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Abstract: 17 

 18 

Emerging data in a range of non-human animal species have highlighted a latent ability to 19 

combine certain pre-existing calls together into larger structures. Currently, however, there 20 

exists no objective quantification of call combinations. This is problematic because animal 21 

calls can co-occur with one another simply through chance alone. One common approach 22 

applied in language sciences to identify recurrent word combinations is collocation analysis. 23 

Through comparing the co-occurrence of two words with how each word combines with 24 

other words within a corpus, collocation analysis can highlight above chance, two-word 25 

combinations. Here, we demonstrate how this approach can also be applied to non-human 26 

animal communication systems by implementing it on a pseudo dataset.  We argue 27 

collocation analysis represents a promising tool for identifying non-random, 28 

communicatively relevant call combinations in animals. 29 

 30 

Key-words: call combinations, collocation analysis, comparative approach, non-random 31 

structure, syntax 32 
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Introduction 34 

Over the last 20 years there has been growing interest into the combinatorial abilities of 35 

animals, namely the propensity to sequence context-specific calls (i.e. meaning-bearing 36 

units, see (Suzuki & Zuberbühler, 2019) into larger potentially meaningful structures (Arnold 37 

& Zuberbühler, 2006; Collier et al., 2020; Engesser, Ridley, & Townsend, 2016; Ouattara, 38 

Lemasson, & Zuberbühler, 2009; Suzuki, Wheatcroft, & Griesser, 2016). Combinatoriality is 39 

one mechanism that can increase the expressive potential of a finite vocal repertoire. It 40 

therefore provides important comparative insights into the complexity of animal vocal 41 

systems and the selective pressures such systems have been exposed to (Collier et al., 42 

2020). These data also hold great promise in furthering our understanding of the similarities 43 

between animal communication and human language given that, for many years, it was 44 

assumed that the systematic concatenation of meaning-bearing units (i.e., syntax) was a 45 

phenomenon unique to language (Hurford, 2012). Emerging examples of syntactic-like 46 

structure in non-human primates and non-primate animals suggests this particular 47 

assumption was indeed premature (Arnold & Zuberbühler, 2006; Berthet et al., 2019; Coye, 48 

Ouattara, Zuberbühler, & Lemasson, 2015; Coye, Zuberbühler, & Lemasson, 2016) and such 49 

data even have the potential to further our understanding of the evolutionary progression 50 

of our own communication system (Leroux & Townsend, 2020; Townsend, Engesser, Stoll, 51 

Zuberbühler, & Bickel, 2018). 52 

 53 

In light of the communicative and evolutionary insights that research on combinatoriality 54 

can provide, it is surprising that, to date, no objective means of quantifying call 55 

combinations has been proposed. This is problematic as animal calls may occur in rapid 56 

succession through chance alone, representing mere read-outs of contextual shifts. A 57 
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method to capture greater-than-chance co-occurrence of calls is therefore central to reliably 58 

detecting and identifying non-random (i.e., potentially communicatively relevant) animal 59 

call combinations.  60 

 61 

Similar methodological issues have been encountered in research on language learning and 62 

use (Bartsch, 2004; Evert, 2008; Gablasova, Brezina, & McEnery, 2017; Gries, 2013). One 63 

approach frequently implemented to identify combinations of words (mostly bigrams i.e., 64 

two-word/two-call structures) in large written and spoken corpora is collocation analysis 65 

(for a review, see Gries, 2013). Collocation analyses can take several forms, but the core 66 

commonality is that it contrasts the frequency with which specific words combine to 67 

measure the relative exclusivity of their relationship within a corpus (Church, Gale, Hanks, & 68 

Hindle, 1991; Gries & Stefanowitsch, 2004; Kennedy, 1991; Nesselhauf, 2005). In other 69 

words, such analyses reveal whether particular word/call combinations are more common 70 

than would be expected given an assumed random baseline (e.g., the uniform distribution, 71 

in which each combination is equally likely). For example, in English “drink” collocates with 72 

“coffee” and “going” collocates with “to” (to form the future tense or describe a motion 73 

event). Thus, collocation analyses can be understood as statistical measures of the influence 74 

that a lexical item has on its neighbours. It has since become a crucial tool in Corpus 75 

Linguistics for analysing lexical items and grammatical features of natural language (e.g., 76 

Bartsch, 2004; Lehecka, 2015; Stefanowitsch & Gries, 2003; Xiao & Mcenery, 2006). 77 

 78 

In this paper we propose that by considering animal vocal data in a similar way as to how 79 

language data are treated (i.e., as a corpus) affords the unique opportunity to apply a 80 

variety of analytical tools habitually implemented in language sciences to study similar 81 
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questions. Specifically, we demonstrate the application of collocation analyses to non-82 

human animal datasets as a way to empirically identify combinations of two calls, 83 

henceforth termed bigrams, and the relative merits of doing so. We focus on two specific 84 

forms of collocation analysis commonly implemented in language sciences: Multiple 85 

Distinctive and Mutual Information Collocation Analyses (Gries, 2014).  86 

 87 

Collocation analyses - Multiple Distinctive and Mutual Information approaches: 88 

Multiple Distinctive Collocation Analysis (MDCA) is primarily used when investigating and 89 

testing for the degree of attraction between meaning-bearing units that share semantic 90 

similarities in grammatical constructions. Specifically, MDCA statistically contrasts all 91 

possible bigram combinations to estimate whether a given bigram occurs at frequencies 92 

higher or lower than what would be expected by chance (Gries & Stefanowitsch, 2004; 93 

Hilpert, 2006). Furthermore, the output of MDCA also provides a superficial estimate of 94 

bigram ordering, namely whether the combination is sensitive to the position of the calls 95 

comprising it (e.g., is A-B as frequent as B-A). Importantly, MDCA is not constrained by the 96 

usual sampling assumptions, making them suitable for skewed, non-random, and small 97 

corpora of the kind we tend to have in animal communication (Gries, 2014; Gries & 98 

Stefanowitsch, 2004; Hilpert, 2006). 99 

One recurrent issue for the analysis of linguistic corpora is the fact that any corpus 100 

represents an incomplete – or undersampled – representation of the target linguistic system 101 

– i.e., some two-word combinations can be under-represented or even absent from a 102 

corpus when their “true” probability of occurrence is higher (note that this also affects all 103 

other probabilities in the sample, which will be artificially inflated). Such undersampling 104 

leads to misleading estimates of the significance of certain bigrams in the corpus (Gries & 105 
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Stefanowitsch, 2004; Hilpert, 2006). Mutual Information Collocation Analyses (MICA) 106 

however actually overestimates to low-frequency values (Church & Hanks, 1990; Evert, 107 

2005), which can be an advantage in animal communication corpora, as low-frequency 108 

pairings, a common feature of non-human vocal data sets, are not overlooked but flagged as 109 

potential combinatorial candidates. MICA calculates the variability of co-occurring items 110 

through computing information values via observed frequency divided by expected 111 

frequency. MICA can therefore – to some degree – better account for low-frequency 112 

bigrams, a common occurrence in small corpora and particularly in non-human vocal 113 

datasets. 114 

In the remainder of the paper, we apply both forms of collocation analyses using an existing 115 

R script provided by Stefan Gries (2014, see supplementary) to a pseudo data set we built 116 

for the “Yeti” - a mythical ape-like creature. 117 

 118 

Call combinations in Yetis: an example: 119 

We created an artificial set of call combinations produced by the Yeti (see Table 1). The data 120 

set was generated with a range of distributions in mind:  specifically call combinations with 121 

i) high-frequencies, ii) low frequencies, and call types that appear in combination with a) 122 

only one other call type or b) with many different call types. The repertoire and sample size 123 

were simulated consistent with the known communicative repertoires of other primates 124 

(Leroux et al., in press). Yetis have a call repertoire comprising 10 calls, ranging from tonal 125 

whistles and twitters to noisy barks and coughs. Initial assessment of the data suggested 126 

that some of the calls co-occur with others from the repertoire and some co-occurrences 127 

are more frequent than others. We therefore expected the collocation analyses to reveal at 128 
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least some significant associations between calls. To test this prediction, we applied both 129 

the MDCA and MICA to our data set. 130 

 131 

Table 1: Distribution of bigrams occurring in the Yeti vocal repertoire. Columns and rows show the first and second unit 132 

within a call combination respectively.  133 

 134 
 135 

Multiple Distinctive Collocation Analysis: 136 

Sixteen different potential bigrams were identified in the Yeti repertoire (see Table 1). 137 

In a first step we applied a Multiple Distinctive Collocation Analysis where call dependencies 138 

within these bigrams were calculated using an exact binomial test on each possible bigram 139 

combination (Gries, 2014; Gries & Stefanowitsch, 2004; Hilpert, 2006). Specifically, by 140 

applying a logarithmic transformation to p-values (used here explicitly since they reflect the 141 

relative association of calls but whilst simultaneously accounting for sample size), it is then 142 

possible to estimate whether a given bigram occurs at frequencies higher (positive “pbins”, 143 
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Table 2) or lower (negative “pbins”, Table 2) than what would be expected by chance (i.e. 144 

the absolute value of pbin >3: P<0.001, *>2: P<0.01, *>1.3: P<0.05). Since the aim here is to 145 

identify potential candidates for meaningful call combinations, we will focus only on positive 146 

values that highlight an attraction between two call types. For positive pbin values, the 147 

higher the value for two calls, the greater their collocational strength.  148 

The Multiple Distinctive Collocation Analysis applied here suggests a significant relative 149 

attraction exists within six bigrams (see Table 2). The highest value was calculated for Huff-150 

Puff, followed by Hum-Whistle, Whistle-Hum, Peep-Howl, Cough-Cry and lastly Twitter-151 

Howl. Importantly, four of the six bigrams showed significant attraction between the two 152 

comprising calls in one specific order only (Huff-Puff, Peep-Howl, Cough-Cry & Twitter-Howl, 153 

Table 2). However, the combinations involving Hums and Whistles displayed significant 154 

attraction no matter the linearisation (Hum-Whistle and Whistle-Hum), suggesting that, 155 

either order did not matter for this particular combination, or that Whistle and Hum form 156 

two significant, differently ordered bigrams.  157 

 158 

Table 2: Multiple Distinctive Collocation analysis for the bigrams in the Yeti’s vocal data set. Columns and rows show the 159 

first and second unit within a call combination respectively. Values are pbins and can be translated to p-values (abs(pbin) 160 

*>3: P<0.001, *>2:  P<0.01, *>1.3: P<0.05). Significant results are coloured in green.  161 
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 162 

 163 

In light of the additional aforementioned advantages associated with an information-based 164 

approach, we complemented the MDCA with a MICA. 165 

 166 

Mutual Information Collocation Analysis: 167 

Similarly to MDCA, MICA calculates the collocational strength of each specific call type with 168 

every other call type it collocates with. To do so, the joint observed frequency of a specific 169 

bigram is divided by its joint expected frequency and then logarithmically transformed. 170 

Concretely, the number of times the calls actually appear in combination is divided by the 171 

number of times the calls would appear in combination if every call was randomly 172 

distributed throughout the dataset. Once more, the higher the collocation value, the 173 

stronger the collocational strength between two units (again, we focus on positive values 174 

that indicate an attraction only). As with MDCA, pbins represent the logarithmically 175 

transformed p-values (i.e., the absolute value of pbin >3: P<0.001, *>2: P<0.01, *>1.3: 176 

P<0.05).  177 
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Not accounting for any specific ordering of the structures in the received input, the Mutual 178 

Information Collocation Analysis demonstrated a significant relative attraction within two 179 

bigrams (Cough-Cry & Huff-Puff, see Table 3). MICA only highlighted bigrams with call types 180 

that appear exclusively in combination with their collocational partner and not many other 181 

call types, while not rendering significant values for combinations of call types that appear 182 

with more than one other call type in the corpus (see Table 1). It is also noteworthy that the 183 

MICA provides a strong value for a very low-frequency pairing, namely Cough-Cry, which can 184 

only be found three times in the recorded repertoire.  185 

 186 

Table 3: Mutual Information Collocation analysis for the bigrams in the Yeti’s vocal data set. Columns and rows show the 187 

first and second unit within a call combination respectively. Values are pbins and can be translated to p-values (pbin *>3: 188 

P<0.001, *>2: P<0.01, *>1.3: P<0.05). Significant results are coloured in green.  189 

 190 

 191 

Discussion 192 

Here, we show that, when conceptualising animal vocal data in the same way as a language 193 

corpus, methods habitually implemented in corpus linguistics can be transferred reliably to 194 
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non-human communication systems to highlight promising call combinations. We argue that 195 

this approach therefore represents a novel application of a more objective method to 196 

quantify the combinatorial dynamics of animal communication systems. Specifically, 197 

collocation analyses help disentangle “true”, or non-random, call combinations from 198 

happenstance juxtapositions of single calls. This is critical when investigating potentially 199 

meaningful structuring within animal vocal communication systems.  200 

 201 

It is important to note that other systematic approaches to capture the sequential dynamics 202 

of animal vocal sequences (e.g., song), have been applied, including different Markovian and 203 

non-Markovian chain modelling (Kershenbaum et al., 2014; Sainburg, Theilman, Thielk, & 204 

Gentner, 2019; Suzuki, Buck, & Tyack, 2006). Nevertheless, we argue that there are strong 205 

advantages for using collocation analysis, since collocations are easily operationalisable 206 

across systems and provide a convenient and more descriptive (as opposed to modelling-207 

based) account of the combinatorial dependencies between vocal units (Evert, 2005, 2008; 208 

Firth, 1957). 209 

 210 

Whilst here we implement these analyses only with a pseudo data set, we have also applied 211 

MDCA and MICA in real-world settings, primarily when investigating the combinatorial 212 

properties of wild chimpanzee (Leroux et al., in press) and captive marmoset (Bosshard, 213 

2020) vocal data sets. In these two primate examples, collocation analyses also reliably 214 

identified non-random combinations and, critically, these included ones we had already 215 

anecdotally highlighted as promising candidates in addition to others that were previously 216 

less clear to us during observational data collection. 217 

 218 
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Of particular relevance is the fact that the type of collocational analyses applied here were 219 

sensitive to bigrams even when they occurred very infrequently in the data set. This is 220 

because collocational analyses consider the exclusivity of the combinatorial relationship: if 221 

calls combine extremely rarely, they will still be detected as long as their relationship 222 

together is exclusive. Since considerable variation characterises the frequency of call 223 

combinations in animal communication (e.g., alarm call combinations are less frequent than 224 

social call combinations (Boesch & Crockford, 2005; Collier, Townsend, & Manser, 2017; 225 

Leroux, Chandia, Bosshard, Zuberbühler, & Townsend, in prep.), we can be confident that 226 

collocational analyses will identify all relevant combinations, both common and rare. 227 

 228 

Another advantage of such collocation analyses is that they allow an estimate of the 229 

ordering of call combinations. Identifying variation in the temporal progression of calls is 230 

necessary to design experiments probing the role of order on meaning: data which are key 231 

to unpacking how similar animal call combinations and human language really are. Our 232 

results from the provided Yeti dataset indicate that some, but not all, of the identified 233 

combinations are characterised by ordering, again a finding that is replicated in our real-234 

world data sets (Bosshard, 2020; Leroux et al., in press). This preliminary identification of 235 

call order therefore might serve as one possible additional filter when deciding which of the 236 

combinations detected from an animal data set to follow-up from an experimental/playback 237 

perspective. 238 

 239 

In conclusion, we hope that the approach outlined here will be applied by other researchers 240 

in the field of animal communication as a way to disambiguate random from non-random 241 

combinatorial structures. Future work could also build on these initial approaches through 242 
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applying other, as yet unexplored, sequence-based modelling methods currently used in 243 

language sciences to animal corpora (e.g., skip-gram modelling, see Guthrie, Allison, Liu, 244 

Guthrie, & Wilks, 2006).  Ultimately, implementing the same objective, standardised 245 

methods such as that presented in this paper could allow researchers to make more 246 

meaningful comparisons both within and across systems, for example, at the individual, 247 

group, population or even species level. 248 

 249 
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