophila phototransduction (Acharya et al,
77	1997; Raghu et al, 2000). Rather, multiple other models have been proposed.
78	According to one study, PIP_2 depletion accompanied by local intracellular acidification
79	by H^+ promotes channel activation (Huang <i>et al</i> , 2010). DAG has also been reported to
80	activate TRP and TRPL in excised rhabdomeric membranes (Delgado & Bacigalupo,
81	2009; Delgado et al, 2019; Delgado et al, 2014). Mechanical contraction of the
82	rhabdomeral membrane has been proposed to contribute to activation of the channels

83	(Hardie & Franze, 2012). This may occur due to cleavage of the head group of PIP_2 ,
84	leaving the smaller lipid, DAG, in the membrane (Hardie & Franze, 2012).
85	Polyunsaturated fatty acids (PUFAs) have been reported to activate TRP and TRPL
86	(Chyb <i>et al</i> , 1999; Delgado & Bacigalupo, 2009; Lev <i>et al</i> , 2012), although a more
87	recent study showed that PUFAs do not increase with illumination (Delgado et al., 2014).
88	In this work, to identify physiologically relevant lipids that could activate TRP and
89	TRPL we performed a lipidomic analysis using fly heads exposed to light or that were
90	maintained in the dark. We found that several lipids increased in concentration upon
91	light stimulation in control flies but not in the norpA mutant that eliminates the PLC
92	required for phototransduction. The lipids that were upregulated by light included
93	endocannabinoids and an N-acyl glycine (NAG). Endocannabinoids are related to plant-
94	derived cannabinoids, which in mammals are capable of activating the same receptors
95	as cannabinoids, such as the G-protein coupled receptors, CB1 and CB2 (Gregus &
96	Buczynski, 2020). However, Drosophila has no CB1 and CB2 homologs (McPartland et
97	al, 2001), and no cannabinoid receptor has been identified in flies. We found that the
98	endocannabinoids and the NAG activated TRPL channels in vitro in a dose-dependent
99	manner and induced Ca ²⁺ influx in dissociated ommatidia via the TRP and TRPL
100	channels. One endocannabinoid, 2-linoleoyl glycerol, was ~60—100 times more
101	abundant than the other lipids that increased upon light stimulation. We propose that 2-
102	linoleoyl glycerol is a key lipid that contributes to activation of the TRPC channels in
103	photoreceptor cells.
104	

106 **Results**

107 Endocannabinoids and NAG are upregulated by light

108 To evaluate lipids that are increased by light stimulation of *Drosophila* photoreceptor cells, we performed lipidomic analysis (Fig 1A). In addition to using control flies (w^{1118}) 109 maintained in the dark or stimulated with light, we also analyzed *norpA^{P24}* mutant flies 110 (in a w^{1118} background) to identity light-induced changes in lipid levels that were PLC-111 dependent. Half the control and *norpA*^{P24} flies were then exposed to blue light for 5 112 minutes since the major rhodopsin in the compound eyes (rhodopsin 1) is maximally 113 activated by 480 nm light (Britt et al, 1993). The flies were then immediately immersed 114 in liquid nitrogen. We mechanically separated the heads from the bodies by vortexing, 115 and collected them on sieves. We then used whole heads for the following lipidomic 116 analysis since the retina represents a significant proportion (~20-25%) of the mass of 117 the heads. In addition, ~90% of PLC activity that is in the heads is due to PLC activity in 118 119 the retina (Inoue et al, 1985). Thus, the vast majority of NORPA-dependent changes in lipid levels is from the retina. 120

To quantify the amounts of lipid metabolites in each sample, we used liquid 121 122 chromatography-tandem mass spectrometry (LC/MS/MS). We analyzed 14 lipids that are produced in Drosophila larvae (Tortoriello et al, 2013), and which we could reliably 123 identify in Drosophila heads in our preliminary studies. These included lipids that are 124 known or could potentially depend on PLC for their biosynthesis since PLC activity is 125 required for the light response. PLC hydrolyzes PIP₂ to generate IP₃, H⁺ and DAG. DAG 126 can be metabolized to 2-linoleoyl glycerol (2-LG; Fig 1B) and other 2-monoacylglycerols 127 (2-MAGs). In mammals 2-MAGs such as 2-arachidonoyl glycerol function as 128

endocannabinoids (Gregus & Buczynski, 2020) and recently, 2-LG has been shown to 129 activate and bind to mammalian CB1 when it was ectopically expressed in Drosophila 130 (Tortoriello et al, 2020). We did not include long PUFAs (C20 and C22) such as 131 arachidonic acid (C20:4) do not appear to be synthesized in Drosophila (Shen et al, 132 2010; Tortoriello et al., 2013; Yoshioka et al, 1985). 133 Four of the lipids that we characterized displayed significant changes in control fly 134 heads. Most prominent among these four is the endocannabinoid 2-LG (Fig 1C; 135 nmoles/gram: dark 8.0 ± 0.4, light 10.4 ± 0.5). The 30% light-dependent rise in 2-LG 136 levels is highly significant (p=0.0017). Moreover, the light-induced rise in 2-LG that we 137 observed in controls heads did not occur in *norpA*^{P24} heads (Fig 1C) demonstrating that 138 the change in 2-LG levels was PLC-dependent. In contrast, to 2-LG, we did not detect 139 significant light dependent changes in two other 2-MAGs analyzed: 2-palmitoyl glycerol 140 (2-PG) and 2-oleoyl glycerol (2-OG; Fig EV1A and B). 141 Control flies also exhibited a light-dependent increase in the anandamide-related 142 lipid, linoleoyl ethanolamide (LEA; Fig 1D). However, the absolute levels of LEA were 143 ~100 fold lower than 2-LG (Fig 1C and D). Light did not impact the concentration of LEA 144

in $norpA^{P24}$ flies (Fig 1D). We also quantified a possible precursor of LEA, phospho-LEA

146 (Liu *et al*, 2006), and found a similar light-dependent rise in phospho-LEA (Fig 1E),

147 which was present at low levels comparable to LEA (Fig 1D). There was a small light-

induced increase in phospho-LEA in *norpA*^{P24}; however, this change was not significant

149 (Fig 1E). In contrast to LEA and phospho-LEA, light did not significantly affect the

biosynthesis of other types of *N*-acyl ethanolamides, including those that contained a

151 saturated fatty acid, such as stearoyl ethanolamide (S-EA, C18:0) and palmitoyl

152	ethanolamide (P-EA, C16:0; Fig EV1C and D). We also did not detect a significant light-
153	dependent change in the concentration of oleoyl ethanolamide (O-EA), which is
154	conjugated to the monosaturated fatty acid, oleic acid (OA, C18:1; Fig EV1E). Similarly,
155	light had no impact on OA levels either in control or <i>norpA^{P24}</i> eyes (Fig EV1F).
156	The fourth lipid that displayed a light-induced increase in control flies was the NAG—
157	linoleoyl glycine (LinGly; Fig 1B and F). It has been proposed that NAG is produced by
158	conjugation of glycine and fatty acid through fatty acid amide hydrolase (FAAH)
159	(Bradshaw et al, 2009). The level of LinGly were unaffected by light in norpAP24 (Fig 1F)
160	indicating that the increase in control flies was PLC dependent (Fig 1B). As with LEA
161	and phospho-LEA, the absolute levels of LinGly were much lower than 2-LG (Fig 1C
162	and F). In contrast to LinGly, the concentrations of all three other N-acyl glycine
163	molecules analyzed were not impacted by light (Fig EV1G—I). Thus, all four lipids that
164	displayed light-dependent increases were conjugated to LA. However, linoleic acid (LA)
165	showed only a modest increase in light-stimulated control flies, which was above the
166	threshold for statistical significance (Fig 1G; p=0.084). A previous lipidomics study
167	focusing on PUFAs found that none of the PUFAs analyzed, including LA, changed in
168	the presence of light (Delgado et al., 2014). Thus, even though several reports implicate
169	PUFAs as activators of TRP and TRPL (Chyb et al., 1999; Delgado & Bacigalupo, 2009;
170	Lev et al., 2012), the effects may not be physiologically relevant. Also consistent with
171	previous studies (Shen et al., 2010; Yoshioka et al., 1985), we did not detect
172	arachidonic acid in any our samples. Taken together, our data indicate that light
173	stimulation promotes biosynthesis of LA-containing endocannabinoids and a NAG, and
174	these increases are all PLC dependent.

175

176 Endocannabinoids and NAG activate TRPL channel *in vitro*

To test whether the linoleovl conjugates that rise in concentration in response to light 177 increase channel activity in vitro we focused on TRPL since TRP is largely retained in 178 the endoplasmic reticulum in tissue cultures and has been refractory to functional 179 analyses. To conduct the current analysis, we used a Drosophila cell line (Schneider 2 180 cells: S2 cells) that contains an integrated *trpl::GFP* gene that can be induced with 181 CuSO₄ (Parnas et al, 2007). Cells that are not exposed to CuSO₄ do not express 182 *trpl::GFP* and provide a negative control. We introduced a cell permeant, ratiometric 183 Ca²⁺ indicator (Fura-2 AM) into cells and stimulated with different lipids. We then 184 determined the increase in intracellular Ca^{2+} (Ca^{2+}_{i}) by measuring the change in 185 fluorescence. Finally, we exposed the cells to an ionophore (ionomycin) to determine 186 the maximum possible increase in Ca^{2+} , which we calculated by normalizing the 187 maximum value with each treatment relative to the ionomycin response (see Methods). 188 We focused this analysis on the endocannabinoids (2-LG and LEA) and LinGly, and 189 performed dose response analysis over a 1000-fold concentration range (100 nM—100 190 191 μM). We did not include phospho-LEA in these experiments since it is amphipathic and will not flip to the inner leaflet of the plasma membrane when added to the bath solution. 192 Cells that did not express TRPL (Cu²⁺ minus) were unresponsive to 2-LG even at 100 193 µM 2-LG (Fig 2A and EV2A). In contrast, 2-LG robustly stimulated an increase in Ca²⁺, 194 in cells expressing TRPL (exposed to Cu^{2+}) with an EC₅₀=5.23 μ M (Fig 2A—D). 100 μ M 195 2-LG induced Ca^{2+}_{i} that was 51.5 ± 3.3% of the maximum possible value (Fig 2A—C). 196 LEA and LinGly also stimulated an increase in Ca^{2+} in TRPL-expressing cells (EC₅₀ μ M: 197

198	LEA=7.04, LinGly=2.99; Fig 2A and D—F), but not in Cu ²⁺ minus cells, which did not
199	express TRPL (Fig 2A and EV2B and C). In contrast to the efficacy of these linoleoyl
200	conjugates in stimulating a rise in Ca^{2+}_{i} in TRPL-positive cells, a membrane-permeable
201	analogue of DAG, 1-oleoyl-2-acetyl-sn-glycerol (OAG), was not effective at inducing
202	Ca^{2+}_{i} increase even at the highest concentration we tested (Fig 2A and EV2D). OA was
203	also ineffective at activating TRPL (Fig 2A and EV2E) consistent with the lack of
204	increase of OA level upon light stimulation (Fig EV1F).

205 Since 2-LG, LEA and LinGly contain LA in their structures, channel activation might result from generation of LA either by hydrolysis or degradation. This is plausible since 206 LA activates a TRPL-dependent elevation in Ca^{2+}_{i} (Fig 2A and EV2F and G). To assess 207 208 whether generation of LA from 2-LG, LEA and LinGly activated TRPL, we tested the effects of addition of a MAG lipase inhibitor (JZL 184) and MAG lipase/fatty acid amide 209 hydrolase (FAAH) inhibitor (IDFP) (Long et al, 2009; Nomura et al, 2008). We found that 210 neither inhibitor reduced Ca^{2+} (Fig 3A), supporting the idea that the endocannabinoids 211 (2-LG and LEA) and NAG promote TRPL activation. 212

LA is generated in Drosophila, but arachidonic acid is not detectable in vivo unless it 213 is supplied in the diet. Nevertheless, we tested the effects of 2-arachidonoyl glycerol (2-214 AG) and found that it evoked Ca²⁺ increases in TRPL-expressing cells (Fig 3B and 215 EV3A). We tested a stable 2-AG analog, 2-AG ether (Laine et al, 2002), which also 216 evoked Ca²⁺, increase (Fig 3C and EV3B). Anandamide (AEA) is similar in structure to 217 LEA. Methanandamide, which is a stable analog of AEA (Abadji et al, 1994), also 218 stimulated an increase in Ca²⁺ in TRPL-expressing cells (Fig 3D and EV3C). Thus, 219 arachidonic acid conjugates stimulate TRPL. Since the stable 2-AG analogs activate 220

221	TRPL to a comparable extent as 2-AG, this supports the idea that endocannabinoids	
222	themselves rather than PUFA metabolites are sufficient to activate TRPL.	
223	2-LG, LEA and LinGly all increase upon light stimulation in vivo. Therefore, we	
224	tested whether there were synergistic or additive effects resulting from applying	
225	mixtures of these lipids. We tested all combinations of 2-LG, LEA, LinGly and LA while	
226	maintaining the same total concentration (6 μ M). We did not observe either synergistic	
227	or additive effects on the increase in Ca^{2+}_{i} relative to the same concentration of the	
228	single lipids (Fig 3E—G).	
229		
230	Endocannabinoid acts on TRP and TRPL channels in ommatidia	
231	To address whether the endocannabinoid 2-LG activates TRP and TRPL in	
232	photoreceptor cells we isolated ommatidia from flies (Fig EV4A) expressing a	
233	genetically encoded Ca ²⁺ sensor, GCaMP6f, which is expressed in six out of the eight	
234	photoreceptor cells under control of the <i>rhodopsin 1</i> (<i>ninaE</i>) promotor	
235	(<i>ninaE</i> >GCaMP6f) (Asteriti <i>et al</i> , 2017). We performed all analyses in a <i>norpA</i> ^{P24}	
236	genetic background to prevent light activation of the TRP and TRPL channels. We	
237	stimulated the ommatidia with 2-LG, following by ionomycin to confirm that the	
238	ommatidia were viable. An increase in Ca ²⁺ was assessed by monitoring the change in	
239	fluorescence and dividing it by the basal level of fluorescence (Δ F/F ₀).	
240	We focused this analysis primarily on 2-LG since it is the most abundant lipid that is	
241	induced by light. When we applied 2-LG to the bath solution, we observed an increase	
242	in Ca ²⁺ in <i>norpA^{P24}</i> photoreceptor cells (Fig 4A, C, G and H, and EV4B). Since the	
243	norpAP24 mutation removes the PLC required for phototransduction, the change in	

fluorescence was not due to light stimulation. We introduced the *norpA*^{P24} mutation into 244 a genetic background that removes both TRP and TRPL (*norpA*^{P24};*trpI*³⁰²;*trp*³⁴³) and 245 found that most ommatidia showed significantly lower responses to 2-LG (Fig 4B, D, G 246 and H, and EV4C and D). The significance of this reduction (p=0.024) was not due to 247 the two outliers in the *norp* A^{P24} ;+;+ control since the p value would be 7.6 x 10⁻⁴ in the 248 absence of these two values and the one outlier in the *trp*³⁴³ mutant and two in the 249 *trpl³⁰²* mutant due to the narrower data distribution. In further support of the conclusion 250 that the TRPC channels are activated by 2-LG in vivo, the percentage of no or low 251 responding ommatidia (max $\Delta F/F_0 \leq 0.2$) was significantly higher in the mutant lacking 252 TRPL and TRP ($norpA^{P24}$; $trpI^{302}$; trp^{343} ; 30.2 ±3.7%) compared with the control (Fig 4I; 253 $norpA^{P24}$;+;+; 7.8 ±2.0%). Nevertheless, the remaining influx in $norpA^{P24}$; $trpl^{302}$; trp^{343} 254 flies could be due to the Na^+/Ca^{2+} exchanger (CalX), which we can run in reverse in fly 255 photoreceptor cells (Wang et al, 2005b) or potentially to lipid modulation of voltage-256 gated channels (Elinder & Liin, 2017). 257

The reduction in fluorescence ($\Delta F/F_0$) in the norp A^{P24} ; trp 302 ; trp 343 . mutant 258 demonstrates that the rise in $\Delta F/F_0$ was due primarily to TRP and TRPL. Elimination of 259 just TRP or TRPL resulted in only small differences from the norpAP24 control. which 260 were not statistically significant (Fig 4E-I). The minimal changes upon elimination of 261 just TRP or TRPL is consistent with analyses using electrophysiological studies showing 262 that loss of TRPL alone has virtually no effect on the amplitude of the light response 263 (Niemeyer et al., 1996), while removal of TRP has only minimal effects on the response 264 amplitude under dim or moderate light conditions (Minke, 1982; Minke et al, 1975). The 265 2-LG induced an increase in $\Delta F/F_0$ only in the presence and not the absence of Ca²⁺ in 266

267	the bath solution (Fig 4J and K) demonstrating that the increase in GCaMP6f
268	fluorescence was due to Ca^{2+} influx and not to release of Ca^{2+} from internal stores.
269	We also examined whether LEA and LinGly stimulated a rise in Ca^{2+}_{i} . We found that
270	these lipids induced Ca^{2+}_{i} increases in the <i>norpA</i> ^{P24} control, which were significantly
271	higher than those in the <i>norpA^{P24};trpl³⁰²;trp³⁴³</i> mutant (Fig 4L and M). In the absence of
272	the one outlier for LinGly, the significance is essentially unchanged (p=0.020).
273	Consistent with previous data indicating that LA but not OA is effective in activating the
274	TRPC channels (Chyb et al., 1999; Delgado & Bacigalupo, 2009), we found that LA
275	activated ommatidia at a level similar to that of 2-LG, whereas OA only evoked the
276	minimum Ca ²⁺ increase similar to that observed in ommatidia lacking TRPL and TRP
277	(Fig 4N).

278

279 Discussion

Activation of PLC following light stimulation is critical for opening of the TRP and 280 TRPL channels in photoreceptor cells. However, many lipids could potentially be 281 generated following stimulation of PLC. To identify candidate lipids that modulate these 282 TRPC channels in vivo, we set out to identify lipids that increase in response to light. 283 Since phototransduction is dependent on the PLC encoded by *norpA*, we designed the 284 analysis to find lipids that increased upon light stimulation in wild-type but in not in the 285 norpA mutant. We found that wild-type but not norpA mutant flies exhibit light-286 dependent increases in the endocannabinoids 2-LG, LEA, phospho-LEA as well as the 287 NAG (LinGly), and that 2-LG, LEA and LinGly activate TRPC channels in vitro and in 288

isolated ommatidia. The results suggest that one or more of these lipids activates theTRP and TRPL channels in photoreceptor cells.

We suggest that the endocannabinoid 2-LG is the relevant lipid that activates the 291 TRPC channels in vivo. 2-LG is generated at levels that are ~60—100-fold higher than 292 LEA, phospho-LEA or LinGly. In addition, the light-dependent rise in 2-LG was more 293 294 significant (p=0.0017) than the other three lipids (p=0.018-0.039). Moreover, the statistical significance of LEA and LinGly depended on the one and two outliers, 295 respectively. In contrast to the highly significant light-dependent rise in 2-LG in control 296 flies, the levels of 2-LG in either dark or light exposed *norpA^{P24}* heads were virtually 297 identical to the control maintained in the dark. We suggest that enough 2-LG is 298 generated to activate the TRPC channels since the precursor for 2-LG (DAG) is 299 estimated to be produced at near millimolar levels (Raghu & Hardie, 2009), and 30 μ M 300 2-LA is sufficient to activate the TRPC channels in isolated ommatidia. The TRPC 301 channels in the rhabdomeres are activated within 20 milliseconds (Ranganathan et al, 302 1991), and our lipidomics analysis was performed following 5 minutes of illumination. 303 Although technically challenging, in the future it would be of interest to assess whether 304 the rise 2-LG can be detected over a much shorter time frame. 305 In further support of the model that 2-LG is the physiologically relevant activator of 306 the TRPC channels, mutation of *Drosophila inaE*, which encodes a DAG lipase 307 necessary for the sn-1 hydrolysis for production of 2-MAG from DAG, causes a transient 308 ERG phenotype that resembles the trp mutant (Leung et al, 2008). The inaE mutant 309 phenotype indicates that one or more lipid metabolites produced subsequent to light-310

dependent production of DAG contributes to TRP channel activation. However, this

work did not clarify whether the relevant lipid is 2-LG or some other metabolite such LA. 312 We suggest that the *inaE* phenotype is not as severe as the *norpA*^{P24} null mutant since 313 the viable *inaE* alleles are hypomorphic (Leung *et al.*, 2008). Several studies found that 314 LA and other PUFAs can activate the TRPC channels (Chyb et al., 1999; Delgado & 315 Bacigalupo, 2009; Lev et al., 2012). We also find that LA can activate the TRPC 316 317 channels. However, a previous report concludes that PUFAs including LA remain unchanged upon illumination (Delgado et al., 2014). This is consistent with our lipidomic 318 analysis indicating that the modest rise in LA in light stimulated animals is not significant. 319 While LEA, phospho-LEA and LinGly are also increased in a light-dependent 320 manner and are effective at activating the TRPC channels, the findings that the light-321 dependent increases are much lower than 2-LG suggests that they are not likely to be 322 the prime lipids that activate the highly abundant TRP and TRPL channels in 323 photoreceptor cells. We suggest that the endocannabinoids (LEA and phospho-LEA) 324 and the NAG (LinGly) do not function primarily in activation of TRP and TRPL, but 325 rather in some other light-dependent function in photoreceptor cells. One possibility is 326 that these lipids might regulate synaptic vesicle recycling in photoreceptor cells, since 327 this dynamic process depends on proper lipid content at the synapse (Marza et al, 328 2008). Moreover, if flies are fed a diet deficient in PUFA, this causes a deficit in the on-329 and off-transient responses in the electroretinogram, which reflects a decrease in signal 330 331 transmission from photoreceptor cells to their postsynaptic partners (Ziegler et al, 2015). Although increases of LEA, phosphor-LEA and LinGly are PLC-dependent, it is unclear 332 how these lipids are produced in Drosophila. 333

Our results indicate that the specific fatty acid conjugate and the degree of 334 saturation of the fatty acid in the lipid are factors that contribute to activation of TRP and 335 TRPL. All of the lipids that increased in a light- and NORPA-dependent manner were 336 conjugated to the PUFA, linoleic acid (C18:2). In contrast the levels of two other 2-337 MAGs analyzed that included either a saturated fatty (palmitic acid, C16:0) or a 338 339 monounsaturated fatty acid (oleic acid, C18:1) were not increased by light. Moreover, oleic acid was ineffective at activated TRPL *in vitro* or in increasing Ca²⁺ responses in 340 ommatidia. 341

An open question concerns the mechanism through which 2-LG activates the 342 channels. We propose that the endocannabinoid, 2-LG, directly activates TRP and 343 TRPL in vivo. In mammals, plant-derived cannabinoids and endocannabinoids bind to 344 the G-protein coupled receptors CB1 and CB2 (Gregus & Buczynski, 2020). However, 345 there are no Drosophila CB1 or CB2 homologs (McPartland et al., 2001). At least six 346 mammalian TRP channels are activated in vitro by cannabinoids and endocannabinoids, 347 including four TRPV channels, TRPA1 and TRPM8 (Bradshaw et al, 2013; Muller et al, 348 2019). An interaction between rat TRPV2 and cannabidiol was recently identified in a 349 cryo-EM structure (Pumroy et al, 2019) and differences in the putative binding sites 350 among mammalian TRP channels has been modeled and discussed (Muller et al. 2020: 351 Muller & Reggio, 2020). Similarly, the *Drosophila* TRPC channels, TRP and TRPL, may 352 353 also be receptors for endocannabinoids. Since CB1 and CB2 are not present in Drosophila (McPartland et al., 2001), we suggest that TRP channels comprise a class of 354 ionotropic cannabinoid receptors conserved from flies to humans. 355

A previous and highly intriguing study proposed that the TRP and TRPL channels 356 are mechanically-gated following light-induced activation of the phototransduction 357 cascade and stimulation of NORPA (Hardie & Franze, 2012). Their concept is that 358 following stimulation of PLC, the DAG that remains in the membrane is smaller than 359 PIP₂, thereby resulting in a conformational change in the plasma membrane that causes 360 361 mechanical activation of the channels. We suggest the model that allosteric modulation of TRP and TRPL by 2-LG along with conformational changes in the membrane due to 362 hydrolysis of PIP₂ both contribute to activation of the TRPC channels. This dual 363 364 mechanism would ensure that production of 2-LG alone, or conformation changes of the membrane alone would be insufficient to activate TRP and TRPL. Since generation of 365 2-LG or movements in the plasma membrane could in principle occur without 366 stimulation of PLC, this dual mechanism would reduce the probability of channel 367 activation independent of light. It has also been posited that mechanical stimulation in 368 combination with protons produced from PIP₂ hydrolysis could collaborate to promote 369 TRPC channel activation (Hardie & Franze, 2012). A requirement for two PLC-370 dependent changes to activate TRP and TRPL would have the great benefit of 371 372 minimizing noise in photoreceptor cells, which is essential for photoreceptor cells to achieve their exquisite single photon sensitivity. 373

374

375 Materials and methods

376 Sources of fly stocks and rearing

 w^{1118} was used as the wild-type control. The following flies were obtained from the Bloomington Stock Center (stock numbers are indicated): trp^{343} (#9046), $trpl^{302}$ (#31433). The following stocks were provided by the indicated investigators:

 cn^{1} .trpl³⁰².bw¹:trp³⁴³.ninaE-GCaMP6f/Tb¹ (R. Hardie) and norpA^{P24} (W. Pak), which was 380 outcrossed to w^{1118} . The w^{1118} , norp A^{P24} flies were used throughout this work but are 381 referred to as *norpA^{P24}* for brevity. Flies were reared on standard cornmeal-yeast media: 382 24,900 ml distilled water, 324 g agar (66-103, Genesee scientific), 1,800 g cornmeal 383 (NC0535320, lab scientific), 449 g yeast (ICN90331280, MP Biomedicals), 240 ml 384 Tegosept (30% in ethanol; H5501, Sigma Aldrich), 72 ml propionic acid (81910, Sigma 385 Aldrich), 8.5 ml phosphoric acid (438081, Sigma Aldrich) and 2,400 ml molasses (62-386 118, Genesee Scientific). Flies were initially raised in vials or bottles containing the 387 media at 25°C in a chamber under 12-hour light/12-hour dark cycle and transferred to 388 24-hour dark conditions before experiments as indicated below. 389

390

391 Chemicals

392 The following chemicals were obtained from Cayman Chemical: linoleic acid

(#90150), 2-linoleoyl glycerol (#62260), linoleoyl ethanolamide (#90155), linoleoyl

394 glycine (#9000326), oleic acid (#9000326), 1-oleoyl-2-acetyl-sn-glycerol (OAG, #62600),

2-arachidonoyl glycerol (#62160), 2-arachidonoyl glycerol ether (#62165), R-1

methanandamide (#90070), JZL 184 (#13158) and IDFP (#10215). The chemicals were

dissolved in ethanol or DMSO and kept at -80°C.

398

399 Exposing flies to light and collecting fly heads for lipidomic analyses

Bottles containing flies were transferred to and maintained in the dark for 7 days

401 after egg laying and handled under a dim red photographic safety light throughout the

402	experiments. ~150 flies (0—4 days old) were collected and transferred into bottles
403	containing fly food. The bottles were wrapped with aluminum foil and placed in the dark.
404	After two days, flies were starved in the dark by transferring the flies into bottles
405	containing 1% agarose, wrapped with aluminum foil and placed in the dark. After 15-
406	17 hours, the flies were anesthetized with CO_2 and transferred into 50 mL tubes
407	(352070, BD Falcon). After 1—2 minutes when the flies began to move, we plugged
408	each tube with a cotton ball, which we pushed down to the 10-mL line. The tubes were
409	covered with aluminum foil and placed in a rack for 10 minutes to allow the flies to
410	continue to recover from the CO_2 exposure. After removing the aluminum foil, we left the
411	cotton ball in each tube and secured the top of each tube with a screw cap. We then
412	placed the tubes in a 37°C incubator for 3 minutes since PLC activity is higher at 37°C
413	than at the standard incubation temperature of 25°C (Huang et al., 2004).
414	To enable us to compare lipids that increase upon light exposure, we either
415	maintained the tubes with the flies in the dark or exposed the flies to blue light from the
416	side of the tube (~0.3—1.0 mW at the distal and the proximal sides of the tube,
417	respectively) for 5 minutes. The tubes were immediately immersed in liquid nitrogen for
418	30 seconds. To mechanically separate the head and bodies, we removed the cotton
419	plugs, reinserted the screw caps, and vigorously vortexed the tubes. The frozen
420	samples were then passed through 25 and 40 mesh sieves. The fly heads, which were
421	trapped on the 40 mesh sieves, were quickly transferred into chilled 1.5 ml black
422	microfuge tubes (T7100BK, Argos technologies) and stored at -80°C until we performed
423	the lipid extractions.

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448894; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20

425 Lipid extraction from fly heads

500 μ L of methanol was added to each tube containing 4—8 mg of fly heads 426 followed by 100 pmols, deuterium-labeled N-arachidonoyl glycine (d8NAGly), to act as 427 an internal standard. The tubes were then closed, vortexed for 30 seconds and left in 428 429 darkness on ice for 1 hour, vortexed again for 30 seconds and left to process for another hour in darkness on ice. The samples were then centrifuged at 19,000xg at 430 431 24°C for 20 minutes. The supernatants were collected and placed in polypropylene 432 tubes (15 ml) and 1.5 ml of HPLC-grade water was added making the final 433 supernatant/water solution 25% organic. A partial purification of lipids was achieved using a preppy apparatus assembled with 500 mg C18 solid-phase extraction columns. 434 435 The columns were conditioned with 5 mL of HPLC-grade methanol immediately 436 followed by 2.5 mL of HPLC-grade water under pressure. The supernatant/water solution was then loaded onto the C18 column and washed with 2.5 mL of HPLC grade 437 water followed by 1.5 mL of 40% methanol. Elutions of 1.5 mL of 60%, 70%, 85% and 438 100% methanol were collected in individual autosampler vials and then stored in a -439 80°C freezer until mass spectrometer analysis. 440

441

442 LC/MS/MS analysis and quantification

Samples were removed from the -80°C freezer and allowed to warm to room
temperature then vortexed for approximately 1 minute before being placed into the
autosampler and held at 24°C (Agilent 1100 series autosampler, Palo Alto, CA) for the
LC/MS/MS analysis. 20 µL of eluants were injected separately to be rapidly separated
using a C18 Zorbax reversed-phase analytical column to scan for individual compounds.

448	Gradient elution (200 $\mu\text{L/min})$ then occurred, under the pressure created by two
449	Shimadzu 10AdVP pumps (Columbia, MD). Next, electrospray ionization was done
450	using an Applied Biosystems/MDS SCIEX (Foster City, CA) API3000 triple quadrupole
451	mass spectrometer. All compounds were analyzed using multiple reaction monitoring
452	(MRM). Synthetic standards were used to generate optimized MRM methods and
453	standard curves for analysis. We reported the MRM parent/fragment pairs previously
454	(Tortoriello et al, 2013), with the exception of phosphoLEA, which is MRM[-] 403.5/58.5.
455	The mobile phases are also the same as we reported previously (Tortoriello et al,
456	2013): mobile phase A, 80% HPLC-grade H ₂ O/20% HPLC-grade methanol, 1 mM
457	ammonium acetate; mobile phase B, 100% HPLC-grade methanol, 1 mM ammonium
458	acetate.

459

460 **Ca²⁺ imaging**

Schneider 2 (S2) cells carrying a *trpl-egfp* transgene (gift from B. Minke) (Parnas et 461 al., 2007) were grown in 60 mm dishes (353002, Falcon) at 25°C in 4 mL Schneider's 462 media (21720-024, Gibco) that contained 10% inactivated fetal bovine serum (10437-463 028, Gibco) and 50 units/mL penicillin/streptomycin (15140-122, Gibco). S2 cells were 464 seeded on 8 mm round cover glasses (Matsunami) in a 35 mm dishes (1000-035, Iwaki). 465 We then added 2 µL 500 mM CuSO₄ (039-04412, Wako) to 2 mL culture medium (final 466 500 µM) and incubated the cells for 24 hours in a 25°C incubator to induce expression 467 of the gene encoding TRPL::EGFP. The cells without the CuSO₄ treatment were used 468 as the control cells that did not express TRPL. To load the cells with Fura-2 AM, we 469 470 added a 1 mL of the following mixture to the culture media and incubated the cells at

25°C incubator for 1—3 hours: 5 μM Fura-2 AM (F-1201, Life Technologies), 250 μM 471 probenecid (162-26112, Wako), 20% pluronic F-127 (P2443, Sigma). The cells were 472 then allowed to recover for 15 minutes in a bath solution containing 130 mM NaCl, 5 473 mM KCl, 2 mM MgCl₂, 2 mM CaCl₂, 30 mM sucrose, and 10 mM N-474 475 Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES), after adjusting the pH to 7.2 with NaOH. The cover glasses were mounted in a chamber (RC-26G; Warner 476 477 Instruments) connected to a gravity flow system to deliver various stimuli. A xenon lamp was used as an illumination source. To obtain fluorescent intensities of Ca²⁺-bound and 478 Ca²⁺-free Fura-2, we excited the cells at 340 and 380 nm, respectively, and emission 479 was monitored at 510 nm with a sCMOS camera (Zyla 4.2 Plus; Andor Technology) 480 481 used with a fluorescent microscope (Eclipse TE2000-U, Nikon). The data were acquired 482 using iQ2 software (Andor Technology) and the ratio values (340/380) were calculated with Fiji software (Schindelin et al, 2012). 483 We obtained an average trace for each sample and calculated the change in Ca^{2+} 484 as follows: Ca^{2+} response= $(F_{res} - F_{min})/(F_{max} - F_{min})$. To normalize the responses, we 485 subtracted the minimum values during the basal period (F_{min}) from the responses every 486 3 sec (F_{res}). We also subtracted the F_{min} from the maximum value obtained due to 487 addition of the ionomycin (F_{max}) (I0634, Sigma). After the normalization we extracted the 488 maximum increase in Ca^{2+}_{i} (Ca^{2+}_{i} max) during the stimulation period for further analysis. 489 During stimulation with 2-AG ether, we observed non-specific Ca²⁺, responses, which 490 we recognized due to stochastic and sudden ratio increases in CuSO₄-induced (TRPL-491

492 expressing) and non-induced control cells. Traces containing these non-specific

responses were omitted from the analyses.

494

495 **Dissociation of ommatidia**

All ommatidia were isolated from $norpA^{P24}$ flies to prevent light-induced activation of 496 the TRP and TRPL channels. The flies were maintained under standard light/dark 497 cycles and transferred to a constant darkness after initiating new crosses to eliminate 498 any possibility of light-induced retinal degeneration. Male progeny were selected for the 499 experiments with isolated ommatidia because *norpA* is on the X chromosome, thereby 500 simplifying the crosses needed to obtain flies with the $norpA^{P24}$ mutation, which is 501 recessive. The trpl³⁰² (Niemeyer et al., 1996) and trpl³⁴³ (Wang et al, 2005a) mutations 502 are recessive. The control flies were heterozygous for $trpl^{302}$ and $trpl^{343}$ 503 (norpA^{P24}/Y;cn¹,trpl³⁰²,bw¹/+;trp³⁴³,ninaE-GCaMP6f/+) and were obtained by crossing 504 norpA^{P24} females and cn¹.trpl³⁰², bw¹:trp³⁴³, ninaE-GCaMP6f/Tb¹ males. The trp³⁴³ 505 mutant was also heterozygous for $trpl^{302}$ ($norpA^{P24}/Y$: cn^1 , $trpl^{302}$, $bw^1/+$; trp^{343} ,ninaE-506 $GCaMP6f/trp^{343}$) and was obtained by crossing $norpA^{P24}$;+; trp^{343} females and 507 cn^{1} , $trpl^{302}$, bw^{1} ; trp^{343} , ninaE-GCaMP6f/Tb¹ males. The $trpl^{302}$ mutant was also 508 heterozygous for trp^{343} (norpA^{P24}/Y;cn1,trpl³⁰², bw¹;trp³⁴³, ninaE-GCaMP6f/+) and was 509 obtained by crossing norpA^{P24};trpl³⁰² females and cn¹,trpl³⁰²,bw¹;trp³⁴³,ninaE-510 GCaMP6f/Tb¹ males. The $trpl^{302}$; trp^{343} mutant ($norpA^{P24}/Y$; cn^1 , $trpl^{302}$, bw^1 ; trp^{343} , ninaE-511 GCaMP6f/trp³⁴³) was obtained by crossing norpA^{P24};trpl³⁰²;trp³⁴³ females and 512 cn^{1} , $trpl^{302}$, bw^{1} ; trp^{343} , ninaE-GCaMP6f/Tb¹ males. 513

Dissection of ommatidia was performed similar to that described previously (Hardie, 1991). Briefly, we performed dissections under a dim LED light source with a red filter (RG610, Schott), which is functionally equivalent to darkness for the flies. To conduct

each experiment, two males (within 4 hours of eclosion) were collected using CO₂ and 517 the heads were removed, briefly soaked in 70% ethanol and then immersed in a drop of 518 dissection media containing Schneider's medium and 0.2% bovine serum albumin (fatty 519 acid-free, A8806, Sigma). The four eye cups were dissected using forceps and the 520 retina were scooped out using a micro scooper made from a minutien pin (26002-10, 521 Fine Science Tools). The retinas were collected using a fire-polished trituration glass 522 pipette made from a glass capillary (outer diameter 1.2 mm, inner diameter 0.69 mm, 523 GC120-10, Warner Instruments) and washed with and incubated in fresh dissection 524 525 media for 20 minutes in the dark. Surrounding pigmented glia were removed by rapid aspiration/expiration and the retina were transferred to a drop (30 µL) of the dissection 526 527 media. Ommatidia were then mechanically dissociated by repetitive pipetting using three fire-polished trituration pipettes with different inner diameters until almost all the 528 ommatidia were isolated from the lamina layers. Dissociated ommatidia were 529 immediately used for subsequent imaging experiments and maintained in the drop in a 530 dark for up to 60 minutes. 531

532

533 GCaMP6 imaging

Each ommatidial suspension (8—9 μL) was placed on the glass bottom of a
chamber (RC-26G; Warner Instruments). Cells were allowed to settle down to the
bottom for 3—4 minutes. To wash out floating cells, the chamber was filled and
perfused with an extracellular solution containing 120 mM NaCl, 5 mM KCl, 4 mM MgCl₂,
1.5 mM CaCl₂, 25 mM L-proline, 5 mM L-alanine, and 10 mM TES, which was adjusted
to pH 7.15 with NaOH. The Ca²⁺-free experiments were performed with a solution that

was nominally Ca^{2+} -free by omitting 1.5 mM $CaCl_2$ from the extracellular solution. A xenon lamp was used as an illumination source.

To monitor the fluorescent intensity of the GCaMP6f, the ommatidia were excited with 472 nm light and emissions were monitored at 520 nm with a sCMOS camera (Zyla 4.2 Plus; Andor Technology) attached to a fluorescent microscope (Eclipse TE2000-U, Nikon). To minimize photobleaching of GCaMP6f and an exhaustion of cells caused by light activation of the rhodopsins, we excited the ommatidia every 6 seconds for 60 milliseconds. Ionomycin (5 μ M) was applied in the end of protocol to evaluate the viability of ommatidia.

Data were acquired with iQ2 software (Andor Technology) and the fluorescent 549 intensities were calculated with Fiji software (Schindelin et al., 2012). A region of 550 interest (ROI) was defined as the distal half (the outer side) of the ommatidia since Ca^{2+} 551 responses were relatively higher in this region (Fig 5A and B) and the proximal half (the 552 inner side) of ommatidia was prone to vibration during the perfusion. Typically, 15-30 553 ommatidia in a field was chosen for analysis and cells with obvious damage or small 554 responses to ionomycin or were out of focus were omitted from the analysis. Changes 555 in fluorescence intensity ($\Delta F/F_0$) was used to assess the Ca²⁺ responses [(F_t – 556 F_{basal})/F_{basal}]. F_t corresponds to the value obtained every 6 seconds. F_{basal} is the average 557 during the first 1 minute (0.1% EtOH alone) in every ommatidium. The background 558 values were measured in *norpA^{P24}* ommatidia that do not express GCaMP6f in the 559 presence of 0.1% EtOH. The average background values were subtracted from the 560 fluorescent intensities in all samples. The maximum response (max $\Delta F/F_0$) with each 561 lipid (in 0.1% EtOH) was obtained during the 4-minute stimulation period (60-300 562

563	seconds) after addition of the lipids. The areas under the curve during the stimulation
564	period (60—300 seconds after addition of the lipids) were calculated using a trapezoidal
565	rule $[(F_t+F_{t+1})/2 \ge 6$ (sampling interval)]. For no or low responding ommatidia, the
566	number of cells having max $\Delta F/F_0 \le 0.2$ were counted and divided by the total number of
567	cells in each sample to obtain the proportion.

568

569 **Quantification and statistical analysis**

The data are represented as means \pm SEM. The number of repeated times for each 570 571 experiment (n) is indicated in the figure legends. We used the unpaired, two-tailed Student's *t*-test to determine the statistical significance of two samples that had equal 572 573 variance. In experiments in which we compared two sets of data that did not have equal 574 variance, we used Welch's *t*-test. To determine the statistical significance of the data using ommatidia in Ca²⁺-free versus Ca²⁺-containing bath conditions, we used the 575 paired, two-tailed Student's t-test. To evaluate the statistical significance of multiple 576 577 samples, we used one-way ANOVA with Dunnett's post hoc analysis. To evaluate the statistical significance of multiple samples in the no or low response population, we 578 used one-way ANOVA with Tukey's post hoc analysis. Statistical tests were performed 579 using Prism 7 (Graphpad). Asterisks indicate statistical significance, where *p < 0.05, 580 **p < 0.01, ***p < 0.001 and ****p < 0.0001. 581

582

583 **Data Availability**

584 No data that requires deposition in a public database.

7	7
/	1
_	•

586 Acknowledgments

587 This work was supported by a grant to C.M. from the National Eye Institute

- 588 (EY010852), a grant to H.B. from the National Institute on Drug Addiction (DA039463),
- a grant to M.T. from a Grant-in-Aid for Scientific Research from the Ministry of
- 590 Education, Culture, Sports, Science and Technology in Japan (#15H02501), and grants
- to T.S. from a Grant-in-Aid for Scientific Research from the Ministry of Education,
- 592 Culture, Sports, Science and Technology in Japan (#17H07337 and #18K06495). We
- thank Dr. Baruch Minke (Hebrew University) for sharing the *trpl*-expressing stable S2
- cells, and Dr. Roger Hardie (Cambridge University) for sharing valuable fly stocks and
- suggestions for the ommatidia dissociation protocol.

596

597 Author Contributions

- 598 Conceptualization, T.S. and C.M.; Methodology, T.S., H.B.B., E.L., and C.M.;
- 599 Investigation, T.S., H.B.B., and E.L.; Formal Analysis, T.S., H.B.B., and E.L.; Writing —
- Original Draft, T.S. and C.M.; Writing Review and Editing, T.S., H.B.B., M.T., and
- 601 C.M.; Funding Acquisition, T.S., H.B.B., M.T., and C.M.; Supervision, T.S. and C.M.

602

603 **Declaration of Interests**

The authors declare that they have no conflict of interest.

605

606

607 **References**

- 28
- Abadji V, Lin S, Taha G, Griffin G, Stevenson LA, Pertwee RG, Makriyannis A (1994)
- (R)-methanandamide: a chiral novel anandamide possessing higher potency and
- 610 metabolic stability. *J Med Chem* 37: 1889-1893
- Acharya JK, Jalink K, Hardy RW, Hartenstein V, Zuker CS (1997) InsP₃ receptor
- essential for growth and differentiation but not for vision in Drosophila. *Neuron* 18:
- 613 881-887
- Asteriti S, Liu CH, Hardie RC (2017) Calcium signalling in *Drosophila* photoreceptors
 measured with GCaMP6f. *Cell Calcium* 65: 40-51
- Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Steller H, Rubin G,
- Pak WL (1988) Isolation of a putative phospholipase C gene of Drosophila, *norpA*,
- and its role in phototransduction. *Cell* 54: 723-733
- 619 Bradshaw HB, Raboune S, Hollis JL (2013) Opportunistic activation of TRP receptors
- by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular
- communication. *Life Sci* 92: 404-409
- Bradshaw HB, Rimmerman N, Hu SS, Benton VM, Stuart JM, Masuda K, Cravatt BF,
- 623 O'Dell DK, Walker JM (2009) The endocannabinoid anandamide is a precursor for
- the signaling lipid N-arachidonoyl glycine by two distinct pathways. *BMC Biochem*
- 625 10: 14
- Britt SG, Feiler R, Kirschfeld K, Zuker CS (1993) Spectral tuning of rhodopsin and
- metarhodopsin in vivo. *Neuron* 11: 29-39
- 628 Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila
- light-sensitive channels TRP and TRPL. *Nature* 397: 255-259

630	Delgado R, Bacigalupo J	(2009) Unitary	recordings of TRP	and TRPL channels from
-----	-------------------------	----------------	-------------------	------------------------

- isolated Drosophila retinal photoreceptor rhabdomeres: activation by light and lipids.
- 632 J Neurophysiol 101: 2372-2379
- Delgado R, Delgado MG, Bastin-Héline L, Glavic A, O'Day PM, Bacigalupo J (2019)
- Light-induced opening of the TRP channel in isolated membrane patches excised
- from photosensitive microvilli from *Drosophila* photoreceptors. *Neuroscience* 396:
- 636 66-72
- 637 Delgado R, Muñoz Y, Peña-Cortés H, Giavalisco P, Bacigalupo J (2014) Diacylglycerol
- activates the light-dependent channel TRP in the photosensitive microvilli of
- *Drosophila melanogaster* photoreceptors. *J Neurosci* 34: 6679-6686
- Elinder F, Liin SI (2017) Actions and mechanisms of polyunsaturated fatty acids on
- voltage-gated ion channels. *Front Physiol* 8: 43
- 642 Gregus AM, Buczynski MW (2020) Druggable targets in endocannabinoid signaling.
- 643 Advances in experimental medicine and biology 1274: 177-201
- 644 Hardie RC (1991) Whole-cell recordings of the light-induced current in dissociated
- 645 Drosophila photoreceptors evidence for feedback by calcium permeating the light-
- sensitive channels. *Proc Roy Soc Lond B Biol Sci* 245: 203-210
- Hardie RC, Franze K (2012) Photomechanical responses in *Drosophila* photoreceptors.
 Science 338: 260-263
- 649 Hardie RC, Juusola M (2015) Phototransduction in Drosophila. Curr Opin Neurobiol
- 650 34C: 37-45
- Hardie RC, Minke B (1992) The *trp* gene is essential for a light-activated Ca²⁺ channel
- in Drosophila photoreceptors. *Neuron* 8: 643-651

653	Huang FD, Matthies HJ	Speese SD,	Smith MA, Broadie K	(2004) Rolling blackout, a
-----	-----------------------	------------	---------------------	----------------------------

newly identified PIP₂-DAG pathway lipase required for *Drosophila* phototransduction.

655 Nat Neurosci 7: 1070-1078

- Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC (2010) Activation
- of TRP channels by protons and phosphoinositide depletion in Drosophila
- 658 photoreceptors. *Curr Biol* 20: 189-197
- Inoue H, Yoshioka T, Hotta Y (1985) A genetic study of inositol trisphosphate
- 660 involvement in phototransduction using *Drosophila* mutants. *Biochem Biophys Res*
- 661 *Commun* 132: 513-519
- Laine K, Jarvinen K, Mechoulam R, Breuer A, Jarvinen T (2002) Comparison of the
- 663 enzymatic stability and intraocular pressure effects of 2-arachidonylglycerol and
- noladin ether, a novel putative endocannabinoid. *Invest Ophthalmol Vis Sci* 43:
- 665 **3216-3222**
- Leung HT, Tseng-Crank J, Kim E, Mahapatra C, Shino S, Zhou Y, An L, Doerge RW,
- 667 Pak WL (2008) DAG lipase activity is necessary for TRP channel regulation in
- 668 Drosophila photoreceptors. Neuron 58: 884–896
- 669 Lev S, Katz B, Tzarfaty V, Minke B (2012) Signal-dependent hydrolysis of
- 670 phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C:
- 671 Implications on gating of *Drosophila* TRPL (Transient Receptor Potential-Like)

channel. *J Biol Chem* 287: 1436–1447

- Lin G, Lee PT, Chen K, Mao D, Tan KL, Zuo Z, Lin WW, Wang L, Bellen HJ (2018)
- Phospholipase *PLA2G6*, a Parkinsonism-associated gene, affects Vps26 and Vps35,

675	retromer function, and	l ceramide levels,	similar to <i>a</i> -synuclein	gain Cell Metab 28:
-----	------------------------	--------------------	--------------------------------	---------------------

- 676 605-618 e606
- Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q, Chan AC, Zhou Z,
- Huang BX, Kim HY et al (2006) A biosynthetic pathway for anandamide. Proc Natl
- 679 Acad Sci USA 103: 13345-13350
- Liu L, MacKenzie KR, Putluri N, Maletic-Savatic M, Bellen HJ (2017) The glia-neuron
- lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet
 accumulation in glia via APOE/D. *Cell Metab* 26: 719-737 e716
- Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavon FJ, Serrano AM,
- 684 Selley DE, Parsons LH *et al* (2009) Selective blockade of 2-arachidonoylglycerol
- 685 hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5: 37-44
- Marza E, Long T, Saiardi A, Sumakovic M, Eimer S, Hall DH, Lesa GM (2008)
- 687 Polyunsaturated fatty acids influence synaptojanin localization to regulate synaptic
- vesicle recycling. *Mol Biol Cell* 19: 833-842
- 689 McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human
- neurodegenerative disease. *Genetics* 201: 377-402
- 691 McPartland J, Di Marzo V, De Petrocellis L, Mercer A, Glass M (2001) Cannabinoid
- receptors are absent in insects. *J Comp Neurol* 436: 423-429
- 693 Minke B (1982) Light-induced reduction in excitation efficiency in the *trp* mutant of
- Drosophila. J Gen Physiol 79: 361-385
- Minke B, Wu C, Pak WL (1975) Induction of photoreceptor voltage noise in the dark in
- 696 Drosophila mutant. *Nature* 258: 84-87
- 697 Montell C (2012) Drosophila visual transduction. Trends Neurosci 35: 356-363

- 698 Montell C (2021) *Drosophila* sensory receptors—a set of molecular Swiss Army Knives.
- 699 *Genetics* 217: 1-34
- Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a
- putative integral membrane protein required for phototransduction. *Neuron* 2: 1313-
- 702 1323
- Muller C, Lynch DL, Hurst DP, Reggio PH (2020) A closer look at anandamide
- interaction with TRPV1. *Front Mol Biosci* 7: 144
- Muller C, Morales P, Reggio PH (2019) Cannabinoid ligands targeting TRP channels.
- 706 Front Mol Neurosci 11: 487
- Muller C, Reggio PH (2020) An analysis of the putative CBD binding site in the
- ionotropic cannabinoid receptors. *Front Cell Neurosci* 14: 615811
- Niemeyer BA, Suzuki E, Scott K, Jalink K, Zuker CS (1996) The Drosophila light-
- activated conductance is composed of the two channels TRP and TRPL. *Cell* 85:
- 711 651-659
- Nomura DK, Blankman JL, Simon GM, Fujioka K, Issa RS, Ward AM, Cravatt BF,
- 713 Casida JE (2008) Activation of the endocannabinoid system by organophosphorus
- nerve agents. *Nat Chem Biol* 4: 373-378
- Pak WL (1994) Retinal degeneration mutants of Drosophila. In: Molecular genetics of
- *inherited eye disorders*, Wright A.F., Jay B. (eds.) pp. 29-52. Harwood Academic
- 717 Publishers: Chur, Switzerland
- Pak WL, Grossfield J, Arnold KS (1970) Mutants of the visual pathway of Drosophila
- 719 *melanogaster*. *Nature* 227: 518-520

33

720	Parnas M, Katz B, Minke B (2007) Open channel block by Ca ²⁺ underlies the voltage
721	dependence of Drosophila TRPL channel. J Gen Physiol 129: 17-28
722	Phillips AM, Bull A, Kelly LE (1992) Identification of a Drosophila gene encoding a
723	calmodulin-binding protein with homology to the trp phototransduction gene. Neuron
724	8: 631-642
725	Pumroy RA, Samanta A, Liu Y, Hughes TE, Zhao S, Yudin Y, Rohacs T, Han S,
726	Moiseenkova-Bell VY (2019) Molecular mechanism of TRPV2 channel modulation
727	by cannabidiol. <i>eLife</i> 8
728	Raghu P, Hardie RC (2009) Regulation of Drosophila TRPC channels by lipid
729	messengers. Cell Calcium 45: 566-573
730	Raghu P, Usher K, Jonas S, Chyb S, Polyanovsky A, Hardie RC (2000) Constitutive
731	activity of the light-sensitive channels TRP and TRPL in the Drosophila
732	diacylglycerol kinase mutant, rdgA. Neuron 26: 169-179
733	Ranganathan R, Harris GL, Stevens CF, Zuker CS (1991) A Drosophila mutant
734	defective in extracellular calcium-dependent photoreceptor deactivation and
735	desensitization. Nature 354: 230-232
736	Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
737	Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for
738	biological-image analysis. Nat Methods 9: 676-682
739	Shen LR, Lai CQ, Feng X, Parnell LD, Wan JB, Wang JD, Li D, Ordovas JM, Kang JX
740	(2010) Drosophila lacks C20 and C22 PUFAs. J Lipid Res 51: 2985-2992
741	Tortoriello G, Beiersdorf J, Romani S, Williams G, Cameron GA, Mackie K, Williams MJ,
742	Di Marzo V, Keimpema E, Doherty P et al (2021) Genetic manipulation of sn-1-

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448894; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

743	diacylglycerol lipase and CB_1 cannabinoid receptor gain-of-function uncover
744	neuronal 2-linoleoyl glycerol signaling in Drosophila melanogaster. Cannabis
745	Cannabinoid Res 6: 119-136.
746	Tortoriello G, Rhodes BP, Takacs SM, Stuart JM, Basnet A, Raboune S, Widlanski TS,
747	Doherty P, Harkany T, Bradshaw HB (2013) Targeted lipidomics in Drosophila
748	melanogaster identifies novel 2-monoacylglycerols and N-acyl amides. PLoS One 8:
749	e67865
750	Wang T, Jiao Y, Montell C (2005a) Dissecting independent channel and scaffolding
751	roles of the Drosophila transient receptor potential channel. J Cell Biol 171: 685-694
752	Wang T, Xu H, Oberwinkler J, Gu Y, Hardie RC, Montell C (2005b) Light activation,
753	adaptation, and cell survival functions of the Na ⁺ /Ca ²⁺ exchanger CalX. <i>Neuron</i> 45:
754	367-378
755	Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, Bonini
756	NM (1998) Expanded polyglutamine protein forms nuclear inclusions and causes
757	neural degeneration in Drosophila. Cell 93: 939-949
758	Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a
759	human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA
760	92: 9652-9656
761	Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139: 246-264
762	Yoshioka T, Inoue H, Kasama T, Seyama Y, Nakashima S, Nozawa Y, Hotta Y (1985)
763	Evidence that arachidonic acid is deficient in phosphatidylinositol of Drosophila
764	heads. <i>J Biochem</i> 98: 657-662

765	Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely
766	expressed human homologue for the Drosophila trp gene. FEBS Lett 373: 193-198
767	Zhuang N, Li L, Chen S, Wang T (2016) PINK1-dependent phosphorylation of PINK1
768	and Parkin is essential for mitochondrial quality control. Cell Death Dis 7: e2501
769	Ziegler AB, Menage C, Gregoire S, Garcia T, Ferveur JF, Bretillon L, Grosjean Y (2015)
770	Lack of dietary polyunsaturated fatty acids causes synapse dysfunction in the
771	Drosophila visual system. PLoS One 10: e0135353
772	
773	Figure legends
774	Figure 1. Relative lipid levels in control (w^{1118}) and <i>norpA</i> ^{P24} (in a w^{1118} background)
775	heads from flies maintained in the dark and after light exposure.
776	A Schematic of protocol for collecting heads from flies maintained at 37°C in the dark
777	for 8 minutes or from flies kept in the dark for 3 minutes and then exposed to blue light
778	for 5 minutes. "Dark" is shorthand for flies that were processed using a dim
779	photographic safety light right before the 37°C incubation, which is functionally dark to
780	Drosophila. After freezing in liquid N_2 , and vortexing, the heads were collected over a
781	sieve, lipids were extracted and analyzed by LC/MS/MS.
782	B Pathway for production of endocannabinoids and other lipids from
783	phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. DAG, diacylglycerol; 2-LG, 2-linoleoyl
784	glycerol; 2-MAG, 2-monoacylglycerol; LA, linoleic acid. The structures of $PI(4,5)P_2$ and

785 DAG are shown.

786 C—G Concentrations (nmoles/gram) of the indicated lipids extracted from control and
 787 *norpA*^{P24} heads that were kept in the dark or exposed to light. All of the lipid metabolites

- were analyzed from the same set of samples. (B) 2-linoleoyl glycerol (2-LG). (C)
- Linoleoyl ethanolamide (LEA). (D) Phospho-linoleoyl ethanolamide (phospho-LEA). (E)
- Linoleoyl glycine (LinGly). **(F)** Linoleic acid (LA, C18:2).
- 791 Data information: In (C—G), data are presented as mean ± SEM (n=12). *p < 0.05, **p
- 792 < 0.01 (unpaired Student's *t*-test).

- Figure 2. Effects of endocannabinoids and *N*-acyl glycine on TRPL-dependent
 changes in Fura-2 ratio in S2 cells.
- A Comparison of the maximum increase in intracellular $Ca^{2+} (Ca^{2+})$ in response to the
- indicated lipids. Lipids were added at 100 μ M, except for 300 μ M oleic acid (OA). The
- ⁷⁹⁸ Cu^{2+} (-) cells did not express TRPL and the Cu^{2+} (+) cells expressed TRPL.
- 799 **B—F** Fura-2 responses of TRPL-expressing cells to the indicated lipids. The red and
- black bars (B, C, E and F) indicate the perfusion of the lipids and the ionomycin (lono),
- respectively. (B) Dose responses to 2-LG. Values were normalized to lono. (C)
- Representative traces to 100 μ M 2-LG. (D) Dose-dependent responses to 2-LG, LEA,
- LinGly and LA. The data are the maximum Ca^{2+}_{i} during the stimulation period (60–360
- seconds after addition of the lipids). The basal values were subtracted and the
- $_{805}$ $\,$ percentages were normalized to the maximum values obtained with 5 μM lono. The
- soc curves were fitted using nonlinear regression with variable slopes. (E) Representative
- traces in response to 100 μ M LEA. **(F)** Representative traces in response to 100 μ M
- 808 LinGly.

809	Data information: In (A), data are presented as mean \pm SEM (n=3—6 experiments;
810	~100 cells/experiment). In (D), data are presented as mean \pm SEM (n=5—7; ~100
811	cells/experiment).
812	
813	Figure 3. Effects of lipase inhibitors and activation profile of endocannabinoid analogs
814	on Fura-2 responses in TRPL-expressing S2 cells.
815	A Testing effects of a monoacyl glycerol lipase (MAGL) inhibitor (JZL 184, 80 nM) and a
816	MAGL/fatty acid amide hydrolase inhibitor (IDFP, 30 nM) on Ca $^{2+}{}_{i}$ by 2-LG (10 μM), LEA
817	(10 $\mu\text{M})$ and LinGly (10 $\mu\text{M}).$ The cells were pretreated with the inhibitors or the vehicle
818	(0.1% dimethyl sulfoxide) one minute prior to the lipid application. The background Ca^{2+}_{i}
819	were obtained in non-induced Cu^{2+} (-) cells with the vehicle alone, 80 nM JZL 184 or 30
820	nM IDFP.
821	B — D Responses of Fura-2 to 100 μ M of the indicated lipids. The red bars indicate the
822	stimulation period of the lipids.
823	E-G Testing for synergistic or additive effects by mixing combinations of 2-LG, LEA,
824	LinGly and linoleic acid (LA) to TRPL-expressing cells. The numbers indicate the
825	concentration of lipids (µM).
826	Data information: In (A), data are presented as mean \pm SEM (n=3 for TRPL-
827	expressing cells, n=4-5 for background. ~100 cells/experiment). In (B-D), 3 biological
828	repeats were performed (40—50 cells/experiment) for each stimulation. In (E-G), data
829	are presented as mean \pm SEM (n=3—4; ~100 cells/experiment).
830	

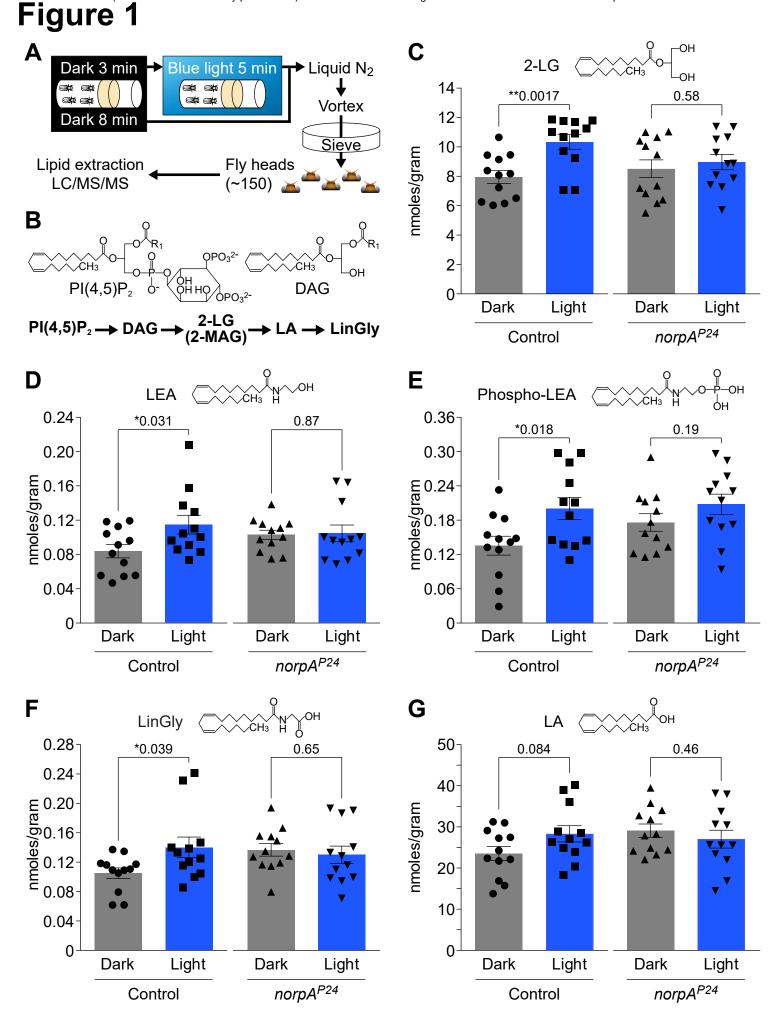
- **Figure 4.** Monitoring responses of photoreceptor cells stimulated with
- endocannabinoids and N-acyl glycine with GCaMP6f.
- **A, B** Representative GCaMP6f responses to 2-LG in control ommatidia ($norpA^{P24}$) and
- in *norpA*^{P24};*trpl*³⁰²;*trp*³⁴³ ommatidia. The ommatidia were stimulated with 30 μ M 2-LG,
- followed by 5 μ M ionomycin (Iono) to confirm the responsiveness of the GCaMP6f in the
- photoreceptor cells. The changes in fluorescence are shown in pseudo colors (0-255).
- The dotted lines in the images of the basal conditions (before addition of 2-LG) outline
- individual rhabdomeres. The 2-LG images were obtained at the 300 seconds time
- points in **C and D**. Scale bars, 20 μ m.
- 840 **C—F** Traces showing representative Ca^{2+}_{i} responses ($\Delta F/F_{0}$) in photoreceptor cells
- from the indicated flies. The red and black bars indicate application of 30 μ M 2-LG (60—
- 300 seconds) and 5 μ M ionomycin (after 300 seconds), respectively. (C) Control
- 843 (*norpA*^{P24}). (**D**) $norpA^{P24}$; $trpI^{302}$; trp^{343} . (**E**) $norpA^{P24}$; +; trp^{343} . (**F**) $norpA^{P24}$; $trpI^{302}$; +.
- 844 **G** Δ F/F₀ indicates the maximum Ca²⁺_i responses during the stimulation period (4
- minutes: 60—300 seconds in **C—F**) divided by the basal fluorescence levels.
- 846 **H** Quantification of area under curve during the stimulation period (4 minutes: 60—300
- 847 seconds in **C—F**).
- I Proportion of no or low responding photoreceptor cells (max $\Delta F/F_0 \le 0.2$) during the stimulation period (4 minutes: 60—300 seconds in **C—F**).
- J 2-LG stimulated Ca²⁺ influx rather than Ca²⁺ release from internal stores in isolated
- ommatidia. The blue bars near the top indicate the bath that contained 1.5 mM Ca^{2+} .
- The white bar indicates the bath with no addition of Ca^{2+} . The red and black bars
- indicate application of 30 μ M 2-LG and 5 μ M ionomycin, respectively. The dotted and

854	solid orange lines indicate $\Delta F/F_0$ in a Ca ²⁺ -containing bath in the absence (dotted) and
855	presence (solid) of 2-LG. The dotted and solid green lines indicate $\Delta F/F_0$ in a bath
856	without added Ca^{2+} in the absence (dotted) and presence (solid) of 2-LG.
857	K Quantification of the maximum Ca $^{2+}{}_{i}$ responses to 30 μM 2-LG in the absence (-) or
858	the presence (+) of 1.5 mM extracellular Ca ²⁺ . $\Delta F/F_0$ in each Ca ²⁺ condition was
859	calculated using values in the periods indicated by green and orange dotted and solid
860	lines in (J) .
861	L, M GCaMP6f responses of control (<i>norpA</i> ^{P24}) and <i>norpA</i> ^{P24} ; <i>trp1</i> ³⁰² ; <i>trp</i> ³⁴³ photoreceptor
862	cells to 100 μM LEA or 30 μM LinGly as indicated. The maximum Ca $^{2+}{}_{i}$ responses
863	during the stimulation period (4 minutes) were used for the calculations.
864	N GCaMP6f responses of control (<i>norpA</i> ^{P24}) photoreceptor cells to 30 μ M oleic acid
865	(OA) and 30 μM linoleic acid (LA) as indicated. The maximum Ca $^{2+}{}_{i}$ responses during
866	the stimulation period (4 minutes) were used for the calculations.
867	Data information: In (G, H), data are presented as mean ± SEM. n=9-11
868	experiments; 13—30 ommatidia/experiment. *p < 0.05. One-way ANOVA with Dunnett's
869	post hoc analysis. In (I), the data are presented as mean \pm SEM. n=9—11 experiments;
870	13—30 ommatidia/experiment. **p < 0.01, ****p < 0.0001. One-way ANOVA with
871	Tukey's <i>post hoc</i> analysis. In (K), the data are presented as mean \pm SEM. n=8. 13—30
872	ommatidia/experiment. ****p < 0.0001. Paired Student's <i>t</i> -test. In (L, M), the data are
873	presented as mean ± SEM. n=9—11. 13—30 ommatidia/experiment. *p < 0.05, ***p <
874	0.001. Unpaired Student's <i>t</i> -test. In (N), the data are presented as mean \pm SEM. n=10—
875	11. 14—30 ommatidia/experiment.

877 Expanded View Figure legends

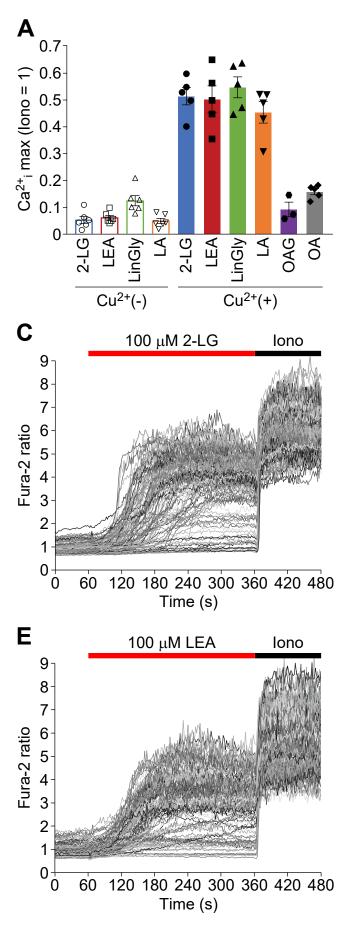
- Figure EV1. Relative lipid levels in control (w^{1118}) and *norpA*^{P24} (in a w^{1118} background)
- heads from flies maintained in the dark and after light exposure.
- 880 A-I All these lipid metabolites were measured (nmoles/gram) in the same set of
- samples used in *Figure 1*. (A) 2-palmitoyl glycerol (2-PG). (B) 2-oleoyl glycerol (2-OG).
- (C) Stearoyl ethanolamide (S-EA). (D) Palmitoyl ethanolamide (P-EA). (E) Oleoyl
- ethanolamide (O-EA). (F) Oleic acid (OA). (G) Stearoyl glycine (S-Gly). (H) Palmitoyl
- glycine (P-Gly). (I) Oleoyl glycine (O-Gly).
- **Data information:** Data are presented as mean ± SEM. n=12. Unpaired Student's *t*-
- 886 tests.

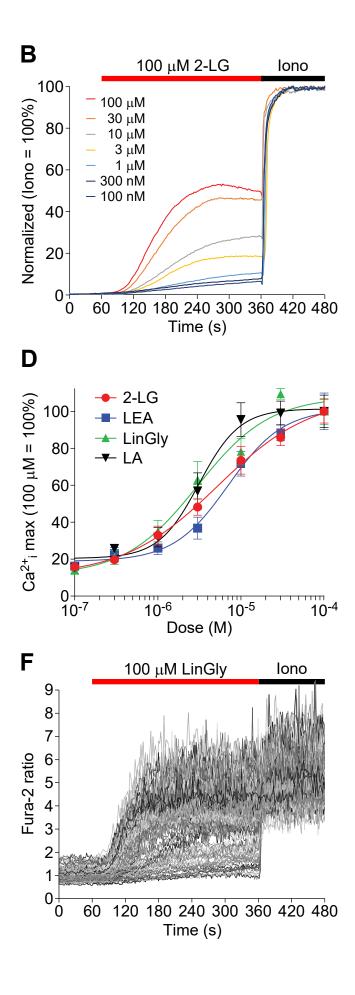
887


Figure EV2. Effects of linoleoyl-conjugates and linoleic acid on S2 cells in which *trpl*

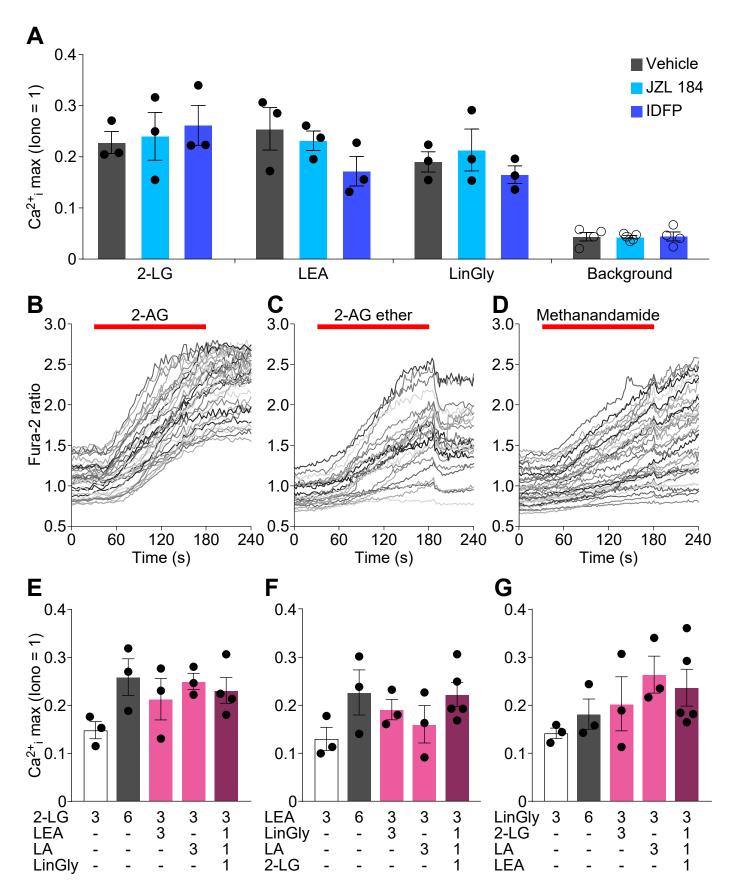
was not induced [Cu^{2+} (-), (A—C and G)] or *trpl* was induced with Cu^{2+} (D—F).

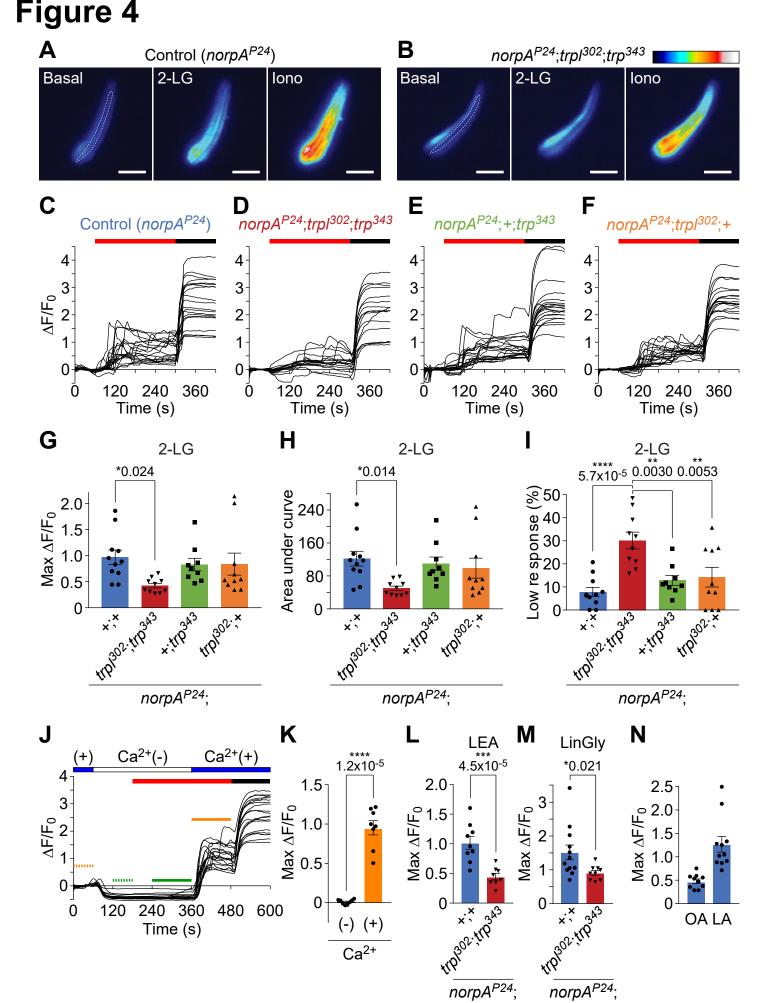
- The cells were loaded with Fura-2 AM and each lipid (100 μ M or 300 μ M) was applied
- exogenously by perfusion. Ionomycin (Iono; 5 μ M) was used to confirm cell viability. The
- cells were excited at 340 nm and 380 nm to obtain the Fura-2 ratio. The red and black
- bars indicate the addition of the lipids or Iono, respectively. (A) 2-LG, Cu²⁺ (-). (B) LEA,
- 894 Cu^{2+} (-). **(C)** LinGly, Cu^{2+} (-). **(D)** OAG, Cu^{2+} (+). **(E)** OA, Cu^{2+} (+). **(F)** LA, Cu^{2+} (+). **(G)** 895 LA, Cu^{2+} (-).
- Data information: 3 or more independent assays were performed for each stimulation
 (~100 cells/experiment).


- Figure EV3. Effects of endocannabinoid analogs on S2 cells in which *trpl* was not
 induced [Cu²⁺ (-)].
- ⁹⁰¹ The red bars indicate the addition of 100 μ M of the indicated lipids by perfusion. The
- cells were excited at 340 nm and 380 nm to obtain the Fura-2 ratio. (A) 2-arachidonoyl
- glycerol (2-AG). (B) 2-AG ether. (C) Methanandamide.
- Data information: 3 or more independent assays were performed for each stimulation
 (~40 cells/experiment).
- 906
- 907 Figure EV4. GCaMP6f responses of photoreceptor cells in isolated ommatidia before
- 908 (basal) and after addition of 30 μ M 2-linoleoyl glycerol (2-LG). The ommatidia were
- isolated from *ninaE>GCaMP6f* flies. Scale bars, 100 μm. (A) Control (*norpA*^{P24})
- ommatidia before addition of 2-LG. (B) Control ommatidia ~240 seconds after addition
- of 2-LG. (C) $norpA^{P24}$; $trpI^{302}$; trp^{343} ommatidia before addition of 2-LG. (D)
- 912 $norpA^{P24}$; $trpl^{302}$; trp^{343} ommatidia ~240 seconds after addition of 2-LG.


bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448894; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448894; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


Figure 2



bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448894; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 3

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448894; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

