Characterization of endogenous Rubus yellow net virus in raspberries

Thien Ho ${ }^{1, *}$, Janet C. Broome ${ }^{1}$, Jason P. Buhler ${ }^{1}$, Wendy O'Donovan 1, Tongyan Tian ${ }^{2}$, Alfredo Diaz-Lara ${ }^{3}$, Robert R. Martin ${ }^{4}$, Ioannis E. Tzanetakis ${ }^{5}$
${ }^{1}$ Driscoll's Inc., Watsonville, CA 95076, USA
${ }^{2}$ California Department of Food and Agriculture, Sacramento, CA 95832, USA
${ }^{3}$ School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro 76130, Mexico
${ }^{4}$ Department of Botany and Plant Pathology, Oregon State University, and USDA-ARS Horticultural Crops Research Unit, Corvallis, OR 97330, USA
${ }^{5}$ Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA
*Corresponding author: thien.ho@driscolls.com

Abstract

Rubus yellow net virus (RYNV) belongs to genus Badnavirus. Badnavirids are found in plants as endogenous, inactive sequences, and/or in episomal (infectious and active) forms. To assess the state of RYNV infections, we sequenced the genomes of various Rubus cultivars and mined eight additional published whole genome sequencing datasets. Sequence analysis revealed the presence of a diverse array of endogenous RYNV (endoRYNV) sequences that differ significantly in their structure; some lineages have nearly complete, yet non-functional genomes whereas others have rudimentary, small sequence fragments. We developed assays togenotype the six main endoRYNV lineages as well as the only known episomal lineage in commercial Rubus. This study discloses the widespread presence of endoRYNVs in commercial raspberries, likely because breeding programs have been using a limited pool of germplasm that harbored endoRYNVs.

Keywords: Rubus yellow net virus, raspberry, Rubus, Badnavirus, virus diversity

1. Introduction

Raspberry is an economically important crop with global production in 2018 being over 820,000 tons grown in 125,000 hectares in all continents except Antarctica ("Production of raspberries in 2018". United Nations, Corporate Statistical Database (FAOSTAT) 2019, retrieved January 14, 2021). Commercial breeding for red raspberry (Rubus idaeus) began about 200 years ago, and most of the currently available cultivars share the same germplasm pedigree dating back to the late 1800s and early 1900s (Jennings, 2018).

More than 40 virus species are known to infect Rubus; yet Rubus yellow net virus (RYNV) is one of only two badnaviruses known to infect the genus (Diaz-Lara et al., 2015; Shahid et al., 2017). The genus Badnavirus, family Caulimoviridae, includes viruses that have an inactive, endogenous form and an infectious, episomal form. Banana streak OL virus (BSOLV), Banana streak GF virus (BSGFV), and Banana streak IM virus (BSIMV) integrants have been shown to reactivate from an inactive integrated counterpart (Chabannes et al., 2013; Gayral et al., 2008; Ndowora et al., 1999), whereas no other badnavirid is known to reactivate from integrated sequences (reviewed by Bhat et al., 2016).

RYNV is a component of raspberry mosaic, an important disease first described in the 1920s (Bennett, 1927; Stace-Smith, 1955). The virus infects all red raspberry and most blackberry and hybrid berry cultivars in North America and Europe (Stace-Smith and Jones, 1987a) and can reduce yield from 30-75\% in the first year and up to 15% in subsequent years in mixed infections with black raspberry necrosis virus (Stace-Smith and Jones, 1987b). Partial RYNV sequences were first obtained at the turn of the century (GenBank accession number AF468454; Jones et al., 2002). The plant used in the Jones et al. (2002) study had virus-like symptoms and bacilliform particles were observed under the electron microscope. The first RYNV genome (RYNV-Ca, GenBank accession number KF241951), assembled from two PCR amplicons, was obtained by Kalischuk et al. (2008). Another genome (RYNV-BS, KM078034, Diaz-Lara et al., 2015) was sequenced from red raspberry 'Baumforth’s Seedling A' using DNA from rolling circle amplification. Since then, several RYNV sequences were published using small RNA (Rajamäki et al., 2019) or whole genome sequencing (MN245240).

Diaz-Lara (2016) observed that red raspberry plants, supposedly free of RYNV based on aphid or graft transmission onto R. occidentalis 'Munger' indicator, yielded positive results when indexed by PCRbased assays. Moreover, those plants were tested positive for RYNV by PCR even after heat therapy and meristem-tip culture for virus elimination. It was demonstrated that RYNV integrates into the red raspberrygenome (Diaz-Lara et al., 2020), but no further analysis was conducted for the reported endogenous RYNV (endoRYNV) sequences. In this study, multiple cultivars were assayed to determine the prevalence of endoRYNV and the lineages identified were validated and characterized in-depth.

2. Materials and methods

2.1. Plant material

Twenty-five raspberry cultivars maintained as tissue culture plantlets in Watsonville, California were used in the study (Table 1). For 'Baumforth's Seedling A', an additional mature plant was obtained from Corvallis, Oregon with the RYNV-BS (Diaz-Lara et al., 2015; Table 1) and used as a positive control for the episomal form, hereafter referred to as epiRYNV-BS. In addition, the genome of 75 proprietary red raspberry and 100 proprietary blackberry cultivars were sequenced and assayed for integration of RYNVBS and the episomal form of the virus but their identity is not provided to protect intellectual property rights.

2.2. DNA purification, sequencing, and virus discovery

DNA was extracted using either the DNeasy(R) kit (Qiagen) or the method described by Poudel et al. (2013). All DNA libraries were constructed using a TruSeq DNA HT Sample Prep(R) kit and sequenced individually using paired-end ($2 \times 300 \mathrm{bp}$) Illumina HiSeq configuration by Novogene (Sacramento, CA).

Raw Illumina reads were subject to de novo assembly using Spades (Bankevich et al., 2012). BLASTn search (Camacho et al., 2009) was performed on the output contigs with e-value=10 against published RYNV nucleotide sequences (nt) downloaded from GenBank nt database (January 16, 2021). After RYNV hits were filtered out, the remaining contigs were processed using BLASTx against a database containing all RYNV protein sequences downloaded from GenBank nr (January 16, 2021). All Illumina datasets were also submitted to VirFind (http://virfind.org, Ho and Tzanetakis, 2014) for virus detection and discovery. Bowtie2 (Langmead and Salzberg, 2012) was used for mapping raw reads to RYNV contigs for visual confirmation of the mapping assemblies with Tablet (Milne et al., 2013). BioEdit (Hall, 1999) was used to calculate sequence identity matrix, and ClustalW (Thompson et al., 1994) of the MEGA X software (Kumar et al., 2018) applied to align nucleotide and amino acid sequences. Expasy (https://web.expasy.org/translate/) was used to predict open reading frames (ORF). Conserved domain search was done using the NCBI homonymous tool (Lu et al., 2020). Breaking points of the RYNV lineages were identified by aligning raw Illumina reads with BLASTn against the assembled sequences and partially aligned reads were manually analyzed for sequence identities.

2.3. Electron microscopy

Tissues were homogenized in 100 mM potassium phosphate $\mathrm{pH} 7.0,2 \%$ polyvinylpyrrolidone (MW:10,000) and $0.2 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ at 1:20 (w:v). After a low-speed centrifugation at 10,000 g, the supernatant was used for immunosorbent electron microscopy (ISEM) according to Lockhart (1986). Briefly Formvar/carbon coated copper grids were floated on $10 \mu \mathrm{l}$ of the capture antibodies of sugarcane bacilliform virus (NanoDiagnostics, Arkansas) diluted 1:10 in 50 mM potassium phosphate buffer pH7.0. After 30 min incubation at $37^{\circ} \mathrm{C}$, grids were rinsed with 50 mM potassium phosphate buffer pH7.0, and then floated on 30μ of the sample preparations for $20-22 \mathrm{hrs}$ at $4^{\circ} \mathrm{C}$. The grids were then rinsed with 50 mM potassium phosphate buffer pH 7.0 containing $100 \mu \mathrm{~g} / \mathrm{ml}$ bacitracin and stained with 0.5% phosphotungstic acid pH7.0 containing $100 \mu \mathrm{~g} / \mathrm{ml}$ bacitracin. The grids were examined using a Hitachi H-7500 transmission electron microscope (Hitachi High-Tech Corporation, Fukuoka, Japan) with an AMT Biosprint 12M-B CCD camera (Advanced Microscopy Techniques, Woburn, MA). Virus particles were measured using the camera software.

2.4. Data mining

Published datasets were mined for RYNV sequences (Table 1) including raw Illumina data of red raspberry cultivars 'Caroline', 'Cascade Bounty', 'Comox', 'Glen Cova’, 'Meeker', and 'Willamette’ from the Diaz-Lara et al. (2020) study, ‘Glen Moy’ from Hackett et al. (2018), and the assembled 'Joan J’ genome, obtained using PacBio and Illumina sequencing (Wight et al. 2019). These eight datasets were processed using the procedures described above.

2.5. Development of RYNV lineage-specific primers and validation

For each endo/epi RYNV lineage, 20 PCR primer sets were designed by processing the corresponding sequences using PrimerQuest at default parameters for 'qPCR Intercalating Dyes' option (Integrated DNA Technologies, IDT). The outputs were aligned with all RYNV sequences and 5-10 oligo pairs were selected with each oligo, when possible, having at least $2 n t$ mismatches to other RYNV lineages. SYBR Green quantitative PCR was performed for each set against cultivars 1-25 (Table 1) using 20 ng plant DNA, 5μ I Maxima SYBR Green qPCR Master Mix (2X) (Thermo Scientific, catalog number K0253), $1 \mu \mathrm{M}$
each of forward and reverse primers, and water to 10μ. Amplification was performed on QuantStudio 6 Flex instrument (Applied Biosystems) with the amplification program consisting of $95^{\circ} \mathrm{C}$ for 10 min , followed by 40 cycles of $95^{\circ} \mathrm{C}, 53^{\circ} \mathrm{C}$, and $72^{\circ} \mathrm{C}$, for 20 s each. The melting stage started at $53^{\circ} \mathrm{C}$ for 1 m , increased by $0.05^{\circ} \mathrm{C} /$ s and stopped after reaching $95^{\circ} \mathrm{C}$ for 15 s . To investigate further the possibility of integration of the epiRYNV-BS lineage, we used the most consistent assay against the epiRYNV-BS lineage developed here against a panel of 271 public and proprietary genotypes bulked into 294 DNA samples consisting of 876 plants (Supplemental table). Samples were considered positive for a lineage if there was amplification with the correct melting point. The previously published assay of Diaz-Lara et al. (2020) was also included in this validation for specificity comparison.

3. Results

3.1. A diverse array of endoRYNV is present in raspberry

The presence of RYNV DNA in commercial raspberries was investigated by whole genome sequencing and mining data of 25 and 8 cultivars, respectively (Table 1). Sequencing produced approximately 9 Gbp for each cultivar, representing ~30X coverage of the predicted 300-Mbp raspberrygenome (Wight et al., 2019). BLASTn and BLASTx steps using contigs assembled from the raspberry genomes found no evidence of RYNV DNA in cultivars ‘Korbfüller', ‘'Lloyd George’, ‘Malling Jewel', 'Octavia', ‘Yellow Antwerp', or the black raspberry cultivar 'Munger'. The remaining 27 cultivars showed a diverse array of RYNV sequences, ranging from six partial genomic segments with duplicated and rearranged sequences, to rudimentary fragments of a few hundred base pairs. None of the newly discovered lineages possesses an intact genome. Bacilliform virus particles were consistently observed using electron microscope from 'Baumforth's Seedling A' from Corvallis OR, the only sample in the study with a verified episomal form of the virus (Diaz-Lara et al., 2020) (Figure 1). The size of the virions is approximately $149 \mathrm{~nm} \times 33 \mathrm{~nm}$ ($\mathrm{n}=102$). No additional badnavirid sequences were detected in this or any other sample using VirFind (Ho and Tzanetakis, 2014) indicating that the observed particles belong to RYNV. Bacilliform particles were not detected from any of the other samples, including the 'Baumforth's Seedling A' from Watsonville CA indicating that all other RYNV sequences are integrated in the raspberry genome.

3.2. Structure of main endoRYNV lineages

RYNV-derived sequences more than 4 Kbp in length were named based on the oldest cultivars they were identified in. RYNV has five conserved badnavirid domains including reverse transcriptase, ribonuclease H (RNaseH), pepsin-like aspartate protease, a zinc knuckle which is a zinc binding motif from retroviral gag proteins (nucleocapsid), and a ribosomal L25/TL5/CTC N-terminal 5 S rRNA binding domain (DiazLara et al., 2015). The reverse transcriptase and RNaseH (RT_RNaseH) domains were concatenated and used for sequence comparison against those of the three available genomes (GenBank accession numbers KF241951, KM078034, and MN245240). The new lineages shared $>78.5 \%$ in nucleotide identities to each other and the epiRYNV-BS(Table 2).

3.2.1. endoRYNV-CU1

'Cuthbert' (1865 release, New York), has three endoRYNVs (namely endoRYNV-CU1, -CU2, and -CU3) and is the oldest cultivar in the study having an endoRYNV. endoRYNV-CU1 was discovered in 12 cultivars (Table 1). The 7268-nt segment has intact 5' intergenic region (IG), ORF1, ORF2, but when compared to epiRYNV-BS, ORF3 is missing 549 bp after nt1691, corresponding to 183 amino acids (aa),
at the site for the ribosomal L25/TL5/CTC N-terminal 5S rRNA binding domain, essential to the badnavirus movement (Figure 2). The four other domains are similar to the epiRYNV-BS. ORFs 4 and 6 are embedded intact within ORF3.
endoRYNV-CU1 RT_RNaseH region shares 100% nt identity with that of RYNV-Ca (Kalischuk et al., 2013). However, there is 12.9% nt diversity between the two lineages. endoRYNV-CU13' IG is intact but very different from RYNV-Ca 3' IG, sharing only 29% nt identity (Figure 3). The RYNV-Ca has two inverted repeats, at nt $4325-4693$ and nt7564-7932. The endoRYNV-CU1 integrant is highly fragmented and has breaking points at genomic nt positions 12, 15, 767, 815, 1321, 1426, 2473, and 6527 (Table 3). One plant-virus junction was detected at $n t 7268$.

3.2.2. endoRYNV-CU2

The second 'Cuthbert' endoRYNV (CU-2) is present in 11 cultivars. The 7252-nt sequence starts with the complete 5' IG, ORF1 and ORF2. When aligned against epiRYNV-BS, ORF3 is lacking a 141-nt stretch after nt2455, corresponding to 47 aa. Similar to endoRYNV-CU1, it has four conserved domains similar to the epiRYNV-BS but missing the ribosomal L25/TL5/CTC N-terminal 5 S rRNA binding domain as well as about 428 nt of the 3^{\prime} IG. Alike endoRYNV-CU1, its ORF4 and ORF6 are embedded intact within ORF3. The endoRYNV-CU2 RT_RNaseH region shares 79% nt identity with that of epiRYNV-BS and the integrant is fragmented at genomic nt positions 2217 and 5319, with plant-virus junctions detectedat nt1, 188, and 5863.

3.2.3. endoRYNV-CU3

The third 'Cuthbert' endoRYNV (CU-3) is present in five cultivars and is heavily truncated. It is lacking 5' IG, ORF1 and ORF2. Its sequence starts with a truncated ORF3 and together with the 3' IG accounting for a 4550-bp stretch. Its RT_RNaseH region shares 99.6\% to RYNV-Cu from Chile (MN245240). The integrant is fragmented at nt4423 and 4550, and has plant-virus junctions at nt1 and 1492.

3.2.4.endoRYNV-BS

The endoRYNV-BS was first detected in 'Baumforth's Seedling A' (1880 release, UK) and is present in 17 cultivars. The lineage is 7602 bp , and has intact 5 ' IG, ORF1, and ORF2. When aligned against epiRYNVBS, ORF3 is missing a 132 -nt stretch after nt 2445 corresponding to 44 aa, and the 3 ' IG lacks 83 bp. This lineage has all five conserved badnavirid domains. The lineage is present in the assembledgenome of 'Joan J' as a single copy on chromosome 4 . The integrant is $12,143 \mathrm{bp}$ and composed of two fragments. The first is in the forward orientation and contains complete 5^{\prime} IG that forms a junction with the plant DNA at its 5' end, followed by complete ORF1, ORF2, and part of ORF3 that is truncated at nt6317. The second follows immediately after in the reverse orientation, with a truncated 3^{\prime} IG at nt 7602 , then continues with ORF3 but truncated at nt1777 fusing to the plant genome. No full-length ORF3 is present in either of the fragments.

3.2.5. endoRYNV-PH1

First detected in Phoenix (1896 release, UK), endoRYNV-PH1 is present in nine cultivars. The 6631nt sequence starts with the 5^{\prime} IG, followed by the ORF1 of 177 nt and missing 380 nt after nt561 when aligned against the epiRYNV-BS, before an intact ORF2. ORF3 is missing 675 nt after nt 1307 as well as
the ribosomal L25/TL5/CTC N-terminal 5 S rRNA binding domain. It has the four other conserved domains similar to the epiRYNV-BS. The integrant is fragmented at genomic nt positions $335,1373,1814$, and 5859 , with nt1 and nt 6631 connected to the plant DNA.

3.2.6. endoRYNV-PH2

The last substantial integrated RYNV sequence, endoRYNV-PH2, was only found in 'Phoenix'. The 7091nt fragment's 5' end has the intact 5' IG, ORF1 and ORF2. ORF3 misses 141 nt after nt2461 corresponding to 47 aa , and the fragment terminates at nt7091. This sequence has all conserved domains found in the epiRYNV-BS. The integrant is fragmented at nt2201 and 2432, and has two plantvirus junctions at nt3094 and 7091.

3.3. Validation

SYBR Green qPCR assays were able to differentiate between the epiRYNV-BS and each of the main endoRYNVs in all cultivars used in this study, either in single or multiple integration events (Figure 4, Table 1). Except the positive control 'Baumforth's Seedling A' OR, the epiRYNV-BS lineage was not detected in any of the genetics used in this study (Figure 5). The epiBS-2604F/2715R assay did not have off-target melting points and amplifications, compared to the Diaz-Lara et al. (2020) assay, presently considered the better assay for RYNV detection, with off-target in 43 cases (Supplemental figure).

4. Discussion

We analyzed the genome sequence data of commercial cultivars from around the globe released as early as 1802 and as recent as 2006. Integrated RYNV sequences were present in $27 / 33$ cultivars (82%). The endoRYNV population could be categorized into six main lineages and other short endogenous fragments. The diversity of endoRYNV is complex with sometimes sequences having inversions, duplications, or deletions.

Rubus domestication has resulted in a reduction of genetic diversity (Haskell, 1960; Jennings, 1988), and modern cultivars are genetically similar to each other (Dale et al., 1993; Graham and McNicol, 1995). This can be seen in the case of the cultivars analyzed in this study. All breeding programs share the same endoRYNV lineages, which in turn were discovered in three cultivars commercialized in the $19^{\text {th }}$ century: 'Cuthbert' (1865), 'Baumforth's Seedling A' (1880), and 'Phoenix' (1896). These endogenous sequences presumably became widespread as the three aforementioned cultivars were used as parents, or are in the lineages of most raspberry breeding programs worldwide.
endoRYNV-CU1 lineage is the closest isolate to the published RYNV-Ca sequence (KF241951) (Kalischuk et al., 2013). Since RYNV-Ca has two inverted repeats, misses the true 3' IG, and hence likely is an endogenous sequence, we consider epiRYNV-BS as the sole episomal RYNV lineage known to infect Rubus. It is important to note that when aligned against the epiRYNV-BS sequence, all endoRYNV lineages are truncated and missing genomic DNA stretches. From this data, we hypothesize that the endoRYNVs are unable to reactivate and become episomal due to their incomplete genomes. In addition to the raspberry cultivars of this study, we sequenced the whole genome of an additional 75 proprietary red raspberry cultivars, and epiRYNV-BS was absent in all (data not shown), indicating that this lineage may be unable to integrate in the raspberrygenome. We also sequenced the genomes of 100
proprietary blackberry cultivars (data not shown) but did not find any evidence of endoRYNV, suggesting that endoRYNV sequences may be limited to red raspberry.

Diagnostic tests for infectious agents are necessary so that phytosanitary agencies can protect a country's natural resources and agriculture. However, the Rubus industry could be significantly impacted if a diagnostic test was positive for RYNV but inadvertently a no-risk endoRYNV was detected. Published PCR primers were designed to target either RYNV-Ca or epiRYNV-BS as they had been the only known RYNV lineages (Diaz-Lara et al., 2020; Jones et al., 2002; Kalischuk et al., 2008). Diaz-Lara et al. (2020) showed that primers currently used for RYNV detection could produce positive results in cultivars only harboring endoRYNV DNA, indicating the urgency to have a good diagnostic test that can clearly differentiate the two forms, similar to epiBS-2604F/2715R. This test should be developed and validated for accuracy and sensitivity against a wide range of episomal isolates.

Theoretically, endoRYNV can be removed from the red raspberry by traditional breeding. However, the effort required to remove endoRYNV DNA after multiple generations of backcrossing would be considerable, especially when desired traits must be retained. CRISPR-Cas9 could be used to remove the endoRYNVs, but for cultivars with multiple endoRYNV fragments, multiple gene-editing events will need to be done. We believe that such actions are not necessary as endoRYNV fragments could not reconstruct a full, infectious, genome.

5. Conflict of interest

T.H., J.C.B., J.P.B., W.O. are employees of Driscoll's Inc.

6. Acknowledgement

This work could not have been accomplished without the help of various colleagues. We thank the Driscoll's team including the raspberry breeding, molecular genetics, and greenhouse departments; and Melanie Kalischuk and Hanu Pappu for discussion of the RYNV-Ca work.

7. Data availability

The assembled sequences of endoRYNV-CU1, endoRYNV-CU2, endoRYNV-CU3, endoRYNV-BS, endoRYNV-PH1, and endoRYNV-PH2 were deposited on the NCBI's GenBank under accessions XXX-XXX, and the raw Illumina reads of all cultivars sequenced in this study to the Sequence Read Archive (SRA) under accessions XXX-XXX.

8. References

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications to singlecell sequencing. J Comput Biol 19, 455-477. https://doi.org/10.1089/cmb.2012.0021

Bennett, C.W., 1927. Virus diseases of raspberries. Mich. Agr. Expt. Sta. Tech. Bull.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. BLAST+: architecture and applications. BMC Bioinformatics 10, 421-421. https://doi.org/10.1186/1471-2105-10-421

Chabannes, M., Baurens, F.-C., Duroy, P.-O., Bocs, S., Vernerey, M.S., Rodier-Goud, M., Barbe, V., Gayral, P., Iskra-Caruana, M.-L., 2013. Three infectious viral species lying in wait in the banana genome. Journal of Virology 87, 8624-8637.

Dale, A., Moore, P.P., McNicol, R.J., Sjulin, T.M., Burmistrov, L.A., 1993. Genetic diversity of red raspberry varieties throughout the world. Journal of the American Society for Horticultural Science jashs 118, 119-129. https://doi.org/10.21273/JASHS.118.1.119

Diaz-Lara, A., 2016. Identification of Endogenous and Exogenous Pararetroviruses in Red Raspberry (Rubus idaeus L.) and Blueberry (Vaccinium corymbosum L.). PhD thesis. Oregon State University.

Diaz-Lara, A., Mosier, N.J., Keller, K.E., Martin, R.R., 2015. A variant of Rubus yellow net virus with altered genomic organization. Virus Genes 50, 104-110. https://doi.org/10.1007/s11262-014-1149-6

Diaz-Lara, A., Mosier, N.J., Stevens, K., Keller, K.E., Martin, R.R., 2020. Evidence of Rubus Yellow Net Virus Integration into the Red Raspberry Genome. Cytogenetic and Genome Research 160, 329334. https://doi.org/10.1159/000509845

Gayral, P., Noa-Carrazana, J.-C., Lescot, M., Lheureux, F., Lockhart, B.E.L., Matsumoto, T., Piffanelli, P., Iskra-Caruana, M.-L. 2008. A single Banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. Journal of Virology 82, 6697-6710.

Graham, J., McNicol, R.J.,1995. An examination of the ability of RAPD markers to determine the relationships within and between Rubus species. Theoretical and Applied Genetics 90, 11281132. https://doi.org/10.1007/BF00222932

Hackett, C.A., Milne, L., Smith, K., Hedley, P., Morris, J., Simpson, C. G., Preedy, K., Graham, J. , 2018. Enhancement of Glen Moy x Latham raspberry linkage map using GbS to further understand control of developmental processes leading to fruit ripening. BMC Genetics 19, 59. https://doi.org/10.1186/s12863-018-0666-z

Hall, T., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95-98.

Haskell, G., 1960. The raspberry wild in Britain. Watsonia 4, 238-255.
Ho, T., Tzanetakis, I.E., 2014. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 471-473, 54-60. https://doi.org/10.1016/j.virol.2014.09.019

Jennings, D.L., 1988. Raspberries and blackberries: their breeding, diseases and growth. Academic, London.

Jennings, S.N., 2018. Advances in Rubus Breeding, in: Raspberry: Breeding, Challenges and Advances (Eds Graham J., Brennan R.) Pp 17-28. (Springer International Publishing, Cham, 2018).

Jones, A.T., McGavin, W.J., Geering, A.D.W., Lockhart, B., 2002. Identification of Rubus yellow net virus as a distinct badnavirus and its detection by PCR in Rubus species and in aphids. Annals of Applied Biology 141, 1-10. https://doi.org/10.1111/j.1744-7348.2002.tb00189.x

Jones, A.T., Roberts, I.M., 1976. Ultrastructural changes and small bacilliform particles associated with infection by rubus yellow net virus. Annals of Applied Biology 84, 305-310. https://doi.org/10.1111/j.1744-7348.1976.tb01773.x

Kalischuk, M.L., Fusaro, A.F., Waterhouse, P.M., Pappu, H.R., Kawchuk, L.M., 2013. Complete genomic sequence of a Rubus yellow net virus isolate and detection of genome-wide pararetrovirusderived small RNAs. Virus Research 178, 306-313. https://doi.org/10.1016/j.virusres.2013.09.026

Kalischuk, M.L., Kawchuk, L.M., Leggett, F., 2008. First Report of Rubus yellow net virus on Rubus idaeus in Alberta, Canada. Plant Disease 92, 974-974. https://doi.org/10.1094/PDIS-92-6-0974A

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analys is across Computing Platforms. Molecular Biology and Evolution 35, 1547-1549. https://doi.org/10.1093/molbev/msy096

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357359. https://doi.org/10.1038/nmeth. 1923

Lockhart, B.E.L., 1986. Purification and serology of a bacilliform virus associated with banana streak disease. Phytopathology 76, 995-999.

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C.J., Marchler-Bauer, A., 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research 48, D265-D268. https://doi.org/10.1093/nar/gkz991

Milne, I., Stephen, G., Bayer, M., Cock, P.J.A., Pritchard, L., Cardle, L., Shaw, P.D., Marshall, D., 2013. Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics 14, 193-202. https://doi.org/10.1093/bib/bbs012

Ndowora, T., Dahal, G., LaFleur, D., Harper, G., Hull, R., Olszewski, N.E., Lockhart, B., 1999. Evidence That Badnavirus Infection inMusaCan Originate from Integrated Pararetroviral Sequences. Virology 255, 214-220. https://doi.org/10.1006/viro.1998.9582

Poudel, B., Wintermantel, W.M., Cortez, A.A., Ho, T., Khadgi, A., Tzanetakis, I.E., 2013. Epidemiology of Blackberry yellow vein associated virus. Plant Disease 97, 1352-1357.
https://doi.org/10.1094/PDIS-01-13-0018-RE
Rajamäki, M.-L., Lemmetty, A., Laamanen, J., Roininen, E., Vishwakarma, A., Streng, J., Latvala, S., Valkonen, J.P.T., 2019. Small-RNA analys is of pre-basic mother plants and conserved accessions
of plant genetic resources for the presence of viruses. PLOS ONE 14, e0220621. https://doi.org/10.1371/journal.pone. 0220621

Shahid, M.S., Aboughanem-Sabanadzovic, N., Sabanadzovic, S., Tzanetakis, I.E., 2016. Genomic Characterization and Population Structure of a Badnavirus Infecting Blackberry. Plant Disease 101, 110-115. https://doi.org/10.1094/PDIS-04-16-0527-RE

Stace-Smith, R., 1955. Studies on rubus virus diseases in British Columbia: Rubus yellow-net. Canadian Journal of Botany 269-274.

Stace-Smith, R., Jones, A.T., 1987a. Rubus yellow net virus, in: Virus Diseases of Small Fruits, USDA Agriculture Handbook No. 631. Converse, RH, pp. 175-178.

Stace-Smith, R., Jones, A.T., 1987b. USDA Agriculture Handbook No. 631 (USDA, Washington) 175.
Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.
https://doi.org/10.1093/nar/22.22.4673
Wight, H., Zhou, J., Li, M., Hannenhalli, S., Mount, S.M., Liu, Z., 2019. Draft Genome Assembly and Annotation of Red Raspberry Rubus Idaeus. bioRxiv 546135. https://doi.org/10.1101/546135

	Cultivar names	Year Release	Breeding Program	Endo RYNV -CU1	Endo RYNV -CU2	$\begin{aligned} & \text { Endo } \\ & \text { RYNV } \\ & \text {-CU3 } \end{aligned}$	$\begin{aligned} & \text { Endo } \\ & \text { RYNV } \\ & \text {-BS } \end{aligned}$	Endo RYNV -PH1	$\begin{aligned} & \text { Endo } \\ & \text { RYNV } \\ & \text {-PH2 } \end{aligned}$	Fragment	$\begin{aligned} & \text { Epi } \\ & \text { RYNV } \\ & \text {-BS } \end{aligned}$
1	Yellow Antwerp	1802	Belgium	No							
2	Cuthbert	1865	New York	Yes	Yes	Yes	No	No	No	Yes	No
3	Baumforth's Seedling A	1880	UK	Yes	No	No	Yes	No	No	No	Yes/No***
4	Phoenix	1896	UK	No	Yes	No	Yes	Yes	Yes	Yes	No
5	Latham	1920	Minnesota	No	No	No	Yes	Yes	No	No	No
6	St. Regis	1920	New Jersey	No	Yes	No	Yes	Yes	No	Yes	No
7	Lloyd George	1923	UK	No							
8	Malling Landmark	1943	UK	Yes	No						
9	Korbfüller	1945	Germany	No							
10	September	1947	New York	No	Yes	No	Yes	Yes	No	Yes	No
11	Mandarin	1955	North Carolina	No	No	No	Yes	No	No	No	No
12	Chilcotin	1965	British Columbia	No	No	No	Yes	No	No	No	No
13	Southland	1968	North Carolina	No	Yes	Yes	Yes	Yes	No	No	No
14	Heritage	1969	New York	No	Yes	Yes	Yes	Yes	No	No	No
15	Malling Jewel	1980	UK	No							
16	Titan	1982	New York	No	No	No	Yes	Yes	No	No	No
17	Autumn Bliss	1984	UK	No	Yes	No	Yes	Yes	No	Yes	No
18	Summit	1989	Oregon	No	No	No	Yes	Yes	No	No	No
19	Tulameen	1991	British Columbia	No	No	No	Yes	No	No	Yes	No
20	Qualicum	1995	British Columbia	Yes	No	No	No	No	No	Yes	No
21	Prelude	1998	New York	Yes	Yes	No	Yes	No	No	No	No
22	Polka	2001	Poland	No	No	Yes	No	No	No	No	No
23	Octavia	2002	UK	No							
24	Chemainus	2006	British Columbia	No	No	No	Yes	No	No	Yes	No
25	Munger	1890	Ohio	No							
26	Willamette	1943	Oregon	Yes	No	No	No	No	No	Yes	No
27	Meeker	1967	Washingto n State	Yes	No						
28	Glen Cova	1969	UK	Yes	No	No	No	No	No	Yes	No
29	Comox	1978	British Columbia	Yes	No	No	No	No	No	Yes	No
30	Glen Moy	1986	UK	Yes	No	No	No	No	No	Yes	No
31	Caroline	1998	Maryland	Yes	Yes	Yes	No	No	No	No	No
32	Cascade Bounty	2005	Washingto n State	Yes	Yes	No	Yes	No	No	Yes	No
33	Joan J	2005	UK	No	Yes	No	Yes	No	No	No	No

9. Tables

Table 1. Description of the origin of the raspberry cultivars used as plants for Illumina sequencing and method development in this study, or mined from published literatures, sorted by year of release, and subsequent RYNV detection result* using analysis of whole genome sequencing data and validated by SYBR Green PCR detection.**
*: Yes = positive; No = negative .

**: Samples 1-25 were plant samples in this study and validated using SYBR Green PCR detection, while 26-33 were data mined from the published literature and not subject to SYBR Green PCR. Further descriptions are presented in sections 2.1 and 2.4.

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448838; this version posted June 17, 2021. The copyright holder for this preprint
***: Yes for the plant housed in Corvallis OR that has the episomal RYNV-BS; Nofor the plant housed in Watsonville CA.

Table 2. Percent identity matrix of the reverse transcriptase and RNaseH region of the six Rubus yellow net virus (RYNV) lineages discovered in this study against the three published RYNV sequences, Gooseberry vein banding virus (GBVBV), Grapevine vein clearing virus (GVCV), and Birch leafroll associated virus (BLRaV).

	$\begin{gathered} \text { endoRYN } \\ V \\ -B S \end{gathered}$	$\begin{gathered} \text { endoRYN } \\ V \\ -C U 1 \end{gathered}$	$\begin{aligned} & \text { endoRWN } \\ & V \\ & -C U 2 \end{aligned}$	```endoRW V -CU3```	$\begin{gathered} \text { endoRYN } \\ V \\ -P H 1 \end{gathered}$	$\begin{gathered} \text { endoRYN } \\ V \\ -P H 2 \end{gathered}$	$\begin{gathered} \text { epiRYNV } \\ \text {-BS } \\ \text { KM0780 } \\ 34 \end{gathered}$	$\begin{gathered} \text { RYNV } \\ -\mathrm{Cu} \\ \text { MN2452 } \\ 40 \end{gathered}$	$\begin{gathered} \text { RYNV } \\ \text {-Ca } \\ \text { KF24195 } \\ 1 \end{gathered}$	$\begin{gathered} \text { GBVBV } \\ \text { HQ8522 } \\ 49.1 \end{gathered}$	$\begin{gathered} \text { GVCV } \\ \text { KT90747 } \\ 8.1 \end{gathered}$
$\begin{aligned} & \text { endoRYNV- } \\ & \text { CU1 } \end{aligned}$	80.5										
$\begin{aligned} & \text { endoRYNV- } \\ & \text { CU2 } \end{aligned}$	80	82.5									
$\begin{aligned} & \text { endoRYNV- } \\ & \text { CU3 } \end{aligned}$	79.8	90.3	81.8								
$\begin{aligned} & \text { endoRYNV- } \\ & \text { PH1 } \end{aligned}$	80.3	90.3	81.3	88.5							
$\begin{aligned} & \text { endoRYNV- } \\ & \text { PH2 } \end{aligned}$	81.1	87.1	89.3	85.2	85.4						
epiRYNV-BS KM078034	78.5	81.2	79	82.1	84.4	81.3					
RYNV-Chile MN245240	79.7	90.1	81.7	99.6	88.3	85	82				
$\begin{aligned} & \hline \text { RYNV-Ca } \\ & \text { KF241951 } \end{aligned}$	80.5	100	82.5	90.3	90.3	87.1	81.2	90.1			
$\begin{aligned} & \hline \text { GBVBV } \\ & \text { HQ852249.1 } \end{aligned}$	71.1	71	71.5	71.1	72.1	71.8	71	70.9	71		
$\begin{aligned} & \text { GVCV } \\ & \text { KT907478.1 } \end{aligned}$	67.7	68.1	66.7	67.5	68.4	66.9	68.5	67.4	68.1	68.2	
BLRaV MG686419.1	66.9	66.4	65.4	66.4	67.3	65.7	65.7	66.3	66.4	67.3	69.8

Table 3. Break points in the genomic sequence, and plant-virus junctions of the endogenous RYNV lineages discovered in this study. Nucleotide positions relative to the corresponding RYNV genomic sequence are shown within parentheses. Vertical bars indicate break/junction points.

Lineage	Break point	Nucleotide sequence
endoRYNV-CU1	6527\|12	(6390)GGCTTCCCAAGGAACTAGCGGAGCTCACGGCCGAACTGGTCAAAGGAAGGGA CGAAGCCCTGGTGAACAA GGAGGTACAGAGGAACATCTCATGTTTTCTCGAGACTGCCCTCCTCCAAGCGGAGAAATCCGTGACTA(6527) \| TAC(12)GCTCTGATACCA(1)(7268)GAAAAATGGCCCGAAAACATGGATCAAAACTTCTTAAGTGCGCTCTTGAACA CTTAGAAGAACATAAAATTCAGAGACAATGCGGAAGATAGAACTGAATAAACTCTTTATTTCTCAAGAAAGTTAATA CAATACAAGAGAAGGTT(7123)
	15\|815	(132)TTTGACACAGACACTCACTCCTCTTCCCTCCGAAAAAGAGAGCAAACTCAAGGTTCTGGTCTGAAACTTGGGT TTCTCGACAAGAAGGAAAGTGTTTAAGCTACCATGGTGAGAGCTA(15)TG \| (815)AAGGCCACACAGTCAGCCCTGAAGCTAGGCTTCGCACAACTGCAGGA GGCAGTTCAGCTGATCATCACAAGG GAAAACGATCCCAAACCAATCGAAGCAGCTACTGCACAAGTAGCCGAACAGCTGAGGAAGCAGCTTATTGAGGTC AAGTCCGTCCTCGAGGAGACCAAGAAGATCGC(993)
	767\|1426	(685)CTCCAGACTCACCCAGTACCTGACAACAAAGGTTGGTTCACTACCAACAATCCCGGAGGATTCACCCCTCCTG GACCAAGCCA(767) \| (1426)CAATACAATGAGCAGAAGCCAAACAAGGCTCCAGGCTCCGCCCGCAACTGAAAGGGCAACAAGCAGCTCG GAATCAGGCACCCCCACCTTGGAGGACCAGATCCGAGGATACAGGCGCTCCGCAAGGTTACGACACCAGGC(1566)
	2473\|1321	(2367)ACGAGGCAGAGGACGAGGAGGATCAGGAAGTACAGGTGATAGGAGCTACCACCATTGAGGAGCCAGAGA TGGAGTACCCAACTAGGCTCGAAGAAGTTATGGGCAAG(2473) \| (1321)CTCACTAAGGAGTTCGGAAAGGTCAACTTAGGGAAAGGAAAGGGGATAGAAGGAGCAGTCTCATCCAGAG ACAAGAACTTCTACGTCTGGAAGAACCCCTTCAATCAATACAATGAGCAGAAGCCAAACAAGGCTCCAGGCTCCGC CCGCAACTGAAAGGGCAACAAGCAGCTCGGAATCAGGCACCCCCACC(1513)
	7268\| plant	(7103)ATCGAGTAAGCTCAATAGCCAACCTTCTCTTGTATTGTATTAACTTTCTTGAGAAATAAAGAGTTTATTCAGTT CTATCTTCCGCATTGTCTCTGAATTTTATGTTCTTCTAAGTGTTCAAGAGCGCACTTAAGAAGTTTTGATCCATGTTTT CGGGCCATTTTTC(7268) \| (plant)TGGTAACATCGACTAAATATTGTTGAAATAATCTTCCACCTTTTAACAAAGTATCTGTACTTTTATTTCTGTCA TGGATTTGATATGCAACAAAACTTCGCATTGACATTTTTTTTCTTTTGATTCCTTCATTT(plant)
endoRYNV -CU2	2217\|5319	(2087)TGGGCAGGTGGAGACAGCAATATGATCATCACCAGATCTCTGGTGGGACGATTGACTAACACCAGCATGAC CAACTTTGAGTACCGGATAGAACAAGTCACAGACTACTTGGCGAGCAATGGAGTCGCATG(2217) \| (5319)ACTACTCAGAAGAAGGAGTAAGCACGCTGAGAAACCACAAGCTGCTACAAGAACTGAAAGAGCAGGGATA CATCGGAGAAGAGCCCATGAAGCACTGGGCAAAGAATGGGA(5429)
	plant\|1	(plant)GAATTTAATTAGAGAAACAATTTAAACCATTCAAATTTCATTACAATGCGTGTATATGTGAAAATAGGAAAA CTAGCAATAATTGGCACAAGGGGAGTTCCATAATTA(plant) \| (1)TGGTAGATTGTACTTTAGCTCTATTCAACATGTTAGCTTAAACTTTTCATTTCTTGTCGAGAAACCCAAGTTTCAGA CTAGAACCTTGAGTTCCTCTCCTTTTTCAGGGAGGAGAGAGTAGTGAGCATTGCAAAACTTCTGCAACTTTCAAACC CCCATGAAAGCTTTCC(279)
	plant\|188	(plant)TAACATCCCATCCTTGTTAAAAATACTTGTTATTCCTTGCCTGATATTTTCTGTATTTGAACTGTACAATCTGCT GTCCTGTTATTTGCCTAGCCAC(plant) \| (188)TTCTGATTTTCACTAGTTCAAACCTACTGCTTAAACTGCAGGCTTAGGCGTCGAAGCGAAGTACCCTTGTAGCC GTTAGCTGGAGTGCGTTAGGCGTTGATTGGGGAAAACGGACGTAAAGAAGCAGCAGCAACTAGGCAAGAAAACT(335)
	5863\| plant	(5738)GGCAACGCCAAAATCTTCAGCAAGTTCGACTTGAAGTCTGGTTTTCACCAGGTACTAATGGATGAAGAGTCC ATCCCATGGACGGCGTTTGTCACACCTGTAGGCTTCTACGAGTGGAAGGTGATG(5863) \| (plant)TCAGAAAATTGGCCGAACATAGGATCAAAAACTTTCTAAGTGCGCTCTTGAACACTCAGAAACTCATAAATT CAGAGAAAATTGCGGAAGATAAGATGAACAAAAGCTCTTTATTTCTCAAGATGTTAATACAATTCTAGAGAAGGTT GGCTATTGAGCTTACTCGATGCCTA(plant)

endoRYNV -CU3	4550\|4423	(4434)AGATTGTTCTTCAGTTTTCCGCAATATCTCTCAGTTTTTATGAGTTCTTAAGTGTTCAAGAGCGCATTTAAGAA TTTTTGATATTGCGGAAAACTGAAGAACAATCTTTATTTCTCT(4550) \| (4423)TGAACGTTAATACAATACAGGAGAAGGTTGGCTATTGAGATTGCTCGATGCCTAAGCCTTCAGACTACACTC CCTTATATAGGAAGTAGGCTAAGCAAAACGACAGACAACTACTAGCTCGGGTGCGCTTTCTGGGCCCCATCGACAG CTAATAAGTTCTGCTTTACAGCTTTGCTAAAGCT(4242)	
	plant\|1	(plant)TGCTAGCGTGCCAATATGATGAACTGAAGCTATGAACCATTTGCTAGTTTGTGACTGAATTGTGGTACTTGA TTTGGTTGTAGGTTTGTATTAGGATGGGTATGCCAGGTAGGGGAAACTCTTGCAGTGAATAGCTACAGCAAGAGGA AGTTGCAGCAAAATGCAAGACTCTTGCAGTGAATAGCTACAGCAAGAGGAAGTTGCAGCAAAATGCAAGAGGACC TCTTGT(plant) \\| (1)ACAACGGCTGTATGCTAGTCCTACCGCAGGACTTCACCTTAGTCCCTGACGTGATCAACA(60)	
	plant\| 1492	(plant)AAACAAAAACAAAAATGTATGGTCCATTAGCCGAAATCAATTCTGCTGTAGGCATCATTTTGCACTGTGGGA TCTGACTGATCTTGTCAAGGTCCTCTTGTGATAGCTCCCAGTCAAACAC(plant) \| (1492)TCCGATTTGGAACAACGATTCCCACCGATCACATCCAAAACCTTGAAAATGTAGCAAGGATGATCGAACAAT GGAAGGAAACCCCCAGGGTAATCATCAAAGAAACAGCTGAGAGCAGCAGCAACACCATTGGAGCCCTCTTAGCAG AAGAAGGAATAGAGGAGCTAGCCGCAGCTGTA(1670)	
endoRYNV -BS	7602\|6317	(7445)CCAAGCGCACCCGGGCTAATTTTCTCTTGTCTTTTAGCATAAGCCCCCTTCCTATATAAGGAAGCTAAGTTAG AAGGCTTAGGCATCGAGCAACCTCAATAGCCAACCTTCTCTTGTAATATCAGTATTCAAGAAATTAGTATTCAAGAA ATTAGTTG(7602) \| (6317)CTATCCCCATGTTCACTTGTCTTGCTATACAGAGGCCCAAGCAAGGTTCCGCATTTGGGAATGTAGTTTCTGG CGTAGTTGAGGACTCCTAGCCAGCTCCTTAATCCTTTGAGGGTC(6199)	
	plant\|1	(plant)TCAAATTTTGTTGAAAATTTGTAGAAGTGATCTACTCATGAATATTTTAATACTGAACAGTTGATTTGTCGAG ATGTAATCGAAAAATAGATATCACAACTATTAATCAAAATAATACTCATTTAAGTGAGATTTTTTC(plant) \| (1)TGGTATCAGAGCTTTAGCTCTCTTCATTATGTCAGCTTAAACACCTTTTTTCGTGTCGAGAAACCCAAGTTTCGGA TCTGAACCTTGAGTTCCTCTCTTTTTCAGGAGGGTAGTGAGTAAGCCCAGCTTTGCAACTTTCAAACCCCCAGGAAA ACTTTCCC(161)	
	plant\|1777	(plant)AATTAAGTGATCGATTATCAGACCGAGAATTAATCTATTCATGGTTCAATAATCAGTCCGATAATATATATAT ATCAATATATGCACTGATCAAACAATTAA(plant) \| (1777)TTCAGGTACATTGAAGAATCCTCTTACCAAAGGCTAGCACGAGAAGGCATGCAGTTTATACATGTAGGCATG GCCATGGTAAGAATACAGATGCTGCACAGGACTGACGCA(1887)	
endoRYNV -PH1	335\|5859	(452)AGTCGCCCGTTCAGATCTTTCCCAGGAGCTACTCTCTTCTTCGAAGGCAGAGATTTCGTGTGGTTGCATCAAAA CCACCAAGATCTAGCCGCTTACTAGCTTTCCGGCCGGTGATCTG(335) \| (5859)TCACCCTGGTCAAATGGCTTCCAGAAGAACTGAAGGATCTCGCGGCCGAGCTAGCCAAGAAAGAAGGCAA GACCTCCCTGAAGGGAGAGGTGCAGGAGGAGATCTCCTGTTTTTCTCAGAACTGCCC(5984)	
	1373\|1814	(1215)GGGACTTCCAACGGCAACTAGATCCGGATGCCGAGCTCTCTCTCAGCAGAAGGGGAAGAGCAAACCTG GTA CCAGCAGAGGTACTACACACACTGAAAGAAGAAGGACCATCCGAGCCAGAAGGAAGGCCAGAAGGAGAGGACGA GAGCACACATTATG(1373) \| (1814)ATCCCCGAAGAAGAAGAAGAAGTCTACCTCAAATATGAGGCAGAAGACGAAGAGGAGGATCAGGAGCTTC AAGTGATTGGAGCCACCACCATAGAAGAGCCAGAAATGGAATACCCAACAAGGCTCGAGGAAGTTATGGGC(1954)	
	plant\|1	(plant)AAGGACGAGCTGATATTCAAGTGAAATAAAGATTGTTCATCATTTTCTTCCGCATTTTCTCTGAGTTTCATGA GTTCTTAAGTGTTCCAGAGCGCACTTTCGAATATTAGATCCATGTTTTTCGGACCCCATTC(plant) \| (1)TGGTATCAGAGCTTTAGCTCTCACCATGGTAGCTTAAACACCTTTTTCTTGTCGAGAAACCCAAGTTTCAGATCTG AACCTTGAGCTTTCTCTCT(95)	
	6631\| plant	(6542)GCTTAGCCTACTTCCTATATAAGGGAGTATAGTCTGAAGGCTTAGGCACAGAGCAATCTCTTTAGCCAACCTT CTCTTGAGTTGTATTAA(6631) \| (plant)TATTCAACCTTCCCTAAACCCTAAACCCTAAACCCTAAACCCTAAGCACACCCATGGTGAGAGCTAAAGCTCT GATACCAGAATGGGGTCCGAAAAACATGGATCTAATATTCGAAAGTGCGCTCTGGAACACTTAAGAACTCATGAAA CTCAGAGAAAATGCGGAAGAAAATGATGAACAATCTTTATTTTACCAAGTGAATCTGTTT(plant)	
endoRYNV -PH2	2201\|2432	(1990)ACAATTGGTATACATAATACCAAACGCAATGATGTCAATACACGATTTTTTACAATTGTATACAGGTCAGCGTG CAAACCCGAGGCTACGGGACAGGATGGGCTGGAGGAGACAGCAGTATGATCATCACTAGATCACTGGTGGGGCGT CTCACCAACACCAGCATGACAAACTTCGAGTACCGGATAGATCAAGTCACAGACTATCTAGCAA(2201) \|	

		(2432)AGCACGCACTACGTGCTCGTCTTCAGACATAACTCCTATGAGACCAACCTCAGAGGAGAAAGGAGGCCAAG GCAGAACGAACTTTC(2517)
	7091 \| plant	(6970)GCAGAGATGGACGAGTCTAGAAGACTGGCCAAACAACGCCGAGACAAAGTCTTCGACGACGCAGGGCAAA ACATCTGCGACACGGTCTACATCACCGGTGTCGACCTCGCCGCCGCCAAGGC(7091) \| (plant)ACGCGGCCACATTTGCAGCCTTGGTGGTGATAGTTTTGACTGTTGCTTGCAATGCTCCACTTGCTAAGTTGCA ACATAAGTTTCAGAGTAAGCTTGTGGTGTCACAAGATGAAAAAGGCTCAAGGCTAGTTCTGAAGCTCTTGTAAACA TGAAAGTATTAAAATTATATTCATGGGAA(plant)
	3094\| plant	(2924)AGTGGCATGGATAGCGAGTCCAGCATCACAGGTGGAGGATTCATACCACCAAGCCCAGTACCAGGAGCGC AGGGATACCCACCTGCCACAGGAGCGTCTGCTTCAACCATAGGGCCAGCAGATCTGCAAGGATGGGGAGGACGAT TGCCAAGGAGCAGATCGCCGATAGGA(3094) \| (plant)AAATGGCCCAACATATAGATAGGAAAATGGCCCAACATATAGATCGAAAAATGTCTAAGTGCGCGCTTGAA CACTTAGAAACTCATAAAAACTCAGAGAATATGCGGAAGATAAGATGAATAAACTCTT(plant)

Table 4. Primer pairs used for Rubus yellow net virus lineage-specific SYBR Green PCR validation.

Lineage	Primer name and sequence	Amplicon size (bp)	Melting temperature (${ }^{\circ} \mathrm{C}$)
endoRYNV-CU1	endoCU1-6376F: CACTGTAGTAAGATGGCTTCCC endoCU1-6475R: GTCCTCTGTACCTCCTTGTC	100	80.99
endoRYNV-CU2	endoCU2-2415F: CGGAAGAAGAAAGCACACATTAC endoCU2-2527R: CTCTGGCGTGAACTCTGAAA	113	79.94
endoRYNV-CU3	endoCU3-2450F: CACAAACTCAGGGACGTCTATC endoCU3-2575R: ATCCCTGGCAAGGTGTATTG	126	79.15
endoRYNV-BS	endoBS-4668F: CCTCCAGAACATCGAGAATGTC endoBS-4767R: GCTAGGCATTCGTCACCTATTA	100	77.57
endoRYNV-PH1	endoPH1-2633F: GAGCTGTCGGAGAAGCTATT endoPH1-2725R: TATCGTCAACCCTGGGTATCT	93	77.83
endoRYNV-PH2	endoPH2-3892F: GTGCTACCTTGCGGAATAGA endoPH2-3989R: CTAAGCCCATGCCATTGAATAC	98	79.81
epiRYNV-BS	epiBS-2604F: TCCTACGAGGTAAGCCTAAGAG epiBS-2715R: CCGAGTTCGAGAGTTGGTTAG	112	

10. Figures

Figure 1. Bacilliform particles of rubus yellow net virus from 'Baumforth's Seedling A' (epiRYNV-BS) captured using antibody against sugarcane bacilliform virus and stained in phosphotungstic acid.

Figure 2. Overview of endogenous rubus yellow net virus (endoRYNV) lineage sequence structures in red raspberry. The sequences are represented with intergenic region (IG) in black; grey, orange, and blue boxes indicating ORF1, ORF2 and ORF3 of the virus, respectively. For simplicity, ORF4 and ORF6 embedded within ORF3 are not illustrated. Break points and deletions in the genomic sequence are represented in green diamond and red triangle shapes, respectively, with nucleotide location on top. The two fragments of endoRYNV-BS that were found in high-quality 'JoanJ' genome are shown in white and black bars.
bioRxiv preprint doi：https：／／doi．org／10．1101／2021．06．17．448838；this version posted June 17，2021．The copyright holder for this preprint （which was not certified by peer review）is the author／funder，who has granted bioRxiv a license to display the preprint in perpetuity．It is made available under aCC－BY 4．0 International license．

endoRYNV＿CU1	ACGTCTAGTGAAGTGACGCAATGAATGACTTCACAATTGCCAATGTCGTCACTGCTTACG
RYNVCaKF $\overline{2} 41951$	ACGTCTAGTGAAGTGACGCAAGGAATGACTTCACAATTGCCAATGTCGTCACTGCTTACG
endoRYNV CU1	ACTTGGAACTTATCGTTTTGTGTCGGCAGCATCTCTTAGCTGTCATTTGTGTGTAAGTGC
RYNVCaKF241951	ACTTGGAACTTATCCTTTAGTGTCGGCAGCATCTCTTAGCTGTCATAAGTGTGTAAGTGC
endoRYNV＿CU1	GCCGGTAGTGCGCTGTGTCAGGATAAGGAATCTTATCTCCTTATCTTTTTGC－－TTTGTT
RYNVCaKF241951	GCCAGTAGTGCGCTGTGTCAAGATAAGGAATCTTATCTCCTTATCTTCTTTCCCTTTGTT ＊＊
endoRYNV＿CU1	－AAAGCTA－－GCTGTAAAGCAGATTCTCTTAGCTGTCGATGGGGCCCAGAAAGCGCACCC
RYNVCaKF241951	TAAAGGTAAAGCTGTAAAGCAGGACTAATTAGCTGCAGGTCA－－TCAGGTTTGCGGTTGT *大夫t 大* ************ ******* * * * * ***
endoRYNV＿CU1	GAG－－－CTAGTGGTCATCTGTCTTTTTGCTTAGCCTCTCCCCTATATAAGGGAGCTCAGT
RYNVCaKF241951	GGAACTCCTGCAGCTGACTGGTGAGCTCTTCGACTTTTCTAGTGAGGAAAGCGTTGTGCT \star \star \star
endoRYNV＿CU1	TAGAAGGCTTAGGCATCGAGTAAGCTCAATAGCCAACCTTCTCTTGTATTGTAT－－－TAA
RYNVCaKF241951	
endoRYNV＿CU1	CTTTCTTGAGAAATAAAGAGTTTATTCAGT－－TCTATCT－TCCGCATTGTCT－CTGAATT
RYNVCaKF241951	TGTCCTTTGCGGCTATAAGCTTGATCCCATGATCCATGTATGCGCAAAGGGGACAGAGGT $\star \star \star t$
endoRYNV＿CU1	TTATGTTCTTCTAAGTGTTCAAGAG－－－－CGCACTTAAGAAGTTTTGAT－CCATGTTTTC
RYNVCaKF241951	TGAGGTTGCAGGTGGTGCAGGTGACTCTTCGCCCATGAGGCGTTTCGTCGCTGCATATGC
endokrnv＿CU1	GGGCCATTTTTC
RYNVCaKF241951	$\underset{\star}{\text { TGCATATCCTCCCTTCGATCGGCACTTCTTGTGTATCACTCCAGGCGTGAGTGCATTCTT }}$
$\begin{aligned} & \text { endoRYNV_CU1 } \\ & \text { RYNVCaKF241951 } \end{aligned}$	GCTGTGCCTTTGGTATCTCCTTCCTTCTTCTCCAGGAAGGTTTTTC

Figure 3．ClustalW alignment of the 3^{\prime} intergenic regions of the endogenous rubus yellow net virus （endoRYNV）lineages Cuthbert and Canada（endoRYNV－CU1 and RYNV－Ca respectively．Although the two lineages share 100% nucleotide（ $n t$ ）identity at the reverse transcriptase and RNaseH domain，their 3^{\prime} IGs share 29% nt identity．
A) endoRYNV-CU1

B) endoRYNV-CU2

D) endoRYNV-BS

E) endoRYNV-PH1

C) endoRYNV-CU3

F) endoRYNV-PH2

G) epiRYNV-BS

Figure 4. Melting curves for the lineage-specific SYBR Green PCR validation assays detecting the endogenous and episomal rubus yellow net virus (endoRYNV and epiRYNV respectively) lineages from the raspberry cultivars with corresponding endo/epiRYNVs. A) endoRYNV-CU1; B) endoRYNV-CU2; C) endoRYNV-CU3; D) endoRYNV-BS; E) endoRYNV-PH1; F) endoRYNV-PH2; G) epiRYNV-BS.
(A)

(B)

Figure 5. Detection of the rubus yellow net virus from 'Baumforth's Seedling A' (epiRYNV-BS) lineage using the epiBS-2604F/2715R assay against a panel of 271 public and proprietary genetics. The plants were as described in 2.5. A) Amplification plot (the epiRYNV-BS positive control from Corvallis, Oregon, with two replicates were labeled in blue and light blue); B) Melting plot (the two positive control replicates were labeled in orange with unique melting point compared to all other non-specific amplifications, labeled in grey). epiRYNV-BS was detected at $\mathrm{Ct}=19$, whereas non-specific amplifications initiated after $\mathrm{Ct}=35$ but their melting points were different from that of the positive control.

11. Supplemental data

>endoRYNV-CU1
tGGTATCAGAGCTTTAGCTCTCACCATGGTAGCTTAAACACTTTCCTTCTTGTCGAGAAACCCAAGTTTCAGACCAGAACCTTGA GTTTGCTCTCTTTTTCGGAGGGAAGAGGAGTGAGTGTCTGTGTCAAAACCTTGAAAGATCAAACCCCCATGAAAACTTTCCTCA CGGTACCATAAGTTTTCTATCCTTCACTAGTTTGAACCTACTGCTCAAACTGCAGGCTTAGGCGTCGAAGCGAAGTACCCTTGTA GCCGTTAGCAGGAGGCGTTAGGCGTTGATTGGGGAAAACTGACGTAAAGAAGCAGCAGCAACTAGGCAAGAAACCTGACGG GTAGATCACCGGCCGGAAAGCCAGTAAGCGGCTAGATCTGGGCAGTTTTGATGCAACCTCACGAAATCTCAGCCTTCGAAGAA GAAAGCAGCTCTTGGGAAAGGTCTGAACGGGCGTATCGACAAGACTTTTTATTCAGAAATCTCAGAACGTATCCACGTTGGGA GGCAAATCAGAAAACACCCTCTCTAGACTTTCCTTGCTACCACTTCAACACAACAACCGGACCACCAGTCCACCGCACTCTCTGC AGACAAGAGAACAGTAAGGATTTACCATTTCTGGTAAACACCCTGTTCGATCTCAACATCACCGAGATCCACAATCAGGCGATT CTGGACGATAAGATCTCCAGACTCACCCAGTACCTGACAACAAAGGTTGGTTCACTACCAACAATCCCGGAGGATTCACCCCTC CTGGACCAA GCCACAATATCCTTAGATCTTCAAGCCCTCAAGGCAGATCTGAAGGAAATCAAGGCCACACAGTCAGCCCTGAA GCTAGGCTTCGCACAACTGCAGGAGGCAGTTCAGCTGATCATCACAAGGGAAAACGATCCCAAACCAATCGAAGCAGCTACT GCACAAGTAGCCGAACAGCTGAGGAAGCAGCTTATTGAGGTCAAGTCCGTCCTCGAGGAGACCAAGAAGATCGCGAGATCTC TGTCCCCCGACGGATGAACCCTAGGTGGCAGGATACTGCAACCAAGGAAACCTACCTCAAAGCCATACAAGCTACCTCATCTCT CACCTCCAACAACACAGGTCTAGGCTTCATCGAGCCACATACCTACACCGGAGGACAGCTATCTACCAACCTAGCAAAACAGA ACAACACGCTCATCCAGCTGTTAGTTCAGGTGCTAGAAAAGAACCTCGACCTCGAGCAGGCAATTGTCAACCTCACAGCTCAG GTCACAAGGCTAGAAAAGACCGTCTCGGAGAAAGACACAGTCAAACTCCCAGAAAGTGTCCTCAACGACCTCACTAAGGAGT CGGAAAGGTCAACTTAGGGAAAGGAAAGGGGATAGAAGGAGCAGTCTCATCCAGAGACAAGAACTTCTACGTCTGGAAGAA CCCCTTCAATCAATACAATGAGCAGAAGCCAAACAAGGCTCCAGGCTCCGCCCGCAACTGAAAGGGCAACAAGCAGCTCGGA ATCAGGCACCCCCACCTTGGAGGACCAGATCCGAGGATACAGGCGCTCCGCAAGGTTACGACACCAGGCGCAGCGAGCAATG AGAAGGACCTTCAGTAGGGACTTCAGAAACACCATAGAACGGCAACTAGACCCAGATGCCGAGCTTTCCCTCAGCAGAAGAA GGAGAGTAAACCGAGTACCAGCAGAGGTATACAGATCCGGAGAATGGGATTTACAACCCAGCAGGATCGTGGCACCACTAGC AGTCCCAACAGAAGCAAGGCTTAGCCAAAACAGGAATGGCAATATAAGCCTCAGATTCACCGACTTCCGAGATCAGAGGATC GTGGAGGAAGGAGAACCATCTGAGCCAGAAGGAAGGCCAGAAGGAGAAGATGATAGCACGCACTATGTGCTCATGTTCAAC CACTCAAGGTGGGACACCTTAGGGCAACCAAGCGGGAAATATGATTACATGGTGAGGTATGATGCACCAGAACCTACCGCAT GGCCAACATCCAACATCGGATGGGATGATGATAAGCCACCCAAACCGCCAAGCCCTACAAAAGGATCTTTTGAGGTAAACCTC AAAGGAGAGAAGAAACTAAAAGAGAAGGAACTCGCGGAGTTCACACCGGAGACAGATCTGGTGAGCCAGTGGTTAAGTCAG CTGTCAACATCCGCACATAATAGCGGAGCCTCAAGTTCAGACGAAGAACCAAAGTTCGACGAGGCAGAGGACGAAGACGATG TGTACAACCAGCAAACCTGGCAAAAGGAAGACAAGGAGAAAAGAGACCTGGAACTACAGGGGTGGAAACCCACCGGGAGAC CAGGAATCTACGAGATGATCCCCGAAGAAGAAGAAGAAATCTACCTCAGGTACGAGGCAGAGGACGAGGAGGATCAGGAAG TACAGGTGATAGGAGCTACCACCATTGAGGAGCCAGAGATGGAGTACCCAACTAGGCTCGAAGAAGTTATGGGCAAGCTCAA AAACGTGAGCATGGAAAAACTGTTCCCAGTAAGCGGAATGGACAGCGAATCCAGCATCACAGGTGGAGGATTCATCCCACCA AGCCCAGTGCCAGGAGCACAAGGGTACCCACCAGCAACTGGAGCATCCGCGTCCACCATTGGACCAGCAGACATGCAAGGAT GGGGAGGACGGCTACCTCGGAGCAGGTCGCCTATAGGCTATGGCAGACCCCAACAACCGTGGTCACTGCCCTCAGCACAGTC TGATAACGGCTGCATGCTAGTCCTTCCACAGGACTTCACCCTAGTCCCCGACGTAATCAACAGATGGGAATCCATCACAGTCAA CCTCATCAACAAGATGATGTTTGATTCCCTACAGGACAAGGCGGACTACGTAGAAAACCTCCTTGGAGAAAGAGAAAAGGAG ACATGGATGACATGGAGAATGCAGTACGAGGAAGAGTACAGGCAACTCCTCACCATGAGCGGAGACGTAAGGAACCTTACTG CCGCAGTCAAAAGGGTCTTTGGAGTACACGACCCGCACACAGGATCAGTACACATCCAGAATCAAGCGTACGCAGAGCTGGA ACGCCTCTACTGCAAAAGAACGGATGATGTGATCCCCTTCCTCTACGACTACTACCAGTTAGCAGCCAAGTCAGGAAGGATGT GGCTCGGACCTGAGCTATCTGAGAAGCTGTTCAGAAAGCTTCCACCGGAGATAGGCCCAACAATAGAGCAGGCCTATAAAGA CAGGTATCCAGGCCTCACGATTGGAGTTTTGGCAAGGGCCAATTTCATCCTGGAATATCTACAAAACGTCTGCAAGCAAGCAG CGTTGCAAAGGTCCCTAAAAAGCCTGAGCTTCTGCAGAAACATGCCAGTACCAGGGTACTACGAGAAGAAGCAATACGGCAT CAGAAAGGCTAAAACCTATAAAGGAAAGCCTCACCCTACCCACGTGAAAGTCATCAAAAACAAGTACAAGCACACATCTGGGA AGAAGTGCAAATGCTACTTATGTGGGATAGAAGGCCATTACGCCAGGGAATGCCCAAAGAAAGTGGTGAAGCCACAAAGAG CGGCATACTTCAATGGCATGGGACTAGACGACAACTGGGATGTCGTGTCCGTCGAGCCCGGAGAATCAGATGACGATGAAAT CTGTAGCATCTCCGAGGGAGAAAACGCTGGAGGAATGCATGAGCTTATGGCATTCAAGACTCAACTCCCATACCCAGTGGAGT ACGAAGCCAGCACACCACAGTTCCTGATGCCATGGACACAAGTAACAGTGGAAAGAAGCGAAAAACCTTCCTGGAGAAGAAG GAAGGAAATCCCGAAGGCACAACAGGATTGTACTCACACCTGGAGTGACACACAAGAAGTGCCTATCGAGGGAAGGATATGC AGCATATGCAGTGATGAAACCCCTCATGGGCGAAGGATCACCTGCACCACCTGCAGCCTTAACCTCTGTCCGCTTTGCGCTTAC ATGGATCATGGGATCAAGCTTATAGCCGCAAAGGACACCAAGGACGCAGCTAAGTGGCAATACCACAACAAAGATGAGCTTA

TACGACATCTCTATGAGCACAACGCTTTCCTCACTAGAAAAGTCGAAGAGCTCACCAGTCAGCTGCAGGAGTTCCACAACCGCA AACCTGATGACCTGATCAGCTTAGCGGATGACTTGGAGGACGTGTCCATTCTGGACAACGCCTCAAAAAGGGGGAAGGAGAA GGAATCTTTCCAATTCGGAACAACGATTCCCATCGACCACATCCAAAACTTGGAAAACGTGGCAAGGATCATCGAGCAATGGA AGGATACCCCCAAGGTAATCATCAAAGAAACAGCTGAAAGCAGCAACAACACCATCGGAGCCCTCTTAGCAGAAGAAGGAAT AGAGGAGCTAGCCGCAGCTGTAGACACGGCATACACAGAAATGCCAAAAGGAGGATTGAACAAGCTCTACAACACCATTGTT GAGTTTGTAATACCCCAGGAAAAGGGGGCACCCACCAGGTTCAGGGTAAGAGCTGTAATAGACACAGGATGCACCTGTACAT GTATCAACAGCAAGAAAGTCCCCAAAGAAGCCCTGGAGGAAGCGAAGTACCAGATGAACTTCGCAGGAGTAAATTCCACTGG AGAAACGAAGCTTAAAATGAAGAACGGTAAGATGATCGTGTCTGGAAGCGATTTCTATACACCGTACATTGCAGCCTTCCCAA TGGAACTACCAGACGTAGACATGCTCATCGGCTGCAACTTCTTGCGAGCCATGAAGGGAGGAGTCAGGCTTGAAGGTACTGA AGTGACGATCTACAAGAAAGTCACCACAATCCAAACAACCCTGGAGCCCCAAAAGATATCTCTGCTCCGCGCAGAAGCAGAAG TCGGAGAAGAGATCGAGCGTATGTACTACGCAAATGACTACTCTGAAGAAGGAGTCAGTCGCCTGAGAAACCACAAACTGCT GCAGGAACTAAAAGAACAAGGCTACATAGGCGAAGAGCCAATGAAGCACTGGGCGAAAAACGGGATCAAGTGTAAGCTTGA CATCAAGAACCCAGACATAGTAATCAGCAGTAAACCCCCGGATGCTGTCTCAAAGGAGACGAAGGCACAATACCAGCGGCAC ATTGACGCTCTCCTGAAGATCAAAGTAATCCAGCCAAGCAAGAGCAAGCACAGAACCGCAGCCTTCATCACAAACTCGGGCAC AACCGTTGACCCGATCACAAAGAAAGAAATCCGAGGAAAAGAAAGGATGGTGTTCGACTACAGAAGTCTGAACGACAACACC CACAAAGACCAGTATACTTTGCCTGGGATCAACACCATCATATCGGCAATCGGCAATGCGAAGATCTTCAGCAAATTTGATCTG AAGTCTGGATTCCACCAAGTATTGATGGACGAAGAATCCATCCCGTGGACCGCATTTGTCACACCAGTAGGGTTCTACGAGTG GAAGGTAATGCCTTTCGGACTCGCAAACGCTCCGGCCGTCTTCCAGAGAAAGATGGACCAGTGTTTTGCAGGAACCTCAGAGT TCATAGCCGTCTACATCGACGATATCCTGGTCTTCAGCAAGACCTTGAAGGAGCACGAAAAGCACCTGAGCATCATGCTTGGG ATATGTCGAGACAACGGCCTGGTTTTGTCACCAAGCAAGATGAAGTTAGCAGCAACCGAGATCGACTTCTTGGGAGCCACCAT TGGTGACGGAAAGATTAAACTCCAGCCTCACATAATCAAGAAGATAGCTGAGGTGGACGATGAATCTCTAAAAACCCTCAAAG GGTTGAGAAGTTGGTGGGAGTTCTCAACTATGCCAGGAACTACATCCCGAAGTGCGGAACACTCCTAGGCCCACTATACAGC AAGACCAGTGAGCATGGAGACAGAAGGTGGCATGCTTCGGATTGGGCCTTAGTAAAGAAGATCAAGAGCCTGGTCCAAAATC TCCCAGACCTCAAACTGCCCAGTGAGGAGGCCTATATGATCATCGAGACAGATGGTTGTATGGAAGGATGGGGCGGAGTCTG TAAGTGGAAGCCCAACAAAGCAGACTCAGCTGGCAAGGAAGAAATCTGCGCTTACGCAAGCGGTAAGTTCCCAACGGTGAAA TCTACCATTGACGCAGAAATCTTCGCGGTAATGGAGTCCTTAGAAAAATTCAAAATTTTCTACATGAATAAGGACGAGATCACC ATCAGAACCGATTGCCACGCCATCATCACCTTTTACGAAAAGTTAAACGCCAAGAAACCTTCTCGGGTAAGGTGGTTAGCTTTT TGTGATTATATAACAAACTCAGGGGTGAAGATGAAGTTCGAACACATCAAAGGCAAAGATAATCAGCTCGCTGACAATCTTAG TCGCCTTACCCAACTCATCACTGTAGTAAGATGGCTTCCCAAGGAACTAGCGGAGCTCACGGCCGAACTGGTCAAAGGAAGGG ACGAAGCCCTGGTGAACAAGGAGGTACAGAGGAACATCTCATGTTTTCTCGAGACTGCCCTCCTCCAAGCGGAGAAATCCGTG ACTACTCGCCCATCAGAGCCGCACCATGTACTATGGCGGAGATGGACGAATCCCGAAGAGTGGCCATGCAGCGAAGAATCAA GGTCTTCGACGATCTTGCACAAAACATCAGCGACGCCGTATACATCACAGGCATCGACCTCGCCGCCGCCAAGGCACGGGCAA CCAGAGACAACTGGTACAATGACGTCACCCCAGCATTGGAAGAACGAGCAGCTGCAGCATGGAGACTCATGGCGGCCTACTC AGACTTCGCCACGTGGAAGGACGTAAACGTCTAGTGAAGTGACGCAATGAATGACTTCACAATTGCCAATGTCGTCACTGCTT ACGACTTGGAACTTATCGTTTTGTGTCGGCAGCATCTCTTAGCTGTCATTTGTGTGTAAGTGCGCCGGTAGTGCGCTGTGTCAG GATAAGGAATCTTATCTCCTTATCTTTTTGCTTTGTTAAAGCTAGCTGTAAAGCAGATTCTCTTAGCTGTCGATGGGGCCCAGAA AGCGCACCCGAGCTAGTGGTCATCTGTCTTTTTGCTTAGCCTCTCCCCTATATAAGGGAGCTCAGTTAGAAGGCTTAGGCATCG AGTAAGCTCAATAGCCAACCTTCTCTTGTATTGTATTAACTTTCTTGAGAAATAAAGAGTTTATTCAGTTCTATCTTCCGCATTGT CTCTGAATTTTATGTTCTTCTAAGTGTTCAAGAGCGCACTTAAGAAGTTTTGATCCATGTTTTCGGGCCATTTTTC

>endoRYNV-CU2

TGGTAGATTGTACTTTAGCTCTATTCAACATGTTAGCTTAAACTTTTCATTTCTTGTCGAGAAACCCAAGTTTCAGACTAGAACCT TGAGTTCCTCTCCTTTTTCAGGGAGGAGAGAGTAGTGAGCATTGCAAAACTTCTGCAACTTTCAAACCCCCATGAAAGCTTTCC TCACGGTACTATAAGCTTTCTGATTTTCACTAGTTCAAACCTACTGCTTAAACTGCAGGCTTAGGCGTCGAAGCGAAGTACCCTT GTAGCCGTTAGCTGGAGTGCGTTAGGCGTTGATTGGGGAAAACGGACGTAAAGAAGCAGCAGCAACTAGGCAAGAAAACTG CAAATCAGATCACCGGCCGGAAAGTCAGTAAGCGGCTAGATCGGGGCAGAAGCGGATGCAACCTCACGAAATCTCATCCTTT GAAGAAGAGAGCAACTCTTGGGAAAGGTCTGAACGGGCGTATCGACAAGACTTCCTATTCAGAAATCTTAGATCCTATCCGAG GTACGAAGCAAACCAGAAATCACCTTCCTGTGATTTCCCTTGTTATCACTTCAACACAACCACTGGACCTCCAGTCCACCGCACG ATCTGCAAGCAGAAGAACAGTGAGGATTIACCCTACCTGGTAAATACACTGTTTGATCTCAACATCACTGAGATCCACAACCAG GCAGTCCTAGACGACAAAGTCTCGAGACTCACACAGTACCTGGTCAAGAAAGTCGGAACGCTACCGACAATCCCGGAGGACT CACCCCTCCTGGACCAAGGTTCCATAAACCTAGATCTGCAGGCCCTAAAAGCAGATCTGAAAGAAGTCAAGGCAACCCAGTCC GCACTGAGGTTAGGCTTTGAACAGCTAAGAGAAGCTGTCCAGCTAATCATTGCCCGCGAAAACGATCCGAAGCCCATCGAAGC

TTCTACGGCACTCGTAGCGGAGCAGCTGAGGAAACAACTGATAGAGGTGAAATCTGTCCTCGAGGAGACAAAGAAGATCGCC AGATCTCTCTCCCCTGACGGATGAACCCAAAGTGGCAGGAGACCGCCGCAAAAGAAACCTATCAGAAGGCTATCCAGGCAAC CTCCTCGCTCACATCAAACAACACCGGTCTAGGGTTCATAGAACCTCATACTTACACCGGAGGACAACTGTCCACAAACCTAGC AAAGCAGAACAACACGCTCATACAGCTGTTGGTCCAAGTGCTAGAAAAGAATCTGGACCTTGAACAGGCGATAGCAAACCTAT CAGCACAGGTCACCAGACTCGAGAAGACCGTCGCAGAGAAGGACACGGTCAAACTCCCGGAAAGCGTCCTGAACGACCTCAC CAAAGAATTCGGGAAGGTCAATCTCGGGAAAGGAAAGGGTTTAGAAGGTATTGTCTCTTCCAAAGACAAAAACTTCTACGTTT GGAAGAACCCTTTCAACCAGTACAATGAGCAGAAGCCAAACAAGGCTCCAGGCTCCGCCCGCAACTGAAAGGGCAACAAGCA GCTCGGACTCAGGAACCCCCACCCTGGAGGACCAGATCCGAGGATATAGACGCTCTGCAAGGTTAAGACACCAAGCACAGCG AGCAGTTCGAAGGACCTTCAGCAGGGACTTCAGGAATACTATAGAAAGGCAACTGGACCCAGATGCCGAACTCTCCCTTAGTA GGAGAAGAAGAGCGAATCTAGTACCAGCAGAGGTACTCTATGCTCACAACGGTTCGGAACCAGCGAATCGTGTGTACGAGCA TTACAGTGAGCTCGGGGCCCACATAGTCGACAGGCAACAAGACTTCCGGTATATAGAGGAAGCCTCCTACCAAAGGCTAGTCA GGGAAGGCATGCAGTCATTCATGTCGGGATGGCCATGGTCAGGATCCAGATGTTGCATAGAACGGATGCGGGGATATCCGC ATTAGTGGTGTTCAGAGACACCAGGTGGAGTGATGACAGGCAAGTCATCGGGAGCATGTCCGTGGACATGACAAGGGGAGC ACAGTTGGTGTATATAATACCCAACGCAATGATGTCAGTACACGATTTCTACAATCGTATACAAGTAAGTGTGCAGACCCGAG GCTACGGGACAGGATGGGCAGGTGGAGACAGCAATATGATCATCACCAGATCTCTGGTGGGACGATTGACTAACACCAGCAT GACCAACTTTGAGTACCGGATAGAACAAGTCACAGACTACTTGGCGAGCAATGGAGTCGCATGCATACCCGGACAGAAGTGG GACGTAGCCAATCGATCCGGAGAATGGGAACTTCAACCCAGCAGGATCACAGCGCCAGTCATGGCACCTACTGAGGCAAGGT TGAGCCAGAACAGAAATGGCAGCATAAGCCTCAGATTCTCAGATTTCCGAGATCAGAGAATCACAGAAGAAAGGCCAGCTGA AGAAGAGGGCAGGCCGGAAGAAGAAAGCACACATTACGTGCTCATGTTCCGTCACAGCTCCTACGAGACCAATCTCAGAGGA GAAAGGAGGCCAAGGCAGAGTGAGCTTTCAGAGTTCACGCCAGAGACAGATCTGGTAAGCCAGTGGCTGAGCCAACTATCA GCCTCAGCACACAACAGTGGAGCATCTAGTTCAGAAGACGAACCGCCCAGGTTTGATGACTCTGAAGAAGATAGTGACAACA CCTATAATGAGAAGACCTGGCAAAGAGAAGACCAGGAAAGGCGAGATCTGGAGCTGCAAGGATGGAAGAAGACCAGCAGA CCAGGAATCTATGAGCTGATCCCAGAGGAAGAGGAAGAAATCTACCTCAGGTATGAAGATGAAGAGGATCAGACAACAACAC AGGTAATCGGGGCAACAACCATGGAGGAACCAGAGATGGAGTACCCTACCAGGTTGGAGGAAGTGATGGGAAGACTCAAAA ACGTTAGCATGGAGAAGCTGTTCCCAGTTAGCGGCATGGATAGCGAGTCAAGCATCACAGGGGGAGGCTTTATCCCACCAAG CCCAGTACCAGGAGCGCAGGGTTACCCACCTGCAACAGGAGCATCCTTTGGCTCGACAATTGGGCCAGCAGATCTACAAGGAT GGGGAGGTAGGCTGCCACGCAGCAGATCACCACTTGGATATGGCCGCCCACAGCAGCCATGGTCATTACCATCCGCCCAATCT GAGAACGGATGTATGCTAGTCCTCCCACAGGACTTCACTCTAGTCCCAGATGTAATAAACAGATGGGAATCCGTAACCGTCAA CCTTATCAACAAGATGATGTTCGACTCCTTACAAGATAAGGCGGATTACGTGGAAAATCTCCTAGGAGAACGGGAGAAGGAG ACATGGATGACCTGGAGGATGCAATATGAAGAAGAGTACAAGCAGCTCCTCACCATGGCAGGAGACGTGAGAAATCTCACGG CAGCAGTCAAGAGGGTCTTTGGAGTGCATGACCCCCATACAGGATCAGTCCACATACAAAACCAGGCATATGCAGAACTGGA GAGGCTCTACTGCAAGAGAACGGACGACGTGATCCCTTTCCTATATGACTACTACCAACTGGCGGCGAAATCTGGAAGAATGT GGCTAGGGCCAGAATTATCAGAAAAGCTGTTCAGAAAGCTGCCACCAGAGATAGGCCCAACGATTGAGCAGGCCTATAAAGA CAGGTATCCAGGGCTGACAATTGGAGTCTTGGCGCGAGCCAACTTCATACTGGAGTACCTACAGAATGTCTGCAAGCAGGCA GCGCTACAGAGGTCTTTGAAGAGCCTCAGCTTTTGTAGAACCATGCCGGTGCCAGGGTATTATGAGAAGAAGCAATACGGCAT CAGGAAGGCAAAGACCTACAAAGGGAAGCCACACCCCACACATGTAAAGGTAATCAAGAACAAGTATAAACACTCCGCAGGG AGGAAATGCAAATGTTACCTTTGCGGGATAGAGGGTCACTACGCCAGGGAATGCCCAAAGCAAGTGGTTAAGCCACAGAGAG CAGCATTCTTTAATGGCATGGGCCTTGATGATAACTGGGACGTCGTGTCCGTGGAGCCAGGAGAGACAGATGATGATGAGAT CTGCAGCATCTCAGAAGGCGAGGGCACCGGGGGGATGAACGAGCTACTTGCATTCAAGACACAGCTCCCCTACCCAGTAGAA TATGAGGCGAGCTCATCTCAGCAGTTCCTGCCATGGATTCAGGTAACTGTACAAAAGAGTGAGAAACCCTCATGGAGAAGAA GGAAAGAGATCCAACCGGCACAACAAGAATGCGCTCACCTCTGGAGCGATACACAAGAAGTGCCTATAGAAGGAAGAATTTG CAGCATCTGCAGTGACGAAACCCCTCTGGGAAGAAGGATCACCTGCACTGCCTGCAACCTAAATCTGTGTCCTCTTTGCGCATA CATGGACCATGGTATCCAACTGATAGCCGCAAAGGACACCAGAGATGCAGCAAAATGGCAGTACCACAACAAGGATGAGCTA ATCCGGCATCTCTATGAGCATAATGCTTTCTTAACCAGAAAGGTGGAGGAGCTGACAAGCCAGCTGCAACAATGGCAAAACCG CAAACCAGAAGACCTTATCAGTCTTGCGGATGAGCCAGAGGACGTGTCCATCCTGGACAACGCCTCAAAAAACCGGGGGAAG GAGAAGGATTCTTTCCAATTTGGAACAACAATCCCAGTCGATCATATACAAAACATCGAGAATGTTGGCAGAATGATCGAACA ATGGAAGAACACCCCCAATGTCACGGTCAAAGAAGTGGCAGAATCAAGCAGCAACACCATAGGAGCACTCCTTGCAGAAGAA GGAATTGAAGAGCTCGCGGCTGCAGTAGATACGGCATACACTGAAATGCCGAAAGGAGGGTTGAACAAACTCTACAACACCA TCGTAGAATTTGTGATACCACAGGAAAAGGGGGCACCCTCTAGATTCCGGGTCAGAGCTGTCATTGACACAGGATGCACTTGT ACCTGCATCAACAGCAGGAAGGTCCCGAAGGAAGCTCTCGAGGAAGCGAAGTTTCAGATGAATTTCGCCGGGGTAAACTCCA CGGGAGAAACAAAGCTGAAAATGAAGAATGGCAAAATGATAGTATCAGGGAGTGATTTCTATACGCCATACATCGCGGCTTT CCCCATGGAACTACCAGATGTGGACATGCTCATTGGCTGTAACTTCTTACGAGCCATGAAAGGAGGAGTCAGACTTGAAGGAA CAGAAGTAACCATCTACAAGAAGGTTACCACAATCCAGACGACTCTAGAGCCACAGAAGATCTCTCTACTCCGTGCAGAGGCA

GAAGCAGGGGAAGAAATTGAGAGACTCTACTATGCCAATGACTACTCAGAAGAAGGAGTAAGCAGGCTGAGAAACCACAAG CTGCTACAAGAACTGAGAGAGCAGGGATACATCGGAGAAGAGCCCATGAAGCACTGGGCAAAGAATGGGATCAAGTGCAAA CTTGATATCAAAAATCCCGATATAGTTATCAACAGCAAGCCTCCGGATGCAGTGTCTAAAGAGACGAAGGCGCAGTACCAAAG GCACATCGATGCTTTACTGAAGATCAAGGTGATTCAACCCAGTAAAAGTAAGCACCGAACAGCAGCCTTCATCACCAACTCGG GTACCAGCATAGACCCGATAACAAAGAAGGAGATCCGAGGAAAGGAGAGGATGGTCTTCGACTACAGGAGTCTGAATACCCA CAAGGATCAGTACACCTTGCCTGGGATAAATACCATCATCTCTGCAATTGGCAACGCCAAAATCTTCAGCAAGTTCGACTTGAA GTCTGGTTTTCACCAGGTACTAATGGATGAAGAGTCCATCCCATGGACGACGTTTGTCACACCTGTAGGCTTCTACGAGTGGAA GGTGATGCCTTTCGGACTCGCGAACGCTCCAGCAGTATTCCAAAGGAAGATGGATCAGTGTTTCGCAGGAACCTTTGAGTTCA TAGCCGTATACATAGACGACATCCTAGTGTTCAGTAAGACACTCAAGGAACATGAGAAGCATCTCAGTATAATGCTGGGAATA TGTCGTGACAACGGCCTAGTACTGTCGCCAAGCAAGATGAAACTGGCAGCAACAGAAATTGACTTTCTGGGAGCAACCATTGG CGATGGGAAGATTAAGCTCCAACCTCATATCATCAAGAAGATAGCTGAGGTGGACGACGAGTCTCTTAAGACTCTGAAAGGAC TAAGAAGCTGGTTGGGAGTGCTGAACTATGCCAGGAATTACATCCCAAAATGTGGAACCCTCCTCGGCCCACTCTACAGTAAG ACGAGTGAGCACGGTGATAGAAGATGGCACGCTCAGGATTGGGCCTTAGTCAAAAGGATTAAAAGCCTGGTCCAGAACCTTC CGGATCTGAAGCTACCAACTGAAGAGGCCTATATAATCATTGAGACCGATGGTTGTATGGAAGGATGGGGCGGAGTCTGCAA ATGGAAGCCCAACAAGGCCGACTCAGCAGGAAAAGAAGAGATTTGCGCGTACGCAAGTGGGAAATTCCCAACGGTCAAATCA ACAATAGACGCGGAAATATTTGCGGTCATGGAATCCTTGGAAAAATTCAAGATATTTTACATGAACAAGGAGGAAATCACCAT CAGGACCGACTGCCACGCCATCATAACTTTTTACGAAAAGTTGAACGCGAAGAAGCCTTCCCGCGTAAGGTGGCTTGCTTTCTG CGACTATATAACCAACTCCGGGGTCAGAATGAAGTTCCAACATATCAAAGGCAAGGATAATCAGTTAGCTGATAATCTCAGTC GCCTAACCCAGCTGATCACCGCAGTGAGATGGCTACCAGAGGAAATGGCAGGAATCGCGGCAGAGCTCACCAAAGAGAGGG GAATGAGCTCCGCTCTGAGCACAGTTCAGGAGAGCCTCTCAGGCTTTCTCAAAGCTGCCCTCCTCCAAGTCGAGAAGTCCTCGA CTACACACCTGTCCGAGGAGCGCCCTGCTCTTTGGCAGAGATGGAAGAGTCTAGAAGACTGGCCAAACGGCTCAGAGACCGA GTCTTCAACGAAGTCAGCCGGAGCATCAGCGACACTGTATTCATCACCGGCAGGGACCTCGCAACGGCCAAAGCATACGCCAC CAGGGACAACTGGTATGGCGACCTCGTCCCACTCTTGGAGAAGAGAGCAGCAGCTGCATGGAAGCTCCTCGCTGCACACGCA GAATTCTCCACATGGAAGGACGTAGACGTCTGAGAGGTGTGACGAAAAAGATGACCTCACAATTGCCAAGATC

>endoRYNV-CU3

ACAACGGCTGTATGCTAGTCCTACCGCAGGACTTCACCTTAGTCCCTGACGTGATCAACAGATGGGAGTCCATTACAGTCAACC TCATCAACAAGATGATGTTTGACTCCCTGCAGGACAAGGCGGATTATGTGGAAAACCTCCTTGGAGAAAGGGAGAAAGAAAC ATGGATGACATGGAGAATGCAGTACGAAGAAGAATACAAGCAACTCCTCACCATGAGCGGGGACGTGCGAAACCTAACGGCC GCCGTCAAAAGGGTCTTCGGAGTACACGACCCACACACAGGATCTGTACACATCCAAAATCAGGCGTATGCGGAGCTAGAAC GCCTCTACTGCAAAAGGACGGATGATGTGATCCCCTTCCTCTACGACTATTATCAGCTAGCAGCTAAGTCCGGAAGGATGTGG CTCGGACCCGAGCTATCTGAGAAGCTGTTCAGGAAGCTTCCACCGGAGATAGGTCCAACCATAGAGCAGGCCTACAAAGATA GATACCCAGGACTCACAATCGGAGTCTTAGCAAGGGCTAACTTCATCTTGGAGTATCTGCAGAATGTGTGCAAACAAGCTGCA CTACAGAGGTCCCTCAAGAGCCTGAGCTTCTGCAGAAACATGCCAGTACCAGGATACTACGAGAAGAAGCAGTACGGCATCA GAAAGGCCAAAACCTACAAAGGTAAGCCTCACCCAACCCACGTGAAAGTCATCAAGAACAAGTACAAGCACACCTCAGGGAA GAAGTGCAAGTGCTACTTGTGTGGGATAGAA GGCCATTACGCAAGAGAATGCCCAAAGAAGGTGGTAAAACCACAGCGAGC GGCATACTTCAATGGCATGGGATTGGACGACAATTGGGACGTCGTATCAGTCGAACCCGGAGAATCAGACGATGACGAGATC TGTAGTATCTCCGAGGGAGAAAATGCTGGAGGAATGCACGAGCTGATGGCATTCAAGACTCAACTCCCCTACCCAGTGGAGT ATGAAGCCAGCACACCACACCTTCTTATGCCTTGGACTCAGGTGACAATAGAAAAGAGTGAGAAACCATCCTGGAGGCGAAG GAAGGAGATCCCAAAGGCACAGCATGACTGTACTCACACCTGGAGTGATACACAGGAAGTGCCAATTGAAGGAAGGATATGC AGTATATGCAGTGACGAGACACCCCACGGGAGGAGAGTCACCTGCACCACCTGCAGCCTCAACCTCTGTCCTCTTTGCGCATAT ATGGATCACGGGATCAAGCTGATAGCTGCAAAGGACACGAAAGATGCAGCTAAATGGCAGTATCATAACAAAGATGAGCTCA TACGACACCTCTATGAGCACAACGCTTTTCTCACAAGAAAAGTAGAGGAGTTAACCAGCCAGCTGCAGGAGTTCCACAACCGC AGGCAGGATGATCTGATCAGCCTGGCAGACGACCTGGAGGACGTGTCTATCCTAGACAACGCCTCAAAAAGAGGGAAGGAG AAGGAATCATTCCGATTTGGAACAACGATTCCCACCGATCACATCCAAAACCTTGAAAATGTAGCAAGGATGATCGAACAATG GAAGGAAACCCCCAGGGTAATCATCAAAGAAACAGCTGAGAGCAGCAGCAACACCATTGGAGCCCTCTTAGCAGAAGAAGG AATAGAGGAGCTAGCCGCAGCTGTAGACACGGCATACACTGAAATGCCAAAGGGAGGACTAAACAAGCTCTACAACACCATT GTTGAGTTTGTGATACCTCAGGAGAAAGGGGCACCCACAAGATTTAGGGTAAGGGCTGTAATCGACACAGGATGCACATGCA TTAACAGCAAGAAAGTCCCCAAGGAAGCACTGGAGGAGGCGAAGTACCAGATGAACTTCGCAGGAGTAAACTCCACGGGAG AAACAAAACTCAAGATGAAGAACGGTAAGATGATCGTATCTGGAAGCGACTTCTATACACCGTACATTGCAGCTTTCCCGATG GAACTGCCAGACGTAGACATGCTCATAGGATGCAACTTCCTAAGGGCCATGAAAGGAGGAGTCAGACTTGAAGGGACAGAA GTGACAATCTACAAAAAAGTCACCACCATCCAGACTACCTTGGAGCCACAGAAAATATCTCTCCTACGCGCAGAAGCAGAAGT

AGAGGAGGAGATTGAGCGCATGTACTACGCAACAGACTACTCTGAAGAGGGAGCTAGTCGTCTGAGAAATCACAAACTGCTG CAGGAGCTGAAGGAGCAAGGCTACATAGGCGAGGAGCCAATGAAGCACTGGGCAAAAAATGGAATCAAGTGCAGACTTGAC ATCAAGAACCCAGACATAGTAATCAGCAGCAAACCCCCGAATGCAGTCTCAAAGGAGACAAAAGCACAGTACCAGCGGCACA TAGACGCCTTGCTAAAGATCGGAGTGATCCAACCAAGCAAGAGCAAGCACAGAACCGCTGCCTTCATCACAAACTCAGGGAC GTCTATCGACCCTGTCACTAAGAAGGAAATCAGGGGAAAAGAAAGGATGGTGTTCGACTACAGGAGTCTGAACGACAACACC CACAAGGACCAATACACCTTGCCAGGGATCAACACCATCATATCTGCGATCGGGAATGCGAAGATCTTCAGCAAGTTTGATCT GAAGTCTGGATTCCACCAAGTGCTGATGGACGAAGAATCCATCCCGTGGACCGCATTCGTGACACCAGTAGGGTTCTACGAGT GGAAGGTAATGCCCTTCGGACTCGCAAACGCTCCGTCCGTCTTTCAAAGGAAGATGGACCAGTGTTTTGCAGGAACCTCAGAA TTCATAGCCGTCTACATCGACGACATCCTGGTCTTCAGCAAGACCTTAAAGGAACATGAAAAACATCTCAGCATCATGCTTGGG ATATGTCGAGACAACGGCCTGGTATTGTCACCAACTAAAATGAAGATAGCTGCAACCGAGATAGATTTCTTGGGAGCCACTAT AGGTGACGGAAGAATCAAACTCCAGCCTCACATAATCAAGAAAATAGCAGAGGTGGACGATGAGTCACTCAAGACCCTCAAG GGATTGAGGAGTTGGTTGGGAGTCCTCAACTACGCGAGGAATTACATTCCAAAGTGCGGAACTCTTCTCGGCCCACTATACAG CAAGACTAGTGAGCACGGAGACAGGAGATGGCACGCATCAGATTGGGCCTTGGTCAAGAAGATCAAAAGCCTGGTCCAGAAT CTCCCAGACCTAAAACTGCCCAGCGAAGAAGCCTACATGATCATAGAGACTGATGGATGCATGGAAGGCTGGGGCGGTGTTT GCAAATGGAA GCCCAACAAAGCAGACTCAGCAGGCAAAGAGGAAATCTGTGCCTACGCAAGTGGGAAGTTCCCCACGGTGA AATCAACCATTGACGCAGAAATCTTCGCGGTAATGGAGTCCTTAGAAAAATTTAAAATTTTCTACATGAACAAGGACGAAGTCA CCATCCGAACTGACTGCCACGCCATCATTACCTTCTACGAGAAGTTAAACGCCAAGAAACCTTCTAGGGTAAGGTGGTTAGCTT TTTGCGACTATATAACGAACTCAGGGGTGAAGATGAAGTTCGAACACATCAAGGGTAAGGATAATCAGCTCGCTGACAACCTC AGTCGCCTTACTCAACTAATCACAGTGGTCAGATGGCTTCCGGAAGAGCTGAAGGATCTCGCGGCCGAACTAACCAAAGGAG AAGGCAAGACGCCAACGAAGAAGGAGACACAGGAAGAAATCTCCTGTTTTCTCAAAGCTGCCCTCCTCCGAGCAGAGAAATC CGCGACTACTCACCCATCAGAGCCGCACCATGCACTATGGCAGAGATGGATGAATCCCGAAGACTGGCTCTGCAACGAAGAA ACAAGGTCTTCGACAGCATCGCACAAGGCATCAGCGACGCAGTGTACGTCACAGGTGTCGACCTTGCCGCCGCAAAGGCACG AGCCACCAGGGATAACTGGTACAACGACGTCACCCCGGCGCTGGAACAAAGAGCAGCTGCAGCATGGAGACTCATGGCAGCC TACTCAGACTTCGCCACGTGGAAAGACGTGAACGTCTAGTGAAGTGACGCAAGGGATGACTTCACAATTGCCAATGTCGTCAT TGCTTACGACTTGGAACTTATCAGTTAGTGTCGGCAGCATCTTCCAGCTGTCAGATATTTGTGTGTAAGTGCGCCATTAGTGCG CTGTGTCAGGATAAGGAATCTTATCTCCTTATCTCTTCTTTAGCTTTAGCAAAGCTGTAAAGCAGAACTTATTAGCTGTCGATGG GGCCCAGAAA GCGCACCCGAGCTAGTAGTTGTCTGTCTTTTTGCTTAGCCTACTTCCTATATAAGGGAGTGTAGTCTGAAGGCT TAGGCATCGAGCAATCTCAATAGCCAACCTTCTCCTGTATTGTATTAACGTTCAAGAGAAATAAAGATTGTTCTTCAGTTTTCCG CAATATCTCTCAGTTTTTATGAGTTCTTAAGTGTTCAAGAGCGCATTTAAGAATTTTTGATATTGCGGAAAACTGAAGAACAATC TTTATTTCTCT
>endorynV-BS
TGGTATCAGAGCTTTAGCTCTCTTCATTATGTCAGCTTAAACACCTTTTTTCGTGTCGAGAAACCCAAGTTTCGGATCTGAACCT TGAGTTCCTCTCTTTTTCAGGAGGGTAGTGAGTAAGCCCAGCTTTGCAACTTTCAAACCCCCAGGAAAACTTTCCTCACGGTATT ATAAGTTTTCTGACCCTCACTAGTTCAACCCTACTGCTTGAACTGCAGACTTAGGCGTCGAAGCGAAGTACCCTTGTAGCCGTT AGCCAGGTGGGCGTTAGGCGTTGATTGGGGAAAATGGACGTAAAGGAGCAGAGGCAACTAGGCGAGAAAACTGAGGACCA GATCACCGGTCGGAAAGCCAGTAAGCGGCTAGATTGGGGCATAGCTGATGCAACCTCACGAGATCCTTTCCTTCGAAGAAGA GAGCAACTCTTGGGAACGATCTGAACGGGCGAATCGACACGACTTCCTATTCAGAAATCTCAGATCTTATCCAAGATACGAGG CTAACCAGAAATCACCTTCCTGTGATTTCCCTTGTTACCATTTCAACACCACCACCGGACCACCAGTCCACCGCACAATCTGCAA ACAAAAGAACAGTGAAGACTTACCTTACCTGGTAAACACTCTGTTCGATTTATCTATAACAGGTATTCACAACCAGGCTGTCCT CGACGACAAGGTCTCGAGACTCACACAGTACCTGGTAAAGAAAGTCGGCACACTCCCGACTATCCCGGAGGATTCACCCCTCC TGGACCAGAACTCCCTGAGCTTAGATCTGCAGGCCCTAAGGGCAGATCTCAAGGAGGTCAAAGCAACTCAGTCCGCACTAAAA CTCGGTTTTGAACAACTCCGAGAAGCAGTTCAATTGATCATCTCCAGGGAGAACGATCCAAAGCCAATCGAAGCCACGACTGC ACTTGTGGCAGAACAGCTGAGGAAACAGTTGATTGAAGTCAGATCTGTGCTTGAGGAAACCAAGAAGGTCGTCAGATCGCTG TCCCCTAACGGATGAACCCTAAGTGGCAGGACACCGCCACAAAGGAAACCTATCAGAAGGCACTTCAAGCAACAGCATCCCTC ACCTCAAACAACACAGGCCTAGGGTTCATTGAACCACACACCTTCACGGGAGGACAGTTGTCCACTAACCTAGCCAAACAGAA CAACACGCTCATCCAGCTGTTGGTTCAGGCGCTAGAGAAGGTCCTCGACCTTGAACAAGCCGTCGCAAACCTGACAGCTCAGG TCACAAGGCTTGAAAAGACAGTCGCAGAGAAGGACACGGTAAAGCTACCGGAAAGCGTCCTCAACGACCTCACCAAGGAATT TGGGAAGGTCAACATCGGAAAAGGAAAAGGGATCGAAGGCACAAACACTTCCAAAGACAAGAACTTCTACGTCTGGAAGAAT CCCTTCACCCAGTACAATGAGCAGAAGCCAAACAAGGCTCCAGGCTCCGCCCGCAACTGAAAGGGCCACATCTAGCTCGGACT CAGGTACCCCTACCTTGGAGGACCAGATCCGCGGCTACAGACGCTCGGCAAGGTTACGACACCAAGCCCAGCGAGCAGTTCG GAGAACCTTCAGCAGGGATTTCCGAAACACAATAGAACGGCAACTTGACCCAGATGCCGAACTCTCCCTCAGCAGAAGGAGG

AGAGCAAACCTAGTACCAGCAGAGGTACTATACGCACACAACGGTTCAGAACCAGTAAACAGGGTGTATGAACACTACAGTG AGATCGGAGCTCACATAGTAGACAGGCAGCAGGACTTCAGGTACATTGAAGAATCCTCTTACCAAAGGCTAGCACGAGAAGG CATGCAGTTTATACATGTAGGCATGGCCATGGTAAGAATACAGATGCTGCACAGGACTGACGCAGGAATTTCTGCACTAGTAG TCTTTCGGGACACTAGATGGAGTGATGACAGGCAAGTCATTGGAAGCATGTCGGTAGACATGACAAGAGGTGCACAGCTGGT ATATATCATACCAAATGCGATGATGTCAGTACACGACTTCTATAACCGCATACAAGTCAGCGTGCAAACCAGAGGATACGGTA CAGGCTGGGCGGGAGGAGACAGCAACATGATCATCACCAGATCACTGGTGGGAAGGCTGACCAACACCAGCATGACAAATTT TGAGTACCGAATAGACCAGGTCACAGACTACCTTGCAAGCAATGGAGTCGCATGCATCCCAGGACAGAAATGGGACGTGGCC AACAGATCAGGAGAGTGGGAACTTCAGCCAAGCAGGATAGTGGCTCCACTCATGACACCTACAGAGGCAAGGCTGACCCAGA ATAGAAGCGGCAGCATCAGCCTTAGGTTCACAGACTTCCGTGATCAGAGGATCGTGGAAGAAAGGCCGGCAGAAGAAGAAG GCAGGCCAGAGGAAGAAAGCACACACTATGTGCTCATGATCAGCCACAACTCAAGCTCCTATAGGACAAACCTCAAGGGAGA AAGAAGGCTGAGACAGGAAGAACTCGCTGAGTTCATGCCAGAATCAGATCTGGTAAGTCAATGGCTGAGTCAGTTATCAGCT TCAGCACACAACAGTGGAGCCTCAGACTCAGAGGACGAACCACCAAAGTTCGATGAGACTGACGAAGAAGCAGATGATGACA CGTATAATCAGCGAACCTGGCAGAAAGAGGACCAGGAGAGAAGACAACTGGAACTGCAGGGGTGGAAGAAAACCAGCAGG CCAGGAATCTATGAAATGATCCCTCAGGAAGAAGAAGAAGTCTACCTCCGCTATGAGGCAGAATCAGAGGAAGAGGATCAAC CCACACAGATCTTCGGAGCTACAAAGGTGGATGAACCCGAAATGGAGTACCCCACAAGGCTCGAAGAAATGATGAACAAGCT CAAAGGAGTGAGCATGGATAAGCTTTTCCCAGTGACCATGGAATCTGAGTCCAGCATAACTGGAGGAGGCTTCATACCACCAA GCCCAGTGCCCGGAGCACAAGGATACCCACCTGCAACAGGGCCAGCCTTTGGATCAACTATAGGCCCGGCAGACTTACAGGG ATGGGGAGGAAGACTGCCCAGGAGCAGGTCTCCACTAGGATACGGCAGGCCGCAACAGCCATGGTCCTTGCCATCAGCCCAA TCAGAAAACGGGTGTATGCTAGTGCTTCCACAAGACTTCACACTTGTTCCCGACGTGATAAACCGATGGGAATCAGTAACCGT CAACCTGATAAACAAAATGATGTTCGACTCATTACAGGATAAGGCGGACTACGTGGAGAATCTCCTTGGAGAAAGGGAGAAA GAAACATGGATGACCTGGAGAATGCAGTACGAAGAAGAATACAAGCAACTCCTCACCATGAGCGGCGATGTGAGAAACCTCA CGGCTGCAGTTAAGAGGGTCTTTGGAGTACATGACCCCCACACTGGATCTGTGCATATCCAGAATCAAGCTTATGCAGAGCTA GAACGGCTGTACTGCAAAAGGACGGATGATGTGATACCTTTCCTGTACGACTACTACCAATTGGCAGCAAAGTCGGGAAGGA TGTGGCTTGGCCCAGAACTGTCTGAGAAGCTATTCAGGAAATTACCTCCTGAAATCGGCCCTACAATTGAACAAGCCTACAAA GATAGGTATCCAGGCCTTACCATTGGAGTCTTGGCACGCGCCAACTTCATCCTTGAATACTTGCAGAACGTCTGCAAACAAGCA GCACTGCAGAGGTCCCTGAAGAGCCTCAGTTTCTGCAGAAACATGCCTGTGCCAGGATACTACGAAAAGGAGCAGTATGGCA TTAGGAAGGCCAAGACGTACAAAGGGAAGCCCCATTCAACACACGTCAAGGTCATCAAAAACAAGTATAAGCACTCAGCAGG AAAGAAGTGCAAGTGCTATCTCTGTGGCATTGAAGGCCACTACGCTAGGGAGTGCCCAAAACAGGTGGTGAAACCACAAAGA GCCGCCTTTTTCAACGGCATGGGACTCGATGATAACTGGGATGTTGTATCTGTAGACCCAGGAGAGTCAGATGATGACGAGAT CTGCAGCATATCCGAAGGAGAAGGAGCAGGAGGAATGAACGAGCTCCTAGCCTTTAAAACACAACTGCCATACCATGTGGAC TACGAGGCCACAACATCATCACAGCAGTTAATGCCATGGATACAGGTCACTGTATCAAGAAGTGAAAAACCATCCTGGAGACG ACGGAAGGAAGTCCGAAAGGAACAGCAGGATTGTTCTCACCAGTGGAGTGACACGAAGGAAGTGCCACTAGAGGCGAGAGT CTGCAGCATTTGCAGTGATGAAACTCCATTAGGCAGGAGGATCACCTGCGAAACCTGCAATCTGAATCTGTGTCCCATCTGTGC ATATATGGATTACGGAATCCAATTAGTAGCAGCTAAAGACACAAGGGACGCTGCAAAATGGCAGTACAACAACAAAGACGAG CTCATCCGCCAACTATATGACCATAACGCTTTTCTAAGCAGGAAAGTCGATGAACTCACCAGCCAGCTGCAACAATACAGAGAT CGCAAACCTGAAGATCTCATCAGCCTCGCAGATGACCCAGAGGACATGTCCATACTGGACGATGCCTCA AAAAGACGGGGGA AGGAGCATGAAATCTTCCAGTTCGGAACGACATTGCCCACGGATCACCTCCAGAACATCGAGAATGTCGGGCGAATGATCGAA CAGTGGAAAAACAACACCCCCAGAGTCACCATCAAAGAAATAATAGGTGACGAAATGCCTAGCAGCAGCAGCACAATAGGAG CACTCCTCGCAGAAGAAGGAATCGAGGAACTCGCTGTAGCAGTAGACACGGCGTATACTGAAATGCCCAAGGGAGGACTCAA CAAGCTCTACAACACGGTTGTGGAATTTGTCATCCCCCAAGACAAGGGAGCGCCAACAAGATTTCGGGTAAGAGCAGTCATTG ATACAGGATGCACCTGCACCTGCATAAATAGCAACAAAGTCCCGAAAGAAGCCATGGAAGAAGCAAAGTACCAGATGAACTT TGCAGGAGTAAATTCAGCGGGTAGTACAAGGATGAAGATGAAGAGCGGAAAAATGATTGTATCTGGGAGTGACTTCTACACC CCGTACATAGCCGCCTTTCCCATGAACCTGCCTGAAGTAGACATGCTCATAGGCTGCAACTTCCTACGAGCCATGAAAGGAGG GGTCAGATTGGAAGGAACAGAGGTGACAATCTACAAGAAAGTCACGACTATTCAGACGACCCTCGAACCACAGAAAATCTCC CTGATGAAAGCAGAGATGGAAGCTGAAGAGGAGATTGAAAGGATATACTACGCCAGTGATCATTCGGAAGAAGGAATGAAC AGGCTTAGAAACCACAAGCTGCTCCAGGAGCTTAAGGAGCAAGGATACATAGGGGAAGAGCCCATGAAGCATTGGGCCAAG AATGGAATCAAGTGCAAACTTGATATCAAAAACCCCGACATCGTCATCAGCA GCAAGCCGCCTGATGCTGTATCCAAAGAAAC AAAGGCCCAGTACCAGCGACACATTGATGCTCTGTTAAAGATAGGGGTCATCCGGCCCAGCAAAAGCAAGCATCGCACCGCG GCCTTTATCACACATTCGGGCACAAGCATTGACCCGATAACCAA GAAGGAGATACGGGGAAAGGAAAGAATGGTCTTTGACT ACCGAAGCCTGAACGACAACACCCACAAGGATCAGTACACCTTGCCAGGCATAAACACAATCATCTCCGCCATTGGAAACGCG AAGGTCTTCAGCAAGTTCGACCTGAAATCAGGATTCCACCAAGTCCTCATGGACGAGGAATCAGTACCATGGACCGCGTTTGT CACACCCGTAGGGTTCTACGAGTGGCTCGTCATGCCATTCGGCCTCGCAAATGCACCTGCAGTATTCCAAAGAAAGATGGACC AGTGCTTTGCAGGTACTTCAGATTTTATTGCTGTGTACATTGACGACATACTCGTTTTCAGCAAGACAATCAAAGAACATGAGC

GTCACCTGAGCATCATGTTGAGCATCTGTCGAGACAACGGCCTGATCCTCTCGCCTAGCAAAATGAAGATCGCCGCCACGGAA ATTGATTTCCTCGGGGCAACCATAGGTGACGGAAAGATCAAGCTGCAACCGCATATCATTAAGAAGATTGCGGAAGTCGATG ATGAATCCTTAAAGACCCTCAAAGGATTAAGGAGCTGGCTAGGAGTCCTCAACTACGCCAGAAACTACATTCCCAAATGCGGA ACCTTGCTTGGGCCTCTGTATAGCAAGACAAGTGAACATGGGGATAGAAGGTGGCACGCACAGGATTGGGCTTTGGTTAGAA AAATAAAGGCCTTGGTCCAAAATCTGCCAAACCTGCAATTACCCACTGAGGAAGCCTACATCATAATTGAGACTGATGGATGT ATGGAAGGCTGGGGAGGCGTATGCAAGTGGAAGCCCAACAAGGCTGATTCACCAAGCAAAGAAGAAATATGCGCCTATGCA AGCGGTAAATTCCCTACCGTAAAATCTACCATTGATGCGGAAATCTTTGCTGTCATGGAATCATTGGAGAAATTCATAATCTTCT ACATGAACAAAGATGAGATCATCATCCGCACAGACTGCCACGCCATCATCACGTTCTACGAAAAGTTGAACGCAAAGAAACCT TCTCGGGTAAGGTGGCTAGCCTTTTGTGACTATATAACTAACTCTGGTGTCAAGATGATATTCCAACATATCAAAGGGAAGGAC AACCAGCTCGCGGATAATCTAAGCCGCCTCACACAGCTCATCACTGCAGTCAGATGGCTCCCAACAGAAATGGCAGGAATCGC CAGCGAACTCACCAAGGAGAGAGCTCCGAGTCCAGCAATGGACGAGGTACAGAAGAACCTGTCCGGCTTTCTAGAAGCTGCC CTCCACCAAGTCGAGAAATCCTCGACTATGAACCATTCCGCAGAGCACCATGCTCTATGGCGGACATGGAGGAATCTCGAAGA GCTGCCAAACAGCTCCGGGACAGAGTTTTCAACGAGGCAGGAAGACAGATCAGCGACATCGTCTTCATCACAGGAAAGGACC TCGCAGCAGCCAAGGCATACGCTACCAGGGACAATTGGTACGGCGACCTCGTCGGCCTCCTGGAGAAACGCGCCGAAGCGGC GTGGAAGCTGTTAGTCGCATACTCCGAGTTCTCTACGTGGAAAGTGGATGTCTAGAAGACATGACGTAGGAGCTCACCTCAGT AATTGCCGGGACGTCACTGCGTGCGTCACGGAACTTATCTTTTAGTGTCGGCAGCACGTATTAGCTGTCACGCATTTTGTAAGT GCGCCATTAGTGCGCGTGAGTCAGGATAAGGAATCTTATCCTTTGCTTTAGTTAGTGGCAAGCTGTAAAGCAAGCATTATTAGC TGTCGATGGGGCCCCAAGCGCACCCGGGCTAATTTTCTCTTGTCTTTTAGCATAAGCCCCCTTCCTATATAAGGAAGCTAAGTTA GAAGGCTTAGGCATCGAGCAACCTCAATAGCCAACCTTCTCTTGTAATATCAGTATTCAAGAAATTAGTATTCAAGAAATTAGT TG

>endoRYNV-PH1

TGGTATCAGAGCTTTAGCTCTCACCATGGTAGCTTAAACACCTTTTTCTTGTCGAGAAACCCAAGTTTCAGATCTGAACCTTGAG CTTTCTCTCTTTTTCTAGGGCGAAAGGAGTGTGACCCTGTTCAAAACCTTACCTGATCAAACCCCCATGAAAACTTTCCTTACGG TACTATAAGTTTTCTGTCTATCACTAGTCCAAACCTACTGCTCAAACTGCAGGTCTAGGCGTCGAAGCGAAGTACCCTTGTAGCC GTTAGCAGGAGGCGTTAGGCATTGATTGGGGAAAACTGACGTAAGAAAGCAGCAGCAACTAGGCAAGGAACTTGACAGACA GATCACCGGCCGGAAAGCTAGTAAGCGGCTAGATCTTGGTGGTTTTGATGCAACCACACGAAATCTCTGCCTTCGAAGAAGAG AGTAGCTCCTGGGAAAGATCTGAACGGGCGACTCGGCAAGACTCTTTATTCAAGAATCTCAAAAACCTATCCACGTTGGGAGG CGAATCAAAAGACACCCTCTCTCGATTTCCCGTGCTACCACTTCAACACAACATCTGAAGAAACAGCTCATCGAGGTCAAGACA GTCCTCGAAGAGACCAAGAAGATCGCTAGGTCTTTATCCCCCGACGGATGAACCCTAGGTGGCAGGATACTGCAGCCAAGGA GACCTACATCAAAGCGATCCAAGCTACCTCATCGCTTACCTCCAGCAACACTGGTCAGGGTTTCATCGAACCCCACATCTACAC AGGAGGACAGCTATCCACTAACCTAGCAAAACAGAACAACACTATCATCCAGTTGTTGGTTCAAGTGCTAGAGAAGAACCTCG ACCTTGAGCAGGCAGTCGCCAACCTCACAGCTCAGGTCACGAGACTAGAAAAGGCCGTCGCTGACAAAGACACGGTCAAGCT CCCTGAGAGTGTCCTGAACGACCTCACAAAAGAGTTCGGGAAGGTTAACTTAGGGAAGGGCAAGGGGATAGAAGGAACCGT CTCTTCTAGAGACAAGAACTTCTACGTCTGGAAGAACCCCTTCAACCAGTACAATGAACAGAAGCCACACAAGGCTCCAGGCT CCGCCCGCAACTGAAAGGGCCACGAGCAGCTCGGACGCAGGAACCCCCACTCTGGAGGACCAGATCCGAGGCTACAGACGCT CTGCACGGTTACGACACCAGGCGCAGCGCACCATGAGAAGGACCTTCAGCAGGGACTTCCAACGGCAACTAGATCCGGATGC CGAGCTCTCTCTCAGCAGAAGGGGAAGAGCAAACCTGGTACCAGCAGAGGTACTACACACACTGAAAGAAGAAGGACCATCC GAGCCAGAAGGAAGGCCAGAAGGAGAGGACGAGAGCACACATTATGTGCTAATGTTCAACCATTCCAGCCCCAGATGGGATA CGCTCGGACAGCCAAGCGGAAAATATGACTACATGGTACGGTATGATGCACCGGAACCAACCGCATGGCCGACAACCAATAT AGGATGGGATGACGACCCACCAAAGCCACCAAGCCCTAAAGGATCTTTTGAGATCAACCTAAGAGGCGAAAAACGACTAAAA GAGAAGGAACTCTCAGAGTTCACTCCTGAAACTGACCTAGTCAGTCAGTGGTTGAGTCAGCTCTCCAACTCTGCACACAACAGT GGAACTTCGAGCTCTGAAGAAGAGCCACAGTTCGACGAGGCAGACGACGAGAACGACGAGTACAACCAGCAAACCTGGCAA CGAGAGGACCAAGAAAAGAGAGACCTGGAACTACAAGGGTGGAAACCTACTGGTAGACCAGGAATTTACGAAATGATCCCC GAAGAAGAAGAAGAAGTCTACCTCAAATATGAGGCAGAAGACGAAGAGGAGGATCAGGAGCTTCAAGTGATTGGAGCCACC ACCATAGAAGAGCCAGAAATGGAATACCCAACAAGGCTCGAGGAAGTTATGGGCAAGCTCAAGAACGTGAGCATGGAGAAG CTGTTCCCAGTCAGTGGGATGGACAGCGAATCCAGCATAACA GGTGGAGGATTTATCCCACCTAGCCCGGTGCCAGGCGCAC AAGGATATCCCCCAGCAACAAGCGCATCAGCGTCCACAATAGGACCAGCAGACATGCAGGGATGGGGAGGAAGAATGCCTA GAAGCAGATCACCTCTGGGCTATGGCAGACCTCAACAACCTTGGTCATTGCCATCTGCACAGTCAGACAATGGCTGTATGCTA GTCCTGCCACAGGACTTCACACTAGTCCCGGACGTCATCAACAGATGGGAGTCTATCACAGTCAATCTCATCAATAAGATGATG TTTGACTCTCTCCAAGACAAGGCGGACTACGTCGAAAATCTCCTAGGCGAAAGAGAGAAGGAGACATGGATGACATGGAGGA tGCAGTACGAGGAAGAGTACAAGCAGCTCCTAACCATGAGCGGGGACGTGAGAAATCTCACCGCCGCAGTAAAACGGGTCTT

CGGAGTACATGACCCACACACAGGATCAGTGCACATCCAGAACCAAGCATATGCGGAGCTAGAGCGGCTCTACTGCAAACGA ATGGATGATGTGATCCCCTTCCTCTATGACTACTACCAGCTAGCAGCCAAATCAGGAAGGATGTGGCTCGGACCCGAGCTGTC GGAGAAGCTATTTAGAAAGCTCCCCCCGGAAATAGGCCCAACAATAGAACAGGCCTATAAAGACAGATACCCAGGGTTGACG ATAGGAGTCCTAGCAAGGGCCAACTTCATCCTGGAGTATTTACAAAACGTATGCAAGCAGGCAGCCTTGCAACGATCTCTCAA GAGCCTGAGCTTCTGCAGGAACATGCCAGTACCAGGGTACTATGAGAAGAAGCAATATGGCATAAGGAAGGCTAAAACCTAC AAAGGTAAGCCACATCCAACCCACGTGAAAGTGATCAAGAACAAGTACAAGCACACCCAAGGGAAGAAGTGCAAGTGCTACC TATGTGGGATAGAAGGCCACTACGCCAGAGAATGCCCGAAGAAGGTGGTCAAACCTCAAAGAGCGGCATACTTCAACGGCAT GGGCCTAGATGATAACTGGGATGTCGTATCTGTCGAACCAGGAGAGTCCGACGACGACGAAATCTGCAGTATCTCAGAAGGA GAGAACGCTGGTGGAATGCACGAGCTGATGGCATTCAAGACCCAACTCCCGTACCCAGTGGAGTATGAAGCCAGCACACCAC AGTTCCTGATGCCTTGGACACAGGTAACAGTGGAGAGAAGTGACAAACCTTCCTGGAGAAGAAGGAAGGAAATCCCAAAGGT ACAGCAGGACTGCACGCACACCTGGAGCGACACGCAGGAGGTACCTATAGAAGGCAGGATATGCAGCATATGCAGCGATGA GACACCTCACGGACGGAGAGTGACCTGCACAACATGCAGCATCAACCTGTGCCCCCTTTGCGCGTATATGGATCACGGGATCA AGCTAATAGCCGCAAAGGACACCAAAGACGCAGCCAAATGGCAATATCACAACAAGGACGAGCTGATTCGTCACCTGTACGA GCACAATGCTTTCCTCACCAGGAAGGTAGAAGAACTCACCAGCCAGCTGCAAGAATTCCACAGCCGCAGACCTGAAGACCTGA TCAGTCTGGCGGACGACTTGGAGGACGTGTCCATTCTGGACAACGCCTCAAAAAGGGGGAAGGAGAAGGAATTGTTCCAATT TGGAACGACAATTCCCATTGACCACATCCAAAACCTGGAAAACGTGGCCAAAATCATCGAACAATGGAAAGACACCCCCAGGG TTGTGATCAAAGAGACACCTGAAAGCAGCAACAACACCATTGGAGCCCTCCTAGCCGAAGAAGGGATAGAAGAACTAGCTGC AGCAGTGGACACAGCCTACACGGAGATGCCAAAAGGAGGCCTCAACAAACTTTACAACACCATTGTAGAGTTTGTAATACCAC AAGAAAAAGGGGCACCCACCAGATTCAGGGTACGAGCTGTAATAGACACAGGATGCACCTGCACATGCATCAACAGCAAGAA AGTCCCCAAAGAGGCACTAGAAGAGGCAAAGTACCAGATGAACTTTGCAGGAGTAAACTCAACGGGAGAAACAAAGCTCAA GATGAAAAATGGTAAGATGATCGTCTCTGGGAGCGATTTCTACACACCATACATAGCAGCTTTCCCGATGGAGCTACCAGACG TAGACATGCTCATAGGATGCAACTTCCTAAGGGCTATGAAAGGAGGCGTTCGTCTTGAAGGAACGGAGGTGACGATCTATAA AAAGGTTACCACCATCCAGACCACCTTAGAGCCTCAGAAGATATCCCTCCTCCGCGCAGAAGCTGAAGCAGAAGAGGAGATG GAGCGCGTGTACTACGCGAATGACTATTCCGAAGAAGGAATCAGTCGCCTGAAGAACCATAGGCTGCTACAGGAGCTGAAGG AACAAGGCTACATTGGCGAGGAACCAATGAAGCACTGGGCCAAAAATGGTATCAAGTGCAAGCTTGATATTAAAAACCCAGA TATAGTGATCAGCAGCAAGCCCCCTGACTCAGTGTCAAAAGAGACAAAGGCCCAATACCAGCGGCACATTGACGCCCTACTCA AGATAGGAGTCATACAGCCTAGTAAGAGCAAGCACAGGACCGCGGCCTTCATCACACATTCGGGTACGTCCATTGACCCGATC ACAAAGAAAGAAGTCAGAGGAAAAGAAAGGATGGTGTTCGACTACAGAAGTCTAAACGACAACACCCACAAAGACCAATACA CTTTGCCTGGGATCAACACCATCATCTCAGCGATTGGCAATGCAAAGATCTTCAGTAAGTTTGATCTGAAGTCTGGATTCCACC AGGTGCTGATGGACGAAGAATCCATCCCATGGACTGCATTTGTCACGCCAGTAGGGTTCTACGAGTGGAAGGTCATGCCCTTC GGACTCGCAAACGCTCCGGCCGTCTTCCAGAGAAAGATGGACCAGTGTTTTGCAGGAACCTCAGAGTTCATCGCCGTCTACAT CGACGACATCCTGGTCTTTAGCAAGACCTTGAAGGAGCACGAAAAGCACCTTAGCATCATGCTAGGGATCTGTCGAGACAACG GCCTGGTATTGTCACCCAGCAAAATGAAGCTTGCAGCAACCGAGATCGATTTCTTGGGAGCTACCATAGGTGACGGAAGGATC AAGCTCCAGCCTCACATAATCAAGAAGATTGCAGAGGTGGACGACGAGTCCCTAAAAACCCTCAAAGGGTTAAGAAATTGGTT GGGAGTTCTCAACTATGCCCGAAACTACATCCCGAAGTGTGGAACACTCCTCGGCCCACTATACAGCAAAACTAGTGAGCATG GAGACCGTAGGTGGCATGCCTCAGATTGGGCCTTAGTAAAGAAGATCAAAGGCCTGGTCCAAAATCTCCCAGACCTGAAACT GCCCACAGAAGAAGCCTACATGATCATCGAAACCGATGGATGCATGGAAGGTTGGGGAGGAGTCTGCAAGTGGAAGCCCAA CAAAGCAGACTCAGCTGGAAAAGAAGAAATCTGCGCTTACGCAAGTGGGAAATTCCCCACAGTAAAATCCACGATTGACGCA GAAATCTTCGCGGTAATGGAGTCCTTGGAGAAGTTCAAAATCTTCTACATGAACAAGGACGAGGTCACAATCAGGACTGACTG TCAGGCCATCATCACCTTCTATGAGAAGCTGAACGCTAAGAAACCTTCACGGGTAAGGTGGTTAGCTTTTTGCGACTATATAAC AAACTCAGGGGTGAAGATGAAGTTCGAACACATCAAAGGCAAAGACAATCAGCTTGCCGATAACCTCAGCCGATTGACCCAA CTCATCACCCTGGTCAAATGGCTTCCAGAAGAACTGAAGGATCTCGCGGCCGAGCTAGCCAAGAAAGAAGGCAAGACCTCCCT GAAGGGAGAGGTGCAGGAGGAGATCTCCTGTTTTCTCAGAACTGCCCTCCGCCGAGCAGAGGAATCCGCGACTACTCGCCCA TCAGAGCCGCGCCATGTACTATGGCAGAGATGGATGAATCCCGAAGACTGGCCTTACAACGAAGAAACAAAGTCTTCGATGA CATCGCACAGAACATCAGCGATGCGGTCTACATCACCGGCATCGACCTCGCAGCGGCAAAAGCAAGAGCTACCAGGGACAAC TGGTACAATGACGTCACACCCGCACTGGAGCAAAGAGCAGCTGCAGCATGGAGACTCATGGCAGCCTACTCAGACTTTGCCAC GTGGAAGGACGTAAACGTCTAGTGAAGTGACGCAAGGGATGACTTCACAATTGCCAATGTCGTCATTGCTTACGACTTGGAAC TTATCAGTTTGTGTCGGCAGCATCTATTAGCTGTCATACTTTATGTAAGTGCGCCAGTAGTGCGCTGAGTCATAAGGATAAGGA ATCTTAGCTCCTTATCGTCCTTTAGCTTTAGCAAAGCTGTAAAGATGAATTTATTAGCTGTCGATGGGGCCCAGAAAGCGCACC TGAGCTGATATTTTCTATCTITTTGCTTAGCCTACTTCCTATATAAGGGAGTATAGTCTGAAGGCTTAGGCACAGAGCAATCTCT TTAGCCAACCTTCTCTTGAGTTGTATTAA

>endoRYNV-PH2

TGATACCAGAAACAAAGAATTACCATGGTCGCTTAAATTTTCTTTTCTTGTCGAGAAACCCAAGTTTCAGACCAGAACCTTGAG TTGTCTCTCCTTITTTACAGGGGAGGAGGGAGTACTGAGTGTTGCTAAAATTCTGCAAATTTCAAACCCCCATGAAAACTTTCCT CACGGTATTATAAGTTTTCTGACCCTCACTAGTTCAAACCTACTGCTGAAACTGTAGACTTAGGCGTCGAAGCGAAGTACCCTT GTAGCCGTTAGCAGAGTGGCGTTAGGCGTTGATTGGGGAAAACTGACGTAAAGGAACAGCTGCAACTAGGCAAGAAAACTG AAGGTCAGATCACCGGCCGGAGAGCTAGTACGCGGCTAGATCTGGGCAGATCTCTTGATGCAACCTCACGAAATCTCATCTTT TGAAGAAGAGAGCAACTCTTGGGAAAGGTCTGAACGGGCGTATCGACAAGACTTCTTATTCAGGAATCTAAGATCCTACCCTC GTTACGAAGCAAACCAGAAGTCACCTTCCTGTGATTTCCCTTGCTATCACTTCAACACAACAACCGGACCACCAGTCCACCGCA CTCTCTGCAGACAGAAGAACAGCGAAGATTTACCCTTCCTGGTAAATACTCTGTTCGATCTTAGTATCACCAAGATTCACAACC AAGCGGTCTTAGACGATAAGATCTCAAGACTCACCCAGTACTTGGTGGCAAAAGTCGGCACTCTACCGACAATCCCGGAGGAA TCACCCCTCCTGGACCAGACAGCCATCTCTCTAGATCTTCAAGCCCTCAAGGCAGATCTAAAAGAGATCAAGGCTACCCAGTCA TTCTTGAAGCTAGGCTTTGCACAGCTCCAAGAAGCGGTACAGCTGATCATCACAAGGGAGAACGATCCCAAACCGATTGAGGC AGCTACAGCTCAGGTGGCTGAACAACTGAGGAAGCAGCTTATCGAGGTTAAAGCCGTCCTAGAGGAAACAAAGAAGATCGCG AGATCTCTGTCCCCCGACGGATGAACCCCAGGTGGCAAGACACCGCCGCAAAAGAAACCTACATAAAAGCTATCCAGGCTACC TCATCTCTTACATCCAACAACACCGGGCTAGGGTTCATTGAACCTCACACCTATACCGGAGGACAACTGTCCACAAGCCTAGCA AAACAAAACAACACGCTCATACAGCTGTTGGTTCAGGTGCTAGAGAAGAATCTCGACCTTGAACAGGCCATCGCGAACCTGTC CGCACAGGTCACGAGACTTGAGAAGACCGTCGCAGAGAAAGACACGGTCAAACTCCCAGAAAGTGTCCTCAACGACCTCACT AAGGAGTTCGGAAAGGTCAACCTTGGGAAAGGAAAGGGGCTAGAAGGAGCAGTCTCATCCAGAGACAAAAACTTCTACGTTT GAAAGAATCCCTTCAATCAATACAATGAGCAGAAGCCAAACAAGGCTCCAGGCTCCGCCCGCAACTGAAAGGGCAACAAGCA GCTCGGACTCAGGCACCCCCACTCTGGAGGACCAGATCCGAGGATACAGGCGCTCTGCAAGGTTACGACACCAAGCACAGAG AGCGGTACGAAGGACCTTCAGCAGGGACTTCAGGAACACCATAGAAAGGCAGCTAGATCCGGACGCCGAGTTATCACTCAGC AGAAGGAGAAGAGCAAACCTAGTACCAGCAGAGGTACTCTACGCTCACAACGGTTCAGAACCTGTGAATCGTGTGTATGAGC ACTATAGTGAGCTCGGGGCTCATATAGTAGACAGGCAACAAGACTTCCGATATATCGAGGAAGCATCCTACCAGAGACTAGTC AGAGAAGGCATGCAATTCATACATGTCGGCATGGCAATGGTTAGGATCCAAATGTTGCACAGGACAGATGCAGGTATATCTG CGTTGGTGGTGTTCAGAGACACTAGATGGAGCGATGACAGGCAGGTCATCGGCAGCATGTCCGTAGACATGACCAGGGGAG CACAATTGGTATACATAATACCAAACGCAATGATGTCAATACACGATTTTTACAATCGTATACAGGTCAGCGTGCAAACCCGAG GCTACGGGACAGGATGGGCTGGAGGAGACAGCAATATGATCATCACTAGATCACTGGTGGGGCGTCTCACCAACACCAGCAT GACAAACTTCGAGTACCGGATAGATCAAGTCACAGACTATCTAGCAAGCAACGGAGTCGCTTGTATACCCGGACAGAAGTGG GATGTGGCCAACAGGTCCGGCGAATGGGAGCTACAGCCCAGCAGGATTGTTGCACCACTCATGACACCAACAGAGGCGAGAC TCAGCCAGAACAGGAGTGGCAGTATAAGTCTCAGATTCACCGACTTCCGAGATCAGAGGATCGTGGAAGAAAGGCCAGTCGA GGATGAGGGCAGGCCAGAAGGTGAAGAGGAGAGCACGCACTACGTGCTCGTCTTCAGACATAACTCCTATGAGACCAACCTC AGAGGAGAAAGGAGGCCAAGGCAGAACGAACTTTCAGAGTTCACACCAGAGACAGATTTGGTGAGCCAATGGCTAAGCCAG CTATCCGCATCAGCACACAACAGTGGAGTGTCAAGCTCAGAAGAAGAACCGCCTAGGTTCGATGAAACTGATGAAGACAGTG ATGGCACATACAATGAGAAAACCTGGCAGAAGGAAGACCAGGAAAGGAGAAATCTGGAGCTGCAAGGATGGAAGAAGACCT GCAGACCAGGCATATACGAACTGATCCCAGAGGAAGAAGAGGAAATCTACCTCAGATACGAGGCAGAAGACGAGGATCAGG AGGTACAGGTACTAGGGGCAACAACCATGGAGGAACCAGAAATGGAGTACCCCACCAGACTGGAAGAGGTTATGGGCAAGC TAAAGAATGTCAGCATGGAGAAACTITTTCCAGTAAGTGGCATGGATAGCGAGTCCAGCATCACAGGTGGAGGATTCATACCA CCAAGCCCAGTACCAGGAGCGCAGGGATACCCACCTGCCACAGGAGCGTCTGCTTCAACCATAGGGCCAGCAGATCTGCAAG GATGGGGAGGACGATTGCCAAGGAGCAGATCGCCGATAGGATATGGCCGCCCACAGCAGCCATGGTCCTTACCATCAGCCCA GTCTGACAACGGCTGTATGCTAGTCCTACCTCAGGATTTCACCTTAGTTCCCGATGTGATCAACCGATGGGAGTCTATTACTGT CAACCTCATCAACAAAATGATGTTTGATTCCCTACAGGATAAGGCGGACTATGTAGAAAATCTCTTGGGAGAAAGAGAAAAGG AGACATGGATGACTTGGAGGATGCAGTACGAAGAAGAATATAAGCAACTCCTCACCATGAGCGGAGACGTGAGGAATCTCAC TGCCGCAGTCAAAAGGGTCTTTGGCGTACATGACCCTCATACTGGATCAGTCCACATACAGAACCAGGCGTATGCAGAACTGG AGAGACTGTACTGTAAGCGGACAGACGACGTGATCCCCTTCCTCTACGACTACTACCAGCTAGCAGCTAAGTCTGGAAGGATG TGGCTCGGACCAGAGCTATCAGAAAAACTTTTCAGAAAGCTTCCACCTGAGATAGGGCCAACTATTGAACAGGCCTACAAAGA CAGGTACCCAGGTCTCACCATTGGAGTCTTGGCAAGGGCCAACTTCATCCTGGAATACCTACAAAACGTCTGCAAGCAAGCAG CGTTACAGAGGTCCCTGAAGAGCCTCAGTTITTGCAGAAACATGCCGGTGCCTGGATACTATGAGAAGAAACAGTATGGCATC AGGAAGGCAAAAACTTACAAGGGAAAGCCTCACCCAACGCACGTAAAGGTGATCAAAAACAAGTACAAGCACACCTCCGGGA AGAAGTGCAAGTGCTACCTTTGCGGAATAGAAGGCCATTACGCCAGGGAATGTCCAAAGAAGGTGGTAAAACCACAAAGGGC GGCGTATTTCAATGGCATGGGCTTAGATGACAACTGGGATGTTGTATCCGTAGAGCCAGGAGAGTCAGATGACGACGAAATC TGCAGCATCTCCGAAGGAGAGAACGCTGGGGGAATGCATGAACTCATGGCATTCAAAACTCAACTCCCGTACCCAGTCGAGTA CGAAGCCAGCACATCACAACAGTTCCTGCCATGGATACAGGTAACTGTCGAGAAAAGTGATAAGCCCTCTTGGAGGAGAAGA

AGAGATATCCCACAGGCACAAAAGGACTGCGCTCACACTTGGAGCGACACACAGGAAGTGCCGATAGAAGGGAGGATATGC AGCATTTGCAGTGATGAAACGCCTCATGGAAGGAGAGTCACCTGCACGACCTGCAGCCTAAACCTGTGTCCAATTTGCGCATA TATGGATCATGGAATTAAGCTGATCGCCGCAAGGGACACCAGAGACGCAGCAAAGTGGCAGTACCACAACAAAGATGAACTC ATCAGGCACCTCTATGAACACAATGCCTTCCTAACCAGGAAAGTGGAGGAACTGACGACCCAGCTGCAAGAATTCCAAAACCG CAAGCCTGAAGACCTAATCAGCTTGGCGGATGATATGGAGGACGTGTCCATTCTGGACAACGCCTCAAAAAGGGGGAA GGAG AAGGAATCTTTCCAATTCGGAACGACGATTCCCATCGATCACATCCAGAATCTTGAAAACGTAGCAAGAATGATCGAACAATG GAAGGAGACCCCCAGAGTCACTATCAAGGAAACAGCAGAAAGCAGCAACACAATAGGAGCCCTCCTAGCAGAAGAAGGGAT TGAAGAGCTAGCTGCAGCTGTTGATACGGCATACACAGAAATGCCAAAAGGAGGTCTGAACAAACTATACAACACCATTGTTG AGTTTGTAATACCTCAGGAAAAAGGGGCACCCACAAGATTCAGGGTTAGAGCAGTCATAGACACAGGATGCACCTGCACATG CATCAACAGCAAGAAGGTCCCTAAGGAAGCCCTGGAAGAAGCAAAGTATCAGATGAACTTTGCAGGAGTAAATTCCACTGGA GAAACCAAGCTGAAAATGAAGAATGGCAAGATGATAGTATCAGGAAGTGATTTCTACACGCCATATATTGCAGCTTTCCCAAT GGAATTACCAGATGTGGACATGCTCATTGGCTGCAACTTCTTGCGAGCCATGAAAGGAGGAGTCAGGCTGGAAGGAACGGAG GTAACCATCTACAAGAAGGTTACAACTATCCAGACGACTCTAGAACCACAGAAGATCTCTCTACTCCGTGCAGAAGCTGAAGC AGGAGAAGAAATCGAGAGACTTTACTACGCCAACGACTACTCTGAAGAAGGAGTAAACAGGCTGAGAAACCATAAGCTGCTA CAAGAGCTCAAGGAGCAGGGTTACATTGGGGAAGAACCAATGAAGCACTGGGCGAAGAACGGAATCAAGTGCAAGCTTGAT ATCAAGAACCCAGATATAGTCATCAGCAGCAAACCTCCGGATGCAGTCTCAAAAGAGACGAAGGCACAGTACCAGAGACACA TCGATGCTCTATTGAAGATCAAGGTAATCCAACCCAGCAAGAGCAAGCATCGAACTGCCACCTTCATCACAAACTCGGGTACA ACCATAGACCCGATAACAAAGAAGGAGATCCGAGGAAAAGAGAGGATGGTCTTTGATTACAGAAGCCTCAACGATAACACCC ACAAGGATCAGTACACCTTGCCTGGGATTAATACCATCATCTCCGCAATTGGCAACGCAAAAATCTTCAGCAAATTTGACTTGA AGTCTGGCTTCCACCAGGTACTTATGGATGAGGAGTCCATCCCTTGGACCGCGTTTGTCACACCAGTAGGTTTCTACGAATGGA AGGTAATGCCTTTCGGACTCGCGAACGCTCCTGCAGTCTTCCAGAGGAAGATGGACCAGTGCTTCGCAGGAACCTCTGAGTTC ATAGCCGTCTACATCGACGACATTCTGGTCTTCAGTAAGACGCTGAAGGAACATGAGAAGCATCTCAGCATCATGCTGGGAAT ATGTCGAGATAACGGCCTGGTACTGTCACCCAGCAAAATGAAGCTCGCCGCAACAGAGATAGATTTCTTGGGAGCAACCATTG GTGACGGAAAAATCAAGCTCCAGCCTCACATCATCAAGAAGATTGCCGAGGTGGACGATGAATCCCTAAAGACCCTCAAAGG GCTGAGAAGCTGGTGGGAGTTCTGAACTATGCCAGGAACTACATCCCCAAGTGTGGGACACTCCTTGGCCCACTCTACAGCA AGACGAGTGAGCACGGGGACAGAAGATGGCATGCATCGGATTGGGCCTTAGTCAAGAAAATCAAAAGCCTGGTCCAAAACCT CCCAGACCTCAAACTGCCCACTGAAGAGGCCTATATGATCATCGAGACAGATGGTTGTATGGAAGGATGGGGCGGAGTCTGT AAATGGAAGCCCAACAAGGCAGACTCAGCAGGAAAGGAAGAAATCTGCGCATATGCAAGTGGGAAATTCCCAACGGTCAAAT CAACTATTGACGCAGAAATCTTCGCGGTCATGGAATCCTTGGAAAAATTCAAGATATTTTACATGAACAAGGATGAGATCACCA TCAGGACCGACTGCCACGCCATCATAACCTTTTACGAGAAGTTAAACGCCAAGAAGCCTTCACGCGTAAGGTGGTTAGCTTTTT GCGACTATATAACAAACTCCGGGGTGAGGATGAAGTTCGAACATATCAAAGGCAAAGATAATCAATTAGCTGATAATCTCAGT CGCCTAACCCAACTCATCACCGCAGTAAGATGGCTTCCAGAGGAAATGGCAGGAATCGCGGCAGAACTAGTCAAAGACAGGG AAGAGTCCCCCGCGATGCAGAAGGTACAGGAGAGCCTCTCAGGCTTTCTCAAAGCTGCCCTCCTCCAAGTCGAGAAATCCTCG ACTACACGCCCATCAGAGCCGCACCATGCTCTCTGGCAGAGATGGACGAGTCTAGAAGACTGGCCAAACAACGCCGAGACAA AGTCTTCGACGACGCAGGGCAAAACATCTGCGACACGGTCTACATCACCGGTGTCGACCTCGCCGCCGCCAAGGC

>epiRYNV-BS

TGGTATCAGAGCTTTAGCTTTCACCATGGTAGCTTAAACCCCCCCCATCTTGTCGAGAAACCCAAGTTTCAGATCCGAACCTTGA GTTTGCTCTCTTTTCGAAGAGGAGAGGGAGTGTGACCTTACTCAAAACTTTTGCGGATCAAACCCCCACGAAAACTTCCTTCAC GGTATCATAAGTTTCTGTCCTTCACTAGTCCAAACCTACTGCTCAAATCGCAGGTCTAGGCGTCGAAGCGAAGTACCCTTGTA GCCGTTAGCAGAGTGGCGTTAGGCGTTGATTGGGGAAAACTGACGTAAGAAAGCGACAGCAACTAGGCGAGGAAACTGACG GACAAATCACCGGCCGGGAAGCTAGTAAGCGGCTAGATCTGTGTGGTTTTGATGCAACCACACGAAATCTCCGAATTCGAAGC AGAGAGCAGCTCTTGGGAAAGATCTGAACGGGCGTATCGACAAGACTTCTCATTCAGGAATCTCAGAACCTATCCACGTTGGG AATCAAACCAGAGGACACCCTCTCTTGAATTTCCGTGCTACCATTACAACACAACAACTGGACCTCCAGTCCACCGTACTCTCCT CAGACAAGGTGACGGCAAGGATTTACCATACTTAGTAAACACCTTGTTCGATCTCAATATCACCGAGATCCACAATCAGGCGAT CCTTGACGATAAGATCTCAAGGCTCACCCAGTACCTGACAACAAAAGTCGGTTCCCTACCGACGATCCCGGAGGATTCGCCCCT CCTGGACCAAATAGCCCTTTCCCTAGATCTACAGGCCCTCAAGGCAGATCTGAAGGAAATCAAGGCCACACAGTCAGCACAAA AGCTAGCCTTCTCACAACTGCAGGAGGCAGTCCAGCTTTTTATCGCTCGGGAGAACGATCCCAAGCCGATCGAGGCAGCTACT GCACAAGTAGCCGAACAGCTGAGGAAGCAACTCATCGAGGTCAAGACAGTCCTCGAAGAGACCAAGAAGATCGCCAGGTCCT TATCCCCCGACGGATGAACCCTAGGTGGCAGGAAACTGCAGCCAAGGAAACCTATATCAAAGCGATCCAAGCAACCGCTTCCC TCACCTCCAACGGCACCGGCCAAGGCTTCATTGAGCCCCACACCTACACCGGAGGACAGTTATCTACCAATCTAGCCAAGCAAA ACAACACCATAATCGAATTATTGGTGCAAGTGCTAGAAAAGAATCTCGACCTTGAACGGGCCGTAGCCAACCTCACAGGTCAA

GTCACTAGGCTCGAAAAAGCCGTAGCAGACAAAGAAGCAGTCAAGCTTCCGGAAAAAGTCCTAGAAGACCTAACCAAGGAAT TTGGAAAGGTTAACTTAGGCAAAGGAAAGGGGAAAAAAAGGAAAGTCTCAAGCCGAGACAGAACTTCTACGTGTGGAAAAC CCCTACACTCAATACAATGAGCAGAAGCCACACAAGGCTCCAAGCGCCCCCCGCAACTGAAAGGGCCACAAGCAGCTCGGATT CAGGGACACCAACCCTGGAAGACCAGATCCGAGGATACAGGAGATCTGCACGCATGAGGCATCAAGCGCAGCAGAGACTAC GGAGGACCTTCGGAAGGGACTTCAGAAACACGATCGAGAGACAACTCGATCCTGATGCAGAGCTCTCCCTCAGTCGAAGGAG AAGAGCCAACTTGGTACCGGCGGAAGTGCTCTACGCACACAACGGACAAGAACCGGTCAACCGAGTATACGAGCACTACAGT GAGCTCAGCGCTCATGTGGTAGACAGGCAGCAGGACTTCCGATTTATAGAGGAAGCGTCCTATCAAAGGCTGACCAGAGAAG GAATGCAGTTCATCCACGTAGGTATGGCGATGGTCAGGATACAAATGCTGCACAGGACAGATGCGGGTATATCCGCACTAGT GGTGTTCCGAGACACCCGATGGAGCGATGACAGGCAGGTCATCGGTAGTATGTCAGTCGATATGACACGAGGAGCGCAGTTG GTATACATCATACCCAACGCCATGATGTCGATTCATGACTTCTACAACCGGATTCAGGTCAGCATACAGACCAGAGGATACGG CACAGGCTGGGAAGGAGGCGACAGCAACATGATTATCACAAGATCATTAGTCGGCCGACTCACAAACACCAGCATCACAAGC TTCGAGTACAGGATAGACAACGTGACAGACTACCTAGCCAGCAACGGCGTAGCCTGCATTCCCGGACAGAAGTGGTCCGTGG CAAACAGGTCTGGAGAATGGGAACTCCAGCCAAGCAGGATAGCAGCACCACTTGCAGTCCCCACAGATGCCAGGCTAAGACA GAACCCAAACGGCAACATCAGCCTGAGGTTCACGGATTTCCGCGACCAAAGGATCGTGGAAGAAGGAGAGACATCCGAGCCA GAAGGAAGACCGGAGACGAAGGAGGATGAGAGCACGCACTACGTGCTTATGTTCAAACACTCCAGCCCTAGGTGGGATACG CTCGGACAGCCCAGCGGTAAATACGACTACATGGTCCGATATGACGCACCAGAACCGACCACATGGCCAACAACAAACAGAG GATGGGACGATGACCCTCCTAAGCCACCAAGCCCAAAAGGATCCTACGAGGTAAGCCTAAGAGGCGAAAAGAAGCTGAAAG AAAAGGAACTCGCAGAGTTCACCCCAGAGACAGATCTGGTCAGCCAGTGGCTAAACCAACTCTCGAACTCGGCACACAACAGT GGAGCTTCAAGCTCAGACGATGAGCCAAAGTTCGATGAGGCAGACGACGAGGACGACGTCTACAATCAGAAAACCTGGGAG AAGGAAGACCAGGAAAAGAGGGAGCTGGAACTCCAAGGGTGGAAACCCACAGGGAGGCCAGGCCTCTATGAAATGATCCCT GAGCAAGAAGAAGAAGTCTACCTCAGGTACGAGGCAGAGGACGAAGAGGAGGATCAGGAGTTGCAGGTCATAGGAGCCGC AACAATGGATGAGCCAGAGATGGAATACCCAACCAGGCTCGAAAAAGTAATGGGCAAACTCAAAAACGTAAGCATGGAGAA GCTGTTCCCAGTGAGCGGGATGGATAGCGAATCCAGCATAACAGGAGGTGGTGGAGGTTTTATACCACCAAGCCCAGTACCG GGAGCACAAGGATACCCCCCAGCAACAACATCCACTATGTCCACCATTGGACCAGCAGACATGCAGGGATGGGGAGGGAGA GTGCCCAGAAGTAGGTCACCATTAGGGTATGGCAGACCACAACAGCCATGGTCACTACCATCAGCACAGTCAGACAACGGCT GCATGCTAGTCCTTCCACAGGACTTCACCCTAATACCGGATGTCATCAACCGATGGGAATCCATAACAGTCAACCTCATCAACA AAATGATGTTTGACTCCCTGCAGGACAAGGCCGACTACGTCGAGAACCTTCTTGGAGAACGAGAAAAGGAGACGTGGATGAC ATGGCGGATGCAATATGAAGAGGAGTATAAACAACTCCTTACGATGAGCGGAGATGTGAGGAATATCACAGCCGCAGTCAAG CGGGTCTTCGGAGTACACGATCCGCATACAGGATCAGTCCACATCCAGAATCAAGCATATGCAGAGCTCGAAAGGCTCTACTG CAAACGGACGGACGACGTGATCCCCTTCCTATACGACTACTATCAGCTAGCAGCAAAATCGGGAAGGATGTGGCTCGGACCC GAGCTATCAGAGAAGCTGTTCAGAAAGCTTCCACCTGAGATAGGACCTACCATCGAGCAGGCCTATAAGGATCGATATCCAGG GCTGACCATTGGAGTTTTGGCCAGAGCAAACTTCATCCTGGAATATCTACAGAACGTGTGCAAGCAGGCAGCACTGCAGCGTT CGCTAAAAAGCCTGAGCTTCTGCAGGAATATGCCGGTCCCCGGATACTATGAGAAGAAGCAATATGGTATCAGAAAGGCTAA AACCTACAAAGGTAAGCCTCATCCGACCCACGTTAAGGTGATAAAAAACAAGTACAAGCATACGCAGGGGAAGAAATGCAAG TGCTACTTGTGTGGGATCGAAGGTCACTATGCCCGAGAGTGCCCAAAGAAGGTGGTCAAACCACAACGAGCGGCCTATTTCAA TGGCATGGGACTAGACGATAACTGGGATGTAGTCTCGGTCGAACCAGGAGAAGAAGACGACGACGAGATCTGCAGCATCTCA GAAGGAGAAAACACTGGCGGAATGCACGAACTTATGGCATTCAAAACACAACTCCCTTATCCAGTGGAGTATGAAGCCAGCA CACCACAGTTCCTGATGCCATGGACACAGGTACCTGTGGAAAAGAGCGACAAACCTTCCTGGAGAAGACGGAAGGATATCTC ACAAGTCCAGAAGGACTGCACACACACCTGGAGTGACACCCAGGAAGTGCCTATCAGCGACAGGGTTTGCAGCATCTGTAGT GACGAAACACCTCACGGTAGAAGAGTCACCTGCACTACATGCAACATCAACCTCTGTCCGATATGTGCAAGGATGGACTATGG GATCATGCTGATAGCAGCAAAAGACACCAAGAGCGCAGCACATTGGCAGTACCAAAACAAGGATGAGCTCATACAGCACCTG TACGAACACAACGCTTTTCTCACCAGGAAAGTAGCAGAGCTCACTAGCCAGCTGCAGGAATTCCACAACCGCAGGCCTGAAGA CCTGATCAGCCTAGCGGATGACCTGGAGGACGTGTCCATCCTGGACAACGCCTCAAACAGGGGGAAGGAGGAGAAGGAATT GTTCCAATTTGGAACTACAATTCCCATCGACCACATACAAAACCTTGAAAATGTGGCCAAGATCATAGAAAAGTGGAAAGATA CCCCCAGGGTCGTAATCAAGGAAACACCAGAAAGCAGTACCAGTAACACCATCGGAGCACTTCTAGCTGAGGAAGGAATCGA AGAACTGGCTGCAGCGGTTGACACCGCCTATACCGAGATGCCAAAAGGAGGCCTCAACAAACTTTACAACACAATTGTGGAGT TCGTCATACCTCAGGAAAAGGGAGCACCCACGAAGTTCAGAGTTCGTGCTGTGATAGATACTGGATGCACCTGCACGTGCATT AACAGTAAAAAGGTTCCCAAGGAGGCACTCGAAGAAGCGAAGTACCAGATGAACTTCGCAGGGGTTAACTCAACAGGGGAG ACCAAGCTGAAAATGAAGAACGGGAAGATGATCGTGTCAGGCAGCGACTTCTACACCCCGTATATAGCAGCTTTCCCAATGGA GTTGCCAGACGTAGACATGCTGATTGGCTGCAACTTCTTGCGAGCCATGAAGGGAGGCGTAAGACTCGAAGGAACGGAAGTG ACTATCTACAAGAAAGTCACCACAATCCAAACAACCCTAGAGCCACAGAAGATATCCCTCCTCCGAGCAGAGGCTGAAGTCGG AGAAGAACTAGAGCGCATGTACTACGCCAATGACTATTCCGAGGAAGGAATAAGTCGGCTGAAGAACCACAGGCTG CTGCAG GAACTCAGAGAACAAGGGTACATTGGTGAAGAGCCAATGAGACACTGGGCAAAGAACGGCATCAAATGCAAGCTGGATATC

AAGAATCCAGACATAGTCATCAGCAGCAAACCGCCTGACTCTGTATCAAAAGAGACGAAAGCCCAATACCAAAGGCATATAGA TGCCCTGCTCAAAATCGGAGTAATCCAGCCCAGCAAGAGCAAACACAGGACGGCGGCTTTTATCACACACTCGGGTACGTCAA TTGACCCGATTACCAAGAAAGAAGTCAGAGGGAAAGAACGGATGGTATTCGACTACCGAAGTCTCAACGACAATACCCACAA AGATCAGTACACACTGCCGGGTATCAATACCATCATATCCGCGATTGGCAACGCTAAAATATTTAGCAAGTTCGATCTAAAGTC CGGATTCCATCAGGTGCTCATGGACGAAGAATCCATACCATGGACGGCTTTCGTAACGCCAGTCGGATTCTATGAATGGAAGG TCATGCCCTTTGGCCTTGCCAATGCTCCAGCTGTCTTCCAAAGGAAGATGGACCAATGCTTCGCTGGAACTTCGGAATTCATCG CAGTCTACATCGATGACATCCTGGTGTTCAGCAAAACCCTAAAGGAGCACGAGAAACACCTTAGCATCATGCTAGGGATATGC CGTGATAACGGTTTGGTTTTATCGCCCAGCAAAATGAAGTTGGCCGCCACAGAGATAGACTTCCTTGGCGCCACCATAGGCGA TGGAAGGATCAAGCTCCAGCCTCACATCATAAAGAAGATAGCCGAGGTGGATGACGAATCCCTGAAAACCCTCAAAGGGTTA CGAAGCTGGTTGGGAGTGCTCAACTACGCGCGCAACTACATCCCAAAGTGTGGCACACTGTTAGGCCCACTATACAGCAAGAC CAGCGAGCATGGTGATCGTAGGTGGCACGCGTCTGATTGGGCCTTAGTCAAAAGAATTAAGGGCCTGGTCCAAAACCTCCCA GACCTAAAACTCCCCACGGAAGAGGCATACATGATCATTGAGACTGATGGATGCATGGAGGGCTGGGGAGGAGTCTGCAAAT GGAAGCCCATGAAGGCAGACTCAGCAAGCAAGGAAGAAATCTGCGCTTACGCCAGTGGTAAATTCCCCACGGTAAAATCAAC AATAGACGCAGAAATCTTCGCAGTTATGGAGTCCTTGGAAAAATTCAAGATTTTTTACATGAACAAGGACGAGGTCACTATCA GGACTGATTGTCAAGCAATAATCACCTTCTACGAGAAGCTGAATGCAAAGAAACCTTCGAGGGTAAGGTGGCTTGCCTTTTGC GATTATATAACGAACTCCGGGGTAAGAATGAAGTTCGAACATATAAAAGGTAAAGACAACCAGCTCGCAGATAACCTCAGCC GTCTCACACAACTGATTACATTTGTGAAATGGCTTCCAACCGAGCTCAAGGACCTCGCGGCAGAACTAACCAGGAAAGACGAC GGGACGCCCGCGAAGAAGGAAGTGCAGGAGGAAATCTCCTGTTTTCTCGAAGCTGCCCTCCGCCGAGCCAAGAGATCCGTGA CTACTCACCAATCCGAGCCACGCCATGTACTATGGCAGAAATGGCAGAATCCAGAAGGCTGGCTCTACTGCGACGAGAGGAG ATCTTCAACAGCCTTGCCCAACACATCAGCGACACGGTCTTCATCACCGGAGTCGACCTTGCGGCAGCAAAGGCCAGAGCAAC CAGGGACAACTGGTATGCTGACATCACACCAACACTGGAACGACGAGCCACCGCAGCATGGAAGCTCATGGCCGCTTACGAG GAATTCGCCACGTGTAAGGATGTGAACGTTTAGTGAAGCGACGTCAGCAATGACTTCACAATCGCCCAAGTGCGTCACTGCTT ACGCTTGGGAACTTATCTTTTAGTGTCGGTAGCATCTTCTAGCTGCCATACTTTATTGTAAGTGCGCCGATAGTGCGCTGAGTC ATAGTGATAAGGAATCTTATCACCTTATCGTCCTTTCTTAGCTTTAGTAGCTGTAAAGACGAACTTATTAGCTGTCGATGGGGCC CAGAAAGCGCACCCGAGCTGATATTTTCTCTCTTTCTGCTAAGCCCTCCCCCTATATAAGGGAGAAGAGTTTGAAGGCTTAGGC ACAGAGCAATCTCTCTAGCCAACCTTTCTCTTGAGTTGTATTAAAACATTCAAGTGAAATAAAGACTTGTTCATCTTTTTCCGCAT ATCTCTGAGTTTTTATGAGTTCTTAAGTGTTCGAAAGCGCACTTTTGAAATTAGATCCATGTTTTTCGGACCCCATTC

Supplemental table. 271 public and proprietary genetics were bulked into 294 samples and used in validation of epiRYNV-BS detection assay.

Bulked sample number	Genetic/cultivar
1	Selection 1, Selection 2
2	Selection 2, Selection 3
3	Selection 4, Selection 5
4	Selection 5, Selection 6
5	Selection 7
6	Selection 7
7	Selection 8, Selection 9
8	Selection 9
9	Selection 10, Selection 9
10	Selection 10, Selection 11
11	Selection 12, Selection 13
12	Selection 13, Selection 14
13	Selection 15, Selection 16
14	Selection 16, Selection 17
15	Selection 18, Selection 19
16	Selection 19, Selection 20
17	Selection 20
18	Selection 20, Selection 21
19	Selection 22, Selection 23
20	Selection 23, Selection 24
21	Selection 25, Selection 26
22	Selection 26
23	Selection 27
24	Selection 27, Selection 28
25	Selection 28, Selection 29
26	Selection 29
27	Selection 30
28	Selection 30, Selection 31
29	Selection 31, Selection 32
30	Selection 32
31	Selection 33
32	Selection 33
33	Selection 33, Selection 34
34	Selection 35, Selection 36
35	Selection 36, Selection 37

36	Selection 38, Selection 39
37	Selection 39, Selection 40
38	Selection 41, Selection 42
39	Selection 42
40	Selection 42, Selection 43
41	Selection 43, Selection 44
42	Selection 45, Selection 46
43	Selection 46, Selection 47
44	Selection 47, Selection 48
45	Selection 48
46	Selection 49
47	Selection 49, Selection 50
48	Selection 51, Selection 52
49	Selection 53
50	Selection 53, Selection 54
51	Selection 54, Selection 55
52	Selection 55
53	Selection 56
54	Selection 56, Selection 57
55	Selection 57, Selection 58
56	Selection 58
57	Selection 59
58	Selection 59, Selection 60
59	Selection 60, Selection 61
60	Selection 61
61	Selection 62
62	Selection 62, Selection 63
63	Selection 63, Selection 64
64	Selection 64
65	Selection 65, Selection 66
66	Selection 66
67	Selection 67, Selection 68
68	Selection 68, Selection 69
69	Selection 70, Selection 71
70	Selection 71
71	Selection 72
72	Selection 72, Selection 73
73	Selection 74, Selection 75

74	Selection 76
75	Selection 76, Selection 77
76	Selection 77, Selection 78
77	Selection 78, Selection 79
78	Selection 80
79	Selection 80, Selection 81
80	Selection 81, Selection 82
81	Selection 82
82	Selection 83
83	Selection 83, Selection 84
84	Selection 84, Selection 85
85	Selection 85
86	Selection 86
87	Selection 86, Selection 87
88	Selection 87, Selection 88
89	Selection 88
90	Selection 89
91	Selection 89, Selection 90
92	Selection 90, Selection 91
93	Selection 91
94	Selection 92, Selection 93
95	Selection 93, Selection 94
96	Selection 103, Selection 94
97	Selection 103, Selection 104
98	Selection 105
99	Selection 105, Selection 106
100	Selection 106, Selection 107
101	Selection 107
102	Selection 108, Selection 109
103	Selection 109, Selection 110
104	Selection 111, Selection 94
105	Selection 94, Selection 95
106	Selection 96, Selection 97
107	Selection 97, Selection 98
108	Selection 99
109	Selection 100, Selection 99
110	Selection 101, Selection 102
111	Selection 102

112	Selection 103, Selection 111
113	Selection 112
114	Selection 112, Selection 113
115	Selection 113, Selection 114
116	Selection 114
117	Selection 115, Selection 116
118	Selection 117, Selection 118
119	Selection 118
120	Selection 119
121	Selection 119, Selection 120
122	Selection 120, Selection 121
123	Selection 122, Selection 123
124	Selection 123, Selection 124
125	Selection 124, Selection 125
126	Selection 125
127	Selection 125, Selection 126
128	Selection 126, Selection 127
129	Selection 127, Selection 128
130	Selection 128
131	Selection 129, Selection 130
132	Selection 130
133	Selection 131
134	Selection 131, Selection 132
135	Selection 132, Selection 133
136	Selection 133, Selection 134
137	Selection 135, Selection 136
138	Selection 137
139	Selection 137, Selection 138
140	Selection 138, Selection 139
141	Selection 139
142	Selection 140
143	Selection 140, Selection 141
144	Selection 141, Selection 142
145	Selection 142
146	Selection 143
147	Selection 143
148	Selection 144
149	Selection 144, Selection 145

150	Selection 145, Selection 146
151	Selection 146
152	Selection 147, Selection 148
153	Selection 148, Selection 149
154	Selection 150
155	Selection 150, Selection 151
156	Selection 151, Selection 152
157	Selection 152
158	Selection 153
159	Selection 153, Selection 154
160	Selection 154, Selection 155
161	Selection 156
162	Selection 156, Selection 157
163	Selection 157, Selection 158
164	Selection 158
165	Selection 159
166	Selection 159, Selection 160
167	Selection 160, Selection 161
168	Selection 161
169	Selection 162
170	Selection 162, Selection 163
171	Selection 163, Selection 164
172	Selection 164
173	Selection 165
174	Selection 165, Selection 166
175	Selection 166, Selection 167
176	Selection 168
177	Selection 168
178	Selection 169
179	Selection 169, Selection 170
180	Selection 171
181	Selection 171, Selection 172
182	Selection 172, Selection 173
183	Selection 173
184	Selection 174
185	Selection 174, Selection 175
186	Selection 176
187	Selection 176, Selection 177

188	Selection 177, Selection 178
189	Selection 178
190	Selection 179
191	Selection 179, Selection 180
192	Selection 180, Selection 181
193	Selection 181
194	Selection 182
195	Selection 182, Selection 183
196	Selection 183, Selection 184
197	Selection 184
198	Selection 185
199	Selection 185, Selection 186
200	Selection 186, Selection 187
201	Selection 187
202	POLKA, QUALICUM
203	QUALICUM, YELLOW ANTWERP
204	CHILCOTIN, LATHAM
205	CHILCOTIN, KORBFUELLER
206	SOUTHLAND, SUMMIT
207	MALLING JEWEL, SUMMIT
208	MANDARIN, Selection 188
209	PHOENIX, Selection 188
210	BAUMFORTH SD.A, HERITAGE
211	SEPTEMBER, BAUMFORTH SD.A
212	Selection 189, ST. REGIS
213	CUTHBERT, ST. REGIS
214	MALLING LANDMARK, Selection 190
215	MALLING LANDMARK, TITAN
216	AUTUMN BLISS, CHEMAINUS
217	Selection 248, CHEMAINUS
218	Selection 191, Selection 192
219	Selection 192, TULAMEEN
220	MEEKER, OCTAVIA
221	OCTAVIA, Selection 193
222	Selection 194
223	Selection 194, Selection 195
224	Selection 195, Selection 196
225	Selection 196, Selection 197

226	Selection 197, Selection 198
227	Selection 198
228	Selection 199, Selection 200
229	Selection 200
230	Selection 201
231	Selection 202
232	Selection 202, Selection 203
233	Selection 203, Selection 204
234	Selection 204
235	Selection 205
236	Selection 205, Selection 206
237	Selection 206, Selection 207
238	Selection 207
239	Selection 208, Selection 209
240	Selection 209, Selection 210
241	Selection 210, Selection 211
242	Selection 211
243	Selection 212
244	Selection 212, Selection 213
245	Selection 213, Selection 214
246	Selection 214, Selection 215
247	Selection 215, Selection 216
248	Selection 216, Selection 217
249	Selection 217, Selection 218
250	Selection 218, Selection 219
251	Selection 219
252	Selection 220
253	Selection 220, Selection 221
254	Selection 221, Selection 222
255	Selection 222, Selection 223
256	Selection 223, Selection 224
257	Selection 224
258	Selection 225
259	Selection 225, Selection 226
260	Selection 227
261	Selection 228
262	Selection 228, Selection 229
263	Selection 230, Selection 231

264	Selection 231
265	Selection 232
266	Selection 232, Selection 233
267	Selection 233, Selection 234
268	Selection 234
269	Selection 235
270	Selection 235, Selection 236
271	Selection 236
272	Selection 236, Selection 237
273	Selection 238, Selection 239
274	Selection 239, Selection 240
275	Selection 241, Selection 242
276	Selection 242, Selection 243
277	Selection 244, Selection 245
278	Selection 245, Selection 246
279	Selection 246
280	Selection 246
281	Selection 246, Selection 247
282	Selection 1, Selection 247
283	Selection 3, Selection 77
284	Selection 120, Selection 129
285	Selection 147, Selection 175
286	Selection 175, Selection 196
287	Selection 199, Selection 208
288	Selection 208, Selection 209
289	Selection 214, Selection 216
290	Selection 216, Selection 218
291	Selection 222
292	Selection 222, Selection 226
293	Selection 227, Selection 229
294	Selection 230

Supplemental figure. epiRYNV-BS detection using RYNV6-F/R PCR assay. 271 public and proprietary genetics were bulked into 294 samples. Off-target was observed in 43 cases.

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448838; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

1036
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448838; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

1037

