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Abstract 8 

In many situations, humans make decisions based on serially sampled information 9 

through the observation of visual stimuli. To quantify the critical information used by the 10 

observer in such dynamic decision making, we here applied a classification image (CI) 11 

analysis locked to the observer's reaction time (RT) in a simple detection task for a 12 

luminance target that gradually appeared in dynamic noise. We found that the response-13 

locked CI shows a spatiotemporally biphasic weighting profile that peaked about 300 ms 14 

before the response, but this profile substantially varied depending on RT; positive 15 

weights dominated at short RTs and negative weights at long RTs. We show that these 16 

diverse results are explained by a simple perceptual decision mechanism that 17 

accumulates the output of the perceptual process as modelled by a spatiotemporal 18 

contrast detector. We discuss possible applications and the limitations of the response-19 

locked CI analysis. 20 

 21 

1. Introduction 22 

While humans and animals can immediately recognize objects and scenes at a glance 23 

(Thorpe, Fize & Marlot, 1996; Motoyoshi, Nishida, Sharan & Adelson, 2007; Whitney & 24 

Yamanashi, 2018), in many situations they ensemble information in a sequence to take 25 

more appropriate decisions (Bergen & Julesz 1983; Treisman & Gelade, 1980; Wolfe, 26 

2015). In cognitive psychology, such dynamic information processing has been  27 
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investigated mainly by measuring the reaction times and correct rates of observers. 28 

However, the reaction time alone is not powerful enough to reveal what kind of 29 

information in the stimuli led the observers to make a decision at that moment in time, 30 

unless data obtained under various conditions are compared. 31 

In visual neuroscience, reverse correlation analysis is widely applied to reveal the 32 

information in stimuli that determines the system responses (Neri & Levi, 2006; Neri, 33 

Parker & Blakemore, 1999). This analysis has been applied not only to the responses of 34 

cortical neurons (DeAngelis, Ohzawa & Freeman, 1993), but also to the analysis of the 35 

behavioral responses of human observers (Ringach, 1998; Solomon, 2002). The 36 

classification image (CI) method, one such technique, visualizes what information in the 37 

stimuli observers consider important for a given perceptual judgement (Ahumada, 1996; 38 

Abbey & Eckstein, 2002; Abbey & Eckstein, 2007). In typical experiments, the observer's 39 

responses to a visual target embedded in white noise are collected, and the information in 40 

the stimulus that affected the observer's response is mapped out by analyzing the 41 

correlation between the noise and the response in each trial. The CI technique has been 42 

used to reveal the spatial distribution of information, or perceptive field, that determines 43 

the observer's judgments for a variety of visual tasks (Eckstein, Shimozaki & Abbey, 44 

2002; Gold, Murray, Bennett & Sekuler, 2000; Rajashekar, Bovik & Cormack, 2006). 45 

With dynamic stimuli, the CI method can also yield spatiotemporal perceptive fields (Neri 46 

& Heeger, 2002; Mareschal, Dakin & Bex, 2006; Neri & Levi, 2008). Neri & Heeger 47 

(2002) analyzed the correlation between spatiotemporal noise and responses in each trial 48 

in a contrast detection task for luminance bars that slowly appear in dynamic noise. They 49 

found CI profiles with biphasic weights in time and space, similar to the spatiotemporal 50 

impulse response of the early visual system. Recently, similar psychophysical reverse 51 

correlation with dynamic stimuli has been applied to the judgement on the average of 52 

time-varying visual information to investigate the mechanisms of perceptual decision 53 

making (Gardelle & Summerfield, 2011; Hanks & Summerfield, 2017; Li, Castañón, 54 

Solomon, Vandormael & Summerfield, 2017; Vandormael, Castañón, Balaguer, Li & 55 

Summerfield, 2017; Sato & Motoyoshi, 2020; Summerfield & Tsetsos, 2015; Yashiro & 56 

Motoyoshi, 2020; Yashiro, Sato, Oide & Motoyoshi, 2020). 57 
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In the aforementioned studies, however, observers made decisions after the visual stimuli 58 

had been shown. Such a judgment, which is usually based on visual working memory, is 59 

somehow dissociated from on-the-fly judgments that we make in the real world. To 60 

clarify when observers make decisions and what information observers rely on to make 61 

decisions during observation, one can analyze correlations at each time point of the 62 

stimulus locked to the reaction time of the observer during the presentation of the 63 

stimulus rather than the stimulus onset. This response-locked reverse correlation has 64 

been employed in several studies (Ringach, 1998; Busse, Katzner, Tillmann & Treue, 65 

2008; Caspi, Beutter & Eckstein, 2004; Okazawa, Purcell & Kiani, 2018). For example, 66 

Caspi et al. (2004) examined visual features that trigger saccadic eye movements by 67 

analyzing the noise at time points locked to the onset of the saccade while the observers 68 

views a multi-element display. Okazawa et al. (2018) adopted a reverse correlation 69 

analysis locked to button-press responses to stochastic motion to explore the properties 70 

of global-motion detectors and decision-making mechanisms. 71 

In the present study, we applied the response-locked CI analysis to the most basic visual 72 

task, luminance contrast detection. Specifically, we used stimuli similar to those used by 73 

Neri & Heeger (2002) to measure responses and reaction times for target stimuli that 74 

emerge slowly in dynamic noise, and we then analyzed the correlation between the noise 75 

and response at each time point backward, locked to the observer's reaction time. This 76 

protocol allowed us to examine what signals and what point in the stimulus determined 77 

the observer's decision about the target and the observer’s reaction time. The results 78 

revealed spatiotemporally biphasic CIs similar to those reported by Neri & Heeger (2002). 79 

On the other hand, we also found that the profile of the CI substantially varied depending 80 

on the response time of the observer in a way that was unpredictable from the response 81 

properties of the early visual system. These apparently complicated results, however, 82 

were quantitatively described by a simple computational model incorporating a perceptual 83 

process approximated by a spatiotemporal filter and a decision process (drift-diffusion) 84 

that accumulates its output. 85 

 86 

2. Methods 87 
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2.1. Observers 88 

Five naïves and two of the authors (average age: 22.8 years) with corrected-to-normal 89 

vision participated in the experiment. All experiments were conducted with permission 90 

from the Ethics Committee of the University of Tokyo. Observers gave written informed 91 

consent. The study followed the Declaration of Helsinki guidelines. 92 

2.2. Apparatus 93 

Visual stimuli were displayed on a gamma-corrected LCD monitor (BENQ XL2735) 94 

controlled by a PC. The refresh rate was 60 Hz, and the pixel resolution was 0.04 95 

deg/pixel at the viewing distance of 50 cm that we used. The mean luminance of the 96 

uniform background was 88.9 cd/m2. All experiments were conducted in a dark room. 97 

2.3. Stimuli 98 

The visual stimulus was square dynamic one-dimensional noise (4.8 × 4.8 deg) 99 

comprising 16 vertical bars with a width of 0.3 deg (Fig. 1). The contrast (𝐶𝑛𝑜𝑖𝑠𝑒(𝑡)) of 100 

each bar was switched at a frame rate of 30 Hz according to Gaussian noise with an RMS 101 

contrast of 0.1. The total duration was 8000 ms. Two independent 1D-noise fields were 102 

presented adjacent to the fixation point.  103 
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 104 

Figure 1. Schematic diagram of the visual stimuli used in the experiment. The bright bar that 105 

appears on the left is the target. 106 

The target signal (𝐶𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)) was linearly added to the two central bars only for one of the 107 

noise fields. The contrast of the target signal, 𝐶𝑡𝑎𝑟𝑔𝑒𝑡(𝑡), increased linearly with time (t) on 108 

a logarithmic scale according to the following equation. 109 

log 𝐶𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = 𝑚𝑖𝑛(𝛼𝑡 − 3, 0)  Eq. (1). 110 

Here, t is the time from the stimulus onset.  is the rate of increase, which was set at 111 

three levels: 0.05, 0.1, and 0.2. The contrast of each bar was clipped in the range of −1 112 

to +1. The two fields, with and without the target signal, were transformed into 113 

luminance images using the relation L(t) = Lmean (1+C(t)), where Lmean is the mean 114 

luminance of the uniform background (88.9 cd/m2). 115 

2.4. Procedure 116 

In each trial, observers viewed the stimulus at a fixation point binocularly and indicated 117 

by pressing a button whether the target appeared in the left or right noise field as quickly 118 

as possible. If an observer’s response exceeded the deadline (8000 ms) or was an error, 119 

auditory feedback was given, and the data recorded in that trial were excluded from the 120 

Space

Time

.

33 ms
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analyses. The next trial started no less than 0.5 s after the observer’s response. The 121 

average error rates were 0.03, 0.02, and 0.02 for contrast increases () of 0.05, 0.1, and 122 

0.2, respectively. In each trial, the contrast values of all individual bars (Cnoise (x,t)), the 123 

observer’s response (left, right), and the reaction time were recorded. Each session of the 124 

experiment comprised 150 trials for a single condition. For each observer, sessions were 125 

repeated until at least 1200 trials were conducted for each condition. 126 

 127 

3. Results 128 

3.1. Reaction time 129 

Figure 2a shows the average logarithmic reaction time of the observer, plotted as a 130 

function of the contrast increase (). On a linear scale, the reaction times were 1949 ms 131 

(s.e.= 36.1), 1207 ms (s.e.= 20.7), and 818 ms (s.e.= 22.7) for a contrast increase (α) 132 

of 0.05, 0.01 and 0.2, respectively. Fig. 2b is a cumulative histogram of the reaction 133 

times of all observers. Fig. 2b shows that a slower rate of increase in the contrast 134 

resulted in a longer average reaction time. One-way repeated-measure ANOVA on the 135 

average reaction time with increasing contrast showed a significant effect of the rate of 136 

contrast increase on the reaction time (F(2, 12) = 1574.6, p < 0.001).  137 

 138 

Figure 2. (a) Average logarithmic reaction time as a function of the contrast increase rate. Error 139 

bars represent ±s.e. across observers (invisibly small). (b) Cumulative histogram of reaction times 140 

of all observers (solid line). Dashed lines represents the logarithmic contrast of the target stimulus 141 

over time. Red, blue, and green lines represent a contrast increase of 0.05, 0.1, and 0.2, 142 

respectively.  143 

a b

0.05
0.1
0.2

0

R
e
a
c
ti
o
n
 t

im
e
  

(l
o
g
 m

s) 3.5

2.5
0.20.05

Slope of log contrast ()

0.1 3000

Reaction time (ms)

lo
g
 ta

rg
e
t c

o
n
tra

st

100

0

0

-3C
u
m

u
la

ti
v
e
 r

e
sp

o
n
se

(%
)

3.0
50

-2

-1

20001000



(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.447463doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.447463


7 

 

3.2. Reverse correlation analysis locked to the response time 144 

We conducted a reverse correlation analysis between the contrast of each bar and the 145 

observer's response (left, right) at each time (t) back from the reaction time to 146 

characterize the noise common to the time before the reaction. Fig. 3 is a diagram of the 147 

analysis. As in Neri & Heeger (2002), μ1(x,t) is the mean of the noise contrast in the 148 

region where the observer responded that the target was present and μ0(x,t) is the mean 149 

of the noise contrast in the region where the observer responded that the target was not 150 

present. The results were calculated as follows. 151 

𝑀𝑒𝑎𝑛 𝐾𝑒𝑟𝑛𝑒𝑙 (𝑥, 𝑡) =  𝜇1(𝑥, 𝑡) −  𝜇0(𝑥, 𝑡)    Eq. (2), 152 

here Mean Kernel refers to the effect of the noise contrast on the response.  153 

 154 

Figure 3. Reverse correlation analysis locked to the reaction. The classification image (CI) was 155 

calculated for each bar contrast at each time from the reaction time. 156 

The upper panels in Fig. 4 show the classification image (i.e., Mean Kernel) obtained in 157 

the reverse correlation analysis locked to the reaction time. The horizontal axis represents 158 

the time (t) back from the reaction time, and the vertical axis represents the spatial 159 

position of each bar (x). In comparison with the grey background, the brighter points 160 

represent positive weights and the darker points represent negative weights. Individual 161 
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panels show results for a contrast increase () of 0.05, 0.1, or 0.2. The lower panels 162 

show the mean of the weights of the two central bars (red) and the mean of the weights 163 

of the two surrounding bars adjacent to them (blue) in the CI. The vertical axis 164 

represents the weight and the horizontal axis represents the time from the reaction time. 165 

We refer to the plots as impact curves. 166 

 167 

Figure 4. Results of response-locked reverse correlation analysis. The upper panels show the 168 

classification image (CI). The vertical axis represents the space and the horizontal axis represents 169 

the time from the reaction time. Each pixel represents a positive (bright) or negative (dark) weight. 170 

The lower panels show the average of the weights in the central two bars (red curves) and the 171 

average of the weights in the two adjacent bars (blue curves). The vertical axis represents the 172 

weights and the horizontal axis represents the time from the reaction time. Error bars represent 173 

±s.e. across observers. Individual panels show the results for a contrast increase () of 0.05, 0.1, 174 

or 0.2. 175 

The above plots show characteristic temporal and spatial variations in the weights before 176 

the target detection response. At the center of the stimulus where the target appeared, a 177 

large positive weight was found about 300 ms before the response, and a negative 178 

weight was found about 500 ms before the response. For the spatial variation, we find 179 

that the weights around the target are reversed from the center. This indicates that the 180 

central bar in which the target appears has high luminance compared with the 181 

surrounding bars, which is a cue to the response. It is also found that the absolute 182 

magnitude of the weights tends to increase as the contrast increase rate increases. We 183 

also conducted the same analysis for contrast variance, as was done in a previous study 184 
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(Neri & Heeger, 2002), but found no clear CI profile at all.  185 

For each condition, we calculated the average weights during the time epoch from −250 186 

to −350 ms when in a clear variation in the weights is observed. We then conducted a 187 

two-way repeated-measure ANOVA on the average weights with factors of the position 188 

(center and periphery) and the contrast increase rate (a = 0.05, 0.1, 0.2) for each 189 

condition. The results reveal that the main effect of position (F(1,6) = 182.15, p < 0.001) 190 

was significant while the main effect of the contrast increase rate (F(2,12) = 1.689, p = 191 

0.26) was not significant, and there was a significant interaction between the factors 192 

(F(2,12) = 20.28, p < 0.001). 193 

3.3. Relationship between the RT and CI 194 

As shown in Fig. 2, the reaction time of the observer varied even under the same 195 

conditions. Each individual observer responded quickly in some trials and took a long time 196 

in others. Taking advantage of this fact, we investigated if and how the CI changes with 197 

the reaction time. To this end, we divided the observer's data into 50% trials with short 198 

reaction times, 50% trials with intermediate reaction times, and 50% trials with long 199 

reaction times for each condition of the contrast increase rate, and carried out the reverse 200 

correlation analysis for each group. 201 

Figure 5 shows the CIs and impact curves obtained for each reaction time group. The 202 

results were surprisingly different across the groups. The positive weights about 300 ms 203 

before the reaction are larger for the shorter reaction time group. Conversely, the 204 

negative weights 500 ms before the reaction are larger for the longer reaction time 205 

group. This tendency is constant regardless of the contrast increase rate (). The results 206 

indicate that the spatiotemporal profile of the weights of information correlated with the 207 

response is remarkably different depending on the reaction time. 208 
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 209 

Figure 5. Results for each reaction time group. Results for (a) short reaction times, (b) intermediate 210 

reaction times, and (c) long reaction times. Upper panels show the CIs and lower panels show the 211 

impact curves. 212 

For each condition, we calculated the average weights during the time epoch from −250 213 

to −350 ms and during the time epoch from −450 to −550 ms. For each time epoch, we 214 

performed a three-way-measure ANOVA on the average weights for the position (center 215 

and periphery), the contrast increase rate (a = 0.05, 0.1, 0.2), and reaction time group. 216 

For the time epoch of −250 to −350 ms, the results show that the main effects of the 217 

position (F(1,6) = 269.03, p < 0.001) and reaction time group (F(2,12) = 28.44, p < 218 

0.001) were both significant, and the main effect of the contrast increase rate (F(2,12) = 219 

1.85, p < 0.20) was not significant. The results also show a significant interaction 220 

between the position and reaction time group (F(2,12) = 54.025, p < 0.001), between 221 
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the contrast increase rate and reaction time group (F(4,24) = 4.85, p < 0.01), between 222 

the position and contrast increase rate (F(2,12) = 18.18, p < 0.001), and between the 223 

position and contrast increase rate and reaction time group (F(4,24) = 5.08, p < 0.005). 224 

For the time epoch of −450 to −550 ms, the results show that the main effects of the 225 

position (F(1,6) = 114.73, p < 0.001) and reaction time group (F(2,12) = 12.12, p < 226 

0.005) were significant, and the main effect of the contrast increase rate (F(2,12) = 0.25, 227 

p < 0.784) was not significant. The results also show a significant interaction between the 228 

reaction time group and position (F(2,12) = 7.01, p < 0.01), between the reaction time 229 

group and contrast increase rate (F(4,24) = 3.22, p < 0.05), and between the position 230 

and contrast increase rate (F(2,12) = 5.90, p < 0.05). There was no significant 231 

interaction between the position, contrast increase, and reaction time (F(4,24 ) = 0.750, 232 

p = 0.57). 233 

 234 

4. Discussion 235 

The present study examined the information utilization strategy adopted in dynamic 236 

decision making during stimulus observation in a simple contrast detection task. Applying 237 

the classification image method, we calculated the weights of the embedded noise at 238 

each time point retrospectively from the reaction time for the target. The resulting CIs 239 

indicate that observers responded by utilizing the biphasic luminance change and the 240 

central antagonistic spatial contrast before the response. In addition, we found that these 241 

spatiotemporal profiles of CIs varied significantly depending on the reaction time.  242 

The complex diversity of the results depending on the reaction time appears to be difficult 243 

to understand intuitively. This may seem to indicate that the observers were so flexible 244 

that they use different strategies for utilizing information depending on whether they 245 

could respond quickly to the target or not. However, we should first consider a simple 246 

explanation—that the results are a natural consequence of an interplay between the 247 

sensory system and the decision process. Therefore, we tested a simple model consisting 248 

of the early visual process (linear filtering model) and the perceptual decision process 249 

(drift-diffusion model). As a result, we found that this conservative model with a fixed set 250 
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of parameters successfully duplicated the human data for all conditions and RT ranges. 251 

4.1. Computational model 252 

Figure 6 shows an outline of the model, which is inspired by a previous study on 253 

spatiotemporal ensemble perception (Yashiro et al., 2020). The model compares the 254 

spatially summarized outputs of the perceptual process, which is approximated using 255 

linear spatiotemporal filters, between the two regions. The decision process accumulates 256 

the differential signal between the two regions as sensory evidence over time and makes 257 

a decision when the evidence reaches a given boundary. The basic structure of the 258 

perceptual process follows that of a previous CI study (Neri & Hereger, 2002), and the 259 

computation of the decision making follows traditional DDM modeling for a two-260 

alternative forced-choice task (Ratcliff & McKoon, 2008; Gold & Shadlen, 2007; Kiani, 261 

Hanks & Shadlen, 2008). Fig. 6 shows each step of the process graphically for the case 262 

that a target appears on the left. The calculation of each step is described in detail below. 263 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.447463doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.447463


13 

 

 264 

Figure 6. Schematic diagram of a model based on spatiotemporal filtering and the accumulation of 265 

sensory evidence. 266 

Following previous studies (Neri & Hereger, 2002), the perceptual system is 267 

approximated as a linear spatiotemporal filter, Fst(x,t), as follows. 268 

𝐹𝑠𝑡(𝑥, 𝑡) =  𝐹𝑠(𝑥) ∙ 𝐹𝑡(t)         Eq. (3). 269 

Here, Fs(x) is the spatial filter and Ft(t) is the temporal filter. The spatial filter Fs(x) is 270 

given as a DoG function, which has been widely used as a first-order approximation for 271 

contrast detectors in the visual system (Enroth-Cugell & Robson, 1966). 272 
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for the surrounding region. The temporal filter Ft(t) is given as the following biphasic 275 

function (Watson, 1986; Adelson & Bergen, 1985). 276 

𝐹𝑡(t) =  (
1

𝑛!
− 𝐵

(𝑡 𝜏⁄ )2

(𝑛+2)!
) ∙ (𝑡 𝜏⁄ )𝑛exp (𝑡 𝜏⁄ )     Eq. (5).  277 

Here, n is the number of stages in the time integrator,  is the transient factor, and B is a 278 

parameter that defines the amplitude ratio of the positive and negative phases. 279 

The response of the perceptual system was obtained by convolving the above 280 

spatiotemporal filter Fst(x,t) with the stimulus input I(x,t). 281 

𝑅(𝑥, 𝑡) = 𝐼(𝑥, 𝑡) ∗ 𝐹𝑠𝑡(𝑥, 𝑡)         Eq. (6). 282 

Decisions concerning whether the target presented in the left or right region were made 283 

by comparing the spatial sum of the absolute values of the responses in each region 284 

between the left and right. Thus, the model observer continually monitored the difference 285 

R(t) between the left and right responses at time t from the stimulus onset. Here, R(t) 286 

is regarded as the sensory evidence at time t in the decision-making model. 287 

∆R(𝑡) = ∑ |Rleft(𝑥, 𝑡)|𝑥 − ∑ |Rright(𝑥, 𝑡)|𝑥     Eq. (7). 288 

Decisions for targets are based on evidence accumulated over time. However, a number 289 

of decision-making studies suggest that sensory evidence decays with time; that is, the 290 

evidence weakens as it ages (Usher & McClelland, 2001; Hanks & Summerfield, 2017; 291 

Yashiro et al., 2019). This property is practically described as a leaky temporal 292 

integration, and it is potentially a product of the adaptive gain control of evidence signals 293 

(Cheadle, Wyart, Tsetsos, Myers, Gardelle, Castañón & Summerfield, 2014; Li, Michael, 294 

Balaguer, Castañón, Summerfield, 2018). According to these findings, the present 295 

modeling assumes that the cumulative evidence S(T) at time T is given by the following 296 

equation, which approximates the noisy leaky integration of R(t). 297 

𝑆(𝑇) =  ∑ (γ(𝑇−𝑡)∆R(𝑡)𝑇
𝑡=1  + ϵ𝑡)      Eq. (8). 298 

Here,  is the time constant of evidence integration and t is the internal noise following a 299 

normal distribution. The model observer makes a decision about whether the target is on 300 

the left or right when S(T) exceeds a certain decision boundary, that is,  or − 301 

respectively. The observer was assumed to execute a manual response after a constant 302 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.447463doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.447463


15 

 

motor delay of 250 ms from T. 303 

In this modeling, the perceptual process part has five parameters: the standard 304 

deviations of the spatial filter (c and s), the number of biphasic temporal filter 305 

integration stages (n), the time constant () and the ratio of positive and negative phases 306 

(B). The decision-making process part has three parameters: the decision boundary (), 307 

the internal noise (t) and the time constant for evidence reduction (). 308 

4.2. Model Simulation 309 

We analyzed the CI and impact curves of the model observer using the image input data 310 

that were presented to each observer in the experiment. In the simulations, for all data in 311 

the condition of  = 0.05, the model parameters were optimized for each observer to 312 

minimize the squared error between the impact curve obtained for the model observer 313 

and that of the human observer. To achieve the steady fitting, only the number of 314 

integration steps of the biphasic temporal filter (n) was fixed to 5, for all model observers.  315 

Figure 7 shows the simulation results. The thick impact curve represents the average of 316 

results obtained for the optimized model for each observer, and the light-colored bands 317 

represent the ±1 se range of the average for the human observer data. Estimated 318 

parameters and the s.e. across model observers were [c, s, B, ,   ,  , t] = [4.15, 319 

17.4, 0.47, 0.793, 0.046, 496.5, 49.6] (s.e. = 0.18, 1.67, 0.07, 0.084, 0.002, 3.58, 320 

2.64). For all values of the contrast increase (), we find that the model successfully 321 

duplicated both the CI and the impact curve of the observers. For the three different 322 

reaction time groups (Fig. 7b–d), the model duplicated the observers' data, reflecting the 323 

characteristic differences of RT-dependent CI and impact curves. The root-mean-square 324 

error (i.e., difference) between the fitted models and the model observers' data averaged 325 

over all observers was 0.005 (s.e. = 0.0001). 326 
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 327 

Figure 7. Results of the model simulations. (a) Impact curves and CIs derived from the data for all 328 

RTs. (b)–(d) Impact curves and CIs when divided into reaction time groups, with solid lines 329 

representing results for model observers and light-colored bands representing the ±1 s.e. range for 330 

human data. 331 

To investigate the importance of the functional processes assumed in the model in Fig. 6, 332 

we simulated the model without some of the functional processes. We found that (1) the 333 

unique shape of the observers' CIs and impact curves could not be simulated if even one 334 

of the parameters of the spatiotemporal filter was omitted and (2) without the leaky 335 
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integration property being assumed in the decision making, the effect of the early stage 336 

of stimulus presentation did not decrease even after a long observation in some RT 337 

ranges. On the other hand, modifying the model to accumulate the responses in each 338 

domain separately as two pieces of evidence and then calculate those differences, instead 339 

of accumulating the differences in responses between the two domains as evidence, did 340 

not change the behavior of the model, because the model essentially accumulates 341 

evidence linearly (c.f., Bogacz, Brown, Moehlis, Holmes & Cohen, 2006). 342 

The present results support the idea that on-the-view behavioral responses to visual 343 

stimuli can be explained by a simple combination of the conventional perceptual model 344 

and the standard perceptual decision-making model. This finding may allow us to perform 345 

a response-locked reverse correlation analysis of human responses to sensory stimuli 346 

during observation, rather than after observation, to explore the characteristics and 347 

strategies of human information use in various cognitive tasks. In further investigations, a 348 

similar framework may be used to understand the mechanisms for attentional selection 349 

and for high-level visual cognition. The present computational model can be used as a 350 

baseline account in these investigations. 351 

It should be noted that psychophysical analysis cannot reliably separate the properties of 352 

decision making from the low-level perceptual process (Okazawa et al., 2018). Although 353 

one can partially overcome this limitation by making full use of various aspects of data, 354 

such as by dividing the data into different RT ranges as in the present study, it is difficult 355 

to distinguish between some properties such as the latency of the perceptual sensors and 356 

the motor delay in the decision process. 357 
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