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Abstract 
Motivation: Identifying the drug-protein interactions (DPIs) is crucial in drug discovery, and a number 
of machine learning methods have been developed to predict DPIs. Existing methods usually use un-
realistic datasets with hidden bias, which will limit the accuracy of virtual screening methods. Mean-
while, most DPIs prediction methods pay more attention to molecular representation but lack effective 
research on protein representation and high-level associations between different instances. To this 
end, we presented here a novel structure-aware multi-modal DPIs prediction model, X-DPI, performing 
on a curated industry-scale benchmark dataset. 
Results: We built a high-quality benchmark dataset named GalaxyDB for DPIs prediction. This indus-
try-scale dataset along with an unbiased training procedure resulted in a more robust benchmark study. 
For informative protein representation, we constructed a structure-aware graph neural network method 
from the protein sequence by combining predicted contact maps and graph neural networks. Through 
further integration of structure-based representation and high-level pre-trained embeddings for mole-
cules and proteins, our model captured more effectively the feature representation of the interactions 
between them. As a result, X-DPI outperformed state-of-the-art DPIs prediction methods and obtained 
5.30% Mean Square Error (MSE) improved in the DAVIS dataset and 8.89% area under the curve 
(AUC) improved in GalaxyDB dataset. Moreover, our model is an interpretable model with the trans-
former-based interaction mechanism, which can accurately reveal the binding sites between molecule 
and protein. 
 
Keywords: drug-protein interactions; virtual screening; graph neural network model; protein graph; 
deep learning 

 

1 Introduction 
The identification of drug-protein interactions (DPIs) lies at the core of in 
silico drug development. Though experimental assays remain to be the 
golden standard for determining the binding affinities and modes, experi-
mental characterization of every possible drug-protein pair is daunting as 
there are over 166 billion drug-like compounds [1] and over 5000 potential 
protein targets [2]. Alternatively, hit compounds could be identified for 
given protein targets effectively and inexpensively through computational 
approaches. 

Many computational methods have been developed, and these meth-
ods could be generally split into two categories: physic-based and ma-
chine-learning methods. Physic-based methods like molecular docking 
apply physics-inspired force fields to simulate the binding of a protein and 
a molecule at the atomic level and to estimate the binding free energy be-
tween them [3]. However, the performance of these methods is often un-
satisfactory due to the difficulty in assessing the solvent contributions and 
conformational entropy. In addition, these physical methods are sensitive 
to structural fluctuations, which prevents them from dealing well with the 
flexibility of proteins [4]. 
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On the other hand, machine learning-based methods recently met 
rapid progress with the recent increase in the available protein-ligand 
binding data and a decrease in computational costs [5-7]. The general idea 
for this method is to integrate structural information from ligands, proteins, 
and their interactions into a unified framework. In this case, molecules can 
be characterized by molecular fingerprints, structural descriptors, or to-
pographies, while proteins can be described by sequences or tertiary struc-
tures. Their representations are then extracted by the designed neural net-
work to obtain abstract information and are eventually used to predict 
whether and how they will bind to each other [5, 8-12]. 

Despite a lot of previous efforts, there are a few general caveats 
among these proposed models: 

Using unrealistic datasets with hidden bias 
Although a large amount of experimentally reported structure-activ-

ity relationship (SAR) data is available, data collation and cleaning are 
quite tedious and laborious processes. Current deep learning works either 
used very limited datasets, such as the Human dataset and C.elegans da-
taset [7]  which include positive DPI pairs from DrugBank 4.1[13] and 
Matador [14], and highly credible negative samples from a systematic 
screening framework [15], or use arbitrary benchmark with expert-defined 
decoys (i.e., negative samples were generated by fixed rules), including 
DUD-E, MUV [16] and so on. These datasets are unfortunately biased by 
both obvious and hidden chemical biases, therefore overestimating the 
true accuracy of virtual screening methods. For example, DUD-E was col-
lected with the intention to train structure-based virtual screening, and thus 
the ligand-based split is extremely native for this benchmark. These da-
tasets can be easily separated by ligand information and cannot guarantee 
that models learn protein information or interaction features. Instead, the 
key usage of DPI is to identify hit compounds for unseen and non-homo-
log with few known actives. In addition, the datasets from high throughput 
screening (HTS) tend to be much larger and noisier, and most of the cur-
rently delicate and fragile models might not be robust enough to deal with 
these real-world data. 

Suboptimal representation of protein 
Although the key of DPI is the generalization of unseen and non-

homolog with few actives, current works [5, 10-12] normally use one-hot 
encoding vectors to represent residues. This conventional approach nei-
ther is able to embed the contextual dependencies between residues nor to 
make use of protein topological information. In fact, the protein topologi-
cal information is crucial information for determining the binding affinity 
between protein and drug in practice [17] and several methods [4, 18] have 
shown that the protein structural information like 2D distance map is an 
effective feature for DPI prediction. The simple sequence representation 
of protein cannot even capture the connection between different proteins, 
let alone the binding mode between protein and drug. Although the direct 
input of 3D structure has been introduced in recent studies [6, 19, 20], they 
cannot address the issue of 3D transform invariance properly. Moreover, 
the lack of protein structure hampers the development of real structure-
based protein representation models in the DPI task. 

Lack of the high-level associations of instances 
Existing deep learning models mainly focused on the information of 

the input drug-protein pairs, ignoring the high-level information from pro-
tein-protein associations (PPAs) and drug-drug associations (DDAs). The 
significance of PPAs and DDAs derives from a well-established hypothe-
sis that proteins typically bind with similar drugs [21], which is key to 
generalizing DPI predictions. Earlier studies generally considered associ-
ation by using molecular fingerprinting [22] techniques or BLAST [23] to 
calculate the similarity of co-evolutionary information. However, these 

approaches were limited in dealing with homologous proteins and had dif-
ficulties in dealing with unseen proteins and drugs with novel scaffolds. 

Present Work. To address these challenges, we propose a novel 
structure-aware multi-modal method (coined as X-DPI) for in silico DPI 
prediction. X-DPI is enabled by the following contributions: 
1. We curated a large-scale benchmark GalaxyDB specifically designed 

for machine learning-based virtual screening. GalaxyDB was derived 
from ExcapeDB and consists of 372 common targets with 381,021 
confirmed active and 1,634,038 confirmed inactive compounds. The 
large data size and an unbiased training procedure provide ad-
vantages for model building than using a small toy dataset. 

2. For informative protein representation, we constructed a structure-
aware graph neural network method from the protein sequence by 
combining predicted contact maps and graph neural networks. 

3. We introduced self-supervised pre-trained embedding of drugs and 
proteins, respectively, in order to strengthen the protein/drug associ-
ation signals. Our model leverages this high-level information in a 
unified framework and generates interpretable results with a trans-
former-based interaction mechanism. 

We provided a comprehensive performance comparison among several 
state-of-the-art (SOTA) methods. Our results demonstrated that X-DPI 
has superior performance over some SOTA models by up to 8.89% im-
provement. In addition, we also made a prospective prediction on Davis 
dataset [24] and the external dataset extracted from the AstraZeneca 
screening database.  

2 Methods 

2.1 Dataset construction 
We constructed experiments using the following two benchmark datasets 
for model building and evaluation. In addition, an external test dataset 
from AstraZeneca was utilized to verify the generalization ability of our 
model on the industrial dataset.  
a） Davis dataset consists of binding affinity information with 𝐾! (ki-

nase dissociation constant) values among 72 drugs and 442 targets. 
In our experiments, we use SMILES representation of 68 drugs and 
sequence representation of 442 target proteins from the DeepDTA 
[11] training/test dataset. For the Davis dataset, we view the DPI pre-
diction task as a regression task that predicts the 𝐾! values for each 
DPI pair. This small dataset is used to initially verify that our model 
can effectively deal with the DPI prediction problem. When we use 
the Davis dataset for prospective validation, we assign the data points 
in the Davis dataset to two class according to the criterion of 𝐾!≥6 
and view the DPI prediction task as a classification task. 

b） GalaxyDB. We curated a large-scale DPI benchmark, GalaxyDB, 
based on the ExCAPE-ML [25], a collection of protein-ligand entries 
complied from ExCAPE-DB. ExCAPE-ML is composed of 955,386 
compounds, covering 526 distinct target proteins for a total of 
49,316,517 structure-activity relationships (SAR) data points. For 
classification tasks, the data points were assigned to two classes (i.e., 
inactive, active) according to their log-transformed activity values 
(pXC50 values). A compound-target record was defined to be acti-
vated if it fulfilled the criterion of pXC50≥6 (activity≤1µM). We 
analyzed the distribution of the original ExCAPE-ML dataset for the 
regression task and observed that there are a large number of (more 
than 45 million) data points with a pXC50 value of 3.101 in the dataset, 
which are expert-defined negative samples with low confidence. For 
curating a high-quality dataset, we excluded the data pXC50 value of 
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3.101 on the basis of the ExCAPE-ML dataset to form a relatively 
balanced and high confident benchmark set. Subsequently, the da-
taset was trimmed down by removing the target proteins with a se-
quence length longer than 750 in order to reduce the computational 
cost during the calculation of the contact map and co-evolution fea-
tures for proteins and the processing of protein features. Finally, we 
have obtained a high-quality benchmark dataset, GalaxyDB with an 
appropriate quantity, which is composed of 632,459 compounds cov-
ering 372 distinct target proteins and in a total of 2,015,059 DPI data 
points. We selected this benchmark dataset for the training and eval-
uation of our proposed model. 

c） External test dataset. To test whether the model is capable of per-
forming real-world virtual screening tasks, we have done prospective 
prediction with AstraZeneca in-house SAR data. In particular, for tar-
gets seen in our train set, we selected the top 30 targets according to 
the performance of our model in the GalaxyDB dataset and required 
that each target need to have at least more than 100 data points. Ad-
ditionally, we also selected 10 targets that are not included in our 
training set. In total, we constructed an external test set which is com-
posed of 208,958 data points, including 172,768 data points for 30 
targets seen in the training set and 36,190 data points for 10 unseen 
targets.  

2.2 Representation of Protein and Molecule 
The representations of protein and molecule lie at the core of the DPI task. 
In this section, we described the initial feature representations of target 
proteins, followed by the feature representations of molecules. 
Protein representation. The protein representation was done from the 
perspectives of structure and sequence features, respectively. For the 
structural feature, we considered using a graph to represent the 2D struc-
ture of proteins, which has been proven effective for predicting protein 
solubility in our previous study [26]. In the protein graph model, residues 
were regarded as nodes and the contact map predicted from the sequence 
was used as the adjacency matrix. Here node features were represented by 
the Hidden Markov Matrix (HMM), position-specific scoring matrix 
(PSSM) and structural features predicted from SPIDER3 [27]to represent 
the node features and used the predicted contact map to represent the ad-
jacency matrix in protein graph. The PSSM and HMM features are evolu-
tionary information that contains the motifs related to protein properties 
in protein sequences [28]. And the PSSM profile was generated by PSI-
BLAST v2.7.1 [23] with the UniRef90 sequence database after 3 iterations, 
the HMM profile was generated by HHBLITS v3.0.3 in aligning the Uni-
Clust30 profile HMM database [29] with default parameters. The struc-

tural features include 14 features to reflect the secondary structure of 
proteins predicted by SPIDER3. The list of protein node features can be 
found in the supplementary material. For the contact map of proteins, we 
made predictions of the protein contact map by SPOT-Contact [30], which 
takes the protein sequence-based and evolutionary coupling-based infor-
mation as input to predict the contact probability of all residue pairs in one 
protein. Finally, we obtained a protein graph as 𝐺" = (𝑉", 𝐴"), where 𝑉" ∈
𝑅#×% is the set of  𝑛	 amino acid nodes, each node represented by 𝑓-di-
mension features vector composed of HMM, PSSM and structural features, 
𝐴" ∈ 𝑅#×# is the adjacency matrix (contact map) for the protein graph. 

For the protein sequence feature, we also considered using the high-
level representation learned from a large collection of unlabeled protein 
sequences provide by TAPE [31]. TAPE is a language model for protein 
representation and it encodes each amino acid into an embedding vector. 
For each embedding vector, it is contextual and includes the sequence in-
formation from the input protein sequence, so we embedded the protein 
sequence to tape embedding with the pre-trained BERT [32] model in 
TAPE. 
Drug Molecular representation. We represented the drug molecule as a 
graph to get more accurate structure information for the molecule. In this 
sense, a molecular graph can be formulated as 𝐺& = (𝑉& , 𝐴&), where 𝑉& ∈
𝑅#×% is the set of  𝑛	 atom nodes with each node represented by 𝑓-dimen-
sion features vector composed of atomic properties. Here we used 𝑓-di-
mension atomic features that are detailed in the supplementary material.  
𝐴& ∈ 𝑅#×# is the set of edges represented by the adjacency matrix for the 
molecular graph. The existence of edges in the adjacency matrix depends 
on whether the corresponding atoms in the molecule directly have a cova-
lent chemical bond. Besides, we also used mol2vec [33] features at graph 
level as a high-level representation for a molecule to capture the DDAs. 

We believe that the additional high-level representation from pre-
trained embedding for proteins and molecules could provide implicit in-
formation to make the model distinguish different proteins and molecules. 
The high-level representation provides the global similarity information 
for DPI models, which describes the protein-protein association and drug-
drug associations (PPAs and DDAs). The DPI models could leverage the 
global similarity to measure the associations between the seen and unseen 
proteins and molecules and make full use of the features of existing data 
to improve the performance of DPI prediction. 

2.3 Model architecture of X-DPI 
The overview framework of our proposed X-DPI network is shown in Fig-
ure 1. The input information includes multi-level representation for pro-
teins and ligands. As shown in Figure 1, our model consists of three main 

Figure 1 The architecture of X-DPI. It first processes the molecule and protein features parallel, then fuses the embedding of molecule and protein by 
Transformer Decoder for the DPI prediction. 
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modules: a graph representation network for proteins (Protein GNN En-
coder), a graph representation network for molecules (Molecular GNN 
Encoder), and an interactive network with a transformer decoder for mes-
sage interaction (Interaction Decoder).  
Protein GNN Encoder. In our model, graph representation of proteins 
and the pre-trained feature encode by TAPE were input to the Protein 
GCN Encoder to learn structure and sequence representation of proteins 
at the same time. The Protein GCN Encoder includes two aspects: the first 
is the GCN encoder which encodes the structure information of protein 
graphs. The second is an information fusion unit to fuse the embedding 
information from the GCN encoder and the high-level representation from 
the pre-trained model. The protein graph was represented as a combination 
for the contact map and node features as input for the GCN encoder, then 
the GCN encoder learns node-level outputs for the protein graph. The 
GCN can be used to effectively process the graph structure data. The prop-
agation rule can be represented in the normalized form as Equation 1: 

𝐻'() = 𝜎 0𝐷2*
!
"𝐴3𝐷2*

!
"𝐻'𝑊'5   (1) 

where 𝐴3 = 𝐴 + 𝐼+ is the adjacency matrix of the graph with added self-
connection. 𝐷2 = ∑ 𝐴,,, , which is the diagonal node degree matrix. 𝑊' and 
𝐻' are the learnable parameters in GCN and the output of 𝑙-th layer re-
spectively. 𝜎(∙) is an activation function such as ReLU. For protein graph, 
𝐻- = 𝑉", 𝐴 = 𝐴". To further extract the high-level features for protein, we 
also used CNN with Conv1D and gated linear unit (GLU) to fuse the dif-
ferent node embedding. In addition to the structure information from the 
protein graph, we also used dense layers to encode the extra protein se-
quence embedding information generated from the TAPE model. Finally, 
the protein graph and sequence information were concatenated to form the 
protein feature for the following Inactive Decoder module. 
Molecular GNN Encoder. Similarly, the GCN was also used to encode 
the molecular graphs. In particular, we used the same GCN architecture as 
in the Protein GNN Encoder to learn the node-level features for molecules 
and obtain the molecule structure embedding. On the other hand, the dense 
layers were used to encode the high-level representation information from 
the mol2vec embedding, then the structure and mol2vec embedding infor-
mation were concatenated to form the molecule feature for the following 
Interaction Decoder module. 
Interaction Decoder. This module we used was inspired by the Trans-
formerCPI [8], which provides a method to fuse the embedding features 
of molecule and protein. A transformer decoder was leveraged in our In-
teraction Decoder module to combine the information of proteins and mol-
ecules. The Interaction Decoder here served as a fusion unit to capture 
features useful for the interaction between molecule and protein.  The de-
coder mainly consists of a multi-head self-attention layer and feedforward 
layer. The multi-head self-attention layer employed the multiple self-at-
tention mechanisms to extract interaction information and it can be repre-
sented as: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑-, ℎ𝑒𝑎𝑑), … , ℎ𝑒𝑎𝑑#)𝑊 (2) 

where the 𝑄,𝐾	 and 𝑉 are the queries, keys and values in the Transformer. 
ℎ𝑒𝑎𝑑, is the output of 𝑖-th self-attention layer, 𝑊 ∈ 𝑅#.#×.$ is a learna-
ble parameter for fusing attention information from different heads. 𝑛 and 
𝑑/ are the number of heads and the dimension of the hidden state respec-
tively. The self-attention in each head calculates the attentions by: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊0, 𝐾𝑊1, 𝑉𝑊2) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(K03
%413&5

'

6.(
L)𝑉𝑊2 (3) 

where the projection matrices 𝑊1 ∈ 𝑅.$×.( , 	𝑊1 ∈ 𝑅.$×.( , 	𝑊2 ∈
𝑅.$×.#  are learnable parameters. Compared with previous methods of 
directly concatenating the protein and molecule embedding information, 
we believe that this architecture can more effectively capture the interac-
tion between protein and molecule embedding. Finally, we obtained the 
interaction features between protein and molecule and we could calculate 
the molecular interaction with a protein as follows: 

𝑦 = ∑ 𝑠𝑜𝑓𝑚𝑎𝑥(‖𝑋‖77)#
, 𝑥,  (4) 

where 𝑋 is the output matrix of transformer decoder and composed of a 
set of interaction vectors 𝑥), 𝑥7, … , 𝑥#. The ‖𝑋‖77 represent the 𝑙7 norm for 
𝑥, in interaction matrix 𝑋. 𝑛 is the number of a set of interaction vectors 
from the Transformer Decoder. Finally, the interaction feature 𝑦 was fed 
into a fully connected layer and a sigmoid function and obtained the pre-
dicted interaction probability 𝑦P between protein and molecule. The model 
would be trained by maximizing the likelihood of regressing the training 
data, which means minimizing the binary cross-entropy loss as follows: 

arg	min
8

−(𝑦P ∙ log	(𝑝(𝑦P)) + (1 − 𝑦P)𝑙𝑜𝑔	(1 − 𝑝(𝑦P))) (5) 

where Θ	 are the learnable parameters of the model. 

2.4 Model training and evaluation 
Our model took protein graphs, protein evolutionary and predicted struc-
tural features, molecule graphs, molecular substructure features as input, 
where we converted the SMILES representation for the molecule to 
graph representation through RDKit [34]. The model was implemented 
in Pytorch and trained on RTX 2080Ti. And the training details for our 
model as follows: The hidden state size 𝑑/ were set to 64 and 256 for 
molecule embedding and protein embedding, respectively. The number 
of graph convolution iteration was set to 3, and the kernel size in CNN 
for protein embedding was 7. For Transformer Decoder, the number of 
decoder layers was set to 3, and the number of heads in the multi-head 
layer was set to 8. Apart from all the hyper-parameters mentioned above, 
the maximum number of epochs during the training process in our model 
was set to 50, as the performance no longer improves after 5 epochs in 
the validation dataset for the classification task and the batch size equals 
32 in every epoch. For the regression task, we trained the model with 
1000 epochs and select the best model by RMSE in the validation dataset. 
Dropout was applied in CNN and the Transformer Decoder layer and the 
dropout rate is set to 0.2. For the optimizer in our model, we used the 
LookAhead [35] optimizer combined with RAdam [36] optimizer, in 
which the learning rate was set to 1e-4 and weight decay was set to 1e-4. 

In order to evaluate the performance of our model, we divided the 
Davis and GalaxyDB datasets to obtain the training, validation and test 
sets, respectively. And we divided the dataset according to the target pro-
teins so that the target proteins in validation and test set were not seen in 
the training set. For the Davis dataset, the targets have the same sequence 
in train, validation and test sets are filtered out which results in 361 tar-
gets. Table 1 summarizes the split dataset in detail. 

For the regression task on the Davis dataset, the performance of 
models was evaluated using Root Mean Square Error (RMSE), Mean 
Square Error (MSE), Pearson and Spearman. The main metric we used 
to evaluate the prediction performance in the classification task is the 
area under the receiver operation characteristic curve (ROC-AUC) met-
rics, which can reflect the ability of the model to correctly discriminate 
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the active compounds and inactive compounds. And the AUC metric is 
also the condition for early stopping during model training. Additionally, 
we also measured the accuracy, recall, precision and F1 score metrics for 
evaluating the performance of the model prediction. It is worth noting 
that we determined the threshold for the above four metrics in the test set 
by finding the best threshold in the validation set. We set the search 
threshold in the range of 0.0 to 0.9, and searched with 0.001 steps to find 
the best threshold in the validation dataset according to the F1 score. 
We compare our model with the following baselines:  
1. SGDRegressor is a linear model fitted by minimizing a regularized 

empirical loss with Stochastic Gradient Descent (SGD). We used it 
for Davis dataset in the regression task. We experimented on the con-
catenated molecule and protein features. Here the molecule feature 
was Morgan Fingerprint calculated by RDKit [34], and the protein 
feature was the average tape embedding which suggests that taking 
the mean values at the amino acid level for original tape embedding. 

2. L2-logistic regression (LR) applied a logistic regression model on the 
Morgan Fingerprint and tape embedding concatenated feature vec-
tors, we used it for our GalaxyDB dataset in the classification task. 

3. TransformerCPI [8] modified the transformer architecture with a 
self-attention mechanism to address sequence-based DPI classifica-
tion task, we followed the default parameter settings in Trans-
formerCPI and the same training and evaluating strategies as X-DPI. 

4. GraphDTA [10] represented molecules as graphs and used graph 
neural networks to predict drug-target affinity. Here we compared 
our model with the GIN [37] in GraphDTA with default parameters. 
Besides, in order to fit the binary classification task on GalaxyDB 
dataset, we added a sigmoid function for the last layer in the 
GraphDTA network. 

5. MolTrans [9] is an end-to-end biological-inspired deep learning-
based framework that models the DPI process. We followed the 
same hyper-parameter setting described in the paper and compare 
our model with the MolTrans on our dataset.  

 
Table 1. Detailed information for the split dataset. 

Type Proteins Pos Neg Pairs 

Davis 

Train 231 - - 15708 

Valid 57 - - 3876 

Test 73 - - 4964 

GalaxyDB 

Train 298 305702 1295867 1601569 

Valid 38 43825 197666 241491 

Test 36 31494 140505 171999 

3 Results and Discussion 

3.1 Performance on Davis and GalaxyDB 
In order to validate the effectiveness of our model, we first tested our 
model on a well-defined small dataset, Davis. As shown in Table 2, our 
model obtained the best MSE with 0.4738, which is 15.95% lower than 
the TransformerCPI model specifically and 5.30% lower than GraphDTA, 
the best performing baseline model. Interestingly, we finded that the per-
formance of the complex deep learning models on the Davis dataset is not 

significantly better than other traditional machine learning models, and 
the strong learning ability of the deep learning model could not be well 
reflected on the Davis dataset. We believe this is due to the relatively small 
amount of data in the Davis dataset and the fact that it contains only pro-
teins of the kinase family. We used this benchmark dataset to tune the 
model architecture. 

After the validation on a small dataset, we further evaluated the classi-
fication performance of different methods on the industry-scale GalaxyDB. 
Table 3 presented the overall performance comparison of our model and 
the baseline models, it noted that the threshold for the Precision, Recall 
and F1 score metrics in the test dataset was determined by finding the best 
threshold in the validation set as described in the previous section. And 
the final threshold corresponds to LR, GraphDTA, MolTrans, Trans-
formerCPI and X-DPI are 0.191, 0.440, 0.412 and 0.449 respectively. Due 
to the best threshold for each model is different, the precision and recall 
would vary in different models. 
 
Table 2. Performance comparison of our model and the baseline models 
on Davis dataset.  

Model RMSE MSE Pearson Spearman 
SGDRegressor 0.7254 0.5262 0.5029 0.4483 

GraphDTA 0.7073 0.5003 0.5519 0.4485 
MolTrans 0.7233 0.5232 0.5332 0.4710 

TranformerCPI 0.7508 0.5637 0.4414 0.3706 
X-DPI 0.6883 0.4738 0.5552 0.4927 

 
Table 3. Performance comparison of our model and the baselines, where 
the precision, recall, and F1 score are calculated with the best threshold 
for each model. 

Model AUC Precision Recall F1 
LR 0.6422 0.1813 0.8304 0.2977 

GraphDTA 0.7136 0.2580 0.7122 0.3788 
MolTrans 0.7357 0.3683 0.6248 0.4634 

TranformerCPI 0.7139 0.3268 0.5989 0.4228 
X-DPI 0.8011 0.5097 0.5777 0.5415 

 
In terms of overall performance, the proposed method achieved the best 
performance on AUC and competitive performance on other metrics com-
pared to the baseline methods. It is noted that the best AUC is 0.8011, 
which is 8.89% higher than the best baseline MolTrans (0.7357) and 12.21% 
higher than the TransformerCPI (0.7139). The results showed that our pro-
posed method has better prediction performance than other DPI prediction 
models. Figure 2(a) presented the receiver operating characteristic (ROC) 
curves comparison of all the methods in GalaxyDB test set. Figure 2(b) 
presented the precision-recall (PR) curves of all baseline models. We 
could seen that our model obtained consistent results and achieved supe-
rior performance over the other baseline models. This followed our expec-
tations as the graph representation for proteins provides richer structure 
information than sequence representation, our model could provide more 
abundant information for molecules and proteins by combing the structure 
and sequence information from pre-trained embedding features, which 
could effectively improve the performance of DPI prediction. In order to 
validate the function of each component in our model, we ran several ab-
lation experiments to analyze our model. Results were shown in Table 4 
and we would discuss them in detail next. 
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3.2 Ablation experiments 
Firstly, we evaluated the function of additional pre-trained embedding, 
which included the sequence information with tape embedding for pro-
teins and substructure information for molecules. Instead of fusing the 
structure information from the protein graph and sequence information 
from tape embedding, we only used the structure information of proteins 
as the input features of the Transformer Decoder. We also used the struc-
ture information of molecules only in Transformer Decoder. As shown in 
Table 4, the removal of pre-trained embedding decreased the prediction 

performance of the model significantly. And this ablation experiment 
clearly showed the importance of pre-trained embedding in the model, 
which provides high-level protein sequence information and molecular 
substructure information for model learning. 

Secondly, we evaluated the importance of structure information for 
protein in our model. In our model, the structure information of protein 
mainly came from the graph representation for protein, which included the 
amino acid node features HMM/PSSM/Structural features and the contact 
map of protein. In order to comprehensively evaluate the influence of pro-
tein structure information on model performance, we conducted ablation 
experiments on protein node features and contact maps, respectively. For 
the ablation experiments of the contact map, we avoided utilizing the pro-
tein structure information from the contact map and only use CNN to ex-
tract and fuse the node features in protein. The results represented in Table 
4 suggests that the contact map processed by GCN could provide efficient 
and rich structure information for protein, which results in a better perfor-
mance in the DPI prediction task. However, due to the structure of proteins 
is extremely complex that the predicted contact map can’t accurately re-
flect the structure of proteins, we still need to introduce additional infor-
mation such as evolutionary and predicted structural features to compen-
sate for the information loss of the predicted contact map. And the ablation 
experiments have also shown that our model could significantly improve 
the performance by combing the contact map and other additional protein 
information. To validate the function of protein node features in our model 
for DPI prediction, we used word2vec embedding in TransformerCPI to 
replace the protein node features as HMM, PSSM and structural features. 
We observed that when we used the word2vec embedding as the protein 
node feature, the performance has slightly decreased. This suggests that 
the HMM, PSSM and structural features used in our model can provide 
better protein information at the amino acid level compared to word2vec, 
which is beneficial to the accurate prediction of the DPI prediction task. 

3.3 Performance on the prospective validation 
In order to verify the generalization ability of our model, we used the 
model trained on the GalaxyDB training set to evaluate the Davis dataset 
and external test set from AstraZeneca. 

For the Davis dataset in prospectives validation, the experimental re-
sults were shown in Figure 3. In general, our model consistently per-
formed well in the test set. When the test proteins were observed in the 
training set, X-DPI achieved an AUC of 0.8813, which is 5.28% higher 
than the best baseline GraphDTA (0.8371) and 8.23% higher than the 
TransformerCPI (0.8143). For the unseen proteins, our model also 
achieved the best AUC with 0.7073, which is 4.77% higher than 
GraphDTA (0.6751) and 11.21% higher than TransformerCPI (0.6360). 

 
Table 4. Results of ablation experiments.

Network 
HMM/PSSM/

Structure 
Contact 

map 
Pretrained 
features 

AUC ACC Precision Recall F1 
Best 

Threshold 

X-DPI 

× × × 0.7139 0.7006 0.3268 0.5989 0.4228 0.412 
√ × × 0.7593 0.7448 0.3874 0.6771 0.4929 0.329 
× √ × 0.7282 0.6893 0.3277 0.6623 0.4384 0.392 
× × √ 0.7590 0.8451 0.6057 0.4419 0.5110 0.598 
× √ √ 0.7947 0.7000 0.3534 0.7697 0.4484 0.319 
√ × √ 0.7649 0.8059 0.4766 0.6114 0.5356 0.311 
√ √ × 0.7832 0.8178 0.5021 0.6531 0.5677 0.234 
√ √ √ 0.8011 0.8209 0.5097 0.5577 0.5415 0.449 

Figure 2. Performance of different methods on the GalaxyDB test set. (a) 
Receiver operating characteristice (ROC) curves of prediction results. (b)  
Precision-recall (PR) curves of prediction results. 



For the external test dataset in prospective validation, the data distri-
bution and classification performance of our model were given in Figure 
4. As shown in Figure 4, for the seen proteins, the average AUC on a total 
of 30 targets is 0.7724, and 70% of the seen targets reached AUC≥ 0.7. 
For the unseen proteins, the average AUC on a total of 10 targets is 0.7264 
and 50% of the seen targets reached AUC≥ 	0.7.  

In general, our model achieved reasonable performance on both seen 
and unseen proteins, indicating that the X-DPI trained on GalaxyDB gen-
eralizes well to independent virtual screening tasks. However, perfor-
mance gaps between seen and unseen proteins were observed both on the 
Davis dataset and external test dataset. We argue that there might be two 
potential reasons for these performance gaps. The first one is that the 
chemical space for seen and unseen target proteins is different, which 
makes the knowledge of chemical spatial distribution for seen proteins 
learned by our model unable to be effectively applied to unknown chemi-
cal space for unseen proteins. The second is that the ability of our model 
to learn unseen protein representations is still somewhat deficient. The 
predicted contact maps and protein pre-trained embeddings have helped 
us to improve our predictions for unseen proteins, but there is still much 
room for improvement.  

3.4 Study for Interpretability 

Thanks to the Transformer Interaction Decoder architecture module, our 
model is able to analyze the interaction mechanism between the protein 
and the molecule. The positions focused on the self-attention mechanism 
can provide a reasonable explanation for the binding activity prediction, 
and also help the researchers to quickly locate the key interaction sites 
between protein and molecule when performing further activity analysis.  

To exemplify this, we selected two complexes from RCSB Protein 
Data Bank (PDB) [38] as the representatives, where the proteins are pre-
sented in the test of GalaxyDB. In particular, we colored the top-weighted 
residues of the example proteins and atoms of the ligand with red and 
compared them to the actual protein-ligand interaction sites retrieved from 
the PDB. We found that the highest-weighted amino acids and molecular 
atoms overlap substantially with the real interaction sites. For protein 

Figure 4. The information and evaluation results about the external test 
dataset. (a) The data points distribution of individual target proteins. (b) 
The AUC performance of our model on an external test dataset. The box 
plot represents the AUC distribution of individual target protein perfor-
mance for seen and unseen proteins. 

Figure 3. Performance comparisons of X-DPI and baselines on seen 
and unseen protein targets in the Davis dataset. 

Figure 5. Attention weights visualization of pocket and ligand pairs. (a) 
Attention weight of interaction for 4KNM and E1E. (b) Attention weight 
of interaction for 4DHY and S41. 
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CA13 (UniProt ID: Q8N1Q1) in Figure 5(a), the attention bar highlights 
residues His95H, Thr200T and Trp210W, which highly overlap with the 
key pocket residues observed in the co-crystal complex (PDB: 4KNM). 
For protein GCK (UniProt ID: P35557) in Figure 5(b), the highlighted 
residues (Thr64T, Ser68S, Ser444S) and ligand functional groups in the 
importance maps show high similarity to observed interactions in the co-
crystal complex (PDB: 4DHY). The results suggest that the model can be 
applied to analyze the interaction mechanism between molecules and tar-
get proteins and inspire researchers. 

4 Conclusion 
In this study, we selected the Davis and GalaxyDB dataset as the internal 
validation dataset for our model, meanwhile, we further verified the gen-
eralization ability of our model on the external test set collected from 
AstraZeneca. For the GalaxyDB dataset, we first analyzed the data distri-
bution of the ExCAPE-ML dataset for the DPI prediction task, then 
screened the dataset to generate a high-quality benchmark dataset named 
GalaxyDB, which is a more balanced dataset for the distribution of posi-
tive and negative samples than ExCAPE-ML and has enough data to ef-
fectively train and evaluate the deep learning model. At the same time, we 
proposed a DPI prediction model named X-DPI with better performance 
than other baseline models. We compared our model with the previously 
reported models for the DPI prediction task, and the experimental results 
have shown that our model achieved the best MSE with 0.4631 on Davis 
and best AUC with 0.8011 on GalaxyDB in all baseline models. In order 
to enable the model to extract protein structure information, we tried to 
use graph structures to represent the proteins. In the protein graph, we used 
the predicted contact map of a protein to represent the adjacency matrix 
and treat each amino acid in the protein as a graph node. Meanwhile, we 
used evolutionary features like HMM, PSSM and structural features for 
proteins as the node features in the protein graph. Besides, we tried to use 
the pre-trained embedding in our model to increase the high-level similar-
ity information of instances for molecules and proteins. We utilized the 
sequence features represented by tape embedding for protein sequences 
and substructure features represented by mol2vec for molecules. Finally, 
we obtained a better feature representation for proteins and molecules by 
combining the structure and high-level information in our model, which 
leads to  a better performance for DPI prediction in the benchmark dataset. 
The ablation experiments have shown that the protein graph constructed 
by the contact map and amino acid node can provide richer and more ac-
curate structure information for DPI prediction, and we could obtain better 
performance for DPI prediction when we combine high-level pre-trained 
information from the protein and molecules.  

Overall, we believe that our study provides a new SOTA model for 
DPI prediction research. Additionally, the benchmark dataset that we con-
structed can be used for the community to develop and evaluate future DPI 
models. Combining the structure and pretrained information for both pro-
teins and ligands seems provides advantages in making DPI prediction and 
could be a new area to explore in the future.. 

Key Points 
l We curated a high-quality benchmark dataset named GalaxyDB spe-

cifically designed for machine learning-based virtual screening. Gal-
axyDB was derived from ExcapeDB and consists of 372 common 
targets with 381,021 confirmed active and 1,634,038 confirmed in-
active compounds. The large-scale dataset and an unbiased training 

procedure provide advantages for model building than using a small 
toy dataset. 

l For informative protein representation, we represented the protein 
sequence as a protein graph by combining the predicted contact map, 
evolutionary and secondary structural features, meanwhile, we con-
structed a structure-aware graph neural network method from the 
protein sequence by combining protein graph and graph neural net-
works. 

l We introduced self-supervised pre-trained embedding of drugs and 
proteins, respectively, in order to strengthen the protein/drug associ-
ation signals. Our model leverages this high-level information in a 
unified framework and generates interpretable results with a trans-
former-based interaction mechanism. 
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