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Abstract1

Recent studies suggest that context-specific eQTLs underlie genetic risk factors for complex diseases.2

However, methods for identifying them are still nascent, limiting their comprehensive characteriza-3

tion and downstream interpretation of disease-associated variants. Here, we introduce FastGxC, a4

method to efficiently and powerfully map context-specific eQTLs by leveraging the correlation struc-5

ture of multi-context studies. We first show via simulations that FastGxC is orders of magnitude6

more powerful and computationally efficient than previous approaches, making previously year-7

long computations possible in minutes. We next apply FastGxC to bulk multi-tissue and single-cell8

RNA-seq data sets to produce the most comprehensive tissue- and cell-type-specific eQTL maps9

to date. We then validate these maps by establishing that context-specific eQTLs are enriched10

in corresponding functional genomic annotations. Finally, we examine the relationship between11

context-specific eQTLs and human disease and show that FastGxC context-specific eQTLs provide12

a three-fold increase in precision to identify relevant tissues and cell types for GWAS variants than13

standard eQTLs. In summary, FastGxC enables the construction of context-specific eQTL maps14

that can be used to understand the context-specific gene regulatory mechanisms underlying complex15

human diseases.16

1 Introduction17

Genetic variants associated with complex disease reside mainly in the non-coding component of18

the genome, leading to the natural hypothesis that they act through transcriptional regulation19

[1]. Large-scale multi-context expression quantitative trait loci (eQTL) studies have demonstrated20

extensive sharing of eQTL effects across contexts, such as tissues and cell types [2–5], environmental21

stimulation [6], advanced aging [7], etc. For example, characterization of cis eQTLs across 4922

human tissues in the Genotype-Tissue Expression (GTEx) project has revealed cis eQTLs for 95%23

of protein-coding genes in at least one tissue [2, 3] and sharing of 85% of eQTLs across tissues [5].24

This pervasive sharing complicates the mechanistic understanding of complex trait associations and25

prioritization of the disease-relevant contexts for eQTLs.26
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Interestingly, eQTLs often exhibit complex patterns of context-specific effects, wherein a vari-27

ant can regulate, to a different degree, the expression of a gene across many contexts [5]. Charac-28

terization of these variants will allow a better understanding of gene regulation and disease etiology.29

Indeed, mounting evidence suggests that genetic variants underlying disease associations are often30

context-specific [8–16]. For example, the Immune Variation project identified eQTLs in monocyte-31

derived dendritic cells and human CD4+ T lymphocytes with different effects in response to in vitro32

stimulation and polarization [13, 17]. These previously unknown, immune state-specific eQTLs33

strongly overlapped autoimmune disease-associated variants [6, 18, 19]. Similarly, [20] mapped34

eQTLs during differentiation of induced pluripotent stem cells to cardiomyocytes to identify eQTLs35

that change over time. These dynamic eQTLs were enriched for genes with roles in myogenesis and36

dilated cardiomyopathy.37

To identify context-specific eQTLs (sp-eQTLs) while constraining experimental heterogeneity38

and reducing costs, studies often gather multiple samples across contexts for the same donors [3,39

17, 21, 22]. Linear mixed models (LMMs) are a natural analysis choice for such studies [23–25]40

because they model the intra-individual correlation inherent across repeated samples and directly41

identify sp-eQTLs by testing for the significance of the genotype-by-context (GxC) interaction term.42

However, these LMMs are computationally infeasible for eQTL studies. Hence, researchers instead43

rely on simple linear models with a GxC (LM-GxC) term [9, 20] or context-by-context (CxC) eQTL44

mapping, followed by post hoc examination of summary statistics to distinguish shared and context-45

specific eQTL effects [2, 3]. While relatively fast, these approaches are significantly underpowered46

because they do not leverage intra-individual correlation in multi-context studies like GTEx (Figure47

S2) and single-cell RNA-Seq data [26]. Additionally, many rely on downstream, ad hoc definitions of48

context-specific and shared genetic effects that are based on subjective, manually selected thresholds49

of effect size differences between contexts [5] or presence-absence of effects in different contexts [3, 8,50

27, 28]. These definitions can have a large impact on context-specific eQTL mapping by under- or51

over-counting sharing of effects across contexts. These shortcomings have limited characterization52

of sp-eQTLs and downstream interpretation of disease-associated variants.53

To address these limitations, we introduce FastGxC, a novel method that leverages the corre-54

lation structure of multi-context studies to efficiently and powerfully map sp-eQTLs. In brief, Fast-55
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GxC decomposes the phenotype of interest per individual into context-shared and context-specific56

components and estimates genetic effects on these factors separately using simple linear models. We57

prove through analytical derivation and empirical examination that FastGxC shared and context-58

specific effect size estimates are a reparametrization of the CxC and LMM-GxC estimates. FastGxC59

has several key advantages over previous methods. First, by removing the intra-individual correla-60

tion, it naturally adjusts for background noise unrelated to the context of interest, e.g., sex, age,61

and sequencing batch [7, 29, 30]. Second, it uses ultra-fast implementations of linear regression62

models specifically designed for eQTL mapping [31]. Third, it directly maps sp-eQTLs without the63

need for post hoc analyses or arbitrary thresholds. Fourth, it provides both global and marginal64

tests for sp-eQTLs. The global test identifies variants with eQTL effect size heterogeneity across65

contexts while the marginal tests identify the context(s) driving this heterogeneity. FastGxC output66

integrates naturally with recent methods developed to improve the statistical power of CxC eQTL67

mapping, such as mash [5], sn spMF [4], and Meta-Tissue [32, 33]. FastGxC is broadly generalizable68

to any continuous phenotype, e.g., bulk or single-cell gene expression [3, 34], protein and metabolic69

measurements [21, 22], and DNA methylation levels [35], measured across different contexts, e.g.,70

tissues and cell types [36–38], environmental perturbations [17, 19], developmental stage [35], aging,71

[7, 22], and differentiation state [20].72

We first show in simulations that FastGxC is as powerful as the LMM-GxC but orders of73

magnitude faster. Both approaches are orders of magnitude more powerful than a heterogeneity74

test based on CxC estimates and LM-GxC in the presence of intra-individual correlation. We next75

applied FastGxC to multi-tissue RNA-Seq data from the GTEx Consortium [3] and peripheral76

blood single-cell RNA-Seq data from CLUES, an in-house 234 person cohort (see accompanying77

manuscript), to produce the most comprehensive tissue- and cell-type-specific eQTL map to date78

across 49 tissues and eight peripheral blood cell types. We validate these maps by establishing79

enrichment of sp-eQTLs in corresponding functional genomic annotations. Finally, we examine80

the relationship between FastGxC sp-eQTLs and human disease and show that they provide a81

three-fold increase in precision to identify relevant contexts for GWAS variants across 138 complex82

traits compared to standard eQTLs. In summary, FastGxC enables the construction of context-83

specific eQTL maps that can be used to understand the context-specific gene regulatory mechanisms84

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.17.448889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

underlying complex human diseases.85

2 Results86

FastGxC method overview. We illustrate FastGxC using tissues as the contexts (Figure 1A)87

but the method can be applied to different contexts, e.g., cell types and environmental stimuli.88

Briefly, for each individual, FastGxC decomposes the gene expression across C contexts into one89

context-shared component and C context-specific components (Figure 1A - Decomposition step).90

Next, FastGxC identifies contexts-shared and contexts-specific eQTLs (sh-eQTL and sp-eQTL) by91

estimating genetic effects on the context-shared expression component and each of the contexts-92

specific components (Figure 1A - eQTL mapping step). FastGxC then performs a global test93

for context-specific eQTLs which identifies variants with significant eQTL effect size heterogeneity94

across contexts. Last, to identify the context(s) driving this heterogeneity, FastGxC performs C95

marginal tests for the significance of each of the context-specific eQTLs.96

More formally, let Eic be the observed expression of a gene for individual i (i = 1, . . . , I)97

in context c (c = 1, . . . , C). FastGxC first decomposes Eic into an offset term, a context-shared98

component, and a context-specific component [39], i.e.99

Eic = E.. + (Ei. − E..)︸ ︷︷ ︸
Esh

i

+ (Eic − Ei.)︸ ︷︷ ︸
Ets

ic

(1)100

where E.. =
(∑I

i=1

∑C
c=1Eic

)
/ (I × C) is the average expression of the gene, computed over101

all I individuals and all C contexts, and Ei. =
(∑C

c=1Eic

)
/C is the average expression of the gene102

for individual i, computed over all contexts. In (1), E.. is a term that is constant across individuals103

and contexts for each gene, Esh
i is the context-shared expression component for individual i and is104

constant across contexts for each gene and individual, and Ets
ic is the context-c-specific expression105

component for individual i.106

Next, FastGxC estimates one shared and C context-specific cis genetic effects by regressing107

the genotypes on each component using ultra fast implementations of fixed-effect linear regression108

models [31], i.e.,109
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Esh
i = αsh + βshGi + εshi ,110

Ets
i1 = αts

1 + βts
1 Gi + εtsi1,111

...112

Ets
iC = αts

C + βts
CGi + εtsiC ,113

where αsh, αts
1 , . . . , α

ts
C are offsets. Gi is the genotype of individual i, coded as number of minor114

alleles, and βsh, βts
1 , . . . , β

ts
C are the genetic effects on the shared and each of the context-specific115

expression components. Finally, εtsi1, ε
ts
i1, . . . , ε

ts
iC are each normally distributed residual errors with116

mean zero and variances σ2
sh, σ

2
ts,1, . . . , σ

2
ts,C .117

FastGxC defines a shared-eQTL (sh-eQTL) as a variant with a statistically significant effect on118

the shared component, i.e. βsh, and a context-specific eQTL (sp-eQTL) as a variant with at least one119

statistically significant genetic effect on the context-specific expression components, i.e. βts
1 , . . . , β

ts
C .120

The later test is performed using Simes’s procedure [40]. In addition, FastGxC defines a sp-eQTL in121

context c as a variant with a statistically significant genetic effect on the context-c-specific expression122

component. Figure 1B illustrates different patterns of sh-eQTL and sp-eQTL effects. Notably,123

FastGxC shared and context-specific eQTL effect size estimates are a reparametrization of the124

CxC and L(M)M-GxC estimates (S3E). Full details of the analytical derivation and relationship to125

previous approaches are provided in the Methods and Supplementary Text.126

FastGxC is more powerful and orders of magnitude faster than existing methods in127

simulation studies. We evaluate the global and marginal type I error rates and power of FastGxC128

in a series of simulations and compare its performance to a CxC-based test of eQTL effect size129

heterogeneity and the LM-GxC and LMM-GxC approaches. In order to obtain global estimates of130

type I error rate and power for each method, we test the global null hypothesis of no heterogeneity131

of genetic effects across contexts. Specifically, for the CxC-based approach, we fit a linear model for132

each context c (Eic = αc + βcGi + εic), and test the null hypothesis of no eQTL effect heterogeneity133

across contexts (H0 : β1 = . . . = βC = 0) using the heterogeneity statistic Q from a random-134
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effects meta-analysis as implemented in the meta R package [41]. For the LM-GxC approach, we135

fit one linear model with a genotype-by-context interaction term (Eic = α + β1Gi +
∑C

c=2 γcKic +136 ∑C
c=2 δcGi × Kic + εic) and test the null hypothesis of no genotype-by-context interaction effects137

(H0 : δ2 = . . . = δC = 0) using the likelihood ratio test. For the LMM-GxC approach, we fit one138

linear random effects model with a genotype-by-context interaction term (Eic = ui + α + β1Gi +139 ∑C
c=2 γcKic +

∑C
c=2 δcGi×Kic +εic ui ∼ N(0, σ2

i )) and test the same null hypothesis as the LM-GxE140

model. Finally, for FastGxC, we test the presence of at least one context-specific effect using Simes’s141

method for combining p-values [40]. To assess the ability of FastGxC to identify the heterogeneous142

context(s), we also obtain marginal estimates of type I error rate and power within each context.143

We simulate 10,000 data sets for each scenario. We assume that, in each scenario, gene ex-144

pression is measured in five contexts for 100 individuals. In each scenario, we vary the amount of145

intra-individual correlation, i.e. correlation of gene expression across contexts within individuals,146

from zero, i.e. no intra-individual correlation, to 0.8, i.e. high intra-individual correlation. We147

set the mean of the gene expression in each context to one. Genotypes for each individual were148

simulated using a binomial distribution with a minor allele frequency of 0.2. Under the null hy-149

pothesis of no genetic effect heterogeneity, the effect of the genotype is the same in each context150

(similar to toy example illustrated in Figure 1B - second panel), i.e., βj = 0.1 for j = 1 : 5. We151

simulated two scenarios under the alternative hypothesis of genetic effect heterogeneity. In the first152

scenario (“single-context heterogeneity”), one context had different genetic effects from the other153

four contexts (Figure 1B - third panel), i.e., β1 = β2 = β3 = β4 = 0.1 and β5 = 0.4, and in the154

second scenario (“extensive heterogeneity”), every context had a different genetic effect from all155

other contexts (Figure 1B - fourth panel), i.e., βj = 0.j for j = 1 : 5.156

Under the null hypothesis of no genetic effect heterogeneity, FastGxC and LMM-GxC maintain157

a 5% type I error rate both at the global (Figure 2A) and marginal (Figure S3A) level, regardless of158

the amount of intra-individual correlation. As expected, the CxC-based and LM-GxC approaches,159

which do not model the intra-individual correlation, become more conservative with increasing160

intra-individual correlation (Figure 2A). Under the alternative hypotheses of genetic effect hetero-161

geneity, FastGxC is as powerful as LMM-GxC in both the single-context (Figure 2B) and extensive162

heterogeneity (Figure S3B) scenarios, and both methods become more powerful as the level of intra-163
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individual correlation increases. As expected from their performance under the null scenario, the164

CxC and LM-GxC approaches lose power in the presence of intra-individual correlation (Figures165

2B and S3B). In addition, FastGxC correctly identified the context(s) that drive the heterogeneity166

in both the single-context (Figure 2C) and extensive heterogeneity (Figure S3C) scenarios.167

To benchmark the computational costs of running FastGxC compared to the other approaches,168

we simulated phenotype and genotype data as above. To obtain practical run-times, we used169

study parameters from GTEx, the largest multi-context eQTL study to-date with approximately170

50 contexts and an average of 250 individuals per context, while varying the number of tests171

performed (Figure 2D). When extrapolated to mapping cis-eQTLs in the entire GTEx dataset,172

i.e. approximately 200M tests for 25K genes and 3M SNPs, we found that LMM-GxC and LM-173

GxC would finish in approximately 30 years and 10 months, respectively, while CxC and FastGxC174

achieved equivalent results in under one minute (average run time in 100 iterations). At 1,000175

individuals, FastGxC continues to be efficient (five minutes for all tests) while LMM-GxC would176

take upwards of 500 years (Figure S3D).177

FastGxC produces a high-resolution map of tissue-specific and tissue-shared eQTLs in178

GTEx. We applied FastGxC to GTEx v8 RNA-seq data [3] to decompose the expression in each179

tissue into a tissue-shared and 49 tissue-specific components. To assess the ability of FastGxC to180

remove gene expression background noise, we correlated technical and biological covariates with the181

first ten principal components (PCs) from the original gene expression data and the decomposed182

tissue-shared and tissue-specific expression data (Figure 3A). As expected, the largest sources of183

variation in the original gene expression data, as captured by the top 10 PCs, were highly correlated184

to biological and technical variables such as donor sex, age, ethnicity, and cohort [7, 30, 42]. The185

impact of many of these sources of variation is absent in the FastGxC tissue-specific expression186

components, i.e., the top ten PCs from the tissue-specific expression are not correlated to variables187

that do not change within an individual, e.g. sex, age, and genotype PCs. These results suggest188

that FastGxC effectively reduces background noise inherent in gene expression data by removing189

the intra-individual correlation between tissues transcriptomes from the same individual.190

We next mapped cis eQTLs on each of these components, providing a high resolution map191
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of tissue-shared and tissue-specific eQTLs (sh-eQTLs and sp-eQTLs) (Table S1). We discovered a192

total of 20,947 sh-eGenes, i.e. genes with at least one sh-eQTL (60.7% of tested genes; hierarchical193

FDR (hFDR) ≤ 5%) and an average of 1,620 sp-eGenes, i.e., genes with at least one sp-eQTL, per194

tissue ( 6% tested genes; hFDR ≤ 5%). In addition, we discovered 7,671,697 sh-eQTLs and between195

9,998 (kidney cortex) and 1,008,063 (testis) sp-eQTLs within each tissue, totaling 11,656,197 sp-196

eQTLs across 49 tissues (Figure 3B and S1; hFDR ≤ 5%). Compared to the standard CxC analysis,197

FastGxC discovered an additional 700 eGenes, consistent with the power increase observed in the198

simulations (Figure S4A). Of these additional FastGxC discoveries, 60% are sh-eGenes and the199

remaining 40% are sp-eGenes.200

We then sought to understand the sharing and specificity of FastGxC-mapped eQTLs. We201

found that the majority of sp-eQTLs are discovered in only a few tissues indicating that, for the202

majority of sp-eQTLs, few tissues drive the heterogeneity (Figure 3C). In addition, sp-eQTLs found203

in more biologically-distinct tissues such as testis (16%), make up the largest proportion of the204

sp-eQTLs that are unique to a single tissue (Figure 3C). Across tissues, most variants (85.9-97.5%)205

with tissue-specific eQTL effects have also shared eQTL effects (Figure 3D and S5), suggesting that206

most tissue-specific effects manifest within the shared effect loci and would be missed by approaches207

that define context-specificity by presence or absence of significant eQTL effects in each context208

rather than differences in sizes of eQTL effects.209

Additionally, we show that sp-eQTL effect sizes are correlated between groups of biologically210

related tissues, e.g., sp-eQTL are shared among 13 brain, two heart (left ventricular and atrial ap-211

pendage), two artery (tibial and aorta), two esophagus (muscularis and gastro-esophageal junction),212

three adipose (visceral, subcutaneous, and breast), and two intestine tissues (Figure 4 - right trian-213

gle). This result is consistent with the previously reported high correlation of eQTL effects between214

groups of biologically related tissues from the CxC approach [5]. Yet, while FastGxC sp-eQTL215

effect sizes show little to no correlation outside groups of biologically related tissues, CxC effect216

sizes show widespread correlation across all tissues regardless of biological relationships (Figure 4217

- left triangle). This again demonstrates that FastGxC is able to disentangle tissue specific effects218

from shared effects.219
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Tissue-specific eQTLs are enriched in functional genomic features from their matched220

tissues. To validate FastGxC sh-eQTL and sp-eQTLs and understand the functional differences221

between variants with sh-eQTL and sp-eQTL effects, we performed enrichment analysis for genomic222

elements using variants with sp-eQTL but no sh-eQTL effects (“sp-eQTL only”) and variants with223

sh-eQTL but no sp-eQTL effects (“sh-eQTL only”), compared to a random subset of minor allele224

frequency (MAF)-matched non-eQTL variants (Figure 5A). Sp-eQTL only variants are enriched225

(OR=1.06, p-value = 1.16 × 10−5) while sh-eQTL only variants are depleted (OR=0.98, p-value226

= 2.87 × 10−2) within enhancers (FDR ≤ 5%; Figure 5A). In addition, sh-eQTL only variants227

show stronger enrichment within promoters, compared to sp-eQTL only variants (ORsh = 1.14228

versus ORts = 1.04; p-value = 3 × 10−7). These results are consistent with previous observations229

that variants with tissue-specific effects are more enriched in genomic elements that confer tissue230

specificity to gene expression, such as enhancers, while variants with tissue-shared effects are more231

common within promoters [43].232

In order to understand how eQTL variants mapped by the CxC approach are functionally233

different than FastGxC eQTL variants, we performed enrichment analysis for genomic elements234

using variants that are only discovered by CxC (“CxC only”) or FastGxC (“FastGxC only”) (Figure235

5A). Compared to CxC only variants, the FastGxC-only variants are significantly enriched (FDR236

≤ 5%) in more genomic features and often more strongly enriched in key genomic elements such237

as promoter-flanking regions (ORFastGxC = 1.16 versus ORCxC = 1.08; p-value for OR difference=238

6.4× 10−9) and introns (ORFastGxC = 1.05 versus ORCxC = 1; p-value= 2.3× 10−10). Additionally,239

FastGxC only eQTLs are significantly enriched in enhancers (OR=1.05, p-value = 2.1×10−3), while240

CxC only eQTLs are not (OR=1.02, p-value = 1.8 × 10−1). These results suggested that eQTLs241

only discovered by FastGxC and not CxC are more likely to reside in functional regions.242

As chromatin and TF-binding architectures are strongly tissue-specific [44], they serve as243

important avenues to validate FastGxC mapped sp-eQTLs and quantify the functional differences244

between eQTLs mapped by FastGxC and CxC. We performed enrichment analysis of variants with245

FastGxC sp-eQTL and CxC eQTL effects in a single tissue in open chromatin of several ENCODE246

tissues. Of the 54 pairs of correctly-matched tissues, FastGxC single-tissue sp-eQTL variants are247

enriched in their matched ENCODE tissue more often than CxC single-tissue eQTL variants, i.e.248
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54% (29/54) versus 30% (16/54) of the time (McNemar test, p-value = 1.95 × 10−3; Figure 5B).249

FastGxC variants are also, on average, more strongly enriched in their matched open-chromatin250

regions, compared to CxC variants (ORFastGxC = 1.37 versus ORCxC = 1.18 average across matched251

tissues; Paired t-test, p-value = 9.17× 10−5). Furthermore, we observed widespread enrichment in252

open chromatin for FastGxC and CxC variants with eQTL effects specific to tissues with cell-types253

ubiquitously found across human tissues, e.g. skeletal muscle, breast, and whole blood [45, 46].254

We next performed enrichment analysis of the same sets of variants as above in the predicted,255

tissue-specific TF binding sites (TFBS) [47] (Figure 5C). In line with results from the chromatin256

accessibility data, FastGxC single-tissue sp-eQTL variants are more often enriched in their matched257

tissue-specific TFBS than CxC single-tissue variants, i.e. 53% (16/30) versus 17% (5/30) of the time,258

respectively (McNemar test, p-value = 2.6 × 10−3; Figure 5C). In addition, FastGxC single-tissue259

sp-eQTL variants are, on average, more strongly enriched compared to CxC (ORFastGxC = 1.53260

versus ORCxC = 1.28 average across matched tissues; Paired t-test, p-value = 1.5× 10−3).261

Together these results demonstrate that the tissue-specific components better capture the262

underlying molecular contexts - both tissue-specific chromatin accessibility and TF binding sites -263

of their matched tissues than the CxC approach.264

FastGxC uncovers novel and biologically relevant eQTLs that enhance our understand-265

ing of how genetic effects are shared and divergent across tissues. To provide insight into266

patterns of sharing and specificity of eQTL effects revealed by FastGxC, we discuss a few individual267

examples (Figure 6).268

First, we examine CBS, a gene which encodes the enzyme cystathionine beta-synthase that269

catalyzes the rate-limiting step of the transsulfuration pathway [48, 49] (Figure 6A). This pathway270

acts ubiquitously across many cell-types to perform diverse and important biological functions271

such as protein synthesis and methylation [50]. Indeed, eQTL effect size estimates from CxC are272

significant in 48 individual tissues (hFDR ≤ 5%), suggesting a universal, shared mechanism of273

genetic regulation. FastGxC crystallizes this shared mechanism by identifying a single sh-eQTL274

and no sp-eQTLs (hFDR ≤ 5%).275

Second, we show an eQTL for SIGLEC14, an immune cell surface receptor of the immunoglob-276

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.17.448889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

ulin superfamily involved in the innate immune response [51] (Figure 6B). Similar to the CBS ex-277

ample, there seems to be a sharing of genetic effects across GTEx tissues which could lead one to278

conclude that this genetic effect is invariant across the body. Yet, when we explicitly model this279

sharing with FastGxC, a sp-eQTL effect in whole blood emerges, indicating that, while SIGLEC14280

is under a universal tissue-shared genetic regulation, there is importantly also a blood-specific reg-281

ulatory mechanism that is consistent with the known role of SIGLEC14 in immunity.282

Finally, we discuss the genetic regulation of LDHC, which encodes the testis-specific enzyme283

lactate dehydrogenase C, the first testis-specific enzyme discovered in male germ cells [52] (Figure284

6C). We found that LDHC exhibits a strong positive eQTL effect in all tissues except the testis for285

which the eQTL effect is in the opposite direction. This lone effect becomes very apparent when286

sp-eQTLs are examined with FastGxC. To the best of our knowledge, this is the first time that287

testis-specific genetic regulation, in addition to testis-specific expression, is reported for this gene,288

suggesting that tissue-specificity can be regulated at multiple biological levels.289

We present additional examples that illustrate the power of FastGxC to map context-specific290

eQTL effects in Figure S6.291

Tissue-specific eQTLs identify putatively causal tissues of complex traits. One of the292

primary goals for mapping QTLs is to find the molecular link between genetic variants and their293

associated diseases. As such, we next explored whether FastGxC results can lead to better under-294

standing of the regulatory mechanisms and contexts in which these mechanisms operate in complex295

human diseases. Specifically, we extracted an independent set of trait-associated variants from 138296

mapped traits in the NHGRI-EBI GWAS catalog [53]. We followed the protocol of the GTEx con-297

sortium and used expert curation to identify the most likely relevant tissue(s) (Table S2) [3]. We298

tested FastGxC sh-eQTL and sp-eQTL variants for enrichment in these sets, compared to a random299

and equal sized set of MAF-matched non-eQTL variants. We compare these enrichment results to300

ones based on variants with standard CxC eQTL effects in each tissue (Table S2).301

FastGxC sh-eQTL and sp-eQTLs provide a three-fold increase in precision to identify the302

disease-relevant tissue(s) and a two-fold improvement in their rank compared to standard CxC303

eQTLs (Figure 7A). In addition, CxC eQTLs prioritize 22 of the 49 tissues tested per trait (me-304

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.17.448889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

dian across traits), likely due to the large amount of tissue-sharing of CxC eQTL effects (Figure305

4). By contrast, FastGxC prioritizes only five tissues per trait with a similar recall rate as CxC.306

This difference suggests that modeling the extensive sharing of eQTL effects across tissues has the307

potential to improve our ability to localize GWAS associations to a smaller subset of putatively308

causal tissues.309

Across the board, the FastGxC enrichment patterns recapitulate known trait-tissues associ-310

ations (Figure 7B, hFDR≤ 5%). For example, in breast carcinoma, the tissue with the highest311

enrichment according to FastGxC is breast mammary tissue (OR = 5.0, P-value = 3.2 × 10−4).312

On the other hand, for standard eQTLs mapped by CxC, the strongest enrichment was for EBV-313

transformed lymphocytes while breast mammary tissue (OR = 2.24, p-value = 7.5× 10−4) was the314

25th most enriched tissue. In lung adenocarcinoma, the most common type of lung cancer, CxC315

finds significant associations in 22 tissues, many seemingly unrelated to lung physiology (lung OR316

= 2.83, 18th strongest enrichment of 22 tissues, p-value = 1.6×10−3), while FastGxC only finds sig-317

nificant associations in lung (OR = 5.67, p-value = 2.6×10−3) and nerve tibial (OR = 20, p-value =318

2.1× 10−5). Interestingly, in the non tissue-specific cancer trait, we found that for FastGxC shared319

eQTLs showed the strongest enrichment, consistent with the idea that this trait reflects shared320

process across all tissues. This improved tissue resolution was also seen in non-cancer traits. For321

example, in coronary artery disease, CxC finds significant associations in 43 of the 49 tested tissues,322

while FastGxC finds only 16 and the top tissues are almost all cardiovascular-relevant, i.e. coronary323

and aortic artery, heart left ventricle and atrial appendage, skin, muscle, and average tissue.324

Taken together, we demonstrate that FastGxC leads to improved resolution for localizing325

known tissue-trait associations. This result suggests that utilizing FastGxC to map context-specific326

eQTLs has the potential to discover novel links between contexts and diseases, and critically generate327

testable hypothesis for downstream experimental validation.328

Cell-type-specific eQTLs are enriched for variants associated with immune-related com-329

plex traits. Single-cell RNA-seq eQTL studies provide an ideal setting for the application of330

FastGxC because the same donor contributes cells across almost all known cell types, leading to331

considerable intra-individual correlation (Figure 5A of accompanying manuscript). In addition, for332
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cases in which eQTLs from a complex tissue, e.g. whole blood, are enriched for disease-associated333

variants, single cell data provide an opportunity to examine the underlying cell types from this334

complex mixture. To that end, we applied FastGxC to the CLUES study, a cohort with single-cell335

RNA-Seq data in eight peripheral blood mononuclear cell (PBMC) types from 234 individuals (see336

accompanying manuscript). We identified 1,025 and 1,223 genes with at least one shared and at337

least one cell-type-specific cis eQTL, respectively (hFDR≤ 5%). We extensively characterized these338

cell-type-specific eQTLs and showed that FastGxC cell-type-specific eQTLs for each cell type were339

significantly and specifically enriched for regions of chromatin accessibility in the same or closely340

related cell types (see accompanying manuscript).341

We next tested for enrichment of FastGxC shared and cell-type-specific eQTLs in sets of trait-342

associated variants from 59 immune-related traits in the GWAS catalog (Figure 7C). We compare343

these results to enrichment results from CxC eQTLs mapped in the same single-cell data set, as344

well as enrichment results from GTEx bulk CxC whole-blood and FastGxC whole-blood sp-eQTLs.345

Variants with cell-type-specific eQTL effects in the single-cell PBMC (scPBMC) data are enriched346

for disease-associated variants of nine immune-related traits (hFDR ≤ 5%). For example, variants347

with eQTL effects specific to conventional and plasmacytoid dendritic cells are enriched for allergic348

rhinitis-associated variants, consistent with the crucial role of dendritic cells in the development349

and maintenance of rhinitis [54]. In addition, variants with eQTL effects specific to B and CD4+350

T cells are enriched for rheumatoid arthritis-associated variants [26]. We observed a large overlap351

in the traits that were enriched for FastGxC and CxC mapped eQTLs, including the two examples352

highlighted above.353

The rapid adaptation of single-cell technologies in the past few years has provided an unprece-354

dented opportunity to dissect genetic regulatory mechanisms in granular cell types. In particular,355

we found that the allergy trait is enriched for single-cell eQTLs in plasmacytoid dendritic cells,356

celiac disease is enriched for natural killer cell-specific eQTLs, and chronic lymphocytic leukemia is357

enriched for eQTLs effects in and specific to several cell types (hFDR ≤ 5%). Critically, none of358

these trait enrichments were detected in the GTEx bulk data(hFDR ≤ 5%). We foresee that the359

increase in single-cell experiment sample sizes, which will necessarily come with decreasing materials360

and sequencing costs, will expand the ability of FastGxC to map single-cell context-specific eQTLs.361
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3 Discussion362

We developed FastGxC, a novel statistical method to efficiently and powerfully map context-specific363

eQTLs by leveraging the correlation structure of multi-context studies. We showed via simulations364

that FastGxC is as powerful as the state-of-the-art LMM-GxC method while orders of magnitude365

faster. We applied FastGxC to bulk multi-tissue and single-cell RNA-seq data sets and identified366

over 11 million tissue-specific and 280 thousand cell-type-specific eQTLs. Most context-specific367

effects manifest within loci with context-shared effects, highlighting the importance of defining368

context-specificity by effect size heterogeneity rather than the presence or absence of significant369

eQTL effects in each context. In addition, we found that tissue-specific eQTLs are shared mostly370

between groups of biologically related tissues and are more enriched in genomic elements that371

confer tissue specificity to gene expression, e.g., tissue-specific regions of open chromatin, providing372

further evidence of their validity. Finally, we found that context-specific eQTLs provide increased373

precision for identifying disease-relevant tissues across 138 complex traits, confirming their utility in374

understanding the context-specific gene regulatory mechanisms underlying complex human diseases.375

While FastGxC is the first efficient method to leverage intra-individual correlation for iden-376

tifying context-specific regulatory effects, several statistical methods using other techniques have377

been developed in recent years [4, 5, 32, 33, 55]. Most of these methods use matrix factorization378

of eQTL statistics to build data-driven priors that capture the underlying tissue-shared and tissue-379

specific architecture in eQTLs across tissues [4, 5, 55]. These flexible priors provide a considerable380

increase in power to map (context-specific) eQTLs compare to CxC eQTL mapping. However, they381

require extensive tuning of model hyper-parameters, making them computationally challenging for382

multi-context studies and complicating the interpretation of sharing and specificity of eQTLs across383

contexts. Interestingly, these methods are complementary to FastGxC as FastGxC output integrates384

naturally with these methods. The joint approaches may further increase the statistical power to385

map context-specific eQTLs as well as bypass the need for post hoc use of arbitrary cutoffs. Another386

recent work [9], use tests for interactions with inferred cell type proportion to identify interaction387

QTLs (iQTLs). This approach may also benefit from modelling intra-individual correlation, but388

can not be integrated with FastGxC directly as it requires a different mixed model.389
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FastGxC has several limitations. First, as done in previous work [3], we select the most390

relevant tissues for disease using experts in the field. However, the complete set of causal tissues391

is unknown, and rankings may change as we discover novel biology for each trait. Second, while392

the global test for context-specific eQTLs is always well-defined, the marginal tests for identify393

the contexts driving this heterogeneity are not, e.g., when every pair of contexts shows eQTL394

heterogeneity. However, we find that the marginal tests work well in practice, especially when only395

a few contexts drive this heterogeneity [4]. Third, FastGxC is limited to continuous phenotypes396

and discrete contexts. While there are natural LMM to apply outside of these situations, they397

are computationally inefficient. However, recent work in approximate algorithms may produce a398

solution [56]. Fourth, the current FastGxC method uses a decomposition with a single component399

shared across all contexts. It is straightforward to extend FastGxC when additional sharing exists400

across a subset of contexts, e.g., brain tissues in GTEx, by performing a hierarchical decomposition.401

Fifth, we define context-specificity as deviations of eQTL effects in each context from the effect in402

the average context. When, instead, deviations from the eQTL effect in a baseline context are of403

interest, e.g., when studying eQTL effects across time or differentiation states, it is straightforward404

to modify the decomposition step of FastGxC appropriately. Finally, relating context-specific eQTLs405

to GWAS variants is imperfect due to LD. Multi-context genomic colocalization approaches may406

improve the resolution of causal variants [57].407

In conclusion, we show that accounting for the intra-individual correlation and extensive shar-408

ing of eQTLs across contexts reveals context-specific eQTLs that can aid downstream interpretation409

of disease-associated variants. Moreover, we demonstrate the advantage of defining context speci-410

ficity by the heterogeneity of effect sizes rather than heuristic definitions based on subjective P-value411

thresholds. In the coming years, we believe that the application of FastGxC in the increasing num-412

ber of multi-context bulk and single-cell RNA-Seq studies holds enormous potential to broaden413

our understanding of the context-specific gene regulatory mechanisms underlying complex human414

diseases.415
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Figure 1. The FastGxC method and examples of sp-eQTLs. A. Overview of FastGxC
method. FastGxC decomposes the gene expression of an individual into a context-shared and
context-specific components (step 1) and estimates both the shared eQTL (sh-eQTL) effect across
contexts and context-specific eQTL effects in each context by regressing the genotypes on each of
these components (step 2). B. Toy examples of examples of sp-eQTLs. Y axis represents simulated
gene expression levels, x axis lists the genotypes of a candidate eQTL, color indicates tissue. The first
example corresponds to a scenario with no eQTLs in any tissue and, thus, no sh-eQTL or sp-eQTLs.
The second example illustrates a scenario with equal eQTL effects in all tissues, corresponding to a
scenario with a sh-eQTL but no sp-eQTLs in any tissue. The third and forth example corresponds
to scenarios with both sh-eQTL and sp-eQTL effects in which a single context (blood) or multiple
contexts drive the effect size heterogeneity.
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Figure 2. FastGxC outperforms existing methods in simulated data. A. Global type I
error rate of all methods under different amounts of intra-individual correlation. Both LMM-GxC
and FastGxC maintain proper type I error rate regardless of the intra-individual correlation while the
CxC and LM-GxC approaches become more conservative with increasing amount of intra-individual
correlation. B. Global power of all methods under the single-context heterogeneity scenario (Figure
1B). FastGxC is as powerful as the LMM-GxC approach with power increasing as a function of the
amount of intra-individual correlation for both methods. The CxC and LM-GxC approaches lose
power in the presence of intra-individual correlation. C. Marginal power of FastGxC to identify the
(most) heterogeneous context under the single-context heterogeneity scenario. D. Run time for all
methods for varying number of tests performed in a sample size of 250 individuals. See Figure S3D
for sample size of 1000 individuals. Last points reflect projected run time for entire GTEx data-set
- 50 contexts, 25K x 3M tests, and 250 samples per context. Analyses were run on 8 cores on a 2.70
GHz Intel Xeon Gold Processor on the UCLA Hoffman2 Computing Cluster.
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Figure 3. Tissue-specific eQTL mapping in GTEx.A. Correlation of PCs from tissue ex-
pression, tissue-shared expression, and tissue-specific expression with covariates related to study
design and sample quality in GTEx. The decomposition removes the intra-individual correlation as
demonstrated by lack of correlation between PCs from the tissue-specific expression and variables
that are shared/invariant within an individual across tissues, e.g. genotype PCs (gPC), sex, age,
etc. B. Number of sh-eQTLs and sp-eQTLs in each tissue. Point size reflects number of samples
for each tissue. C. Sharing and specificity of sp-eQTLs across tissues. Top: Number of tissues with
sp-eQTL effects. Bottom: Number of single tissue sp-eQTLs per tissue. D. Percent of eQTLs with
sp-only, sh-only, and both sp- and sh- (“both”) effects across all tissues. The majority of eQTLs
have only shared effects and most sp-eQTLs manifest within the shared effect loci.
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Figure 4. Tissue-specific eQTL effect sizes are correlated only between groups of
closely-related tissues. Pearson correlation of eQTL effect sizes across tissues. Right: FastGxC
sp-eQTL effect sizes are highly correlated only across related tissues. Largest cluster after hier-
archical clustering contains brain tissues, while remaining clusters are of roughly equal size and
contain tissues from related organ systems, i.e. integumentary, cardiovascular, digestive, etc. Left:
CxC eQTL effect sizes are highly correlated across both groups of biologically-related and unrelated
tissues. Largest cluster after hierarchical clustering on the CxC correlation matrix contains tissues
from the cardiovascular and digestive systems.
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Figure 5. FastGxC sp-eQTL variants are enriched in functional genomic features from
their respective tissues. A. Enrichment of variants with only sp-eQTL versus only sh-eQTL
FastGxE effects (left) and only FastGxC eQTL (sh- or sp- eQTLs) versus only CxC eQTL effects
(right) in genomic elements with known regulatory effects. B-C. Enrichment of single-tissue
eQTLs in ATAC-seq peaks from ENCODE (B) and TF binding sites [47] (C). Boxes indicate manual
matching between ENCODE ATAC-seq or TF footprint tissues and GTEx tissues. Circle indicates
statistically significant enrichment. FastGxC single-tissue sp-eQTLs are more often enriched for
the correct tissue and exhibit stronger enrichment than their CxC counterparts. TF: transcription
factor.
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Figure 6. Examples of eQTLs identified in GTEx. Each dot shows the effect size estimates
from CxC (L) and FastGxC (R) for a single tissue (color). A. An eQTL for the gene CBS shows
widespread sharing across GTEx tissues captured as 48 significant CxC eQTL effects. FastGxC
maps this genetic effect as a single sh-eQTL. B. An eQTL for the gene SIGLEC14 shows extensive
sharing across GTEx tissues captured as 47 significant CxC eQTL effects with similar effect sizes.
However, after modeling the sharing as a sh-eQTL, FastGxC also maps a sp-eQTL in whole blood,
consistent with the known role of SIGLEC14 in the immune system. C. An eQTL for the gene
LDHC, which acts primarily in testis, exhibits a strong positive effect in all tissues except the testis
for which the eQTL effect is in the opposite direction. This lone testis-specific effect becomes very
apparent when we examine sp-eQTLs with FastGxC.
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Figure 7. FastGxC identifies context-relevant mechanisms of complex traits. A. Ac-
curacy of FastGxC and CxC eQTLs to prioritize the most relevant tissue(s) across 138 complex
traits with a strong prior indication for the likely relevant tissue(s). B. Tissues prioritized by
FastGxC and CxC as well as the rank of the known relevant tissues for specific complex traits. C.
Enrichment of FastGxC shared and cell-type-specific eQTLs and CxC eQTLs mapped in each cell
type (x-axis) for a set of trait-associated variants from 59 immune-related traits in the NHGRI-
EBI GWAS catalog. For comparison, we include enrichment results from GTEx CxC whole blood
eQTLs and FastGxC whole-blood-specific eQTLs. Each dot represents the enrichment p-value and
the size represents the log2 odds ratio (OR) of a significant cell type-trait enrichment.
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Online Methods436

Relationship between FatsGxC, CxC, and LM(M)-GxC parameters. Let βc be the CxC437

eQTL effect in context c, as estimated by fitting a linear regression model per context, i.e., Eic =438

αc + βcGi + εic. Then, the CxC eQTL effect in context c is equal to the sum of the shared and439

context-c-specific eQTL effects from FastGxC, i.e. βc = βsh + βcs
c . In addition, let βref be the440

eQTL effect in an arbitrarily defined reference tissue and δc be the interaction eQTL effects for441

the non-reference tissues c from an L(M)M model with a genotype-by-context interaction term,442

i.e. Eic = (ui) + α + β1Gi +
∑C

c=2 γcKic +
∑C

c=2 δcGi × Kic + εic. Then, βref = βsh + βcs
ref and443

δc = βc − βref = βsh + βcs
c − βsh − βcs

ref = βcs
c − βcs

ref for c 6= ref . Full details of the analytical444

derivation are provided in the Supplementary Text.445

GTEx data. Fully processed, filtered, and normalized gene expression matrices (in BED format)446

for each tissue as well as covariates which were used as input for eQTL analysis were downloaded447

through the GTEx portal (https://www.gtexportal.org/home/datasets) on March 11, 2020.448

Gene expression matrices were residualized for covariates. WGS genotype VCF data were down-449

loaded from dbGap (dbGaP Accession phs000424.v8.p2). Only individuals with both genotype and450

gene expression data were kept. VCF files were processed with vcftools (v0.1.16) to keep only bi-451

allelic SNPs. Only variants with minor allele frequencies of greater than five percent in the tissue452

of interest were kept. Bcftools (v1.12) was used to annotate the genotype files with rs IDs. Plink453

(v1.90) was used to transpose and convert the vcf files to a sample x genotype matrix which was454

used as input for eQTL mapping.455

FastGxC and CxC eQTL mapping in GTEx and CLUES. Expression of each gene was456

centered to have mean zero across all individuals and tissues and decomposed into 49 tissue-specific457

expression components and one shared expression component using FastGxC. Cis genetic effects on458

the shared gene expression levels, each tissue-specific gene expression levels (FastGxC), and gene459

expression levels in each tissue (CxC) were estimated using ultra-fast implementations of simple460

linear regression models as implemented in the MatrixEQTL R package [31] with model=modelLINEAR461
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and 1e6 basepair distance for calling cis-eQTLs. Multiple testing correction was performed using462

the hierarchical FDR procedures implemented in the R package TreeQTL [58] with genes in level one,463

genes-tissues in level two, and genes-tissues-SNPs in level three. eQTL mapping in the single-cell464

CLUES data is described in detail here (see accompanying manuscript). Multiple testing correction465

was performed using hierarchical FDR with genes in level one, genes-cell-types in level two, and466

genes-cell-types-SNPs in level three.467

Correlation between PCs and covariates in GTEx The correlation between expression PCs468

and covariates in GTEx was computed using the canCorPairs function from the variancePartition469

R package ([59]). In short, when comparing two continuous variables (e.g. gPC1 or weight), Pear-470

son correlation was used. In order to accommodate the correlation between a continuous and a471

categorical variable (e.g. cohort) canonical correlation analysis (CCA) was used. Note that CCA472

returns correlations values between 0 and 1.473

Background SNP-gene pairs for enrichment analyses For all enrichment analysis, the474

matchit function from the MatchIt R package was used to match a set of background SNP-gene475

pairs to each variant set of interest by minor allele frequency (MAF) using the nearest neighbor476

matching method and a 1:1 matching ratio [60]. For eQTL sets that contained more than 5000477

variants, sets were randomly split into chunks to speed up computation.478

EQTL enrichment in genomic features Sp-eQTL only and sh-eQTL only variant sets were479

obtained by taking the set difference of sp-eQTL and sh-eQTL variants in R, respectively. The480

FastGxC eQTL variant set was obtained by taking the union of sh- and sp-eQTL variants across481

tissues. The CxC eQTL variant set was obtained by taking the union of eQTL variants across482

tissues. The set difference of FastGxC eQTL variant set and the CxC eQTL variants were then483

computed by taking the set difference in R to obtain the final FastGxC-only and CxC-only eQTL484

variant sets. All variants that were used as input into MatrixEQTL were inputted into the Ensembl485

Variant Effect Predictor (VEP) tool, which determines the effects of variants such as consequence486

on protein sequence or location within genomic regulatory elements. Enrichment analysis was487

then performed using the EQTL sets as described above and the VEP annotated variants list by488
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performing a Fisher’s exact test from the R stats package followed by a Benjamini and Hochberg489

multiple testing adjustment. Significance was called for BH-adjusted p-values less than 0.05.490

Enrichment in ENCODE ATAC-seq data All available tissue ATAC-seq data in the ”not per-491

turbed”, GRCh38, and bigBed narrowPeak categories were downloaded from www.encodeproject.492

org on Novemeber 2020. The downloaded bigBed files were converted to bed files for downstream493

analysis by the UCSC bigbedtobed tool. Bed files were then sorted using the bedtools sort -k1,1494

-k2,2n command to enable a memory-efficient algorithm for downstream intersections. Enrichment495

analysis of FastGxC and CxC single-tissue eQTL variants was then performed by intersecting each496

eQTL variant set of interest with each pre-sorted bed file, corresponding to ATAC-seq peaks from497

one tissue/sample, using the bedtools intersectBed command. Finally, Fisher’s exact test was used498

to obtain the statistical significance of each enrichment, followed by a Benjamini and Hochberg499

multiple testing adjustment. Significance was called for BH-adjusted p values less than 0.05.500

Enrichment in Transcription factor binding sites Transcription factor binding site data501

was downloaded on October 2020 from http://data.nemoarchive.org/other/grant/sament/502

sament/footprint_atlas/bed/ using the HINT algorithm and 16 basepair seed length. To con-503

strain analysis to the top footprints, the data was filtered using a HINT score greater than 200, as504

described by the method authors as an ideal threshold for high quality footprints [47]. TF footprint505

genomic intervals were sorted using the bedtools sort command as described above. Finally, enrich-506

ment of eQTL variant sets were performed by intersecting variants with TF footprints of each tissue507

using the bedtools intersectBed command. Fisher’s exact test was used to obtain the statistical508

significance of each enrichment, followed by a Benjamini and Hochberg multiple testing adjustment.509

Significance was called for BH-adjusted p values less than 0.05.510

Enrichment in GWAS loci Genome-wide association study (GWAS) data (gwas catalog v1.0.2-511

associations e100 r2020-06-17) was downloaded and processed from the NHGRI-EBI GWAS Catalog512

in August 2020 [53]. Matching of variants with and without eQTL effects was performed as described513

above. Only mapped traits within the GWAS catalog that contained more than ten variants were514

included in our downstream workflow. Enrichment analysis of FastGxC and CxC eQTL variants515
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was then performed by intersecting each eQTL variant set of interest with variants from each516

mapped trait by rs ID. Finally, Fisher’s exact test was used to obtain the statistical significance517

of each enrichment. A hierarchical multiple testing procedure was performed by first obtaining518

Simes’s method for combining p-value per tissue across mapped traits, BH-adjusting the resulting519

49 tissue-level p-values, and then retaining only tissues with BH-adjusted Simes’ p-values under520

the tissue-level α of 0.05. Then, within each significant tissue, p-values across all mapped traits521

were BH-adjusted and filtered using a trait-level α, i.e. tissue-level α * (n significant tissues /522

n total tissues) to obtain the final significant tissue-trait associations.523

Precision and recall of context-relevant mechanisms of complex traits. We manually524

annotated 138 traits within the GWAS Catalog with their most likely tissue of interest and used525

this annotation to assign precision and recall rates. More specifically, we used a contingency table,526

per trait, by calculating how often the trait of interest is both enriched in a tissue’s eQTLs and527

the tissue is the assigned likely-relevant tissue, giving true/false positive/negative rates (TP, FP,528

TN, FN). Finally, the precision score was calculated as TP / (TP + FP), and the recall score was529

calculated as TP / (TP + FN).530
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Supplementary Material531

Exact relation between FastGxC and CxC estimates532

Fix a gene and assume that its expression in each context follows a linear model:533

E0
i, = Gβ0 + εi, ∈ RC

534
535

where:536

• E0 ∈ RN×C is the matrix of gene expression across N samples and C contexts, e.g. tissues or537

cell types538

• G ∈ RN×S is an arbitrary covariate matrix containing S features (in this paper, the features539

are cis-SNPs, and usually S = 1)540

• β0 ∈ RS×C are the context-specific effects captures arbitrarily distributed noise, assumed i.i.d.541

over samples i542

• εi, ∈ RC captures arbitrarily distributed noise, assumed i.i.d. over samples i but with covari-543

ance between contexts given by V (εi,) = Σ544

Now define the context-centered expression as:545

Ei = E0
i − Ēi1

T
C or Eic = E0

ic − Ēi546
547

where 1C ∈ RC is a vector of 1s and Ē ∈ RN is a vector containing each sample’s mean expression548

across all C contexts.549

For any arbitrary vector X ∈ R1×N , we have:550

XE = XE0 −XĒ1T
C551

552

In particular, when X = 1
‖Gj‖2Gj for SNP j, then:553

• XE := β̂ gives the FastGxC cs-eQTL effect size estimates for SNP j554

• XE0 := β̂0 gives the ordinary cs-eQTL effects555
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• XĒ := β̄ gives the FastGxC sh-eQTL effects556

Putting these three facts together proves:557

β̂c = β̂0
c − β̄ or FastGxC = CxC− Shared558

559

for all contexts c. In words, the standard contest-specific estimates in CxC naturally and exactly560

decouple into the FastGxC estimates and the cross-context average estimate.561

By the same argument, CxC decomposes into FastGxC and shared effects even when:562

• Covariates are included, via X = 1
‖P⊥

Z Gj‖2
GjP

⊥
Z , where P⊥Z is the orthogonal projection onto563

the span of the covariate matrix Z564

• Multiple SNP effects are fit simultaneously, via X = (GGT )−1GT
565

• Ridge regression/kinship-based LMMs are used, if the regularization/heritability is equal566

across contexts567

Conceptually, associativity guarantees that linear operators applied to the left of the matrix E568

play well with linear operators applied to its right. And most regression involve linear operations on569

E from the left, while the centering operation used by GxC is a linear operator from the right. That570

is, we can center and then perform regressions (as in FastGxC) or can perform regular regressions571

and then center; these operations associate, therefore give identical results.572

Approximate relation between FastGxC and CxC standard errors573

Above, we showed the CxC estimates exactly decouple into FastGxC and shared estimates. Here,574

we show a similar result for the standard errors, though it holds only approximately. Specifically,575

the variance of the FastGxC estimate is roughly the variance of the CxC estimate minus the variance576

in the shared estimate. This provides a sharp description of the improvement in power in FastGxC577

over CxC due to removal of shared noise.578
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More concretely, using the equivalence proved above, we have:579

V
(
β̂c

)
= V

(
β̂0
c − β̄

)
580

= V
(
β̂0
c

)
+ V

(
β̄
)
− 2Cov(β̂0

c , β̄)581

= V
(
β̂0
c

)
− V

(
β̄
)
− 2

(
Cov(β̂0

c , β̄)− V
(
β̄
))

582

≈ V
(
β̂0
c

)
− V

(
β̄
)

(∗)583

584

Loosely, the approximation assumes that the contexts are roughly exchangeable, or that each context585

is roughly equally correlated with other contexts1. For example, this holds exactly in the cases where586

contexts are IID (Σ = σ2I) or exchangeable (Σ = σ2I + bJ); conversely, this is violated if context587

c is very unique, or if there large and structured subsets of the contexts (eg brain regions).588

For example, imagine that C is large and that each sample’s noise has exchangeable dis-589

tribution across contexts, implying that V (εi,) = σ2I + sJ for some σ2 > c. Then the above590

approximation is exact, and standard error in FastGxC simply subtracts off the standard error for591

the shared noise term, s:592

V
(
β̂c

)
=

1

‖X‖2
(σ2 + s)− 1

‖X‖2
(

1

C
σ2 + s) ≈ 1

‖X‖2
σ2

593

1More formally, if we assume that εi are i.i.d. with cross-context covariance matrix Σ, then:

Cov(β̂0
c , β̄) = Cov(XE0

,c, XĒ) = XCov(E0
,c, Ē)XT = ‖X‖2Cov(E0

,c,
1

C
E01C) =

1

C
‖X‖2Σc,1C = ‖X‖2Σc.

Σc. :=
1

C

∑
c′

Σcc′

and likewise (using ⊗ for tensor/Kronecker product, and vec(·) for column-wise matrix vectorization):

V
(
β̄
)

= V
(
XĒ

)
= V

((
(

1

C
1TC)⊗X

)
vec(E0)

)
=

1

C2

(
1TC ⊗X

)
(Σ⊗ IN )

(
1TC ⊗X

)T
=

(
1

C2
1TCΣ1C

)
· (XXT ) = ‖X‖2Σ..

Σ.. :=
1

C2

∑
c,c′

Σcc′

Thus, (∗) assumes that Σc. ≈ Σ.., i.e. that context c is about as correlated with the average context as any other.
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Inter-context noise correlation does not affect FastGxC estimates594

Say that samples are i.i.d. Gaussian but that contexts are correlated:595

Ei,
iid∼ Gi,β

0 +N (0,Σ)596
597

Assume that we estimated or know the noise covariance Σ, e.g. with an LMM. The GLS and OLS598

estimates for B are identical–again, conceptually, the key fact is that column transformations on599

E operate independently of row transformations. (Σ acts on the rows of E, while G acts on the600

columns.) One way to see this is using the covariance across all entries of E, V (vec(E)) = Σ⊗ IN :601

β̂GLS :=
(
(G⊗ IP )T (IN ⊗ Σ)−1(G⊗ IP )

)−1
(G⊗ IP )T (IN ⊗ Σ)−1vec(E)602

=
(
(GTG)−1 ⊗ Σ

) (
GT ⊗ Σ−1

)
vec(E)603

=
(
((GTG)−1GT )⊗ IP

)
vec(E)604

= vec
(
(GTG)−1GTE

)
605

= β̂OLS606
607
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Figure S1. Colors and abbreviations for GTEx tissues.
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Figure S2. Genetic correlation of gene expression across tissues in the GTEx study. Cis-
genetic and residual variance and covariance components for each gene-tissue pair across GTEx as
calculated using a linear mixed model with bivariate REML[61]. The gray units indicate tissue pairs
with less than 10% sample overlap. In both the genetic (upper) and residual (lower) components,
there was widespread correlation, and the brain tissues were relatively highly correlated compared
to other tissues.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.17.448889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448889
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

Figure S3. FastGxC performance in simulated data. (A) Marginal type I error rate for
FastGxC under different amounts of intra-individual correlation. FastGxC maintains proper type I
error rate for each context and different amounts of intra-individual correlation. (B) Global power
of each method to identify eQTL heterogeneity under the extensive heterogeneity scenario. (C)
Marginal power of FastGxC to identify the tissue(s) driving the eQTL effect size heterogeneity under
the extensive heterogeneity scenario. (D) Run time of each method in a simulated scenario with
1000 individuals. (E) Ability of FastGxC estimates under the null and two alternative scenarios to
estimate eQTL effects in each context.
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Figure S4. Comparison of FastGxC-only and CxC-only discoveries in GTEx. Comparing
discoveries that are mapped uniquely by each method, FastGxC discovers more eGenes, i.e. genes
with at least one sh- or sp-eQTL effects in at least one tissue, and eQTLs, i.e. gene-snp pairs with
sh- or sp-eQTL effects in at least one tissue, than CxC. FastGxC and CxC map roughly the same
number of eSNPs, i.e. variants with (sh- or sp-) eQTL effects in at least one tissue.
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Figure S5. Comparison of FastGxC sh- and sp- eQTLs. For each tissue, we plotted Venn
diagrams comparing the set of sp-eQTLs to sh-eQTLs. In the vast majority of tissues, sp-eQTLs
also have sh-eQTL effects. The distribution of sharing can be found in Figure 3D.
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Figure S6. Examples of eQTL mapped by FastGxC in GTEx. A. An eQTL for the gene
MUC20P1 and variant rs139637885 shows widespread sharing across all tissues except for LCLs.
This eQTL is captured by FastGxC as a sh-eQTL, as well as a sp-eQTL in LCLs and a less-obvious
sp-eQTL in thyroid. B. An eQTL for the gene GBP3. Another example of widespread sharing
that obscures a tissue-specific effect in the spleen. C. An eQTL for the gene GSTT2 and variant
rs369691 shows widespread sharing across all tissues in CxC. After the FastGxC procedure, two
sp-eQTLs emerge in the two skin tissues. D. Manhattan plot for LDHC eQTLs reveal a set of
variants with similar genetic effects as rs4757652. These eQTLs exhibit positive CxC genetic effects
across many tissues besides the testis, while the FastGxE procedure crystallizes this testis tissue
specificity.
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Table S1. FastGxC mapped GTEx sp-eGenes. FastGxC and CxC mapped sh- and sp-eGenes
from GTEx and CLUES cohorts are provided as a separate excel file, one sheet per study, with the
following columns: eGene type (CxC eGene, FastGxC sh-eGene, or FastGxC sp-eGene ), tissue or
cell type, gene identifier.

Table S2. EQTL enrichment in GWAS loci results. Results from enrichment of GTEx and
single-cell eQTLs from CxC and FastGxC in GWAS catalog loci are provided as a separate excel
file with two sheets. The first sheet shows manual annotation of most likely relevant tissue(s) for
GWAS catalog traits with the following columns: GWAS Trait, Most Likely Relevant Tissue(s).
The second sheet shows enrichment results with the following columns: GWAS trait, method, tissue
(GTEx) or cell type (single-cell), enrichment odds ratio (OR), OR lower confidence interval, OR
upper confidence interval, enrichment p-value.
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