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Abstract

The evolutionary consequences of quorum sensing in regulating bacterial cooperation are not fully un-
derstood. In this study, we reveal unexpected consequences of regulating public good production through
quorum sensing on bacterial population dynamics, showing that quorum sensing can be a “spiteful” al-
ternative to unregulated production. We analyze a birth-death model of bacterial population dynamics
accounting for public good production and the presence of non-producing cheaters. Our model demon-
strates that when demographic noise is a factor, the consequences of controlling public good production
according to quorum sensing depend on the cost of public good production and the presence of alternative
sources of the fitness benefits provided by public goods. When public good production is inexpensive,
quorum sensing is a spiteful alternative to unconditional production, in terms of the mean population
extinction time. When costs are higher, quorum sensing becomes a selfish strategy for the producing
strain, both stabilizing cooperation and decreasing the risk of population extinction.

Cooperative behavior is widespread in bacteria [1], including coordinated swarming and public good
production. These behaviors are often regulated through quorum sensing (QS) [2], in which individual
bacteria produce and export small molecules called autoinducers (AI). When AI molecules accumulate to
a sufficiently high concentration in the environment, and consequently within the bacteria producing them,
they activate operons controlling the expression of genes critical for cooperation. While the biochemistry
of some QS systems is well understood [2], there are many proposed biological functions of QS which have
been the subject of debate [3, 4, 5, 6, 7].

Evolutionary questions concerning QS function have largely focused on the ability of QS-controlled coop-
eration to combat invasion by non-cooperating cheaters in bacterial populations [8, 9]. The question of how
cooperation can evolve and be maintained in populations is a general problem in evolutionary biology [10],
and the role of QS in the evolution of bacterial cooperation is of great interest in understanding bacterial
social interactions. A number of possible resolutions to the problem of social cheaters in bacterial public
good production include punishment of cheaters [11], dispersal into subpopulations [12], and the use of QS to
regulate cooperation [1, 13, 6]. Regulation of public good production through QS has been shown to reduce
the ability of cheaters to invade a population of producers [14].

The role of QS in maximizing population growth in the absence of cheaters has also been investigated as
a rationale for QS-control of public good production. Because public goods produced by bacteria can have
density-dependent fitness benefits [15], regulation of public good production based on population density can
be seen as an optimal control solution to maintaining a maximal population size balancing metabolic costs
and benefits [16, 17]. By maintaining a maximal population size, a population also maximizes its mean time
to extinction, which is especially important with the possibility of unpredictable environmental changes.

Considering the threat of both cheater invasion and the onset of harmful environmental conditions that
could lead to population extinction, there is a tension in the degree to which public good production is reg-
ulated. Unconditional public good production appears to be a self-defeating strategy, where non-producing
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Figure 1: Overview of birth-death model and main results. A) Diagram of the two-dimensional birth-death process describing the
dynamics of a bacterial population consisting of public good producers and cheaters. As an example, the population is shown with
two producers and two cheaters. All possible subsequent states of the population are indicated, where a single producer or cheater can
either arise through binary fission (with state-dependent rates λPr and λCh, respectively) or can die (with state-dependent rates µPr

and µCh). See Eqs. 1-4 for the full forms of the birth and death rates. B) Phase diagram describing the fitness gains of quorum sensing
(QS) over always on (AO) producers, as a function of constitutive growth rate (λ0) and public good production cost (c). For each pair
(λ0, c) we calculated the mean extinction time for all (n,m) pairs satisfying n ≥ 0, m ≥ 0, and n + m ≤ 100 with the QS and AO
strategies. The reported number is the fraction of these (n,m) pairs for which the mean extinction time for QS is greater than for AO

(T QS
n,m > T AO

n,m). In the bottom right-hand region (dark blue) regulating public good production through QS decreases mean extinction

time for all (n,m) pairs, meaning that the AO strategy decreases the risk of population extinction. Here, QS is a spiteful strategy. The
upper region (yellow) is where QS increases the mean extinction time for all (n,m), a selfish strategy for the producers. The region
labeled “mixed” indicates that QS increases mean extinction time for some (n,m) pairs while decreasing it for others.

cheaters will arise by mutation and reap all the benefits of public goods without experiencing any of the asso-
ciated production costs. At the other extreme, a strategy where no public goods are produced (which could
be a result of a successful cheater invasion of a cooperating population) should be vulnerable to extinction
when the public goods are essential for growth or reducing the likelihood of death. The idea that quorum
sensing is a moderate strategy between these two extremes has been explored previously [18]. However,
to our knowledge, a full analysis of this tension explicitly considering both cheater fixation probability and
mean population extinction time has not been carried out. What are the effects of QS-mediated regulation of
public good production in terms of cheater suppression and overall population robustness? Does QS always
protect against cheaters while also increasing long-term viability of the population?

In this work, we explore the effects of QS on cheater fixation and mean population extinction time in
simple birth-death models of mixed producer-cheater populations. We compare the QS strategy of pub-
lic good production with an “always on” (AO) strategy, meaning that each producer cell unconditionally
produces public goods at the maximum rate. Our models reflect bacterial populations where demographic
stochasticity is an important factor in population dynamics. The role of demographic stochasticity in bacte-
rial populations has been explored in past work [19, 20], and is particularly important when populations are
divided into subpopulations, as is the case with Pseudomonas aeruginosa lung infections [21] for example.
Additionally, Joshi and Guttal recognized demographic noise as a possible factor in the evolution of QS in
populations of fixed size [22]. We use the QS system controlling production of proteases by P. aeruginosa as
inspiration for our model, where public goods increase the growth rate of all individuals while leaving death
rates unaffected.

We find that while QS decreases cheater fixation probability for all examined public good costs and
constitutive growth rates (growth rate in the absence of public goods), the population mean extinction time
is only increased by QS for a well-defined set of cost-growth rate pairs. The cases where QS decreases mean
extinction time as compared with an unconditional AO strategy are analogous to spiteful behavior [23, 24],
where QS reduces the relative fitness of the cheater strain while the entire population of both producers and
cheaters is made more vulnerable to extinction. Only when both the cost of public good production and
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the constitutive growth rate are large enough is QS a selfish strategy for the producers, in that both cheater
fixation probability is reduced and mean extinction time is increased. We discuss the relationship between
our analogy of spite and selfishness and the definitions used in the literature in the Conclusions section.

1 Model

We consider well-mixed populations of bacteria growing according to birth-death models with no mutation
or migration (Fig. 1A). Public goods are modeled implicitly through their costs and benefits as reflected in
the birth rates. We write the birth rates as λPr

n,m and λCh
n,m for producers and cheaters, respectively. The

subscript n and m are the number of producers and cheaters present, reflecting the dependence of the rates
on the population state. The death rates are µPr

n,m and µCh
n,m. See Eqs. 1-4 for full forms of the birth and

death rates.
Our model accounts for AI and public good production and degradation as well as density-dependent

fitness benefits of public goods directly in the birth rates. This simplification rests on several assumptions.
We assume that the timescales associated with AI and public good production and degradation are much
faster than those of births and deaths. Under this assumption, the AI and public good concentrations
quickly reach a steady state upon a bacterial birth or death, so that the effects of both concentrations on
the birth rates is only a function of the state of the population. Similarly, the growth benefits of public
goods are assumed to be a function of the current population state, namely a non-decreasing, saturating
function of n. Another assumption is that all individuals within a given strain (producer or cheater) exhibit
exactly the same birth and death rates. In reality, the stochasticity of subcellular events and diffusion of
extracellular molecules leads to heterogeneous growth rates even in clonal populations [25]. Our approach
simplifies analysis while providing a description of mean birth and death rates.

In order to evaluate the evolutionary success of mixed producer-cheater populations, we calculate the
cheater fixation probability (πCh), mean first passage time to cheater fixation (τCh), and mean population
extinction time (T ) for all pairs of n producers and m cheaters where n + m ≤ N . We define N as a
maximal population size large enough that the line n+m ≤ N effectively acts as a reflecting boundary. An
appropriate choice of N then depends on the birth and death rates used. Solutions of all three quantities
of interest come from solving backward Kolmogorov equations, as detailed in the Materials and Methods
section. We validate the results from these solutions through stochastic simulations [26, 27].

2 Results and Discussion

The phase diagram in Fig. 1B shows the fraction of (n,m) pairs in the set {(n,m) ∈ Z2 | n,m > 0, n+m ≤
100} in which the mean extinction time of a population regulating public good production through QS is
larger than that using the AO strategy, as a function of the constitutive per capita growth rate, λ0 ≥ 0,
and the cost of public good production, 0 ≤ c ≤ 1, representing the fraction of growth rate benefit provided
by public goods alone. We first examine two points of interest on this phase diagram, c = 0.1, λ0 = 0 and
c = 0.15, λ0 = 0.2 as marked in Fig. 1B, and then discuss the general features of the phase diagram.

2.1 Quorum sensing is a spiteful strategy in the absence of alternative nutrition
sources

In agreement with previous work [14, 28], we find that in the absence of alternate sources of nutrition (λ0 = 0),
QS reduces the probability of cheater fixation for a wide range of starting population compositions (Fig. 2).
We calculate the probability of cheaters fixing (Eq. 9) in a small population with starting compositions
satisfying 0 < n, 0 < m, and n+m ≤ 100. We compare cases where no public good is produced (NP), where
public good production is QS-controlled, and where public good production is always on (AO). Because
there is no constitutive growth rate (λ0 = 0), if the NP strategy is used there is no (n,m) pair for which
the net population growth rate is non-negative. On the other hand, for the QS and AO populations, the
white lines in Fig. 2 represent the total population zero expected net growth contour. Because these lines
represent the zero expected net growth rate contours of the entire population, they are not fixed points of the
underlying deterministic behavior of the system, which only exist at the origin and at the intersection of the
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zero expected net growth contours with the producer axis. Thus, there can not be a long-lived population
with a non-zero number of cheaters.

Figure 2: Quorum sensing is a spiteful strategy for producers when no alternate energy source is present (λ0 = 0) and when public
good cost is moderate (c = 0.1). Row 1: Cheater fixation probability from an initial population of n producers and m cheaters for
A) no production (NP), B) quorum sensing (QS), and C) always on (AO) strategies. Row 2: Conditional mean first passage time to
cheater fixation from initial population structure for D) no production, E) quorum sensing, and F) always on strategies. Row 3: Mean
extinction time from initial population structure for G) no production, H) quorum sensing, and I) always on strategies. White traces:
zero expected net total population growth contours. Inset plots in B), E), and H) show cheater fixation probability, cheater mean first
passage time to fixation, and mean extinction time, respectively, for an initial population with one cheater and n producers. See Table
S1 for parameter values.

With a moderate cost to public good production (10% of the maximum growth rate benefit imparted
by public goods), a QS strategy (Fig. 2B) increases cheater fixation probability as compared with an NP
strategy (Fig. 2A) while decreasing cheater fixation probability as compared with an AO strategy (Fig. 2C).
This can be clearly seen in an invasion scenario with a single cheater present in the population (Fig. 2C
inset). For any public good production strategy, without any elaborate solutions such as policing [29] it
is unavoidable that cheaters will become more likely to fix in a population. However, QS mitigates this
possibility as compared with an AO strategy. Both the QS and AO strategies (Fig. 2E-F) increase the mean
time to extinction as compared with the NP strategy (Fig. 2D). Our results match well with simulations
(Figs. S1 & S2).

In order to explore the fitness advantages of public good production to the total population, we calculated
the mean time to extinction of the population given an initial composition of producers and cheaters. The
mean extinction time has been proposed as a general measure of fitness [30] and has the advantage over
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geometric mean growth rate [31] that it can be applied to populations with limited growth. While QS
reduces the probability of cheater fixation as compared to AO, the mean extinction time with QS (Fig. 2H)
is greatly reduced as compared to AO (Fig. 2I). This suggests that with no alternate sources of nutrition, QS
increases the relative fitness of producers while decreasing the overall population fitness as compared with
AO. This scenario is analogous to evolutionary spite [23, 24], suggesting that QS may be spiteful behavior
in certain situations as compared with AO. For most, but not all, (n,m) pairs, the mean extinction time for
QS is larger than for AO. This places the system in the “mixed” region of the phase diagram (Fig. 1B).

The qualitative differences in cheater fixation probabilities and mean extinction times between QS and
AO were preserved for systems with carrying capacities of 200 (Fig. S3), twice the size considered in Figs. 2
(see Tables S1 & S2 for the parameters used). While this does not guarantee that the spiteful nature of
QS in these conditions is independent of populations size, it does demonstrate insensitivity to the overall
population size. Given that our model is not parameterized by experimental results, the population sizes we
consider do not directly correspond to population sizes in real bacterial colonies. Instead, our model aims to
capture key aspects of bacterial population dynamics when demographic noise plays a role, as discussed in
the Introduction. The degree of demographic noise is related to the size of a population through the law of
large numbers, where the standard deviation in the population size over the mean number of individuals is
inversely proportional to the square root of the population size. For this reason we focus on small populations,
where demographic noise is relatively large.

2.2 Alternative sources of nutrition enable QS to give a non-spiteful advantage
to producers

Bacterial populations need not rely solely on the growth benefits of a public good. In some cases they
may use alternative sources of nutrition which are not directly influenced by public good production. We
consider the case in which the constitutive growth rate for individuals with zero public goods present is
non-zero but small (20% of the maximal growth rate benefit provided by public goods alone). This non-zero
constitutive growth rate allows for a small carrying capacity to appear in the NP case, indicated by the
white line in the leftmost column of Fig. 3. With the QS and AO strategies, the zero expected net growth
contour reflects the NP carrying capacity when the number of producers is low, but increases markedly with
more producers. Additionally, more cheaters can be accommodated with more producers present because
of the public nature of the fitness benefits provided by producers. As in Fig. 2, the only fixed points of
the underlying deterministic dynamics are the origin and the intersections of the zero expected net growth
contour with the axes.

As in the case of zero constitutive growth, QS (Fig. 3B) decreases the probability of cheater fixation over
AO (Fig. 3C) for a wide range of starting population compositions, while increasing the fixation probability
compared to NP (Fig. 3A). The improvement of QS over AO can be clearly seen in the cheater invasion
scenario in the inset of Fig. 3B. However, with non-zero constitutive growth the mean time to cheater fixation
for NP (Fig. 4D) and QS (Fig. 3E) are comparable, while cheaters fix more quickly for AO (Fig. 3F). Again,
our results match well with simulations (Figs. S4 & S5).

The presence of an alternative source of nutrition renders QS a non-spiteful, beneficial strategy for
producers (Fig. 3) at a moderate public good production cost (15%). QS increases the mean extinction time
of the population for all starting population compositions with at least one cheater and one producer over
AO (Fig. 3H-I). From comparison with (Fig. 2), it appears that the degree to which growth depends on
alternative nutrition sources influences whether QS at moderate costs is spiteful or beneficial.

As when there is no constitutive growth, the qualitative differences between QS and AO were preserved
for systems with carrying capacities of 200 as shown in Fig. S6 (see Tables S1 & S2 for parameters).

2.3 Autoinducer production by cheaters is a spiteful strategy

To this point, we have assumed that cheaters produce neither public goods nor autoinducer. What are the
consequences of cheaters producing autoinducer while still not producing public goods? We performed the
same analysis as in the previous sections using the growth rates in Eqs. 5 & 6 which reflect equal autoinducer
production by producers and cheaters. We compared these results to those presented in Fig. 3, where an
alternative nutrition source exists and cheaters do not produce autoinducer. Cheater signaling increases the
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Figure 3: Quorum sensing is a selfish strategy for producers when an alternate energy source is present (λ0 = 0.2) and when public
good cost is moderate (c = 0.15). Row 1: Cheater fixation probability from an initial population of n producers and m cheaters for
A) no production (NP), B) quorum sensing (QS), and C) always on strategies (AO). Row 2: Conditional mean first passage time to
cheater fixation from initial population structure for D) no production, E) quorum sensing, and F) always on strategies. Row 3: Mean
extinction time from initial population structure for G) no production, H) quorum sensing, and I) always on strategies. White traces:
zero expected net total population growth contour. Inset plots in B), E), and H) show cheater fixation probability, cheater mean first
passage time to fixation, and mean extinction time, respectively, for an initial population with a single cheater and n producers. See
Table S1 for parameter values.

probability of cheater fixation while decreasing the mean time to cheater fixation and the mean extinction
time (Fig. 4). From the perspective of the cheater population, autoinducer production is a spiteful strategy.
Even though cheater signaling decreases mean extinction time, this result suggests that signaling cheaters are
more likely to be observed in nature than non-signaling cheaters, provided that signaling cheater mutations
are at least as likely to occur in a population as non-signaling cheater mutations.

2.4 The spiteful or selfish nature of QS depends on cost and constitutive growth

The phase diagram in Fig. 1B demonstrates the role of both public good production cost and constitutive
growth rate in determining the nature of QS outcomes. At low constitutive growth rates, public good pro-
duction is essential to the survival of the population. With low λ0, QS regulation of public good production
moves to the “mixed” region of the phase diagram at relatively low public good costs. This means that
whether QS is beneficial to the population depends on the initial composition of the population. For low
constitutive growth rates below λ0 = 0.1, all values of public good cost investigated lead to a mix of spite
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and selfishness. With larger constitutive growth rates the transition from spite to selfishness with increasing
cost c occurs gradually with the transition to selfishness completing at c = 0.1 to c = 0.15, depending on λ0.
For all (c, λ0) pairs with c > 0, the cheater fixation probability is reduced in QS as compared with AO S7.

Figure 4: Cheater autoinducer production is spiteful in the presence of an alternative source of nutrition (λ0 = 0.2). The ratio of A)
cheater fixation probability, B) cheater mean fixation time, and C) mean extinction time between QS populations where cheaters signal
(indicated by S) to where cheaters do not signal (indicated by NS). The non-signaling results used in the denominators are the same
as those in Fig. 3. See Table S1 for parameter values.

We show the ratio TQS/TAO for all (n,m) pairs for two sequences of (c, λ0) pairs in Figs. S8 and S9. With
fixed c = 0.2, the ratio TQS/TAO is always highest with intermediate mixtures of producers and cheaters
(Fig. S8). When λ0 ≈ 0.1, there is a transition from the mixed region to the selfish region, where (n,m)
pairs with few cheaters appear to be slower to change to selfishness with increasing λ0. With fixed λ0 = 0.2,
there is a gradual transition from spite at low c to selfishness at high c (Fig. S9). At moderate costs below
c = 0.1, QS is spiteful, with TQS < TAO for all (n,m) pairs. However, once the cost reaches 0.15, QS is no
longer spiteful, as the mean extinction time is decreased with respect to AO. In the transition range from
c = 0.1 to c = 0.15, the ratio TQS/TAO is highest when the number of producers is low, suggesting that QS
is most beneficial with those initial population structures. The mean extinction time is further reduced by
QS at a cost of 0.2, again most drastically when n is small.

3 Conclusions

Our model of competitive growth between bacterial producers and cheaters reveals a number of previously un-
explored consequences of quorum sensing. When public good production allows for metabolism of otherwise
inaccessible sources of nutrients, we demonstrate the important role of both the availability of alternative,
public good-independent nutrients and the cost of public good production in determining the consequences
of quorum sensing. With no alternative nutrients, quorum sensing by producers withholds the only source
of nutrients from the whole population, which harms both producers and cheaters in terms of the total
population’s mean extinction time. We identify this result as analogous to spite, as quorum sensing reduces
the absolute fitness of both producers and cheaters in terms of mean extinction time. If instead there is an
alternate energy source, then regulating public good production via quorum sensing reduces the probability
of cheater fixation, while increasing the mean extinction time of the population over the always on strategy,
depending on the public good production cost.

The spite region in Fig. 1 can be understood heuristically by considering that, if the cost of public
good production is low, QS-mediated regulation of public good production withholds the fitness benefits of
the public good while achieving minimal metabolic savings for the producers. In addition, large alternate
sources of nutrition can help to offset the costs of public good production, reducing loss in relative producer
fitness due to costs. On the other hand, when public good production is costly, QS-mediated production
balances costs and benefits by delaying public good production until the population of producers is large
enough to benefit. Thus both public good production cost and constitutive growth rate play an important
role in determining the evolutionary effects of QS-based regulation.

Our microbial protagonists appear to be confronted with a grim situation, as implied by the dichotomy
between what we have called “selfishness” and “spite” when QS is used to regulate public good production
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as opposed to an unconditional approach. However, we emphasize that “selfishness” in this context means
that QS stabilizes cooperation (production of public goods) and reduces the risk of population extinction.
On the other hand, “spite” means that while QS may still stabilize cooperation, unconditional cooperation
is beneficial to the population as a whole, in that the mean extinction time is higher than when QS is used
to regulate cooperation.

Our use of spite and selfishness refer to inter-strain relationships based on the alternatives of QS and
AO, whereas analyzing the costs and benefits between an individual bacterium and other members of its
strain would lead one to conclude that public good production is an altruistic behavior compared with
the alternative of non-production. Altogether, the comparison between the alternate strategies of QS and
AO, as well as our use of cheater fixation probability and mean extinction time to define the two terms,
distinguish our meanings of “spite” and “selfishness” from more common uses. Previous work has recognized
the production of bacteriocidins by P. aeruginosa as spiteful behavior [32]. However, to the best of our
knowledge, the conditionally spiteful nature of quorum sensing as compared with unregulated public good
production is a novel observation and interpretation.

By using QS instead of AO, producers harm cheaters by reducing their access to public goods when
producer population density is low. The producers directly benefit from suppression of cheaters, which
seems to indicates that QS is a selfish behavior. Additionally, in our model, there is no third strain with
relatively high relatedness to the producers that could indirectly benefit from cheater suppression, an accepted
mechanism for the evolution of spite [23]. However, our study of cheater fixation probability and mean
extinction time does not translate cleanly to the Hamiltonian framework [33, 34] and we can not say anything
conclusive about whether spite through QS is likely to evolve, only that it is possible in small populations.
A model considering growth of small subpopulations linked by migration could provide insight into how the
balance of cheater fixation and population extinction impacts the fate of the larger population, as we might
expect to see in nature.

It would be interesting to explore the impact of mutation, migration, and horizontal gene transfer on
our results, where a stable heterogeneous steady state could possibly be achieved. In addition, one could
explicitly consider the role of compartmentalization through a spatial component in the model, which could
also incorporate the linkage of limited dispersal and kinship [6] in terms of public goods production.

4 Materials and Methods

4.1 Birth and death rates

We use birth-death models to describe the population dynamics of a bacterial colony with both public good
producers and cheaters. We assume the timescales of both autoinducer and public good production and
degradation are much shorter than those of population growth. Consequently, we write per capita birth and
death rates solely as a function of the number of producers and cheaters in the population. We also assume
that QS is sensitive to population density. While a number of other explanations for the function of QS
exist, as noted in the Introduction, all of them depend to some degree on population density.

The birth and death rates in our models take into account the costs and benefits of public good production.
We use λ to denote birth rates and µ to denote death rates, with the superscript Pr for producers and Ch for
cheaters. Let n be the number of producers in the population and m be the number of cheaters. Let λ0 be
the birth rate due to an alternative energy source that does not require proteases for bacteria to utilize, and
let µ0 be the constant death rate. We assume that the per-capita death rate increases linearly with the total
population size through some density-dependent mechanism such as the production of toxic byproducts. We
denote the maximal growth rate due to nutrients derived from protease activity as g and the maximal cost of
protease production, in terms of growth rate, as c. Parameters Kg and Ka control the number of producers
for which protease-derived growth rate and protease production are half-maximal, respectively. Finally, hg

and ha control the shape of the protease-derived growth rate and protease production rate functions. The
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full birth and death rates are

λPr
n,m =

max

([
λ0 +

(
g

(n/Kg)hg

1 + (n/Kg)hg
− c
)

(n/Ka)ha

1 + (n/Ka)ha

]
n, 0

)
(1)

µPr
n,m = µ0(n+m)n (2)

λCh
n,m =

[
λ0 + g

(n/Kg)hg

1 + (n/Kg)hg

(n/Ka)ha

1 + (n/Ka)ha

]
m (3)

µCh
n,m = µ0(n+m)m. (4)

The Hill function forms of these rates are similar to those in previous work [35, 36]. The strategy taken
by a particular strain in controlling public good production is controlled by the parameters Ka and ha.
The parameter Ka controls when public good production is half-maximal, while ha controls the shape of
the activation curve. For an “always-on” strain, we take the limit Ka → 0 so that public good production
is always maximal, independent of the producer population size. For a “no production” strain, we take
Ka →∞ so that the public good is never produced.

We set the maximum public good birth rate to g = 1 in all cases, so that all other birth rate parameters
can be considered to be in units of maximum public good birth rate. In general we consider the parameters
g, Kg, hg, c, and λ0 to be properties of the public good and environment which cannot be changed by
bacterial strategy. Similarly, we consider the parameter µ0 to be a joint property of the bacterial species and
the environment. As we have stated, Ka and ha constitute the choice of public good regulation strategy.

For the special case where cheaters produce autoinducer but not public goods, we modify the birth rates
to

λPr
n,m = max

([
λ0 +

(
g

(
n/Kg)hg

1 + (n/Kg)hg
− c
)

×
(
(n+m)/Ka

)ha

1 +
(
(n+m)/Ka

)ha

]
n, 0

)
(5)

λCh
n,m =

[
λ0 + g

(
n/Kg)hg

1 + (n/Kg)hg

(
(n+m)/Ka

)ha

1 +
(
(n+m)/Ka

)ha

]
m (6)

under the assumption that producers and cheaters contribute autoinducer equally. The parameter values we
have used are summarized in Table S1.

4.2 Fixation probabilities and mean first passage times

The dynamics of the probability distribution over n and m at time t given n′ and m′ at an earlier time s
(s < t) is governed by the forward Kolmogorov equation

∂

∂t
P (n,m, t | n′,m′, s) = λPr

n−1,mP (n− 1,m, t | n′,m′, s)

+ µPr
n+1,mP (n+ 1,m, t | n′,m′, s)

+ λCh
n,m−1P (n,m− 1, t | n′,m′, s)

+ µCh
n,m+1P (n,m+ 1, t | n′,m′, s)

−
(
λPr
n,m + µPr

n,m+λCh
n,m + µCh

n,m

)
P (n,m, t | n′,m′, s) (7)

where n,m, n′,m′ ∈ {0, 1, 2, . . . }. For birth and death rates linear in n and m, the system of coupled
differential equations represented by Eq. 7 can be solved exactly using a generating function approach [37].
However, the birth and death rates required for our purposes are nonlinear, and we adopt a computational
approach.
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The main quantities of interest in this work are the probability of cheater fixation and the mean population
extinction time. These quantities can be calculated from the backward Kolmogorov equation

∂

∂s
P (n,m, t | n′,m′, s) =

λPr
n′,m′

(
P (n,m, t | n′ + 1,m′, s)− P (n,m, t | n′,m′, s)

)
µPr
n′,m′

(
P (n,m, t | n′ − 1,m′, s)− P (n,m, t | n′,m′, s)

)
λCh
n′,m′

(
P (n,m, t | n′,m′ + 1, s)− P (n,m, t | n′,m′, s)

)
µCh
n′,m′

(
P (n,m, t | n′,m′ − 1, s)− P (n,m, t | n′,m′, s)

)
(8)

We define a maximum pure producer or cheater population size N and construct an (N + 1)2 × (N + 1)2

matrix describing the transition rates between all states and use it to solve for our quantities of interest.
Given the birth and death rates we use, we assume that the approximation introduced by considering a finite
rate matrix is reasonable when net growth rates are negative and have a large magnitude in all states where
m = N or n = N . For the probability that cheaters will fix in the population, we solve [37]

λPr
n,m

(
πCh
n+1,m − πCh

n,m

)
+ µPr

n,m

(
πCh
n−1,m − πCh

n,m

)
+ λCh

n,m

(
πCh
n,m+1 − πCh

n,m

)
+ µCh

n,m

(
πCh
n,m−1 − πCh

n,m

)
= 0 (9)

with boundary conditions

πCh
0,m = 1, for n = 0 and 0 < m ≤ N (10)

πCh
n,0 = 0, for 0 ≤ n ≤ N and m = 0. (11)

For the mean first passage time conditioned on cheater fixation, we solve

λPr
n,m

(
θCh
n+1,m − θCh

n,m

)
+ µPr

n,m

(
θCh
n−1,m − θCh

n,m

)
+λCh

n,m

(
θCh
n,m+1 − θCh

n,m

)
+ µCh

n,m

(
θCh
n,m−1 − θCh

n,m

)
= −πCh

n,m (12)

with the condition
θCh
n,m = 0, for n = 0 or m = 0, (13)

and then find the conditional mean first passage time to cheater fixation according to

τCh
n,m =

θCh
n,m

πCh
n,m

. (14)

Similarly, for the mean extinction time we solve

λPr
n,m

(
Tn+1,m − Tn,m

)
+ µPr

n,m

(
Tn−1,m − Tn,m

)
+ λCh

n,m

(
Tn,m+1 − Tn,m

)
+ µCh

n,m

(
Tn,m−1 − Tn,m

)
= −1 (15)

with the condition
Tn,m = 0, for n = 0 and m = 0. (16)

Directly solving the linear system of equations represented by Eq. 15 can lead to numerical instability when
the mean extinction times are large. To account for these numerical issues we also calculated the mean
extinction time using the analytical formula for pure producer or cheater populations with adjoint reflecting
boundary conditions at n = N and m = N [38, 39, 40]

Tn,0 =
n∑
i=1

(
1

µPr
i,0

+
N−i∑
j=1

1

µPr
i+j,0

j∏
l=1

λPr
i+l−1,0

µPr
i+l−1,0

)
(17)

T0,m =
m∑
i=1

(
1

µCh
0,i

+
N−i∑
j=1

1

µCh
0,i+j

j∏
l=1

λCh
0,i+l−1

µCh
0,i+l−1

)
(18)
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and direct calculations of fixation probabilities for each point along the pure producer and cheater axes. We
use the notation πi,0n,m and π0,j

n,m to indicate the probability that a population starting with n producers and
m cheaters will have producers fix with i total producers and will have cheaters fix with j total cheaters,
respectively. We then estimate the mean extinction time according to

Tn,m =
N∑
i=1

πi,0n,mTi,0 +
N∑
j=1

π0,j
n,mT0,j , (19)

under the assumption that producers or cheaters will quickly fix followed by a much longer period with a
pure population before extinction.

All quantities detailed in this section were calculated using the linear system solver in the Python NumPy
package [41] and the sparse matrix module of the SciPy package [42].

4.3 Stochastic simulations

All stochastic simulations were performed using Gillespie’s algorithm [26, 27] implemented in the Gillespy2
Python package [43]. Each simulation was repeated 100 times in order to estimate fixation probabilities and
mean first passage times.

4.4 General methods

The figures in this article were created using Inkscape 0.92 [44] and Matplotlib 3.1.1 [45] in a Python 3.7
Jupyter Notebook [46].
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