- 1 Identification of essential genes in *Caenorhabditis elegans* through whole genome sequencing of
- 2 legacy mutant collections
- 3
- 4 Erica Li-Leger^{*}, Richard Feichtinger^{†‡}, Stephane Flibotte[§], Heinke Holzkamp^{‡**}, Ralf Schnabel[‡],
- 5 Donald G. Moerman^{*}
- 6
- 7 ^{*}Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- 8 V6T 1Z3
- **9** [†]Present Address: Secufy GmbH, CoWorking M1, Anni-Eisler-Lehmannstr. 3, 55122 Mainz,
- 10 Germany
- ¹¹ ^{*}Department of Developmental Genetics, Institute of Genetics, Technische Universität
- 12 Braunschweig, 38106, Germany
- 13 [§]UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia,
- 14 Canada.
- 15 ***Present Address: Department of Biochemistry, Ludwig-Maximilians-University Munich, 81377
- 16 Munich, Germany

- 17 Short running title
- 18 Essential genes in *C. elegans*
- 19

20 Key words or phrases

- C. elegans
- Essential genes
- Maternal-effect
- Embryogenesis
- Fertilization
- Legacy mutants
- Whole genome sequencing
- 28
- 29 Corresponding author:
- 30 Name: Donald Moerman
- 31 Office mailing address including street name and number:
- 32 Department of Zoology
- 33 Life Sciences Centre
- 34 2350 Health Sciences Mall
- 35 Vancouver , B.C. Canada V6T 1Z3
- **36** Phone number: 604-822-3365
- 37 Email address: moerman@zoology.ubc.ca
- 38

ABSTRACT

41 42	It has been estimated that 15-30% of the ~20,000 genes in <i>C. elegans</i> are essential, yet many of
43	these genes remain to be identified or characterized. With the goal of identifying unknown
44	essential genes, we performed whole genome sequencing on complementation pairs from
45	legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered
46	maternal genes required for embryonic development and genes with putative sperm-specific
47	functions. In total, 58 essential genes were identified on chromosomes III, IV, and V, of which 49
48	genes are represented by novel alleles in this collection. Of these 49 genes, 19 (40 alleles) were
49	selected for further functional characterization. The terminal phenotypes of embryos were
50	examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the
51	eggshell. Mating assays with wild-type males revealed previously unknown male-expressed
52	genes required for fertilization and embryonic development. The result of this study is a
53	catalogue of mutant alleles in essential genes that will serve as a resource to guide further study
54	toward a more complete understanding of this important model organism. As many genes and
55	developmental pathways in C. elegans are conserved and essential genes are often linked to
56	human disease, uncovering the function of these genes may also provide insight to further our
57	understanding of human biology.
58	

61	INTRODUCTION
62 63	Essential genes are those required for the survival or reproduction of an organism, and therefore
64	encode elements that are foundational to life. This class of genes has been widely studied for a
65	number of reasons. Essential genes are often well conserved and can offer insight into the
66	principles that govern common biological processes (Hughes 2002; Jordan <i>et al</i> . 2002; Georgi <i>et</i>
67	al. 2013). Researching these genes and their functions has important implications in
68	understanding the cellular and developmental processes that form complex organisms, including
69	humans. Additionally, identifying genes that are lethal when mutated opens up new avenues
70	through which drug development approaches can target parasites, pathogens, and cancer cells
71	(for example, Doyle et al. 2010; Shi et al. 2015; Vyas et al. 2015; Zhang et al. 2018). Finally, the
72	concept of a minimal gene set that is comprised of all genes necessary for life has been the
73	subject of much investigation and has recently been of particular interest in the field of synthetic
74	biology (reviewed in Ausländer <i>et al.</i> 2017).
75	
76	Studying essential genes in humans is complicated by practical and ethical considerations.
77	Accordingly, model organisms have played a key role in identifying and understanding essential
78	genes, and efforts have been made to identify all essential genes in a few model organisms.
79	Systematic genome-wide studies of gene function in Saccharomyces cerevisiae have uncovered
80	more than 1,100 essential genes, many of which have phylogenetically conserved roles in
81	fundamental biological processes such as cell division, protein synthesis and metabolism
82	(Winzeler <i>et al.</i> 1999; Giaever <i>et al.</i> 2002; Yu <i>et al.</i> 2006; Li <i>et al.</i> 2011). While an important
83	contribution, this is only a fraction of the all the essential genes in multicellular organisms. In

84 more complex model organisms, identifying all essential genes in the genome has not been so 85 straightforward. The discovery of RNA interference (RNAi; Fire et al. 1998) enabled researchers 86 to employ genome-wide reverse genetic screens to examine the phenotypic effects of gene 87 knockdown (Fraser et al. 2000; Kamath et al. 2003). In general, this has been an effective, high-88 throughput method for identifying many genes with essential functions (Gönczy et al. 2000; 89 Sönnichsen et al. 2005). However, there are limitations to using RNAi to screen for all essential 90 genes, including incomplete gene knock down, off-target effects, and RNAi resistance in certain 91 tissue or cell types; thus, many genes of biological importance escape identification in high-92 throughput RNAi screens. This highlights the motivation to obtain null alleles for every gene in 93 the genome, which has been the goal of several model organism consortia (C. elegans Deletion 94 Mutant Consortium 2012; Bradley et al. 2012; Varshney et al. 2013), though it has not yet been 95 achieved for any metazoan.

96

97 *Caenorhabditis elegans* has been an important model in developmental biology for decades, and the ability to freeze and store populations of C. elegans indefinitely allows investigators to share 98 99 their original mutant strains with others around the world. In the first few decades of *C. elegans* 100 research, dozens of forward genetics screens were used to uncover mutants in hundreds of 101 essential genes (for example, Herman 1978; Meneely and Herman 1979; Rogalski et al. 1982; 102 Howell et al. 1987; Clark et al. 1988; Johnsen and Baillie 1988; Kemphues et al. 1988; McKim et 103 al. 1988; Howell and Rose 1990; Johnsen and Baillie 1991; McKim et al. 1992; Stewart et al. 104 1998; Gönczy et al. 1999). These early studies generated what we refer to here as legacy 105 collections. The alleles were often mapped to a region of the genome through deficiency or

106 linkage mapping. However, the process of identifying the molecular nature of the genetic 107 mutations one-by-one using traditional methods was slow and laborious before the genome 108 sequence was complete (The C. elegans Sequencing Consortium 1998) and next-generation 109 sequencing technologies were developed (reviewed in Metzker 2010; Goodwin et al. 2016). 110 111 As whole genome sequencing (WGS) has become widely adopted, methods for identifying 112 mutant alleles have evolved to take advantage of these technological advances (Sarin et al. 2008; 113 Smith et al. 2008; Srivatsan et al. 2008; Blumenstiel et al. 2009; Schneeberger et al. 2009; 114 Doitsidou et al. 2010; Flibotte et al. 2010; Zuryn et al. 2010; Smith et al. 2016). With WGS 115 becoming increasingly affordable over time, mutant collections can now be mined for data in 116 efficient ways that were not possible two decades ago. Performing WGS on a single mutant 117 genome is often insufficient to identify a causal variant due to the abundance of background 118 mutations in any given strain, particularly one that has been subjected to random mutagenesis 119 (Denver et al. 2004; Hillier et al. 2008; Sarin et al. 2008; Flibotte et al. 2010). However, when 120 paired with additional strategies such as deletion or SNP-based mapping or bulk segregant 121 analysis, WGS becomes a valuable tool to expedite gene identification. Furthermore, if multiple independently derived allelic mutants exist, an even simpler approach can be taken. By 122 123 sequencing two or more mutants within a complementation group and looking for mutations in 124 the same gene, the need for additional mapping or crossing schemes is greatly reduced 125 (Schneeberger et al. 2011; Nordström et al. 2013).

126

127 In the legacy mutant collections described above, where large numbers of mutants are isolated, 128 it is feasible to obtain complementation groups with multiple alleles for many loci. In addition, 129 the abundance of mutants obtained in these large-scale genetic screens suggests that some 130 legacy mutant collections may harbor strains for which the mutations remain unidentified. If 131 such collections are coupled with thorough annotations, they are valuable resources that can be 132 mined with WGS. Indeed, some investigators have recently used such WGS-based approaches to 133 uncover novel essential genes from legacy collections (Jaramillo-Lambert et al. 2015; Qin et al. 2018). These projects bring us closer to identifying all essential genes in *C. elegans* and also 134 135 contribute to the ongoing efforts to obtain null mutations in every gene in the genome. 136 There are currently 3,755 C. elegans genes that have been annotated with lethal or sterile 137 138 phenotypes from RNAi knockdown studies (data from WormBase version WS275). In 139 comparison, the number of genes currently represented by lethal or sterile mutant alleles is 140 1,885 (data from WormBase version WS275). These numbers should be considered minimums, 141 as the database annotations are not necessarily up to date. The discrepancy in these numbers 142 could be illustrative of the comparatively time-consuming and laborious nature of isolating and 143 identifying mutants. Additionally, some of the genes identified as essential in RNAi screens may 144 belong to paralogous gene families whose redundant functions are masked in single gene 145 knockouts. Although the total number of essential genes in *C. elegans* is unknown, extrapolation 146 from saturation mutagenesis screens has led to estimates that approximately 15-30% of the 147 ~20,000 genes in this organism are essential (Clark et al. 1988; Howell and Rose 1990; Johnsen 148 and Baillie 1997; The C. elegans Deletion Mutant Consortium 2012). This suggests the possibility

149 that there are many essential genes in *C. elegans* that remain unidentified and/or lack

150 representation by a null allele.

152 In this study, we use WGS to revisit two *C. elegans* legacy mutant collections isolated more than 153 25 years ago. These collections are a rich resource for essential gene discovery; they comprise 75 154 complementation groups in which at least two alleles with sterile or maternal-effect lethal 155 phenotypes have been found. With these collections, we sought to identify novel essential genes 156 and to conduct a preliminary characterization of their roles in fertilization and development. 157 Wild-type male rescue assays are used to attribute some mutant phenotypes to sperm-specific 158 genetic defects. In addition, we examine arrested embryos using differential interference 159 contrast (DIC) microscopy and document their terminal phenotypes. This work comprises a 160 catalogue of 123 alleles with mutations in 58 essential genes on chromosomes III, IV, and V. Of 161 these 58 genes, 49 are represented by novel alleles in this collection. We present several genes 162 which are reported here for the first time as essential genes and mutant alleles for genes that have only previously been studied with RNAi knockdown. The aim of this work is to help 163 164 accelerate research efforts by identifying essential genes and providing an entry point into further investigations of gene function. Advancing our understanding of essential genes is 165 166 imperative to reaching a more comprehensive knowledge of gene function in *C. elegans* and may 167 provide insight into conserved processes in developmental biology, parasitic nematology, and 168 human disease.

169	MATERIALS AND METHODS
170 171	Generation of legacy mutant collections
172	Mutant strains were isolated in screens for maternal-effect lethal and sterile alleles in the early
173	1990s by Heinke Holzkamp and Ralf Schnabel (unpublished data), and Richard Feichtinger
174	(Feichtinger 1995). Two balancer strains were used for mutagenesis; GE1532: unc-32(e189)/qC1
175	[dpy-19(1259) glp-1(q339)] III; him-3(e1147) IV and GE1550: him-9(e1487) II; unc-
176	24(e138)/nT1[let(m435)] IV; dpy-11(e224)/nT1[let(m435)] V. These parental strains were
177	subjected to ethyl methanesulfonate (EMS) mutagenesis at 20° as described by Brenner (1974),
178	with a mutagen dose of 50-75 mM and duration between 4 and 6 hours. Following mutagenesis,
179	L4 F1 animals were singled on plates at either 15° or 17°. Animals with homozygous markers in
180	the F2 or F3 generation were transferred to 25° and subsequently screened for the production of
181	dead eggs, unfertilized oocytes, or no eggs laid. The two mutant collections analyzed in this
182	study are summarized in Table 1.
183 184 185	List of strains
186	The wild-type Bristol N2 derivative PD1074 and strains with the following mutations were used:
187	him-3(e1147), unc-32(e189), qC1[dpy-19(e1259) glp-1(q339)] , him-9(e1487), unc-24(e138), dpy-
188	11(e224, e1180), nT1[let(m435)] (IV;V), nT1[unc(n754)let] (IV;V). Strains carrying the following
189	deletions were used for deficiency mapping: nDf16, nDf40, sDf110, sDf125, tDf5, tDf6, tDf7 (III);
190	eDf19, nDf41, sDf2, sDf21, stDf7 (IV); ctDf1, itDf2, nDf32, sDf28, sDf35 (V). All sDfs were kindly
191	provided by D. Baillie's Lab (Simon Fraser University), and some strains were kindly provided by

- 192 the Caenorhabditis Genetics Center (University of Minnesota). Nematode strains were cultured
- **193** as previously described by Brenner (1974).
- 194 195
- 196 Outcrossing, mapping and complementation analysis
- 197
- 198

All mutant strains were outcrossed at least once to minimize background mutations on other

200 chromosomes. Hermaphrodites of the mutant strains were outcrossed with males of GE1532 for

201 Collection A and males of GE1964: *him-9(e1487) II;* +/*nT1[let(m435)] IV; dpy-*

202 *11(e1180)/nT1[let(m435)] V* for Collection B. Deficiency mapping was used to localize mutations

to a chromosomal region using the deletion strains listed above. A detailed description of the

204 outcrossing and mapping schemes for Collection B can be found in Feichtinger (1995).

205

206 Complementation analysis of legacy mutants was performed by crossing 10 males of one mutant 207 strain to 4 hermaphrodites of another strain. The presence of males with homozygous markers 208 indicated successful crossing, and homozygous hermaphrodite progeny were transferred to new 209 plates to determine whether viable offspring were produced and thus complementation 210 occurred. Failure to complement was verified with additional homozygous animals or by 211 repeating the cross. Complementation tests between CRISPR-Cas9 deletion strains and legacy 212 mutants were performed by crossing heterozygous CRISPR-Cas9 deletion (GFP/+) males to 213 heterozygous legacy mutant hermaphrodites. Twenty GFP hermaphrodite F1s were singled on 214 new plates and those segregating viable Dpy and/or Unc progeny indicated complementation 215 between the two alleles.

216

217	
218	DNA extraction
219 220	Balanced heterozygous strains were grown on 100 mm nematode growth medium (NGM) agar
221	plates (standard recipe with 3 times concentration of peptone) seeded with OP50 and harvested
222	at starvation. Genomic DNA was extracted using a standard isopropanol precipitation technique
223	previously described (Au et al. 2019). DNA quality was assessed with a NanoDrop 2000c
224	Spectrophotometer (Thermo Scientific) and DNA concentration was measured using a Qubit 2.0
225	Fluorometer and dsDNA Broad Range Assay kit (Life Technologies).
226	
227	Whole genome sequencing and analysis pipeline
228	DNA library preparation and whole genome sequencing were carried out by The Centre for
229	Applied Genomics (The Hospital for Sick Children, Toronto, Canada). Between 20 and 33 C.
230	elegans mutant strains were run together on one lane of an Illumina HiSeq X to generate 150-bp
231	paired-end reads.
232	
233	Sequencing analysis was done using a modified version of a previously designed custom pipeline
234	(Flibotte et al. 2010; Thompson et al. 2013). Reads were aligned to the C. elegans reference
235	genome (WS263; <u>wormbase.org</u>) using the short-read aligner BWA version 0.7.16 (Li and Durbin
236	2009). Single nucleotide variants (SNVs) and small insertions or deletions (indels) were called
237	using SAMtools toolbox version 1.6 (Li <i>et al.</i> 2009). To eliminate unreliable calls, variants at
238	genomic locations for which the canonical N2 strain has historically had low read depth or poor
239	quality (Thompson et al. 2013) were removed as potential candidates. The variant calls were
240	annotated with a custom Perl script and labeled heterozygous if represented by 20-80% of the

241	reads at that location. The remaining candidates were then subjected to a series of custom
242	filters. Any variants that appeared in more than three strains from the same collection were
243	removed. The remaining list was filtered to only include heterozygous mutations affecting coding
244	exons (indels, missense and nonsense mutations) and splice sites (defined as the first two and
245	last two base pairs in an intron). Finally, the list of candidate mutations was trimmed to include
246	only mutations on the chromosome to which the mutation had originally been mapped.
247	
248	For each pair of strains belonging to a complementation group, the final list of candidate
249	mutations was compared and the gene or genes in common were identified. In cases where
250	there was only one gene in common on both lists, this gene was designated the candidate
251	essential gene. For complementation groups with multiple candidate genes in common,
252	additional information such as the nature of the mutations and existing knowledge about the
253	genes was used to select a single candidate gene, when possible. When there was no gene
254	candidate in common within a pair of strains, the list of variants was reanalyzed to look for larger
255	deletions and rearrangements. If available, two additional alleles were sequenced to help
256	identify the gene.
257	

257

258 Validation of gene identities

To validate the candidate gene identities derived from whole genome sequencing analysis, the
genomic position of each candidate gene was corroborated with the legacy data from deficiency
mapping experiments. Approximate boundaries for the deletions were estimated from the map

262 coordinates of genes known to lie internal or external to the deletions according to data from263 WormBase (WS275).

265 For further validation of select gene candidates, deletion mutants were generated in an N2 wild-266 type background using a CRISPR-Cas9 genome editing strategy previously described (Norris et al. 267 2015; Au et al. 2019). Two guide RNAs were used to excise the gene of interest and replace it 268 with a selection cassette expressing G418 drug resistance and pharyngeal GFP (loxP + Pmyo-269 2::GFP::unc-54 3'UTR + Prps-27::neoR::unc-543'UTR + loxP vector, provided by Dr. John Calarco, 270 University of Toronto, Canada). Guide RNAs were designed using the C. elegans Guide Selection 271 Tool (genome.sfu.ca/crispr) and synthesized by Integrated DNA Technologies (IDT). Repair 272 templates were generated by assembling homology arms (450-bp gBlocks synthesized by IDT) 273 and the selection cassette using the NEBuilder Hifi DNA Assembly Kit (New England Biolabs). 274 275 Cas9 protein (generously gifted from Dr. Geraldine Seydoux) was assembled into a 276 ribonucleoprotein (RNP) complex with the guide RNAs and tracrRNA (IDT) following the 277 manufacturer's recommendations. PD1074 animals were injected using standard microinjection 278 techniques (Mello et al. 1991; Kadandale et al. 2009) with an injection mix consisting of: 50 ng/ μ l 279 repair template, 0.5 µM RNP complex, 5 ng/µl pCFJ104 (Pmyo-3::mCherry), and 2.5 ng/µl pCFJ90 280 (Pmyo-2::mCherry). Injected animals were screened according to the protocol described in 281 Norris et al. (2015) and genomic edits were validated using the PCR protocol described in Au et 282 al. (2019). Complementation tests between CRISPR-Cas9 alleles and legacy mutant alleles were 283 performed to verify gene identities, as described above.

Analysis of orthologs, gene ontology, and expression patterns

- 286 Previously reported phenotypes from RNAi experiments or mutant alleles were retrieved from
- 287 WormBase (WS275) and GExplore (genome.sfu.ca/gexplore; Hutter *et al.* 2009; Hutter and Suh
- 288 2016). Life stage-specific gene expression data from the modENCODE project (Hillier *et al.* 2009;
- 289 Gerstein et al. 2010, 2014; Boeck et al. 2016) were also accessed through GExplore. Visual
- inspection of these data revealed genes with maternal expression patterns (high levels of
- 291 expression in the early embryo and hermaphrodite gonad) as well as those predominantly
- 292 expressed in males.

293

- 294 Human orthologs of *C. elegans* genes were determined using Ortholist 2 (ortholist.shaye-lab.org; 295 Kim *et al.* 2018). For maximum sensitivity, the minimum number of programs predicting a given 296 ortholog was set to one. NCBI BLASTp (blast.ncbi.nlm.nih.gov; Altschul et al. 1990) was used to 297 examine distributions of homologs across species and potential nematode-specificity in genes 298 with no human orthologs. Protein sequences from the longest transcript of each gene were used 299 to query the non-redundant protein sequences (nr) database, with default parameters and a 300 maximum of 1,000 target sequences. The results were filtered with an E-value threshold of 10^{-5} . 301 302 Gene Ontology (GO) term analysis was performed using PANTHER version 16.0 (Thomas et al. 303 2003). The list of 58 candidate genes was used for an overrepresentation test, with the set of all 304 C. elegans genes as a background list. Overrepresentation was analyzed with a Fisher's Exact test
- **305** and p-values were adjusted with the Bonferroni multiple testing correction.

306

307 Temperature sensitivity and mating assays

- 308 To assay temperature sensitivity, heterozygous strains were propagated at 15° and homozygous
- 309 L4 animals were isolated on 60 mm NGM plates (2 x 6/plate or 3 x 3/plate). After one week at
- 310 15°, plates were screened for the presence of viable homozygous progeny. If present, L4
- 311 homozygotes were transferred to new plates at 25° and screened after three days to confirm
- 312 lethality or sterility.
- 313
- 314 Mating assays were carried out using PD1074 males and mutant hermaphrodites. Three L4-stage

homozygous mutant hermaphrodites were isolated and crossed with ten PD1074 males on each

316 of three 60 mm NGM plates. Control plates consisted of three L4 hermaphrodite mutants

- 317 without males. Mating assays were carried out at 25°C and observations were taken after three
- 318 days, noting the absence or presence of viable cross progeny.
- 319

320 Microscopy

The terminal phenotypes of dead eggs from maternal-effect lethal mutants were observed using DIC microscopy. Young adult homozygous mutants were dissected to release their eggs in either M9 buffer with Triton X-100 (0.5%; M9+TX) or distilled water and embryos were left to develop at 25°C overnight (~16 hours). Embryos were mounted on 2% agarose pads and visualized using a Zeiss Axioplan 2 equipped with DIC optics. Images of representative embryos were captured using a Zeiss Axiocam 105 Color camera and ZEN 2.6 imaging software (Carl Zeiss Microscopy). For embryos incubated in distilled water, an osmotic integrity defective (OID) phenotype was

- 328 noted for embryos that burst or swelled and filled the eggshell, as described by Sönnichsen *et al.*
- **329** (2005).
- 330
- 331 Data availability
- 332 The raw sequence data from this study have been deposited in the NCBI Sequence Read Archive
- 333 (SRA; <u>ncbi.nlm.nih.gov/sra</u>) under accession number PRJNA628853. Supplemental material is
- available at Figshare. File S1 contains sequences and associated information for CRISPR-Cas9
- deletion alleles. File S2 contains life stage-specific expression patterns for the Genes of Interest.
- **336** File S3 contains documentation of the terminal phenotypes for maternal-effect lethal embryos.

337

RESULTS

338 Identification of 58 essential genes

339 Whole genome sequencing was performed on a total of 157 strains, with depth of coverage

- ranging between 21x and 65x (average = 38x). A minimum of two alleles for each of 75
- 341 complementation groups were sequenced and a total of 58 essential genes were identified

342 (Table 2). Literature searches revealed that 43 of these genes have been annotated with lethal or

- 343 sterile phenotypes from either mutant alleles or RNAi studies. Furthermore, 17 of the 157 alleles
- had been previously sequenced (Vatcher *et al.* 1998; Gönczy *et al.* 2001; Kaitna *et al.* 2002;

Brauchle et al. 2003; Cockell et al. 2004; Delattre et al. 2004; Sonneville et al. 2004; Bischoff and

346 Schnabel 2006; Nieto *et al.* 2010), and therefore served as a blind test set to validate our analysis

approach. Eight of the nine genes represented in this blind test set were correctly identified by

348 our pipeline, whereas one gene escaped identification. This was due to an intronic mutation that

349 did not pass our filtering criteria but was found upon manual inspection of the sequencing data.

350 While the list of 58 genes includes many known essential genes, among the known genes are

alleles that are novel genetic variants. Nineteen genes from this collection which were not

352 previously studied or were not represented by lethal or sterile mutants were designated Genes

of Interest (GOI; Table 3). These 19 GOI, represented by 40 alleles, were further characterized as

part of this study. They include 14 genes (28 alleles) with a maternal-effect lethal phenotype and

355 5 genes (12 alleles) with a sterile phenotype.

356

357 Validation of candidate gene assignments

After isolation, the mutant alleles were each localized to a chromosomal region through
deficiency mapping. This data was used to corroborate the candidate gene identities derived
from WGS analysis and to resolve complementation groups with more than one gene candidate.
For the majority of complementation groups, the genomic position of the assigned gene was in
agreement with the deficiency genetic mapping data (Figure 1).

364 There were some conflicts between the deficiency mapping data and the gene candidates 365 proposed through WGS analysis. Three complementation groups that were found to not map 366 under any of the tested deficiencies were assigned gene candidates whose genomic coordinates 367 fall into regions covered by the tested deficiencies (alleles of *bckd-1A*, *top-3*, and *unc-112*; Figure 368 1). In addition, two of these groups were assigned the same gene identity as another, 369 purportedly distinct, complementation group (Table 4). From WGS analysis, *bckd-1A* was the 370 initial gene candidate for two different complementation groups, yet only one of these groups 371 had been mapped to a deletion (*tDf5*) that covers the *bckd-1A* locus. Similarly, *top-3* was the 372 assigned gene candidate for three different complementation groups, only one of which was 373 mapped under a deficiency (tDf5) encompassing that gene. By performing complementation 374 tests with select alleles (Table 4), we concluded that the two *bckd-1A* groups are not distinct, and 375 indeed they contain mutations in the same gene. One of the groups (gene-35) originally 376 identified as top-3 is a double mutant which fails to complement gene-15 (top-3) and gene-34 377 (unknown gene).

379	Three candidate genes (<i>nstp-2, C34D4.4</i> and <i>F56D5.2</i>) were selected for additional validation by
380	generating a deletion of the gene in a wild-type background using CRISPR-Cas9 genome editing
381	(Norris et al. 2015; Au et al. 2019). These genes were chosen because they were expected to be
382	of interest to the broader research community. The deletion alleles have been verified with the
383	PCR protocol described by Au et al. (2019). Guide RNA sequences and deletion-flanking
384	sequences are listed in Supplementary Table S1. Complementation testing between the newly
385	generated CRISPR-Cas9 deletion mutants and the legacy mutant strains confirmed that the
386	mutations are allelic, and the genes assigned to the legacy strains are correct (Supplementary
387	Table S1)
388	
389	Human orthologs, gene ontology, and expression patterns
390	Of the 58 essential genes identified, 47 genes have predicted human orthologs (Table 2). Many
390 391	Of the 58 essential genes identified, 47 genes have predicted human orthologs (Table 2). Many of these genes in humans have been implicated in disease and are associated with OMIM disease
391	of these genes in humans have been implicated in disease and are associated with OMIM disease
391 392	of these genes in humans have been implicated in disease and are associated with OMIM disease phenotypes (Online Mendelian Inheritance in Man; <u>omim.org</u>). BLASTp searches revealed that
391 392 393	of these genes in humans have been implicated in disease and are associated with OMIM disease phenotypes (Online Mendelian Inheritance in Man; <u>omim.org</u>). BLASTp searches revealed that the set of 19 GOI contains three nematode-specific genes (<i>F56D5.2, perm-5,</i> and <i>T22B11.1</i>) that
391 392 393 394	of these genes in humans have been implicated in disease and are associated with OMIM disease phenotypes (Online Mendelian Inheritance in Man; <u>omim.org</u>). BLASTp searches revealed that the set of 19 GOI contains three nematode-specific genes (<i>F56D5.2, perm-5,</i> and <i>T22B11.1</i>) that have homologs in parasitic species, and two uncharacterized genes (<i>D2096.12</i> and <i>Y54G2A.73</i>)
391 392 393 394 395	of these genes in humans have been implicated in disease and are associated with OMIM disease phenotypes (Online Mendelian Inheritance in Man; <u>omim.org</u>). BLASTp searches revealed that the set of 19 GOI contains three nematode-specific genes (<i>F56D5.2, perm-5,</i> and <i>T22B11.1</i>) that have homologs in parasitic species, and two uncharacterized genes (<i>D2096.12</i> and <i>Y54G2A.73</i>)
 391 392 393 394 395 396 	of these genes in humans have been implicated in disease and are associated with OMIM disease phenotypes (Online Mendelian Inheritance in Man; <u>omim.org</u>). BLASTp searches revealed that the set of 19 GOI contains three nematode-specific genes (<i>F56D5.2, perm-5,</i> and <i>T22B11.1</i>) that have homologs in parasitic species, and two uncharacterized genes (<i>D2096.12</i> and <i>Y54G2A.73</i>) that do not have significant homology outside the <i>Caenorhabditis</i> genus.
 391 392 393 394 395 396 397 	of these genes in humans have been implicated in disease and are associated with OMIM disease phenotypes (Online Mendelian Inheritance in Man; <u>omim.org</u>). BLASTp searches revealed that the set of 19 GOI contains three nematode-specific genes (<i>F56D5.2, perm-5,</i> and <i>T22B11.1</i>) that have homologs in parasitic species, and two uncharacterized genes (<i>D2096.12</i> and <i>Y54G2A.73</i>) that do not have significant homology outside the <i>Caenorhabditis</i> genus.

401	(GO:0044237), and DNA repair (GO:0006281), as shown in Figure 2. In the Molecular Function
402	category, binding (GO:0005488) and catalytic activity (GO:0003824) are overrepresented by 41
403	genes (adjusted p=1.2E-07) and 28 genes (adjusted p=1.8E-03), respectively.

404

405	To examine the timing of gene expression throughout the life cycle, gene expression data from
406	the modENCODE project (Hillier <i>et al.</i> 2009; Gerstein <i>et al.</i> 2010, 2014; Boeck <i>et al.</i> 2016) was
407	retrieved from GExplore (genome.sfu.ca/gexplore; Hutter et al. 2009; Hutter and Suh 2016) for
408	the 19 GOI (Supplementary Appendix S2). These data show a U-shaped expression pattern for
409	ten of the GOI, with high expression occurring in the early embryonic stages as well as in
410	adulthood, and particularly in the hermaphrodite gonad. This U-shaped pattern is characteristic
411	of a maternal-effect gene, for which gene products are passed on to the embryo from the
412	parent. Five genes have a maternal gene expression pattern as well as expression throughout
413	other stages of the life cycle, indicating an additional, zygotic role for the gene. Seven genes have
414	elevated expression levels in males and L4-stage hermaphrodites. These genes are suspected to
415	be involved in sperm production or fertilization, and the associated strains were subjected to
416	mating assays (see below).

417

418 Temperature sensitivity and mating assays for genes of interest

The 40 alleles associated with the 19 GOI were further examined to gain insight into the
phenotypic consequences of their mutations. Each allele was assayed for temperature
sensitivity, as some of the original mutant screening was carried out at 25°C. Five alleles (marked
with a [ts] phenotype in Table 3) were deemed temperature sensitive and could proliferate as

423	homozygotes at a permissive temperature of 15°C, while being maternal-effect lethal or sterile
424	at a restrictive temperature of 25°C. Curiously, four of these temperature sensitive alleles were
425	the results of stop codons, not missense mutations.

426

- 427 Seven candidate genes (16 alleles) were hypothesized to be involved in male fertility, based on
- 428 the production of unfertilized oocytes by hermaphrodites and/or predominantly male gene
- 429 expression patterns. These 16 strains were assayed for their ability to be rescued through mating
- 430 with wild-type males. 14 of the strains were rescued by the mating assay, while two strains failed
- 431 to rescue (Table 5). Phenotypic rescue through mating was consistent among alleles of the same
- 432 gene in five of the seven genes, while two genes had conflicting results among the pair of alleles
- 433 in their complementation groups (*F56D5.2* and *nstp-2*).
- 434

435 Terminal phenotypes of maternal-effect lethal embryos

436 Using DIC microscopy, the terminal phenotypes of 28 maternal-effect lethal strains (a subset of 437 the 40 GOI strains) were observed. Representative images were selected and compiled into a 438 catalogue of terminal phenotypes (Supplementary Appendix S3). Ten strains showed an osmotic 439 integrity defective (OID) phenotype (as described in Sönnichsen et al. 2005) in nearly all embryos 440 after incubation in distilled water, while three additional strains had only some embryos that 441 exhibited this phenotype (Table 3). The OID phenotype was evident in embryos that filled the 442 eggshell completely (for example, dqtr-1(t2043), Figure 3A) and eggs that burst in their 443 hypotonic surroundings. Early embryonic arrest was observed in embryos from the two *dlat-1* mutant strains (t2035 and t2056), which arrested most often with only one to four cells (for 444

- example, Figure 3B). Eleven strains had embryos that terminated with approximately 100-200
- 446 cells (for example, *ZK688*.9(*t1433*), Figure 3C); while four strains developed into two- or three-
- fold stage embryos that did not hatch and exhibited clear morphological defects, such as *nstp*-
- 448 2(*t1835*) with a lumpy body wall and constricted nose tip (Figure 3D).
- 449

450

451

453 454	DISCUSSION
455 456	Revisiting legacy mutant collections with whole genome sequencing
457	In this study, we focused on reexamining legacy collections of <i>C. elegans</i> mutants isolated before
458	the complete genome sequence was published (The C. elegans Sequencing Consortium 1998)
459	and long before massively parallel sequencing was widely available. With major advances in
460	sequencing technology in the past 30 years (reviewed in Goodwin et al. 2016), WGS has become
461	affordable and accessible, making it possible to revisit past projects with new approaches and
462	advanced capabilities. We have sequenced paired alleles from 75 complementation groups on
463	chromosomes III, IV, and V, from which we identified 58 essential genes (Table 2).
464	
465	While WGS is a powerful tool, it does not stand alone as a solution to identifying mutant alleles.
466	This study has shown the power of having multiple alleles in a complementation group when
467	faced with the abundance of genomic variants found in WGS analysis. Indeed, when we
468	sequenced four single alleles, which had no complementation pairs, we were unable to
469	designate a single mutation as the variant responsible for maternal-effect lethality (data not
470	shown). Our approach to gene identification proved to be effective and was validated by a
471	combination of different methods. The blind test set of 17 previously sequenced alleles from
472	which eight of nine genes were readily identified serves as an important validation of our
473	analysis pipeline and gives confidence in the results we obtained. In addition, the deficiency
474	mapping data, gene expression patterns from the modENCODE project, GO term analysis, and
475	phenotypes documented from previous experiments provide evidence to support the gene
476	identities we assigned in these mutant collections.

477

478	The CRISPR-Cas9 deletion alleles we generated for selected gene candidates provide additional
479	validation and will be made available to the research community to serve as useful tools for
480	future studies. While the mutant alleles from the original study have been outcrossed, the
481	genetic balancer background and additional mutations that persist can complicate phenotypic
482	analysis. In contrast, these new CRISPR-Cas9 deletion strains were made in a wild-type
483	background, which makes it much easier to handle them and interpret their mutant phenotypes.
484	Furthermore, the pharyngeal GFP expression introduced by the gene editing approach acts as a
485	dominant and straightforward marker for tracking the alleles in a heterozygous population. This
486	is useful as the homozygous animals do not produce viable progeny.
487	
488	The complementation groups that could not be assigned gene identities in our analysis may have
489	been complicated by variants in noncoding regions, poor sequencing coverage, or inaccurate
490	complementation pairing, among other possibilities. In future work, tracking down the genes we
491	were unable to identify will require repeating complementation tests and re-tooling the analysis
492	approach.
493	
494	Gene ontology analysis reveals common themes and gaps in our knowledge
495	The underlying biological themes of the 58 essential genes were revealed by examining their GO
496	terms. The biological processes represented in Figure 2 help to confirm the nature of this set, as
497	a collection of genes that are required for essential functions such as cell division, metabolism,
498	and development. Performing GO-term analysis also revealed that a number of the genes in this

499	collection lacked sufficient annotation to be interpreted this way. We found four genes about
500	which there is little to nothing known (D2096.12, F56D5.2, T22B11.1, and Y54G2A.73). For
501	example, <i>F56D5.2</i> is a gene with no associated GO terms, no known protein domains, and no
502	orthologs in other model organisms. These wholly uncharacterized genes are intriguing
503	candidates which may help uncover new biological processes and biochemical pathways that are
504	evidently fundamental to life for this organism.
505	
506	Examining expression patterns leads to discovery of genes involved in male fertility
507	The life stage-specific expression patterns (Supplementary Appendix S2) provide some insight
508	into the roles the genes in this collection play in development. 15 of the 19 GOI are highly
509	expressed in the early embryo and hermaphrodite gonad, which suggests that the gene product
510	is passed on to the embryo from the parent. Five of these maternal genes also have elevated
511	expression during late embryonic and larval stages, which suggests they are pleiotropic. The
512	zygotic functions of these genes must be non-essential or else a zygotic lethal, rather than
513	maternal-effect lethal, phenotype would be observed.
514	
515	We also identified four genes that are most highly expressed in males and L4 hermaphrodites, as
516	well as three genes that have prominent male expression in addition to characteristic maternal
517	expression patterns. Mating assays confirmed that these male-expressed genes have an essential
518	role in male fertility. Studies have shown that genes expressed in sperm are largely insensitive to

519 RNAi (Fraser et al. 2000; Gönczy et al. 2000; Reinke et al. 2004; del Castillo-Olivares et al. 2009;

520 Zhu et al. 2009; Ma et al. 2014), making these types of genes particularly difficult to identify in

high-throughput RNAi screens. With the availability of RNA-seq data across different life stages
for nearly every gene in the *C. elegans* genome (Hillier *et al.* 2009; Gerstein *et al.* 2010, 2014;
Boeck *et al.* 2016; Tintori *et al.* 2016; Packer *et al.* 2019), screening for characteristic gene
expression patterns may be a useful approach for identifying sterile and maternal-effect lethal
genes that remain to be discovered.

526

527 We propose that the seven male-expressed genes are involved in sperm production and/or 528 function (see Table 5). These genes are mostly uncharacterized, and this is the first reporting of 529 their involvement in male fertility. While the mutant hermaphrodites lay unfertilized oocytes (5 530 genes) or dead eggs (2 genes), this phenotype could be rescued in 14 of the 16 alleles by the 531 introduction of wild-type sperm through mating. The two alleles that could not be rescued had 532 allele pairs in the same complementation groups that were rescued in the mating assay. One of 533 these discrepancies, between F56D5.2(t1744) and F56D5.2(t1791), was resolved when we found 534 a second mutation in a nearby essential gene that was likely responsible for the inability of one strain to be rescued (data not shown). The presence of additional lethal mutations in the 535 536 genome is unsurprising given the nature of chemical mutagenesis, and it reinforces the 537 advantage of having multiple alleles for a gene when interpreting mutant phenotypes. 538 539 Interpreting terminal phenotypes of maternal-effect lethal mutants 540 The catalogue of terminal phenotypes (Supplementary Appendix S3) created in this study 541 provides a window into the roles the maternal-effect genes play in development. Some of these 542 phenotypes corroborate previously observed phenotypes from RNAi studies. For example, RNAi

knockdown experiments have shown that DLAT-1 is an enzyme involved in metabolic processes
required for cell division in one-cell *C. elegans* embryos (Rahman *et al.* 2014). We uncovered two
alleles of *dlat-1* in this study (*t2035* and *t2056*) in which most embryos arrest at the one- to fourcell stage (Figure 3B). The mutant alleles presented here can confirm previously reported
phenotypes and serve as new genetic tools for continuing the study of essential gene function.

548

549 We also identified alleles for six genes that exhibit an osmotic integrity defective (OID)

550 phenotype, resulting in embryos that filled the eggshell completely or burst in distilled water.

551 More than 100 genes have been identified in RNAi screens as important for the osmotic integrity

of developing embryos (reviewed in Stein and Golden 2018). Some of these genes have roles in

553 lipid metabolism (Rappleye et al. 2003; Benenati et al. 2009), cellular trafficking (Rappleye et al.

554 1999), and chitin synthesis (Johnston *et al.* 2006). Four of the six genes identified with OID

555 mutants in this study have been previously implicated in osmotic sensitivity: *dgtr-1* is involved in

556 lipid biosynthesis (Carvalho *et al.* 2011; Olson *et al.* 2012), *trcs-1* is involved in lipid metabolism

and membrane trafficking (Green *et al.* 2011); *perm-5* is predicted to have lipid binding activity;

and *F21D5.1* is an ortholog of human PGM3, an enzyme involved in the hexosamine pathway

559 which generates substrates for chitin synthase. We found OID mutants for two additional genes

560 that were not previously characterized with this phenotype, *bckd-1A* and *D2096.12*. *bckd-1A* is a

561 component of the branched-chain alpha-keto dehydrogenase complex, which is involved in fatty

acid biosynthesis (Kniazeva et al. 2004); this may be indicative of a role in generating or

563 maintaining the lipid-rich permeability barrier. D2096.12 is a Caenorhabditis-specific gene with

564 no known protein domains. Elucidating the function of this uncharacterized gene may lead to

new insights about the biochemistry of eggshell formation and permeability in *C. elegans*embryos.

567

568	Most of the mutant strains we examined with DIC microscopy arrested around the 100- to 200-
569	cell stage as a seemingly disorganized group of cells (for example, Figure 3C). Others developed
570	into two-fold or later stage embryos that moved inside the eggshell but did not hatch (for
571	example, Figure 3D). The terminal phenotypes documented here reveal how long the embryo
572	can persist without the maternal contribution of gene products, and the developmental defects
573	that ensue. Future studies might make use of fluorescent markers and automated cell lineage
574	tracking (for example, Thomas <i>et al.</i> 1996; Schnabel <i>et al.</i> 1997; Bao <i>et al.</i> 2006; Wang <i>et al.</i>
575	2019) as well as single-cell transcriptome data (Tintori <i>et al.</i> 2016; Packer <i>et al.</i> 2019) to further
576	investigate these essential genes.
577	

578 Relevance beyond C. elegans

579 In this collection of 58 essential genes, there are 47 genes (81%) with human orthologs; a two-580 fold enrichment when compared to all *C. elegans* genes, 41% of which have human orthologs 581 (Kim et al. 2018). This is in line with previous findings that essential genes are more often 582 phylogenetically conserved than non-essential genes (Hughes 2002; Jordan et al. 2002; Georgi et 583 al. 2013). Essential genes in model organisms are often associated with human diseases (Culetto 584 and Sattelle 2000; Silverman et al. 2009; Dickerson et al. 2011; Qin et al. 2018), making the 585 alleles identified in this study potentially relevant to understanding human health. Indeed, there 586 are OMIM disease phenotypes associated with a number of the human orthologs identified in

587 Table 2. Novel mutant alleles in *C. elegans* may help us better understand genetic disorders by 588 providing new opportunities to interrogate gene function, explore genetic interactions, and 589 screen prospective therapeutics. 590 591 Nematode-specific genes that are essential are important to nematode biology in general and 592 are particularly relevant in parasitic nematology. We found three genes in our GOI list (F56D5.2, 593 perm-5, and T22B11.1) that have orthologs in parasitic nematode species and not in other phyla. 594 With growing anthelminthic drug resistance around the world (Jabbar et al. 2006), novel 595 management strategies are needed to combat parasitic nematodes, which infect crops, 596 livestock, and people worldwide (Nicol et al. 2011; Wolstenholme et al. 2004; Hotez et al. 2008). 597 Essential genes are desirable targets for drug development, yet identifying such genes in 598 parasites experimentally is difficult (Kumar et al. 2007; Doyle et al. 2010). Thus, as a free-living 599 nematode, C. elegans is a widely used model for genetically intractable parasitic species (Bürglin 600 et al. 1998; Hashmi et al. 2001). Our identification of novel essential genes with orthologs in parasitic nematodes may provide new opportunities to explore management strategies. 601 602 603 It is our hope that the alleles and phenotypes presented here will serve as a starting point and 604 guide future research to elucidate the specific roles these genes play in embryogenesis. All of the 605 alleles presented in this study are available to the research community through the

606 Caenorhabditis Genetics Center (cgc.umn.edu) and we anticipate they will serve as a valuable

607 resource in the years to come. The wealth of material uncovered in this specific legacy collection

608 will hopefully inspire similar explorations of other frozen mutant collections.

609 610 611	ACKNOWLEDGEMENTS
612	The authors thank Mark L. Edgley for advice and help with strain maintenance, as well as Negin
613	Khosravi, who replicated some of the nematode assays and conducted PCR assays with
614	F56D5.2(t1744) to reveal an additional mutation in a nearby an essential gene. This work was
615	supported by a CIHR Canada Graduate Scholarship-Master's (awarded to EL) and CIHR grant PJT-
616	148549 (awarded to DGM). This work was also supported by a grant from NSERC to DGM and an
617	R24 NIH grant 5R240D023041 (awarded to Ann Rougvie, Paul Sternberg, Geraldine Seydoux and
618	DGM).

TABLES

619

620

621 Table 1. Summary of mutant collections

Collection	Number of Complementation Groups with ≥2 alleles	Chromosome	Mutant Genotypes						
А	32	32 III unc-32(e189) let(t)/qC1 III; him-3							
В	25	IV	him-9(e1487) II; unc-24(e138) let(t)/nT1 [let(m435)] IV; dpy-11(e224)/nT1 [let(m435)] V						
D	18	V	him-9(e1487) II; unc-24(e138)/nT1 [let(m435)] IV; dpy- 11(e224) let(t)/nT1 [let(m435)] V						

622

Table 2. List of 58 essential genes with associated maternal-effect lethal or sterile alleles

Group	Strain	Allele(s)	Gene	Chr.	Position	Bas Chan		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
V	GE2430	t2135	air-1	V	8221773	С	Т	SNV	missense	R62C	226	AURKA, AURKB,	Colorectal cancer, susceptibility to [114500];
Y	GE2337	t2095	air-1	V	8223169	CAT	С	deletion	frameshift	-	326	AURKC, STK36	Spermatogenic failure 5 [243060]
	GE2314	t1724	aptf-2	IV	13414105	А	G	SNV	missense	L244P		TFAP2A, TFAP2B,	Char syndrome [169100]; Patent ductus arteriosus 2
X	GE2289	t1836	aptf-2	IV	13414263	G	Т	SNV	nonsense	C191*	367	TFAP2C, TFAP2D, TFAP2E	Patent ductus arteriosus 2 [617035]; Branchiooculofacial syndrome [113620]
Н	GE1958	t1726	atg-7	IV	11079764	G	А	SNV	nonsense	Q367*	647	ATG7	(none)
	GE1936	t1738	atg-7	IV	11079973	С	Т	SNV	nonsense	W311*	047	AIG	(none)
т	GE2449	t2143	atl-1	V	9635587	С	Т	SNV	nonsense	W2346*	2531		TR, PRKDC Cutaneous telangiectasia and cancer syndrome, familial [614564]; Seckel syndrome 1 [210600]; Immunodeficiency 26 with or without neurologic abnormalities [615966]
	GE2467	t2155	atl-1	V	9637978	С	Т	SNV	missense	E1710K	2331	,	
gene-	GE2200	t1480	bckd-1A		12969933	G	А	SNV	nonsense	Q174*		BCKDHA, TMEM91, AC011462.1	Maple syrup urine disease [248600]
28	GE1742	t1461	bckd-1A	111	12971429	G	А	SNV	nonsense	Q109*	432		
gene-	GE2206	t1514	bckd-1A		12971273	G	А	SNV	nonsense	Q161*	432		
17	GE2627	t1603	bckd-1A	111	12971305	С	Т	SNV	nonsense	W150*			
VZ	GE2890	t1821	C34D4.4	IV	7150054	G	А	SNV	nonsense	W101*	205	TVP23A, TVP23B, TVP23C,	(none)
V 2	GE2840	t1860	C34D4.4	IV	7150143	G	А	SNV	nonsense	W131*	203	TVP23C- CDRT4	(1010)
	GE2734	t2029	C56A3.8	V	13560728	G	А	SNV	missense	G62E			
а	GE2886	t2055	C56A3.8	V	13560787	G	А	SNV	missense	E243K	402	PI4K2A, PI4K2B	(none)
	GE2487	t2149	C56A3.8	V	13561369	С	Т	SNV	missense	P82L			
V	GE2142	t2074	ccz-1	V	13679756	Т	А	SNV	nonsense	Y248*	528	CCZ1, CCZ1B	(none)
v	GE2304	t2129	ccz-1	V	13680792	С	Т	SNV	nonsense	Q361*	520	CCZI, CCZID	(none)

Group	Strain	Allele(s)	Gene	Chr.	Position	Bas Char		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
b	GE2047	t2021	cept-2	V	14349388	G	А	SNV	nonsense	W128*	424	CEPT1, CHPT1,	Spastic paraplegia 81, autosomal recessive [618768]
d	GE2122	t2007	cept-2	V	14349747	G	А	SNV	splice site	-	424	SELENOI	
gene-	GE2275	t1517	cls-2	Ш	9055405	G	А	SNV	missense	R102Q	1023	CLASP1,	(none)
4	GE2357	t1527	cls-2	Ш	9055440	G	А	SNV	missense	G114R	1025	CLASP2	(none)
R	GE2082	t2053	cpl-1	V	16593886	G	А	SNV	missense	S148F	337	CTSF, CTSK, CTSL, CTSS,	Pycnodysostosis [265800]; Ceroid lipofuscinosis, neuronal,
n	GE2451	t2144	cpl-1	V	16595201	G	А	SNV	nonsense	Q49*	557	CTSV	13 [615362]
A	GE2447	t1879	cpt-2	IV	11180120	С	т	SNV	nonsense	Q141*	646	CPT2	Carnitine palmitoyltransferase II deficiency [600649, 608836, 255110]; Encephalopathy,
	GE1938	t1742	cpt-2	IV	11180603	G	А	SNV	nonsense	W194*			acute, infection-induced, susceptibility to, 4 [614212]
gene-	GE2657	t1704	cra-1	Ш	6867181	G	Α	SNV	nonsense	Q525*	958	NAA25	(none)
24	GE2242	t1618	cra-1	Ш	6868737	С	Т	SNV	nonsense	W149*	556	NAAZJ	(none)
	GE1929	t1729	csr-1	IV	7960467	Т	А	SNV	missense	N708K	1030	(none)	(none)
D	GE1929	t1729	csr-1	IV	7961246	G	А	SNV	missense	G922E			
	GE2452	t1897	csr-1	IV	7959252	G	А	SNV	splice site	-			
gene-	GE2595	t1662 t1718	cup-5	- 111	7585568	С	Т	SNV	nonsense	R263*	668	MCOLN1, MCOLN2,	Mucolipidosis IV [252650]
25	GE2355	t1528	cup-5	111	7590536	G	Α	SNV	splice site	-		MCOLN3	
gene-	GE2345	t1525	cyk-3	Ш	6020590	С	Т	SNV	nonsense	Q98*	1178	USP15,	(none)
30	GE2352	t1535	cyk-3	Ш	6022863	G	А	SNV	nonsense	W723*	11/0	USP32, USP6	(none)
J	GE2499	t1877	D2096.12	IV	8363937	С	Т	SNV	nonsense	Q126*	763	(none)	(none)
J	GE2407	t1906	D2096.12	IV	8365654	Т	А	SNV	nonsense	L638*	705	(none)	(none)
	GE2135	t2043	dgtr-1	V	6497335	G	А	SNV	splice site	-	359	AWAT1, AWAT2, DGAT2,	
0	GE2063	t2042	dgtr-1	V	6498186	G	А	SNV	missense	G310R		DGAT2L6, MOGAT1, MOGAT2, MOGAT3	(none)

Group	Strain	Allele(s)	Gene	Chr.	Position	Bas Char		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
С	GE2028	t1801	dif-1	IV	7552230	А	С	SNV	nonsense	Y187*	312	SLC25A20	Carnitine-acylcarnitine translocase deficiency
C	GE1932	t1732	dif-1	IV	7552641	С	Т	SNV	missense	G75D	312	SLCZSAZU	[212138]
gene-	GE2612	t1676	div-1	Ш	10245480	G	А	SNV	nonsense	Q489*	581	POLA2	(none)
13	GE2577	t1642	div-1	111	10248544	С	Т	SNV	start ATG	M1I	561	POLAZ	(none)
d	GE2335	t2056	dlat-1	V	14445907	G	А	SNV	nonsense	Q419*	507	DLAT	Pyruvate dehydrogenase E2
u	GE2541	t2035	dlat-1	V	14446981	G	А	SNV	missense	P83L	507	DLAT	deficiency [245348]
	GE2402	t1940	F21D5.1	IV	8727315	С	Т	SNV	missense	A436V	550	DCM2	Immunodoficionar 22 [C1E91C]
u	GE2445	t1935	F21D5.1	IV	8727668	С	Т	SNV	missense	L539F	550	PGM3	Immunodeficiency 23 [615816]
+	GE2837	t1791	F56D5.2	IV	9397791	G	А	SNV	nonsense	Q214*	- 385	(nono)	(none)
t	GE2881	t1744	F56D5.2	IV	9398158	G	А	SNV	missense	S107F	202	(none)	
gene-	GE1715	t1436	gsp-2	111	7337087	С	Т	SNV	nonsense	R95*	- 333	PPP1CA, PPP1CB, PPP1CC	Noonan syndrome-like disorder with loose anagen hair 2 [617506]
26	GE2360	t1481	gsp-2	111	7337383	G	А	SNV	missense	G174E			
gene-	GE2545	t1577	gsr-1	111	3652401	G	А	SNV	missense	G335R	473	GSR, TXNRD1, TXNRD2, TXNRD3	Hemolytic anemia due to glutathione reductase deficiency [618660]; Glucocorticoid deficiency 5 [617825]
32	GE2644	t1594	gsr-1	111	3652407	С	Т	SNV	nonsense	R337*			
gene-	GE2583	t1654	hcp-3	Ш	9615498	G	А	SNV	missense	R269C	288	CENPA	(none)
31	GE2692	t1717	hcp-3	111	9615555	С	Т	SNV	missense	E250K	200	CLINFA	(none)
G	GE2455	t1914	klp-18	IV	7040335	Т	С	SNV	missense	Y42H	932	KIF15	(2020)
G	GE2000	t1795	klp-18	IV	7041203	G	А	SNV	missense	E316K	932	NIE12	(none)
	GE2367	t1563	klp-19	111	13306451	А	Т	SNV	missense	L230H			
gene- 6	GE2367	t1563	klp-19	111	13306457	G	А	SNV	missense	A228V	1083	KIF4A, KIF4B	Mental retardation, X-linked 100 [300923]
	GE2264	t1628	klp-19	111	13306872	С	Т	SNV	missense	G90R			
	GE2003	t1817	let-99	IV	12569291	С	Т	SNV	nonsense	Q447*	(00	(2007-2)	(2007-2)
	GE2514	t1912	let-99	IV	12570199	С	Т	SNV	missense	L617F	698	(none)	(none)

Group	Strain	Allele(s)	Gene	Chr.	Position	Bas Chan		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
gene-	GE2730	t1550	lis-1	111	13375376	С	Т	SNV	nonsense	W92*	404		Lissencephaly 1; Subcortical
22	GE2653	t1698	lis-1	Ш	13375401	С	Т	SNV	splice site	-	404	PAFAH1B1	laminar heterotopia [607432]
_	GE2130	t1765	mbk-2	IV	13033086	С	Т	SNV	missense	R533C	817	DYRK2, DYRK3,	(2020)
Z	GE2503	t1888	mbk-2	IV	13033644	С	Т	SNV	missense	P701L	817	DYRK3, DYRK4	(none)
gene-	GE2740	t1576	mel-32	Ш	6440655	С	Т	SNV	missense	G395R	507	SHMT1,	()
10	GE1731	t1456	mel-32	Ш	6440831	С	Т	SNV	missense	G336E	507	SHMT2	(none)
	GE1999	t1793	mex-5	IV	13354014	Т	G	SNV	nonsense	Y79*	169	(()
M	GE2093	t1800	mex-5	IV	13354478	Т	А	SNV	nonsense	L219*	468	(none)	(none)
S	GE2511	t2162	mom-2	V	8356808	Т	G	SNV	missense	C80G	362	WNT11, WNT9A,	(none)
5	GE2523	t2180	mom-2	V	8357121	Т	С	SNV	missense	C139R	302	WNT9B	
W	GE2497	t2137	mre-11	V	10735712	G	А	SNV	missense	H269Y	728	MRE11	Ataxia-telangiectasia-like disorder 1 [604391]
VV	GE2103	t2092	mre-11	V	10736080	А	G	SNV	missense	F146S	728		
v	GE2091	t1772	nstp-2	IV	6604731	А	Т	SNV	missense	L277H	324	SLC35B4	(none)
V	GE2288	t1835	nstp-2	IV	6605266	С	Т	SNV	missense	G131R	524	SLCSSB4	
F	GE2391	t1932	perm-5	IV	5696931	А	Т	SNV	missense	C454S	518	(none)	(none)
Г	GE2453	t1900	perm-5	IV	5698096	А	G	SNV	missense	S323P	510	(none)	(none)
gene-	GE2237	t1614	pod-1	Ш	13518266	G	А	SNV	missense	A912V	1136	CORO7, CORO7-	(none)
21	GE2605	t1674	pod-1	Ш	13518357	G	А	SNV	nonsense	R882*	1150	PAM16	(none)
U	GE3128	t2177	pos-1	V	8414544	G	А	SNV	splice site	-	264	(nonc)	
0	GE2101	t2080	pos-1	V	8414579	Т	А	SNV	missense	V145D	204	(none)	(none)
Z	GE2517	t2175	rad-50	V	12247914	Т	А	SNV	nonsense	L350*	1312	RAD5,	Nijmegen breakage syndrome-
	GE2476	t2147	rad-50	V	12250324	Т	А	SNV	missense	I1101N	1312	AC116366.3	like disorder [613078]

Group	Strain	Allele(s)	Gene	Chr.	Position	Bas Char		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
E	GE2189	t1750	rad-51	IV	10282013	A	Т	SNV	missense	1384N	395	DMC1, RAD51, RAD51B, RAD51C, RAD51D	Fanconi anemia, complementation group R, group O [617244, 613390]; Mirror movements 2 [614508]; Breast-ovarian cancer, familial, susceptibility to, 3 [613399]
	GE2433	t1885	rad-51	IV	10282328	С	Т	SNV	missense	V323I	333		
gene-	GE2347	t1519	rmd-1	Ш	9759805	G	А	SNV	missense	G89R	226	RMDN2,	(none)
11	GE2219	t1501	rmd-1		9759929	G	А	SNV	missense	R130H	220	RMDN3	(none)
gene-	GE2211	t1476	sas-1	III	12710102	С	Т	SNV	missense	P419S	570	((
18	GE2343	t1521	sas-1	111	12710202	G	А	SNV	missense	G452E	570	(none)	(none)
f	GE2078	t2033	sas-5	V	11612449	С	т	SNV	missense	R397C	404	(none)	(
I	GE2134	t2079	sas-5	V	11612449	С	Т	SNV	missense	R397C	404	(none)	(none)
Р	GE2469	t2173	spn-4	V	6783986	А	Т	SNV	nonsense	L259*	351	RBFOX1, RBFOX2, RBFOX3	(none)
F	GE2317	t2098	spn-4	V	6784646	А	Т	SNV	missense	V55D			
	GE2386	t2165	sqv-4	V	10660827	G	А	SNV	missense	P182L	404		Epileptic encephalopathy, early infantile, 84 [618792]
g	GE2059	t2025	sqv-4	V	10661143	G	А	SNV	missense	S93L	481	UGDH	
	GE2277	t1496	such-1		11515520	G	А	SNV	missense	L686F			
gene- 5	GE2277	t1496	such-1	111	11515883	G	А	SNV	missense	H565Y	798	ANAPC5	(none)
	GE2666	t1693	such-1	111	11515540	С	т	SNV	missense	R679K			
	GE2827	t1786	T22B11.1	IV	4692945	G	А	SNV	nonsense	W35*	160		
q	GE2895	t1866	T22B11.1	IV	4696017	G	А	SNV	nonsense	W356*	468	(none)	(none)
gene-	GE1734	t1438 t1477	tlk-1	111	9707175	С	т	SNV	nonsense	Q412*	965	TLK1, TLK2,	Mental retardation, autosomal
12	GE2613	t1677	tlk-1	III	9708080	G	А	SNV	missense	A694T		TLK2PS1	dominant 57 [618050]

Group	Strain	Allele(s)	Gene	Chr.	Position	Bas Char		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
gene-	GE2399	t1559	top-3		11951381	G	А	SNV	nonsense	Q602*			Progressive external ophthalmoplegia with
15	GE2220	t1516	top-3		11958680	С	Т	SNV	missense	G59R			mitochondrial DNA deletions,
gene-	GE1735	t1470	top-3		11957525	С	Т	SNV	nonsense	W114*	759	ТОРЗА	autosomal recessive 5 [618098]; Microcephaly, growth restriction, and
35	GE2958	t1464 t1484	top-3		11951669	С	Т	SNV	missense	G506R			increased sister chromatid exchange 2 [618097]
	GE2512	t1909	trcs-1	IV	9587541	С	Т	SNV	missense	E373K	420	AADAC, AADACL2,	
L	GE1939	t1745	trcs-1	IV	9587985	G	А	SNV	nonsense	Q242*	428	AADACL3, AADACL4, NCEH1	(none)
	GE2112	t2037	unc-112	V	14692219	С	Т	SNV	missense	R669Q	720	FERMT1,	Kindler syndrome [173650];
С	GE2326	t2106	unc-112	V	14696546	С	Т	SNV	splice site	-	720	FERMT2, FERMT3	Leukocyte adhesion deficiency, type III [612840]
gene-	GE1722	t1435	vps-33.1		8701605	С	Т	SNV	nonsense	R159*	600	VPS33A,	Mucopolysaccharidosis-plus syndrome [617303];
27	GE2366	t1561	vps-33.1	111	8702923	G	А	SNV	nonsense	W536*	603	VPS33B, AC048338.1	Arthrogryposis, renal dysfunction [208085]
	GE2292	t2114	vps-39	V	14035713	G	А	SNV	nonsense	Q754*			
Q	GE1937	t2189	vps-39	V	14036143	С	Т	SNV	nonsense	W626*	926	VPS39	(none)
	GE2056	t2016	vps-39	V	14037839	G	С	SNV	nonsense	Y122*			
	GE2153	t1773	wapl-1	IV	4444464	С	Т	SNV	nonsense	W348*			
N	GE2305	t1867	wapl-1	IV	4442749- 4442872	-	-	122-bp deletion	deletion	-	748	WAPL	(none)
	GE2738	t1833	Y54G2A.73	IV	3000662	А	Т	SNV	nonsense	L341*			
р	GE2387	t1913	Y54G2A.73	IV	3001767	G	А	SNV	nonsense	R252*	380	(none)	(none)
	GE2884	t1755	Y54G2A.73	IV	3008481	С	Т	SNV	splice site	-			
gene-	GE1713	t1433	ZK688.9		7882477	С	Т	SNV	nonsense	W135*	281	TIPRL	(none)
23	GE2621	t1587	ZK688.9		7882717	С	Т	SNV	splice site	-	201		(none)
gene-	GE2348	t1518	zyg-8		12063671	С	Т	SNV	nonsense	R312*	802	DCLK1, DCLK2,	Lissencephaly, X-linked, 1; Subcortical laminar
14	GE2362	t1547	zyg-8		12063832	G	А	SNV	splice site	-	002	DCLK2, DCLK3, DCX	heterotopia, X-linked [300067]

626 ⁺Amino acid position and size derived from the longest transcript (<u>wormbase.org</u>, version WS275) ⁺Phenotypes retrieved from <u>omim.org</u>

Table 3. Genes of interest and associated phenotypes

Strain	Allele	Gene Name	Protein Function [†]	Amino Acid Change [†]	RNAi Phenotype [‡]	Mutant Phenotype	Embryonic Osmotic Integrity Defect
GE1936	t1738	atg-7	E1 ubiquitin-activating-like enzyme orthologous to the	W311*	growth variant; dauer body morphology variant; pathogen induced death increased; P granule localization defective; dauer development variant; protein aggregation variant; shortened life span; transgene	dead embryos	no
GE1958	t1726		autophagic budding yeast protein Apg7p	Q367*	subcellular localization variant; transgene expression variant; necrotic cell death variant; autophagy variant; antibody staining reduced	dead embryos	no
GE2627	t1603	bckd-1A	Predicted mitochondrial protein with alpha-ketoacid	W150*	shortened life span; small	dead embryos	yes
GE2206	t1514		dehydrogenase activity	Q161*		dead embryos	yes
GE2840	t1860	C34D4.4	Predicted to have the following domain: Golgi	W131*		unfertilized oocytes	N/A
GE2890	t1821		apparatus membrane protein TVP23-like	W101*		unfertilized oocytes	N/A
GE2734	t2029		Predicted to have 1-	G62E	larval lethal; accumulated germline cell corpses; germ cell compartment	unfertilized oocytes	N/A
GE2487	t2149	C56A3.8	phosphatidylinositol 4-	P82L	morphology variant; germline nuclear positioning variant; larval arrest; cell membrane organization biogenesis variant; embryonic lethal; rachis	unfertilized oocytes	N/A
GE2886	t2055		kinase activity	E243K	narrow; apoptosis variant; maternal sterile; reduced brood size	unfertilized oocytes	N/A
GE2122	t2007		Predicted to have diacylglycerol cholinephosphotransferase	splice site		dead embryos	no
GE2047	t2021	cept-2	activity and ethanolaminephospho- transferase activity	W128*	fat content reduced; embryonic lethal; long	no eggs laid (dead embryos) [ts]	some
GE2275	t1517	cls-2	Member of the CLASP family of microtubule-	R102Q	locomotion variant; mitosis variant; univalent meiotic chromosomes; no polar body formation; chromosome segregation variant karyomeres early emb; mitotic chromosome segregation variant; mitotic spindle defective early emb; chromosome segregation variant; embryonic	dead embryos	N/T
GE2357	t1527		binding proteins	G114R	lethal; meiotic spindle defective; meiotic progression during oogenesis variant; exploded through vulva; reduced brood size; antibody subcellular localization variant; meiotic chromosome segregation variant	dead embryos	no
GE1938	t1742	cpt-2	Carnitine palmitoyl	W194*	embryonic lethal	dead embryos	no
GE2447	t1879	UP1 2	transferase	Q141*		dead embryos	no

Strain	Allele	Gene Name	Protein Function [†]	Amino Acid Change [†]	RNAi Phenotype [‡]	Mutant Phenotype	Embryonic Osmotic Integrity Defect
GE2407	t1906	D2096.12		L638*	locomotion variant	dead embryos	some
GE2499	t1877	02030.12		Q126*		dead embryos	yes
GE2063	t2042	dgtr-1	Acyl chain transfer enzyme	G310R	sterile; sick; oocyte number decreased; germline nuclear positioning variant; oocyte septum formation variant; embryonic lethal; embryo osmotic integrity defective early emb; oocyte morphology variant;	dead embryos	some
GE2135	t2043			splice site	pachytene region organization variant; reduced brood size; germ cell compartment expansion variant; oogenesis variant	dead embryos	yes
GE2541	t2035	dlat-1	Predicted to have dihydrolipoyllysine-residue	P83L	embryonic lethal; slow growth; receptor mediated endocytosis defective; pattern of transgene expression variant; sterile progeny;	dead embryos	no
GE2335	t2056		acetyltransferase activity	Q419*	transgene expression increased; general pace of development defective early emb	dead embryos	no
GE2402	t1940	F21D5.1	Predicted to have phosphoacetyl-glucosamine	A436V	sterile; germ cell compartment size variant; rachis wide; rachis morphology variant; accumulated germline cell corpses; germ cell compartment morphology variant; germline nuclear positioning variant;	dead embryos	yes
GE2445	t1935		mutase activity	L539F	embryonic lethal; embryo osmotic integrity defective early emb; apoptosis variant; reduced brood size; oogenesis variant	dead embryos	yes
GE2881	t1744	F56D5.2		S107F		unfertilized oocytes	N/A
GE2837	t1791	13003.2		Q214*		unfertilized oocytes	N/A
GE2091	t1772	nstp-2	Predicted to have UDP-N- acetylglucosamine and UDP-xylose transmembrane	L277H	lysosome-related organelle morphology variant; transgene subcellular localization variant; RAB-11 recycling endosome localization variant;	dead embryos	no
GE2288	t1835		transporter activity	G131R	RAB-11 recycling endosome morphology variant	dead embryos	no
GE2391	t1932	perm-5	Predicted to have lipid	C454S	sterile; apoptosis reduced; oocytes lack nucleus; oocyte number decreased; germ cell compartment morphology variant; germline nuclear positioning variant; germ cell compartment anucleate; oocyte	dead embryos	yes
GE2453	t1900	perm o	binding activity	S323P	septum formation variant; cell membrane organization biogenesis variant; embryonic lethal; embryo osmotic integrity defective early emb; oogenesis variant; diplotene region organization variant	dead embryos	yes
GE2827	t1786	T00011 1		W35*		unfertilized oocytes [ts]	N/A
GE2895	t1866	T22B11.1		W356*		unfertilized oocytes [ts]	N/A

Strain	Allele	Gene Name	Protein Function [†]	Amino Acid Change [†]	RNAi Phenotype [‡]	Mutant Phenotype	Embryonic Osmotic Integrity Defect
GE2399	t1559	top 2	Exhibits DNA topoisomerase	G59R	chromosome morphology variant; hermaphrodite germline proliferation variant; antibody staining increased; somatic gonad development variant; gonad degenerate; chromosome instability; germ cell mitosis	dead embryos	no
GE2220	t1516	top-3	type I (single strand cut, ATP-independent) activity	Q602*	variant; gonad arm morphology variant; meiosis variant; oocyte morphology variant; nuclear appearance variant; fewer germ cells; oogenesis variant	dead embryos	no
GE2512	t1909	tures 1	Putative arylacetamide	E373K	apoptosis reduced; diplotene absent during oogenesis; oocyte number decreased; embryo osmotic integrity defective early emb; rachis narrow; chromosome condensation variant; pachytene region organization variant; membrane trafficking variant; pachytene	dead embryos [leaky ts]	yes
GE1939	t1745	trcs-1	deacetylase and microsomal lipase	Q242*	progression during oogenesis variant; apoptosis fails to occur; egg laying variant; germ cell compartment expansion absent; embryonic lethal; cell membrane organization biogenesis variant; no oocytes; germ cell compartment expansion variant	no eggs laid (dead embryos) [ts]	yes
GE2884	t1755			splice site		unfertilized oocytes	N/A
GE2387	t1913	Y54G2A.73		R252*		unfertilized oocytes	N/A
GE2738	t1833			L341*		unfertilized oocytes	N/A
GE1713	t1433	74699.0	Predicted to have the following domain: TIP41-like	W135*		dead embryos	no
GE2621	t1587	ZK688.9	protein (TOR signaling pathway regulator)	splice site	egg laying variant; locomotion variant	dead embryos	no

628

[ts] = temperature sensitive N/A = not applicable ⁺ From WormBase (WS275; <u>wormbase.org</u>); amino acid position derived from the longest transcript

[‡] Phenotypes retrieved from GExplore (<u>genome.sfu.ca/gexplore</u>)

N/T = not tested

-- = no information available

629

630

Table 4. Complementation tests for conflicting groups

Original Complementation Group	Strain	Allele	Preliminary Gene Candidate	Mapped Under	Complement Test Results	Final Gene Assignment
gene-28	GE1742	t1461	bckd-1A	None of tested deficiencies	Fails to complement: GE2206, GE2627	bckd-1A
17	GE2627	t1603	balid 1A	tDf5	Fails to complement: GE2206, GE1742	halid 10
gene-17	GE2206	t1514	bckd-1A	tDf5	Fails to complement: GE2627, GE1742	bckd-1A
gene-15	GE2220	t1516	top-3	tDf5	Fails to complement: GE2399, GE1735 Complements: GE2278	top-3
0000 20	GE2399	t1559		tDf5	Fails to complement: GE2220	
gono 24	GE2278	t1502	top-3	None of tested deficiencies	Fails to complement: GE1735	unknown gene
gene-34	012270	11302	100 0		Complements: GE2220	

632 N/T = not tested

633 Table 5. Putative male fertility genes

Strain	Allele	Gene	Observed Mutant Phenotype	Successful WT Male Rescue
GE2627	t1603	bckd-1A	dead embryos	yes
GE2206	t1514		dead embryos	yes
GE2840	t1860	C34D4.4	unfertilized oocytes	yes
GE2890	t1821	CJ+U+.+	unfertilized oocytes	yes
GE2734	t2029		unfertilized oocytes	yes
GE2487	t2149	C56A3.8	unfertilized oocytes	yes
GE2886	t2055		unfertilized oocytes	yes
GE2881	t1744	F56D5.2	unfertilized oocytes	no
GE2837	t1791	13003.2	unfertilized oocytes	yes
GE2091	t1772	nstp-2	dead embryos	no
GE2288	t1835		dead embryos	yes
GE2827	t1786	T22B11.1	unfertilized oocytes [ts]	yes
GE2895	t1866	122011.1	unfertilized oocytes [ts]	yes
GE2884	t1755		unfertilized oocytes	yes
GE2387	t1913	Y54G2A.73	unfertilized oocytes	yes
GE2738	t1833		unfertilized oocytes	yes

634 [ts] = temperature sensitive

635	
055	

FIGURE LEGENDS

636

637	Figure 1 Schematic of gene assignments and deficiency mapping. Genes and deficiencies are
638	shown with their relative positions on chromosomes III, IV, and V. Approximate boundaries of
639	each deficiency were determined by the coordinates of the closest gene known to lie outside of
640	the deletion, when possible (indicated by a faded edge). If no such genes with physical
641	coordinates are known, the outermost gene known to lie inside the deletion was used as the
642	boundary (indicated by a sharp edge). Gene names are coloured according to the deficiency
643	under which the alleles were mapped. Genes names assigned to alleles that did not map under
644	any of the tested deficiencies are highlighted in grey. <i>top-3</i> and <i>bckd-1A</i> on chromosome III are
645	represented by multiple complementation groups with conflicting results from deficiency
646	mapping.
647	
648	Figure 2 Biological Process GO terms overrepresented in the set of 58 identified essential genes.
649	Bar length represents the number of genes in the set associated with each GO term.
650	Overrepresentation was analyzed using PANTHER version 16.0 (Thomas et al. 2003) and p-values
651	were adjusted with the Bonferroni multiple testing correction. Results were filtered to include
652	terms with adjusted p<0.05 and edited to exclude redundant terms.
653	
654	
054	Figure 3 Embryonic arrest visualized with DIC microscopy for select maternal-effect lethal

656 incubated in distilled water overnight before imaging (B, C, and D). (A) Eggs dissected from *dgtr*-

- 657 1(t2043) homozygotes exhibit signs of an osmotic integrity defect, by filling the eggshell
- 658 completely. (B) *dlat-1(t2035*) embryos exhibit early embryonic arrest, with most embryos
- 659 consisting of four cells or less. (C) *ZK688.*9(*t1433*) embryos arrest with approximately 100 cells.
- 660 (D) Terminal embryos of *nstp-2*(*t1835*) have a lumpy body wall morphology and constricted
- nose; most animals were moving inside the eggshell but did not hatch. All scale bars represent
- **662** 10 μm.
- 663

664	LITERATURE CITED
665 666	Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman, 1990 Basic local alignment
667	search tool. J. Mol. Biol. 215: 403-410.
668	Au, V., E. Li-Leger, G. Raymant, S. Flibotte, G. Chen <i>et al.,</i> 2019 CRISPR/Cas9 methodology for the
669	generation of knockout deletions in Caenorhabditis elegans. G3: Genes, Genomes, Genet. 9: 135-
670	144.
671	Ausländer, S., D. Ausländer and M. Fussenegger, 2017 Synthetic biology—the synthesis of
672	biology. Angew. Chem. Int. Ed. 56: 6396-6419.
673	Bao, Z., J. I. Murray, T. Boyle, S. L. Ooi, M. J. Sandel <i>et al.,</i> 2006 Automated cell lineage tracing in
674	Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 103: 2707-2712.
675	Benenati, G., S. Penkov, T. Müller-Reichert, E. V. Entchev and T. V. Kurzchalia, 2009 Two
676	cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell,
677	correct execution of meiosis and the polarization of embryo. Mech. Dev. 126: 382-393.
678	Bischoff, M., and R. Schnabel, 2006 A posterior centre establishes and maintains polarity of the
679	Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism. PLoS Biol. 4: e396.
680	Blumenstiel, J. P., A. C. Noll, J. A. Griffiths, A. G. Perera, K. N. Walton et al., 2009 Identification of
681	EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing.
682	Genetics 182: 25-32.
683	Boeck, M. E., C. Huynh, L. Gevirtzman, O. A. Thompson, G. Wang et al., 2016 The time-resolved
684	transcriptome of C. elegans. Genome Res. 26: 1441-1450.

- 685 Bradley, A., K. Anastassiadis, A. Ayadi, J. F. Battey, C. Bell *et al.*, 2012 The mammalian gene
- 686 function resource: The international knockout mouse consortium. Mammalian genome 23: 580-687 586.
- 688 Brauchle, M., K. Baumer and P. Gönczy, 2003 Differential activation of the DNA replication
- 689 checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr. Biol. 13: 819-
- **690** 827.
- **691** Brenner, S., 1974 The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
- Bürglin, T. R., E. Lobos and M. L. Blaxter, 1998 Caenorhabditis elegans as a model for parasitic
- 693 nematodes. Int. J. Parasitol. 28: 395-411.
- 694 C. elegans Deletion Mutant Consortium, 2012 Large-scale screening for targeted knockouts in
- the Caenorhabditis elegans genome. G3: Genes, Genomes, Genet. 2: 1415-1425.
- 696 Carvalho, A., S. K. Olson, E. Gutierrez, K. Zhang, L. B. Noble *et al.*, 2011 Acute drug treatment in
- the early C. elegans embryo. PloS one 6: e24656.
- 698 Clark, D. V., T. M. Rogalski, L. M. Donati and D. L. Baillie, 1988 The unc-22 (IV) region of
- 699 Caenorhabditis elegans: Genetic analysis of lethal mutations. Genetics 119: 345-353.
- 700 Cockell, M. M., K. Baumer and P. Gönczy, 2004 Lis-1 is required for dynein-dependent cell
- division processes in C. elegans embryos. J. Cell. Sci. 117: 4571-4582.
- 702 Culetto, E., and D. B. Sattelle, 2000 A role for Caenorhabditis elegans in understanding the
- function and interactions of human disease genes. Hum. Mol. Genet. 9: 869-877.

- del Castillo-Olivares, A., M. Kulkarni and H. E. Smith, 2009 Regulation of sperm gene expression
- 705 by the GATA factor ELT-1. Dev. Biol. 333: 397-408.
- 706 Delattre, M., S. Leidel, K. Wani, K. Baumer, J. Bamat et al., 2004 Centriolar SAS-5 is required for
- 707 centrosome duplication in C. elegans. Nat. Cell Biol. 6: 656-664.
- 708 Denver, D. R., K. Morris, M. Lynch and W. K. Thomas, 2004 High mutation rate and
- **709** predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430: 679-682.
- 710 Dickerson, J. E., A. Zhu, D. L. Robertson and K. E. Hentges, 2011 Defining the role of essential
- 711 genes in human disease. PloS one 6: e27368.
- 712 Doitsidou, M., R. J. Poole, S. Sarin, H. Bigelow and O. Hobert, 2010 C. elegans mutant
- 713 identification with a one-step whole-genome-sequencing and SNP mapping strategy. PloS
- **714** one 5: e15435.
- 715 Doyle, M. A., R. B. Gasser, B. J. Woodcroft, R. S. Hall and S. A. Ralph, 2010 Drug target prediction
- and prioritization: Using orthology to predict essentiality in parasite genomes. BMC
- 717 Genomics 11: 222.
- 718 Feichtinger, R. E., 1995 Quantitative Analysis of Maternal Gene Functions of Caenorhabditis
- 719 *Elegans*. Ph.D. Thesis, University of Vienna, Austria.
- 720 Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver *et al.*, 1998 Potent and specific genetic
- interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.
- 722 Flibotte, S., M. L. Edgley, I. Chaudhry, J. Taylor, S. E. Neil et al., 2010 Whole-genome profiling of
- 723 mutagenesis in Caenorhabditis elegans. Genetics 185: 431-441.

- 724 Fraser, A. G., R. S. Kamath, P. Zipperlen, M. Martinez-Campos, M. Sohrmann et al., 2000
- **725** Functional genomic analysis of C. elegans chromosome I by systematic RNA interference.
- 726 Nature 408: 325-330.
- 727 Georgi, B., B. F. Voight and M. Bućan, 2013 From mouse to human: Evolutionary genomics
- 728 analysis of human orthologs of essential genes. PLoS genet. 9: e1003484.
- 729 Gerstein, M. B., J. Rozowsky, K. Yan, D. Wang, C. Cheng et al., 2014 Comparative analysis of the
- 730 transcriptome across distant species.

731 512: 445-448.

- 732 Gerstein, M. B., Z. J. Lu, E. L. Van Nostrand, C. Cheng, B. I. Arshinoff et al., 2010 Integrative
- analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330: 1775-1787.
- 735 Giaever, G., A. M. Chu, L. Ni, C. Connelly, L. Riles et al., 2002 Functional profiling of the
- 736 Saccharomyces cerevisiae genome. Nature 418: 387-391.
- 737 Gönczy, P., H. Schnabel, T. Kaletta, A. D. Amores, T. Hyman *et al.*, 1999 Dissection of cell division

738 processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. J. Cell

739 Biol. 144: 927-946.

- 740 Gönczy, P., J. Bellanger, M. Kirkham, A. Pozniakowski, K. Baumer et al., 2001 Zyg-8, a gene
- 741 required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that
- 742 promotes microtubule assembly. Dev. Cell. 1: 363-375.

- 743 Gönczy, P., C. Echeverri, K. Oegema, A. Coulson, S. J. Jones et al., 2000 Functional genomic
- analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408: 331-
- **745** 336.
- 746 Goodwin, S., J. D. McPherson and W. R. McCombie, 2016 Coming of age: Ten years of next-
- 747 generation sequencing technologies. Nat. Rev. Genet. 17: 333.
- 748 Green, R. A., H. Kao, A. Audhya, S. Arur, J. R. Mayers *et al.*, 2011 A high-resolution C. elegans
- respective respective
- 750 Hashmi, S., W. Tawe and S. Lustigman, 2001 Caenorhabditis elegans and the study of gene
- **751** function in parasites. Trends Parasitol. 17: 387-393.
- Herman, R. K., 1978 Crossover suppressors and balanced recessive lethals in Caenorhabditiselegans. Genetics 88: 49-65.
- Hillier, L. W., V. Reinke, P. Green, M. Hirst, M. A. Marra *et al.*, 2009 Massively parallel sequencing
- of the polyadenylated transcriptome of C. elegans. Genome Res. 19: 657-666.
- 756 Hillier, L. W., G. T. Marth, A. R. Quinlan, D. Dooling, G. Fewell et al., 2008 Whole-genome
- rs7 sequencing and variant discovery in C. elegans. Nat. Methods 5: 183.
- 758 Hotez, P. J., P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce *et al.*, 2008 Helminth infections:
- 759 The great neglected tropical diseases. J. Clin. Invest. 118: 1311-1321.
- 760 Howell, A. M., S. G. Gilmour, R. A. Mancebo and A. M. Rose, 1987 Genetic analysis of a large
- 761 autosomal region in Caenorhabditis elegans by the use of a free duplication. Genetics
- 762 Research 49: 207-213.

- 763 Howell, A. M., and A. M. Rose, 1990 Essential genes in the hDf6 region of chromosome I in
- 764 Caenorhabditis elegans. Genetics 126: 583-592.
- 765 Hughes, T. R., 2002 Yeast and drug discovery. Funct. Integr. Genomics 2: 199-211.
- 766 Hutter, H., and J. Suh, 2016 GExplore 1.4: An expanded web interface for queries on
- 767 Caenorhabditis elegans protein and gene function. Worm 5: e1234659.
- 768 Hutter, H., M. Ng and N. Chen, 2009 GExplore: A web server for integrated queries of protein
- 769 domains, gene expression and mutant phenotypes. BMC Genomics 10: 529.
- **770** Jabbar, A., Z. Iqbal, D. Kerboeuf, G. Muhammad, M. N. Khan *et al.*, 2006 Anthelmintic resistance:
- 771 The state of play revisited. Life Sci. 79: 2413-2431.
- Jaramillo-Lambert, A., A. S. Fuchsman, A. S. Fabritius, H. E. Smith and A. Golden, 2015 Rapid and
- efficient identification of Caenorhabditis elegans legacy mutations using Hawaiian SNP-based
- mapping and whole-genome sequencing. G3: Genes, Genomes, Genet. 5: 1007-1019.
- Johnsen, R. C., and D. L. Baillie, 1997 Mutation, pp. 79-95 in C. Elegans II, edited by Riddle, D.L.,
- 776 Blumenthal, T., Meyer, B.J., Priess, J.R. Cold Spring Harbor Laboratory Press, Cold Spring Harbor777 (NY).
- Johnsen, R. C., and D. L. Baillie, 1991 Genetic analysis of a major segment [LGV (left)] of thegenome of Caenorhabditis elegans. Genetics 129: 735-752.
- 780 Johnsen, R. C., and D. L. Baillie, 1988 Formaldehyde mutagenesis of the eT1 balanced region in
- 781 Caenorhabditis elegans: Dose—response curve and the analysis of mutational events. Mutat.
- **782** Res. 201: 137-147.

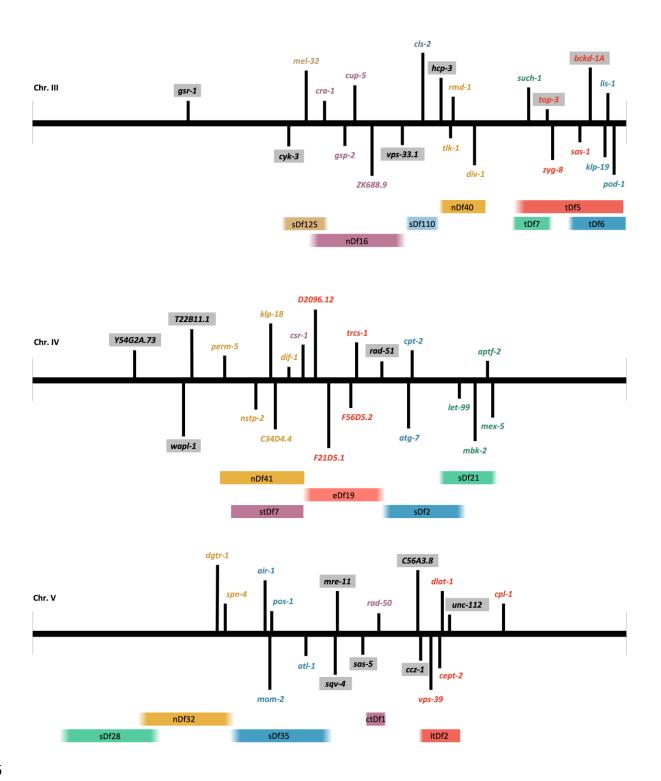
- 783 Johnston, W. L., A. Krizus and J. W. Dennis, 2006 The eggshell is required for meiotic fidelity,
- polar-body extrusion and polarization of the C. elegans embryo. BMC biology 4: 35.
- 785 Jordan, I. K., I. B. Rogozin, Y. I. Wolf and E. V. Koonin, 2002 Essential genes are more
- **786** evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12: 962-968.
- 787 Kadandale, P., I. Chatterjee and A. Singson, 2009 Germline transformation of Caenorhabditis
- relegans by injection, pp. 123-133 in *Microinjection*. Springer.
- 789 Kaitna, S., H. Schnabel, R. Schnabel, A. A. Hyman and M. Glotzer, 2002 A ubiquitin C-terminal
- 790 hydrolase is required to maintain osmotic balance and execute actin-dependent processes in the
- **791** early C. elegans embryo. J. Cell. Sci. 115: 2293-2302.
- 792 Kamath, R. S., A. G. Fraser, Y. Dong, G. Poulin, R. Durbin et al., 2003 Systematic functional
- analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231-237.
- 794 Kemphues, K. J., M. Kusch and N. Wolf, 1988 Maternal-effect lethal mutations on linkage group II
- 795 of Caenorhabditis elegans. Genetics 120: 977-986.
- 796 Kim, W., R. S. Underwood, I. Greenwald and D. D. Shaye, 2018 OrthoList 2: A new comparative
- **797** genomic analysis of human and Caenorhabditis elegans genes. Genetics 210: 445-461.
- 798 Kniazeva, M., Q. T. Crawford, M. Seiber, C. Wang and M. Han, 2004 Monomethyl branched-chain
- fatty acids play an essential role in Caenorhabditis elegans development. PLoS biology 2: e257.
- 800 Kumar, S., K. Chaudhary, J. M. Foster, J. F. Novelli, Y. Zhang et al., 2007 Mining predicted
- 801 essential genes of Brugia malayi for nematode drug targets. PloS one 2: e1189.

- 802 Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows–Wheeler
- transform. Bioinformatics 25: 1754-1760.
- **804** Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan *et al.*, 2009 The sequence alignment/map
- 805 format and SAMtools. Bioinformatics 25: 2078-2079.
- 806 Li, Z., F. J. Vizeacoumar, S. Bahr, J. Li, J. Warringer *et al.*, 2011 Systematic exploration of essential
- 807 yeast gene function with temperature-sensitive mutants. Nat. Biotechnol. 29: 361.
- 808 Ma, X., Y. Zhu, C. Li, P. Xue, Y. Zhao *et al.*, 2014 Characterisation of Caenorhabditis elegans sperm
- transcriptome and proteome. BMC Genomics 15: 168.
- 810 McKim, K. S., M. F. Heschl, R. E. Rosenbluth and D. L. Baillie, 1988 Genetic organization of the
- 811 unc-60 region in Caenorhabditis elegans. Genetics 118: 49-59.
- 812 McKim, K. S., T. Starr and A. M. Rose, 1992 Genetic and molecular analysis of the dpy-14 region
- 813 in Caenorhabditis elegans. Mol. Gen. Genet. 233: 241-251.
- 814 Mello, C. C., J. M. Kramer, D. Stinchcomb and V. Ambros, 1991 Efficient gene transfer in C.
- 815 elegans: Extrachromosomal maintenance and integration of transforming sequences. EMBO
- **816** J. 10: 3959-3970.
- 817 Meneely, P. M., and R. K. Herman, 1979 Lethals, steriles and deficiencies in a region of the X
- 818 chromosome of Caenorhabditis elegans. Genetics 92: 99-115.
- 819 Metzker, M. L., 2010 Sequencing technologies—the next generation. Nat. Rev. Genet. 11: 31-46.

820 Nicol, J. M., S. J. Turner, D. L. Coyne, L. Den Nijs, S. Hockland <i>et al.</i> , 2011 Current nematode

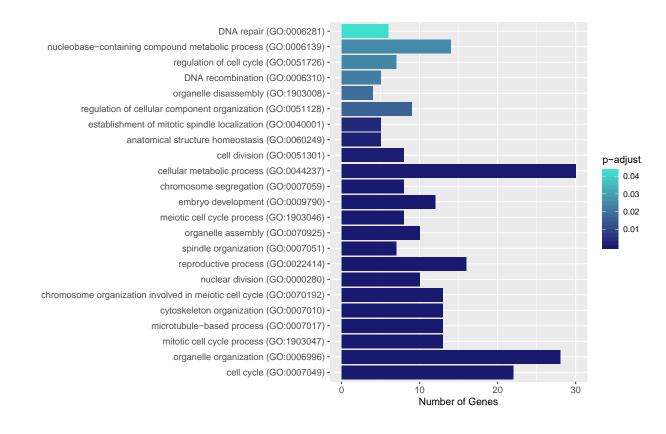
- 821 threats to world agriculture, pp. 21-43 in *Genomics and Molecular Genetics of Plant-Nematode*822 *Interactions*. Springer.
- 823 Nieto, C., J. Almendinger, S. Gysi, E. Gómez-Orte, A. Kaech *et al.*, 2010 Ccz-1 mediates the
- digestion of apoptotic corpses in C. elegans. J. Cell. Sci. 123: 2001-2007.
- 825 Nordström, K. J., M. C. Albani, G. V. James, C. Gutjahr, B. Hartwig et al., 2013 Mutation
- identification by direct comparison of whole-genome sequencing data from mutant and wild-
- type individuals using k-mers. Nat. Biotechnol. 31: 325.
- 828 Norris, A. D., H. Kim, M. P. Colaiacovo and J. A. Calarco, 2015 Efficient genome editing in
- 829 Caenorhabditis elegans with a toolkit of dual-marker selection cassettes. Genetics 201: 449-58.
- 830 Olson, S. K., G. Greenan, A. Desai, T. Müller-Reichert and K. Oegema, 2012 Hierarchical assembly
- of the eggshell and permeability barrier in C. elegans. J. Cell Biol. 198: 731-748.
- 832 Packer, J. S., Q. Zhu, C. Huynh, P. Sivaramakrishnan, E. Preston et al., 2019 A lineage-resolved
- 833 molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 365: eaax1971.
- 834 Qin, Z., R. Johnsen, S. Yu, J. S. Chu, D. L. Baillie *et al.*, 2018 Genomic identification and functional
- 835 characterization of essential genes in Caenorhabditis elegans. G3: Genes, Genomes,
- 836 Genet. 8: 981-997.
- 837 Rahman, M. M., S. Rosu, D. Joseph-Strauss and O. Cohen-Fix, 2014 Down-regulation of
- 838 tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in
- 839 Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. U.S.A. 111: 2602-2607.

- 840 Rappleye, C. A., A. Tagawa, N. Le Bot, J. Ahringer and R. V. Aroian, 2003 Involvement of fatty acid
- 841 pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans
- embryonic polarity. BMC developmental biology 3: 8.
- 843 Rappleye, C. A., A. R. Paredez, C. W. Smith, K. L. McDonald and R. V. Aroian, 1999 The coronin-
- 844 like protein POD-1 is required for anterior–posterior axis formation and cellular architecture in
- the nematode Caenorhabditis elegans. Genes Dev. 13: 2838-2851.
- 846 Reinke, V., I. San Gil, S. Ward and K. Kazmer, 2004 Genome-wide germline-enriched and sex-
- 847 biased expression profiles in Caenorhabditis elegans. Development 131: 311-323.
- 848 Rogalski, T. M., D. G. Moerman and D. L. Baillie, 1982 Essential genes and deficiencies in the unc-
- 849 22 IV region of Caenorhabditis elegans. Genetics 102: 725-736.
- 850 Sarin, S., S. Prabhu, M. M. O'meara, I. Pe'er and O. Hobert, 2008 Caenorhabditis elegans mutant
- allele identification by whole-genome sequencing. Nat. Methods 5: 865-867.
- 852 Schnabel, R., H. Hutter, D. Moerman and H. Schnabel, 1997 Assessing normal embryogenesis in
- 853 Caenorhabditis elegans using a 4D microscope: Variability of development and regional
- **854** specification. Dev. Biol. 184: 234-265.
- 855 Schneeberger, K., and D. Weigel, 2011 Fast-forward genetics enabled by new sequencing
- technologies. Trends Plant Sci. 16: 282-288.
- 857 Schneeberger, K., S. Ossowski, C. Lanz, T. Juul, A. H. Petersen *et al.*, 2009 SHOREmap:
- 858 Simultaneous mapping and mutation identification by deep sequencing. Nat. Methods 6: 550-


859 551.

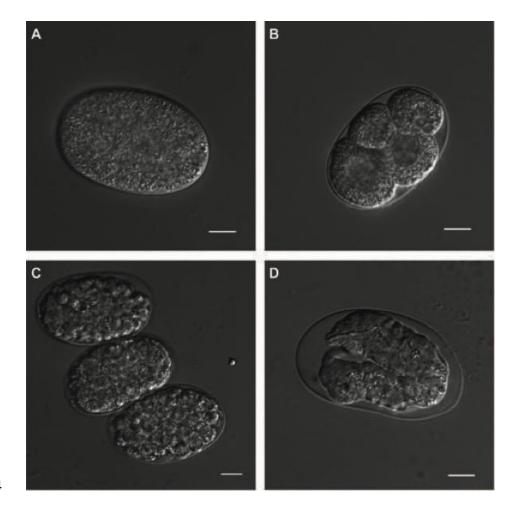
- 860 Shi, J., E. Wang, J. P. Milazzo, Z. Wang, J. B. Kinney *et al.*, 2015 Discovery of cancer drug targets
- 861 by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33: 661-667.
- 862 Silverman, G. A., C. J. Luke, S. R. Bhatia, O. S. Long, A. C. Vetica *et al.*, 2009 Modeling molecular
- and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr.
- 864 Res. 65: 10-18.
- 865 Smith, D. R., A. R. Quinlan, H. E. Peckham, K. Makowsky, W. Tao et al., 2008 Rapid whole-genome
- 866 mutational profiling using next-generation sequencing technologies. Genome Res. 18: 1638-
- **867** 1642.
- 868 Smith, H. E., A. S. Fabritius, A. Jaramillo-Lambert and A. Golden, 2016 Mapping challenging
- 869 mutations by whole-genome sequencing. G3: Genes, Genomes, Genet. 6: 1297-1304.
- 870 Sonneville, R., and P. Gönczy, 2004 Zyg-11 and cul-2 regulate progression through meiosis II and
- 871 polarity establishment in C. elegans. Development 131: 3527-3543.
- 872 Sönnichsen, B., L. B. Koski, A. Walsh, P. Marschall, B. Neumann et al., 2005 Full-genome RNAi
- 873 profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462-469.
- 874 Srivatsan, A., Y. Han, J. Peng, A. K. Tehranchi, R. Gibbs *et al.*, 2008 High-precision, whole-genome
- 875 sequencing of laboratory strains facilitates genetic studies. PLoS Genet. 4: e1000139.
- 876 Stein, K. K., and A. Golden, 2018 The C. elegans eggshell in WormBook: The Online Review of C.
- 877 *Elegans Biology.* The C. elegans Research Community.

- 878 Stewart, H. I., N. J. O'Neil, D. L. Janke, N. W. Franz, H. M. Chamberlin *et al.*, 1998 Lethal mutations
- 879 defining 112 complementation groups in a 4.5 mb sequenced region of Caenorhabditis elegans
- **880** chromosome III. MGG 260: 280-288.
- 881 The C. elegans Sequencing Consortium, 1998 Genome sequence of the nematode C. elegans: A
- **882** platform for investigating biology. Science 2012-2018.
- 883 Thomas, C., P. DeVries, J. Hardin and J. White, 1996 Four-dimensional imaging: Computer
- visualization of 3D movements in living specimens. Science 273: 603-607.
- Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak et al., 2003 PANTHER: A library of
- protein families and subfamilies indexed by function. Genome Res. 13: 2129-2141.
- **887** Thompson, O., M. Edgley, P. Strasbourger, S. Flibotte, B. Ewing *et al.*, 2013 The million mutation
- **888** project: A new approach to genetics in Caenorhabditis elegans. Genome Res. 23: 1749-1762.
- 889 Tintori, S. C., E. O. Nishimura, P. Golden, J. D. Lieb and B. Goldstein, 2016 A transcriptional
- 890 lineage of the early C. elegans embryo. Dev. Cell 38: 430-444.
- 891 Varshney, G. K., J. Lu, D. E. Gildea, H. Huang, W. Pei *et al.*, 2013 A large-scale zebrafish gene
- knockout resource for the genome-wide study of gene function. Genome Res. 23: 727-735.
- 893 Vatcher, G. P., C. M. Thacker, T. Kaletta, H. Schnabel, R. Schnabel et al., 1998 Serine
- 894 hydroxymethyltransferase is maternally essential in Caenorhabditis elegans. J. Biol.
- **895** Chem. 273: 6066-6073.
- 896 Vyas, V. K., M. I. Barrasa and G. R. Fink, 2015 A Candida albicans CRISPR system permits genetic
- engineering of essential genes and gene families. Sci. Adv. 1: e1500248.


- 898 Wang, S., S. D. Ochoa, R. N. Khaliullin, A. Gerson-Gurwitz, J. M. Hendel et al., 2019 A high-content
- imaging approach to profile C. elegans embryonic development. Development 146: dev174029.
- 900 Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson *et al.*, 1999 Functional
- 901 characterization of the S. cerevisiae genome by gene deletion and parallel analysis.
- **902** Science 285: 901-906.
- 903 Wolstenholme, A. J., I. Fairweather, R. Prichard, G. von Samson-Himmelstjerna and N. C.
- **904** Sangster, 2004 Drug resistance in veterinary helminths. Trends Parasitol. 20: 469-476.
- 905 Yu, L., L. P. Castillo, S. Mnaimneh, T. R. Hughes and G. W. Brown, 2006 A survey of essential gene
- **906** function in the yeast cell division cycle. Mol. Biol. Cell 17: 4736-4747.
- **907** Zhang, M., C. Wang, T. D. Otto, J. Oberstaller, X. Liao *et al.*, 2018 Uncovering the essential genes
- 908 of the human malaria parasite Plasmodium falciparum by saturation mutagenesis.
- **909** Science 360: eaap7847.
- 910 Zhu, G., G. Salazar, S. A. Zlatic, B. Fiza, M. M. Doucette *et al.*, 2009 SPE-39 family proteins interact
- 911 with the HOPS complex and function in lysosomal delivery. Mol. Biol. Cell 20: 1223-1240.
- 912 Zuryn, S., S. Le Gras, K. Jamet and S. Jarriault, 2010 A strategy for direct mapping and
- 913 identification of mutations by whole-genome sequencing. Genetics 186: 427-430.

915 Figure 1.

917 Figure 2


918

919

922 Figure 3.

923

