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Abstract

The rapid evolution of HIV is constrained by interactions between mutations which
affect viral fitness. In this work, we explore the role of epistasis in determining the
fitness landscape of HIV for multiple drug target proteins, including Protease, Reverse
Transcriptase, and Integrase. Epistatic interactions between residues modulate the
mutation patterns involved in drug resistance with unambiguous signatures of epistasis
best seen in the comparison of a maximum entropy sequence co-variation (Potts) model
predicted and experimental HIV sequence “prevalences” when expressed as higher-order
marginals (beyond triplets) of the sequence probability distribution. In contrast, the
evidence for epistasis based on experimental measures of fitness such as replicative
capacity is weak; the correspondence with Potts model “prevalence”-based predictions is
obscured by site conservation and limited precision. Double mutant cycles provide in
principle one of the best ways to probe epistatic interactions experimentally without
reference to a particular background, and we find they reveal that the most strongly
interacting mutations in HIV involve correlated sets of drug-resistance-associated
residues, however the analysis is complicated by the small dynamic range of
measurements. The use of correlated models for the design of experiments to probe
viral fitness can help identify the epistatic interactions involved in mutational escape,
and lead to better inhibitor therapies.

Author summary

Protein covariation models provide an alternative to experimental measures for
estimating the fitness of mutations in proteins from across a variety of organisms. Yet,
for viral proteins, it has been shown that models including epistatic couplings between
residues, or other machine learning models perform no better or even worse than a
simpler independent model devoid of such epistatic couplings in estimating viral fitness
measurements such as replicative capacities, providing weak or ambiguous evidence for
epistasis. We show that the evidence for long-range epistasis is strong by the analysis of
the high-order marginals of the MSA distribution (up to subsequences of length 14),
which are accurately captured by a correlated Potts sequence-covariation model but not
by an independent model. While double mutant cycles in principle provide
well-established biophysical probes for epistatic interactions, we demonstrate that the
analysis and comparison between model and experiment is difficult due to the much
smaller dynamic range of the measurements, making them more susceptible to noise.
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Introduction 1

A major challenge in biological research, clinical medicine, and biotechnology is how to 2

decipher and exploit the effects of mutations [1]. In efforts ranging from the 3

identification of genetic variations underlying disease-causing mutations, to the 4

understanding of the genotype-phenotype mapping, to development of modified proteins 5

with useful properties, there is a need to rapidly assess the functional effects of 6

mutations. Experimental techniques to assess the effect of multiple mutations on 7

phenotype have been effective [2–5], but functional assays to test all possible 8

combinations are not possible due to the vast size of the mutational landscape. Recent 9

advances in biotechnology have enabled deep mutational scans [6] and multiplexed 10

assays [7] for a more complete description of the mutational landscapes of a few 11

proteins, but remain resource intensive and limited in scalability. The measured 12

phenotypes depend on the type of experiment and are susceptible to changes in 13

experimental conditions making the comparison between measurements difficult [8]. 14

These methodologies are also utilized under externally applied conditions, but how in 15

vitro selection pressures can be extended to the interpretation of pressures in vivo is not 16

always clear [9]. 17

Potts sequence covariation models have been developed for the identification of 18

spatial contacts in proteins from sequence data [10–19] by exploiting the wealth of 19

information available in protein sequences observed in nature, and have also been 20

successfully used to infer the fitness landscape and study mutational outcomes in a wide 21

variety of protein families in viruses to humans [1, 20–29]. The Potts model is a 22

generative, global pairwise interaction model that induces correlations between residues 23

to all orders, such as triplet and quadruplet correlations. Given a multiple sequence 24

alignment (MSA) of related protein sequences, the Potts probabilistic model of the 25

network of interacting protein residues can be inferred from the pair correlations 26

encoded in the MSA, and can be used to assign scores to individual protein sequences. 27

The extent to which sequence scores correlate with experimental measures of fitness can 28

then be analyzed.The context dependence of a mutation, termed “epistasis”, determines 29

the favorability/disfavorability of the mutation in a given genomic sequence background, 30

and the Potts model predictions of epistasis can be used to predict the likelihoods of 31

mutations in a variety of sequence backgrounds. 32

The HIV pandemic is the result of a large, genetically diverse, and dynamic viral 33

population characterized by a highly mutable genome that renders efforts to design a 34

universal vaccine a significant challenge [30] and drives the emergence of drug-resistant 35

variants upon antiretroviral (ARV) therapy. Gaining a comprehensive understanding of 36

the mutational tolerance, and the role of epistatic interactions in the fitness landscape 37

of HIV is important for the identification and understanding of mutational routes of 38

pathogen escape and resistance. 39

In this work, we explore the role of epistatic interactions between sites in modulating 40

the fitness landscape of HIV with many mutations and the functional relevance of the 41

networks of strongly coupled residue positions, focusing particularly on the drug target 42

proteins, protease (PR), reverse transcriptase (RT), and integrase (IN), as well as the 43

emerging target protein of capsid (CA). We first show that the evidence for long-range 44

epistasis is strong based on analysis of the high-order marginals of the MSA distribution 45

(up to subsequences of length 14), which are accurately captured by a Potts 46

sequence-covariation model but not by an independent model. We find that the role of 47

epistasis in determining the higher-order mutational patterns is significantly different 48

between drug-resistance-associated residues, as opposed to residues not involved in 49

resistance. The site-independent model can sufficiently capture the higher-order 50

subsequence statistics for the latter, but not the former. Next, we find the evidence for 51

epistasis from other experimental measures of HIV fitness, especially viral replicative 52

June 5, 2021 2/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.448646doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448646
http://creativecommons.org/licenses/by/4.0/


capacity, is weak and confounded by a number of factors including data limitations, 53

statistical and experimental errors. It is instead in the comparison of higher-order 54

marginals that unambiguous signatures of epistasis can be seen. Although double 55

mutant cycle experiments in principle provide one of the best biophysical ways to 56

examine epistasis, we demonstrate with numerical examples that accurate predictions of 57

double mutant cycles are difficult due to the small dynamic range of the measurements 58

making them much more susceptible to noise. It has been suggested that the success of 59

the Potts sequence covariation model at recapitulating high-throughput mutation 60

experiments depends in part on the extent to which experimental assays can capture 61

phenotypes that are under direct, long-term selection [1]. Measures such as 62

thermostability, activity, or binding energetics of a protein generally do not all 63

contribute to fitness in the same way. We find that while the Potts model performs 64

marginally better than an independent model when predicting experimental replicative 65

capacities, nevertheless it provides a more general representation of the protein fitness 66

landscape capturing contributions from different features of the landscape, replicative 67

capacities and folding energetics, that are not fully captured by either measurement on 68

their own. 69

Results and Discussion 70

Protein sequence covariation models have been extensively used to study networks of 71

interacting residues for inference of protein structure and function. The Potts model is 72

a maximum-entropy model based on the observed mutational correlations in a multiple 73

sequence alignment (MSA) and constrained to accurately capture the bivariate 74

(pairwise) residue frequencies in the MSA. A central quantity known as the “statistical” 75

energy of a sequence E(S) (Equation 2, Methods) is commonly interpreted to be 76

proportional to fitness; the model predicts that sequences will appear in the dataset 77

with probability P (S) ∝ e−E(S), such that sequences with favorable statistical energies 78

are more prevalent in the MSA. P (S) describes the “prevalence” landscape of a protein 79

and the marginals of P (S) can be compared with observed frequencies in a multiple 80

sequence alignment. Previous studies have indicated that the Potts model is an accurate 81

predictor of “prevalence” in HIV proteins [20,21,23,31–35]; “prevalence” is often used 82

as a proxy for “fitness” with covariation models serving as a natural extension for 83

measures of “fitness” based on experiments and model predictions have been compared 84

to different experimental measures of “fitness” with varying degrees of 85

success [1, 21,23,28,31,33,35]. Site-independent models, devoid of interactions between 86

sites have also been reported to capture experimentally measured fitness well, in 87

particular for viral proteins [1,36] with studies (on HIV Nef and protease) implying that 88

the dominant contribution to the Potts model predicted sequence statistical energy 89

comes from site-wise “field” parameters hi (see Methods) in the model [28,35]. In this 90

study, we show that interaction between sites is necessary to capture the higher order 91

(beyond pairwise) mutational landscape of HIV proteins for functionally relevant sites, 92

such as those involved in engendering drug resistance, and cannot be predicted by a 93

site-independent model. The correspondence between model predictions of fitness based 94

on “prevalences” in natural sequences with experimentally measured “fitness” is 95

however, confounded by a number of different factors. Here, we explore comparisons 96

between model predictions and “fitness” experiments (Fig 1) focusing primarily on three 97

HIV enzymes: Protease (PR), Reverse Transcriptase (RT), and Integrase (IN) that have 98

been targets of antiretroviral therapy (ART) over the past several decades, as well as 99

viral Capsid (CA), which is fast emerging as a promising new target for drug therapy. 100
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Fig 1. The correspondence between sequence covariation models and sequence
statistics in multiple sequence alignments is very strong across different HIV proteins.
The correspondence between either covariation models, or “prevalences” in multiple
sequence alignments, with other experimental measures of “fitness” is less clear and
often inconsistent between different statistics and measures of fitness.

“Prevalence” landscape of HIV proteins and the role of 101

correlations between residues 102

An important statistic of the multiple sequence alignment is the sequence diversity and 103

the level of conservation in the protein or protein family which is represented in the 104

distribution of the number of mutations in the constituent sequences. Fig 2 shows the 105

distribution of the number of mutations (hamming distances) from the HIV-1 subtype B 106

wild-type consensus sequence in MSAs containing drug-experienced HIV-1 sequences, 107

and distributions predicted by the Potts and independent models. The Potts model 108

predicts a distribution of mutations that closely represents the dataset distribution, 109

whereas the independent model predicts a distribution that differs especially near the 110

the ends of the distribution where the number of mutations is either very low or very 111

high. This provides support for the importance of epistasis in these datasets. However, 112

in Supplementary File 1 Fig 9 we also show that for some datasets the difference 113

between the Potts and Independent distributions is small, and so may be a less reliable 114

test of the importance of covariation. The importance of correlations is also apparent 115

through the fact that the Potts model also accurately predicts the likelihoods and 116

“entrenchment” of mutations based on the sequence background, as has been verified 117

using aggregate sequence statistics from the MSA [34]. 118

Fig 2. Distribution of the number of mutations (Hamming distances) in
drug-experienced HIV-1 sequences as captured by the Potts and
independent models. Probabilities of observing sequences with any k number of
mutations relative to the HIV-1 subtype B wild-type consensus sequence as observed in
original MSA (black) and predicted by the Potts (blue) and independent (gray) models
are shown for HIV-1 protease (PR) in (A), and reverse transcriptase (RT) in (B),
respectively. The independent model predicted distribution does not accurately capture
the distribution of hamming distances in the dataset MSA, especially near the ends of
the distribution with either very low or very high number of mutations, where the
epistatic effects can be more significant.

But the most direct and strongest evidence of the ability of the Potts model to 119

capture epistatic interactions is seen in its ability to reproduce the higher-order 120

marginals of the MSA, upto order 14 in Fig 3, much beyond the pairwise marginals 121

which the model is parameterized to capture. While the prevalence of sequence 122

marginals (subsequence frequencies) can be compared directly with Potts model 123

predictions, this is not possible for predictions for complete sequence probabilities 124

because most sequences in an unbiased MSA are observed only once due to the 125

minuscule sample size in comparison to the vast size of sequence space. Only sequence 126

marginals up to sizes ∼ 14 residues, depending upon protein family, are observed with 127

sufficient frequencies such that their marginal counts are a good proxy for the marginal 128

probabilities predicted by the Potts model. Figure 3 shows the rank-correlation between 129

model predicted marginal probabilities and marginal frequencies in the MSA for 130

subsequences of lengths 2− 14, with a subsequence being the concatenation of amino 131

acid characters from an often nonconsecutive subset of residue positions. With further 132

increase in the subsequence length, data limitations due to finite sampling become more 133
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prominent and the observed and model predicted marginals become dominated by noise. 134

The Potts model’s ability to predict higher-order marginals, much beyond the pairwise, 135

for drug-resistance associated sites, while the independent model cannot, provides the 136

most direct evidence of the ability of the Potts model to accurately capture the 137

long-range epistatic interactions that modulate the “prevalence” of amino acid residues 138

at connected sites in the protein. The Potts model is able to accurately predict the 139

higher-order marginal frequencies (which have not been directly fit) at drug-associated 140

sites with a Spearman ρ2 ≈ 0.95 for the longest subsequence (of length 14) in PR, 141

whereas, the correlation for the independent model deteriorates sharply with 142

subsequence length (Fig 3A, C, and E) with a Spearman ρ2 ≈ 0.34 for the longest 143

subsequence in PR. 144

Fig 3. Potts model is predictive of higher-order marginals in the sequence
MSA. For each subsequence of length 2 to 14, marginal frequencies are determined by
counting the occurrences in the MSA and computed for 500 randomly picked
subsequences. They are compared with the corresponding predictions of marginal
probabilities by the Potts model (blue) and a site-independent model (gray). The
Spearman ρ2 between the dataset marginal frequencies and the Potts and independent
model predictions for all marginal frequencies above 2% are shown for subsequences
picked at random from different combinations of 36 Protease-inhibitor or PI-associated
positions in PR (A), 24 Nucleoside-reverse-transcriptase-inhibitor or NRTI-associated
positions in RT (C), and 31 Integrase-strand-transfer-inhibitor or INSTI-associated
positions in IN (E). Shown in (B), (D), (F), are the same but the subsequences are
picked at random from non resistance-associated sites in PR, RT, and IN, respectively.
The blue dashed line represents perfect correlation of ρ2 = 1. In all, the Potts model
accurately captures the higher-order marginals in the dataset; the independent model
however gets progressively worse in capturing the higher-order marginals for
resistance-associated sites in (A), (C), and (E). The role of epistatic interactions is
strongly manifested in the effect on drug-resistance-associated positions (DRAPs)
(indicating the strong role of correlations at functional positions within the protein). For
residue positions not associated with drug resistance, epistatic interactions between sites
appear to play a less important role and the site-independent model is sufficient to
model the higher-order marginals in the MSA.

The strongly interacting nature of the sites in HIV that are involved in engendering 145

drug resistance, is also evident from Fig 3 A, C, and E, where the role of epistatic 146

interactions between residues is more pronounced and the site-independent model is not 147

able to capture the higher-order marginals. In contrast, for residue positions that are 148

not associated with drug resistance, the site-independent model can sufficiently recover 149

the higher order marginals in the MSA. Sites in the protein associated with drug 150

resistance, also however, exhibit considerably more variability contributing to their 151

higher site-entropies in Supplementary File 1 Fig 2A. The lack of variability at sites can 152

obscure the effect of correlations. To test for this, we selected protease-inhibitor 153

associated and non-associated sites with site-entropy distributions similar to that of the 154

drug-resistance associated sites (Supplementary File 1 Fig 2B) and compared their 155

higher order marginals as predicted by the Potts and site-independent models 156

(Supplementary File 1 Figs 2C and 2D, respectively). When marginals are chosen from 157

non-drug associated positions with site entropies more similar to those of the 158

drug-associated positions, the role of correlations is more apparent. This is suggestive 159

that strong couplings between sites that are likely to co-mutate, allow for mutations at 160

lesser costs to fitness than the individual mutations alone, resulting in mutational 161

pathways selected for pathogen escape. Such sets of sites are more likely to be 162

associated with resistance, as resistance cannot be achieved through selectively neutral 163

June 5, 2021 5/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.448646doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448646
http://creativecommons.org/licenses/by/4.0/


mutations at single sites, in which case drug treatment would likely be ineffective [37]. 164

In contrast to Fig 3A for HIV PR, Fig 3E shows the somewhat improved predictive 165

capacity of a site-independent model in capturing the higher order sequence statistics 166

for drug-resistance associated positions in HIV IN. This is indicative that correlations 167

between drug-resistance-associated sites appear to play a stronger role in protease than 168

in IN. This is also in line with the fact that the IN enzyme is more conserved than PR 169

(Supplementary File 1 Fig 1). Amongst the three drug-target proteins, PR, RT, and IN, 170

the degree of “evolutionary conservation” is considerably higher in IN than in the 171

others. The lack of variability at sites or considerably smaller site-entropies in IN plays 172

a role in obscuring the effect of correlations, as discussed. Furthermore, the MSA depth 173

for IN is also considerably lower than in PR or RT, which adversely affects the quality 174

of the Potts model fit, further making the correlated model less distinguishable from a 175

site-independent one [38]. 176

The majority of the literature on HIV discusses drug resistance in relation to 177

correlated mutations limited to primary/accessory pairs. Fig 3 depicts the effect of 178

correlated mutations on the “prevalence” landscape of HIV well beyond pairwise 179

interactions, upto the 14th order, that is captured accurately by the Potts model. This 180

illustrates the existence of correlated networks of long-range interactions between sites 181

in HIV, which play an important role in determining its evolutionary fitness landscape. 182

The entrenchment of primary resistance mutations in HIV was shown to be contingent 183

on the presence of specific patterns of background mutations beyond the well studied 184

primary/accessory compensatory pairs, and could not be predicted on the basis of the 185

number of background mutations alone [34], also indicating that long-range correlations 186

involving many sites can potentially shape the evolutionary trajectory of the virus. 187

From sequence covariation to “fitness” 188

The Potts model predicted statistical energies E(S) have been established to be a good 189

indicator of the likelihoods (P (S) ∝ e−E(S)) or “prevalence” of natural sequences in 190

multiple sequence alignments; prevalence has often been characterized as a proxy for 191

fitness with sequences more prevalent in the MSA likely to have a fitness advantage over 192

others. But depending on context, the notion of fitness can entail a variety of 193

experimental measures from replicative capacity (RC), to protein stability, catalytic 194

efficiency, molecular recognition, drug-resistance values, etc., each of which may capture 195

different features of the fitness landscape, and can have varying degrees of 196

correspondence to observed likelihoods in MSAs of natural sequences. In this section, 197

we explore the correspondence between measures of fitness based on experimental 198

replicative capacities of HIV mutants and the Potts model predicted likelihoods in an 199

MSA. The correspondence is confounded by a number of factors such as the 200

reproducibility of experiments, the quality of inferred Potts models, the degree of 201

evolutionary conservation in the proteins amongst others. 202

Fig 4 shows the correlation between model predicted likelihoods of HIV mutant 203

proteins and measures of fitness based on/related to replicative capacities for four HIV 204

proteins, PR, RT, IN, and p24 CA. The independent model generally performs on par 205

or marginally worse than the Potts model in capturing experimental replicative capacity 206

measurements. Although the difference is somewhat larger for measurements focusing 207

on only drug-resistance-associated mutations indicated with “D” in Fig 4 rather than 208

random mutations or mutations at non-resistance-associated positions indicated with 209

“R”, along the lines of Fig 3 for marginal statistics, the difference is not as clear as for 210

marginal statistics. It has been suggested that the independent model performs on par 211

with correlated Potts or advanced machine learning models in capturing experimental 212

fitness measurements for viral proteins, possibly as a consequence of limited diversity of 213

the sequence alignments or, due to a discrepancy between the proxy for viral fitness in 214
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the laboratory and the in vivo fitness of the virus [1, 9]. Overall, we find that the 215

evidence for epistasis from measures of fitness based on experimental replicative 216

capacities is much weaker compared to that available from the higher-order marginal 217

statistics and can be confounded by different factors. 218

Fig 4. Survey of correlation between sequence-based predictions and
experimental measures of “fitness” based on replicative capacity. Spearman
correlation coefficients ρ between prevalence-based measures of fitness as predicted by
the Potts (blue) and independent (gray) models and experimental measurements related
to replicative capacity are shown across four different HIV proteins: PR, RT, IN, and
p24 CA. Experimental data are obtained from [3,5,21,28,39–41]. Experiments reporting
fitness measurements for random mutations are marked with an “R” and experiments
reporting drug-resistance only mutations are marked with a “D”. Correlation is not
consistent between different experiments for the same protein. The Potts model
generally (marginally) outperforms the independent model in capturing experimentally
measured replicative capacities or measures related to replicative capacities.

The Potts model is affected by the degree of conservation in the respective proteins 219

which can not only affect the quality of the model as reflected in the signal-to-noise 220

ratio or SNR (see Methods), but can also obscure the effect of correlations between sites. 221

The Potts model predictions may be affected by the quality and sample sizes of the 222

underlying multiple sequence alignment. Fig 5 shows the effect of using Potts models 223

built on MSAs that all have the same depth but contain different sequences (randomly 224

subsampled from a larger dataset) on the correspondence between experimental and 225

model predictions of fitness. The correlation also decreases slightly when MSAs of depth 226

half that of the original (reference Potts) are used for mutational fitness predictions. 227

Overall, this gives an estimate that the statistical error associated with Potts model 228

predictions of fitness is low. The correspondence between the predicted fitness based on 229

Potts prevalence and on experiment also depends in part on which experimental assays 230

are chosen as a proxy for fitness and the extent to which they can capture phenotypes 231

that are under direct, long-term selection [42], as illustrated in Supplementary File 1 232

Figs 3 and 4. Supplementary File 1 Fig 3 shows little correlation between two closely 233

related experimental measures of fitness for HIV PR; one based on replicative 234

capacity [5] and the other based on selection coefficient [40]. Interestingly, the Potts 235

model predictions correlate well with one of the datasets. More careful analysis is 236

needed to improve our understanding of which experimental measures contribute most 237

to the “prevalence” landscape captured by Potts models. 238

Effect of epistasis on measurements of fitness and double mutant cycles in 239

HIV 240

Double mutant cycles provide a biophysical means to interrogate epistatis without 241

reference to a specific sequence background [43]. For a pair of mutations α, β at 242

positions i, j in the protein respectively, the strength of epistatic interactions can be 243

quantified using the difference between the sum of the independent mutational effects, 244

∆Eiα + ∆Ejβ , and the effect of the corresponding double mutation, ∆Eijαβ . 245

∆∆Eijαβ = ∆Eijαβ − (∆Eiα + ∆Ejβ) (1)

If ∆∆E 6= 0, then the two mutations are epistatically coupled, whereas if ∆∆E = 0, 246

then the mutations are mutually independent. As fitness is inversely proportional to the 247

Potts energy, ∆∆E > 0 implies that the mutations are beneficial/co-operative to each 248

other and vice versa. The dynamic range of double mutant cycles is an 249
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Fig 5. Error estimate in Potts model predictions of fitness. Figure shows
replicative capacity based experimental fitness measurements (from [21]) compared to
Potts model predicted likelihoods of mutations in HIV-1 CA. The Potts model predicted
values shown in “blue circles” correspond to the mean of 3 predictions based on
jackknife tests with error bars indicating the standard deviations. Random values are
then picked from within each standard deviation to represent each Potts model
prediction (shown as “orange triangles”) and the corresponding effect on the correlation
coefficient is observed. Spearman rank-order correlation ρ = 0.8 for mean of 3
predictions, and ρ = 0.78 for random selection of data from within the margin of error.
For jackknife tests, three sets of ≈ 1024 weighted patient sequences are subsampled at
random from the original MSA of ≈ 2200 weighted sequences, and new Potts models are
then inferred based on each set. For comparison, the Spearman rank-order correlation is
ρ = 0.85 for the original Potts model (based on an MSA of 2200 sequences) predictions
compared to experimental values (Supplementary File 1 Fig 5A). Figure shows an
estimate of the error associated with Potts model predictions of likelihoods of mutants
stemming from sampling of sequences in the MSA and its effect on the correspondence
with experimental measures of fitness.

order-of-magnitude smaller than the predictions/measurements of likelihoods/fitness 250

effects of mutations (∆Es), shown in Fig 6A. Double mutant cycle 251

measurements/predictions (∆∆Es) are therefore, much more susceptible to noise, and 252

strongly affected by both the quality of the experimental measurements, as well as finite 253

sampling errors that affect the Potts model fit, making accurate numerical predictions 254

very difficult. The MSA depth also plays a role in degrading the quality of the Potts 255

model double mutant cycle predictions, ∆∆Es much faster than the fitness effect of 256

point mutations, ∆Es (Supplementary File 1 Fig 6). The sensitivity and possible 257

interpretation of experimental measurements for very detrimental mutational changes is 258

crucial for accurate prediction of double mutant cycles. When experimental replicative 259

capacities for example, of a single and a double mutant(s) are both zero (the virus is 260

dead), there is no comparative experimental data to inform if and which mutation(s) 261

are more deleterious. In contrast, the calculated likelihoods from the Potts model are 262

quantifiable for both. 263

Fig 6. (A) The dynamic range of the measurements (experimental) or predictions
(model) of the epistatic effects through the use of double mutant cycles is an order of
magnitude smaller than the range of measurements/predictions of the fitness/likelihoods
of point mutations. This makes predictions for double mutant cycles more susceptible to
noise. (B) Simulation of the expected correlation of the Potts model prediction to
experimental values for ∆E and ∆∆E as a function of simulated experimental noise η,
showing that the the correlation for ∆∆E drops much more quickly. The dotted section
of the curves show where the p-value for the ∆∆E correlation is > 0.05, or insignificant,
showing that noise can make it impossible to verify ∆∆E values even when ∆E values
are well predicted. The level of noise corresponding to ∆E correlation of ρ ≈ 0.8, as in
Fig 4 column 7 for Capsid, is shown in dashed black.

The correspondence between the ∆∆E values predicted by the Potts model and the 264

equivalent experimental values would provide a strong confirmation of epistasis that can 265

be directly experimentally measured; but in practice, such a comparison is often 266

statistically not possible due to experimental and statistical uncertainties(s). In Fig 6B, 267

we illustrate how error in individual fitness measurements can cause the double mutant 268

cycle predictions to be unverifiable even when there exists good correspondence between 269

Potts model and experimental fitness predictions. In this simulated test, the Potts 270
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model ∆E predictions for capsid (for mutation datapoints shown in Fig 4 column 7) are 271

rescaled to have the same range and scale as experimental replicative capacity values, 272

and are used as simulated replicative capacity values. Varying amounts of random noise 273

representing experimental error(s) and modelled as Gaussian white noise with mean 0 274

and standard deviation η are added to each ∆E value, which are then interpreted as 275

simulated experimental RC values. The simulated RC values are taken to be the 276

“ground truth” which are used to evaluate double mutant cycles, to compare to the Potts 277

predictions. The Spearman rank-order correlation coefficients between the Potts model 278

predicted and simulated experimental RC values, as well as double mutant cycle values, 279

are then computed for the mutation residue-identities as available in our experimental 280

dataset, and the process is repeated for varying degrees of noise strength (specified by 281

varying η), representing varying degrees of experimental uncertainty. The correlation 282

between model predicted and simulated experimental RC values are shown in Fig 6B. 283

We see that even when the ∆E correlation with the simulated RC is as high as ∼ 0.8 284

(as is observed for capsid), the corresponding ∆∆E correlation with differences in 285

Replicative Capacity between double mutants and the corresponding sum of single 286

mutants is very low, ∼ 0.1 and is typically not statistically significant. For a correlation 287

between model and experimental RC values ∼ 0.6 as observed for HIV protease (Fig 4 288

column 4), the same result is obtained, namely double mutant cycle analysis can not be 289

used to verify epistatic interactions for HIV protease (Supplementary File 1 Fig 7A). 290

Indeed, the correlation with double mutant cycles computed from the experimental 291

values in Fig 4 is very low and statistically insignificant (Supplementary File 1 Fig 7B) 292

in agreement with this test. Nevertheless, many of the strongest predicted (by the Potts 293

model) double mutant cycles in HIV proteins, indeed qualitatively agree with the effects 294

studied in the literature, especially amongst those involving compensatory pairs of 295

drug-resistance mutations in HIV drug-target proteins (Supplementary File 2, 296

Figs/Tables S2A and S2B). 297

Contribution of the changes in structural stability due to a mutation to the 298

predicted likelihoods of mutant sequences 299

In this section, we explore the contribution from changes in structural stability due to a 300

mutation to its Potts model predicted likelihood(s). To explore the impact of a 301

mutation on structural stability, we employ a well-known protein design algorithm 302

called FoldX [44,45], which uses an empirical force field to determine the energetic 303

effects of a point mutation. FoldX mutates protein side chains using a probability-based 304

rotamer library while exploring alternative conformations of the surrounding side chains, 305

in order to model the energetic effects of a mutation. We observe good correspondence 306

between Potts model predicted likelihoods and FoldX predicted changes in structural 307

stabilities of mutations in Fig 7B, and Supplementary File 1 Fig 8B for a set of multiple 308

inhibitor-associated mutations (from [28]) in PR. There also exists statistically 309

significant correlation between experimentally measured replicative capacities of these 310

mutations and their Potts model predicted likelihoods (Fig 7A, and Supplementary File 311

1 Fig 8A), but the FoldX predicted changes in structural stabilities do not correlate so 312

well with experimentally measured replicative capacities (Fig 7C, Supplementary File 1 313

Fig 8C). This is indicative that different measures of fitness such as thermostability, 314

activity, or folding energetics of a protein do not generally contribute to fitness in the 315

same way [1]. While some measures or properties being tested may only have an 316

indirect context-dependent impact on fitness, “prevalence” in multiple sequence 317

alignments of thousands of protein sequences may be more reflective of the overall 318

survival fitness. Fig 7 and Supplementary File 1 Fig 8 show that the Potts model can 319

capture contributions to fitness from both structural stabilities measured by FoldX, and 320

from other aspects of the viral replicative life-cycle measured by replicative capacity 321
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experiments, which are not captured completely by either measurement on its own. 322

Fig 7. Potts model captures different features of the fitness landscape.
Figure shows that the Potts model predicted ∆Es can capture different features of the
fitness landscape that may be orthogonal, and may not correlate well with each other.
(A) Relative fitness (replicative capacity) measurements obtained from deep mutational
scanning of HIV-1 variants [28] involving combinations (of three or lesser) of mutations
in protease associated with resistance to (particularly second-generation) inhibitors in
clinic, are compared to changes in Potts statistical energies, ∆Es with a Spearman
rank-order correlation, ρ = 0.66 (p� 0.001). [28] also report statistically significant
correlation (|ρ| = 0.46) with a Potts model inferred using the Adaptive Cluster
Expansion (ACE) algorithm. (B) FoldX predicted changes in folding energies, ∆∆Gs
(PDB: 3S85) of the mutations also correlate well with Potts predicted changes in
statistical energies, ∆Es for the same (Spearman ρ = −0.57). The HIV-1 protease
structure (PDB: 3S85) is used as reference, repaired using the RepairPDB function in
the FoldX suite, and the free energy of mutants is calculated with the BuildModel
function under default parameters. Changes in structural stability due to mutations
correlate well with their predicted likelihoods (estimated by the Potts model ∆Es) as
seen here with a Spearman rank-order correlation, ρ = −0.57 (p < 0.001) between the
two. However, FoldX calculations are susceptible to small changes in structure that can
be caused by the presence of small-molecule ligands, etc. For another PDB:4LL3, we
still find statistically significant correlation between the two (ρ = −0.64). (C)
Experimental relative fitness measurements however, do not correlate as well with
FoldX predicted changes in folding energies due to the mutations (ρ = −0.36).

Conclusion 323

Fitness is a complex concept at the foundation of ecology and evolution. The measures 324

of fitness range from those such as replicative capacity, protein stability, catalytic 325

efficiency, that can be determined experimentally in the lab to measures stemming from 326

the “prevalence” in collections of sequences obtained from nature, that can be 327

quantified and compared using predictions of coevolutionary models which encode 328

mutational patterns in multiple sequence alignments. For viral fitness measurements, 329

the large majority of studies focus on measures like selection coefficients or replicative 330

fitness within hosts or cells in culture. Potts models of sequence co-variation provide a 331

measure of fitness tied to the frequency of sequences appearing after longer in vivo 332

evolutionary times in the virus’ natural environment. 333

The functions of proteins are defined by the collective interactions of many residues, 334

and yet many statistical models of biological sequences consider sites nearly 335

independently [36]. While studies ( [1])have demonstrated the benefits of including 336

interactions to capture pairwise covariation in successfully predicting the effects of 337

mutations across a variety of protein families and high-throughput experiments, for 338

viral proteins, the predictions of mutational fitness by pairwise or latent-space models 339

often fall short of predictions by site-independent models possibly as a consequence of 340

the limited diversity of the sequence alignments [1] or due to a discrepancy between the 341

proxy for viral fitness in the laboratory and the in vivo fitness of the virus [9]. Here, we 342

show that the signatures of epistasis, although weakly detectable in comparisons with 343

experimental fitness, are best manifested for viruses like HIV in the comparison of the 344

Potts model predicted and experimental HIV sequence “prevalences” when expressed as 345

higher-order marginals of the sequence probability distribution. The model, which is 346

parameterized to reproduce the bivariate marginals in the MSA, also accurately 347
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captures the higher order marginal probabilities (seen in Fig 3 A,C, and E, upto the 348

14th order) in the MSA for sets of drug-resistance associated positions; whereas, the 349

fidelity of a site-independent model decreases much more rapidly with the size of the 350

marginal. We further show that epistatic interactions are particularly important in 351

determining the higher order mutation patterns of drug-resistance-associated sites in 352

HIV; in clear contrast with non-drug-resistance-associated positions, as the virus evolves 353

under drug pressure employing the most strongly interacting positions in mutational 354

pathways. The degree of evolutionary conservation at various positions also plays an 355

important role in modulating the observed epistatic effects.. 356

It has been suggested that the success of models based on sequence covariation at 357

recapitulating high-throughput mutation experiments depends in part on the extent to 358

which experimental assays can capture phenotypes that are under direct, long-term 359

selection [1]. For some proteins, such as nonessential peripheral enzymes or signaling 360

proteins, the property being tested in the laboratory may only have an indirect, 361

context-dependent impact on the organism. We observe higher correlation between 362

Potts model and experiment for the structural protein Capsid than other enzymatic 363

proteins like PR, RT, or IN, indicating that changes in CA perhaps has a more direct 364

effect on the viral lifecycle than enzymatic proteins. However, the evidence for epistasis 365

from fitness measurements based on replicative capacity experiments remains weak as 366

both the Potts and independent models often show comparable degrees of correlation 367

with experiment, and the distinction may not be statistically significant. While double 368

mutant cycles provide a well established biophysical way to probe epistatic effects 369

without reference to a particular sequence background, the order-of-magnitude smaller 370

dynamic range makes accurate quantitative predictions very difficult and we only see 371

weak evidence for epistasis through double mutant cycles. 372

Different measures may also contribute to fitness in different ways. In this study, we 373

employ FoldX to probe the contribution of structural changes and folding energetics due 374

to mutations to their predicted/observed likelihoods, finding that the Potts model 375

predicted likelihoods of mutations in HIV correlate well with FoldX predicted changes 376

in free energies. FoldX predictions, however, do not correlate well with experimental 377

replicative capacity measurements. This is suggestive that the overall fitness landscape 378

predicted by the Potts model includes contributions from many different features, some 379

may even be orthogonal and thus, may not necessarily correlate well with each other. 380

The evolution of viruses like HIV under drug and immune selection pressures induces 381

correlated mutations due to constraints on the structural stability and fitness (ability to 382

assemble, replicate, and propagate infection) of the virus [46]. This is a manifestation of 383

the epistatic interactions in the viral genome. The analysis presented here provides a 384

framework based on sequence prevalence to examine the role of correlated mutations in 385

determining the structural and functional fitness landscape of HIV proteins, especially 386

under drug-selection pressure. Epistatic effects are vital in shaping the higher order 387

(well beyond pairwise) “prevalence” landscape of HIV proteins involved in engendering 388

drug resistance. Identifying/elucidating the epistatic effects for key resistance mutations 389

can help in designing better experiments to probe epistasis and has the potential to 390

impact future HIV drug therapies. 391

Materials and Methods 392

The Potts Hamiltonian model of protein sequence covariation is a probabilistic model 393

built from the single and pairwise site amino-acid frequencies in a protein multiple 394

sequence alignment, aimed at describing the probabilities of observing different 395

sequences in the MSA. To approximate the unknown empirical probability distribution 396

P (S) that best describes a sequence S of length L with each residue encoded in a 397

June 5, 2021 11/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.448646doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448646
http://creativecommons.org/licenses/by/4.0/


Q-letter alphabet, using a model probability distribution Pm(S)[U+2060] (as in [47]), 398

we choose the maximum entropy (or least biased) distribution as the model distribution. 399

Similar distributions that maximize the entropy, with the constraint that the empirical 400

univariate and bivariate marginal distributions are preserved, have been derived 401

in [10,11,22,31,48]. We follow a derivation of the maximum entropy model in [31,47], 402

which takes the form of an exponential distribution: 403

E(S) =
L∑
i

hiSi
+

L(L−1)/2∑
i<j

J ijSiSj
(2)

404

Pm(S) ∝ e−E(S) (3)

where the quantity E(S) is the Potts statistical energy of a sequence S of length L; the 405

model parameters hiSi
, called “fields”, represent the statistical energy of residue Si at 406

position i in S; and J ijSiSj
called “couplings” represent the energy contribution of a pair 407

of residues at positions i, j. In this form, the Potts Hamiltonian consists of LQ “field” 408

terms hiSi
and

(
L
2

)
Q2 “coupling” terms J ijSiSj

. For the distribution Pm ∝ e−E , negative 409

fields and couplings indicate favored amino acids. The change in Potts energy for a 410

mutation α→ β at position i in S is given by: 411

∆E(Siα→β) = E(Siα)− E(Siβ) = hiα − hiβ +
L∑
j 6=i

J ijαSj
− J ijβSj

(4)

In this form, ∆E(Siα→β) > 0 implies that residue β is more favorable than residue α at 412

the given position and vice versa. The sample size or MSA depth however, plays a 413

critical role in determining the quality and effectiveness of the model [49]. 414

Data processing 415

HIV protein multiple sequence alignments for protease, reverse transcriptase, and 416

integrase are obtained from the Stanford University HIV Drug Resistance Database 417

(HIVDB, https://hivdb.stanford.edu) [50,51] using the genotype-rx search ( 418

https://hivdb.stanford.edu/pages/genotype-rx.html) (alternatively, 419

downloadable datasets are also available at 420

https://hivdb.stanford.edu/pages/geno-rx-datasets.html) and filtered 421

according to HIV-1 subtype B and nonCRF, drug-experienced (# of PI=1-9 for PR, # 422

of NRTI=1-9 and # of NNRTI=1-4 for RT, and # of INST=1-3 for IN), removal of 423

mixtures and unambiguous amino acid sequences, removal of sequences with insertions 424

or deletions, and removal of positions with more than 1% gaps in the MSA; resulting in 425

a final MSA size of N = 5710 sequences of length L = 99 for PR, N = 19194 sequences 426

of length L = 188 for RT, and N = 1220 sequences of length L = 263 for IN. For RT, 427

sequences with exposure to both NRTIs and NNRTIs were selected due to much lesser 428

number of sequences exposed to only NRTIs or only NNRTIs. Sequences with insertions 429

(“#”) and deletions (”∼”) are removed. Multiple sequence alignments for p24 Capsid 430

are obtained from the the Los Alamos HIV sequence database [52] using the 431

customizable advanced search interface 432

https://www.hiv.lanl.gov/components/sequence/HIV/asearch/map_db.comp and 433

selecting for subtype B and nonCRF, etc. Sequences with inserts/deletes, and columns 434

with too many gaps are filtered out resulting in an MSA of size N = 5326 and L = 231 435

for capsid. For capsid, drug exposure data and a comprehensive list of drug-resistance 436

mutations is not yet available; drug-naive sequences are used. The subtype B consensus 437

sequence is obtained from the Los Alamos HIV sequence database [52] consensus and 438
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ancestral sequence alignments 439

(https://www.hiv.lanl.gov/content/sequence/HIV/CONSENSUS/Consensus.html, 440

last updated August 2004). The subtype B consensus sequence is referred to as the 441

‘consensus/wild-type’ throughout the text. 442

It has been previously established that phylogenetic corrections are not required for 443

HIV patient protein sequences [23, 31] as they exhibit star-like phylogenies [53,54]. For 444

model inference, HIV patient sequences, are given sequence weights such that the 445

effective number of sequences obtained from any single patient is 1. Sequences obtained 446

from different patients are considered to be independent. 447

Mutation information 448

Drug resistance information, including list of drug-resistance associated mutations are 449

obtained from the Stanford HIVDB 450

(https://hivdb.stanford.edu/dr-summary/resistance-notes) and from [55]. Mutations in 451

HIV are generally classified into three categories: primary, accessory, and polymorphic. 452

Mutations occurring as natural variants in drug-naive individuals are referred to as 453

polymorphic mutations. Mutations affecting in vitro drug-susceptibility, occurring 454

commonly in patients experiencing virological failure, and with fairly low extent of 455

polymorphism are classified as major or primary drug-resistance mutations. In contrast, 456

mutations with little or no effect on drug susceptibility directly but reducing drug 457

susceptibility or increasing fitness in combination with primary mutations are classified 458

as accessory. For this work, mutations classified as both primary/accessory are 459

considered as drug-resistance associated mutations. 460

Alphabet Reduction 461

A reduced grouping of alphabets based on statistical properties can capture most of the 462

information in the full 20 letter alphabet while decreasing dimensionality of the 463

parameter space leading to more efficient model inference ( [17,19,22]). All possible 464

alphabet reductions from 21 amino acid characters (20 + 1 gap) to 20 characters at a 465

site i are enumerated for all pairs of positions ij(j 6= i) by summing the bivariate 466

marginals for each of the
(
21
2

)
possible combinations and selecting the alphabet grouping 467

that minimizes the root mean square difference (RMSD) in mutual information (MI): 468

MIRMSD =

√
1

N

∑
ij

(
MIijQ=21 −MIijQ=20

)2
(5)

. The process is then iteratively carried out until the desired reduction in amino acid 469

characters is achieved. Using the reduced alphabet, the original MSA is then re-encoded 470

and the bivariate marginals are recalculated. Small pseudocounts are added to the 471

bivariate marginals, as described by [17] to make up for sampling biases or limit 472

divergences in the inference procedure. 473

Due to residue conservation at many sites in HIV-1, several studies have used a 474

binary alphabet to extract meaningful information from sequences ( [31,56,57]). A 475

binary alphabet however, marginalizes the information at a site to only the wild-type 476

and mutant residues with the loss of some informative distinctions between residues at 477

sites acquiring multiple mutations. To strike a balance between loss of information and 478

the reduction of the number of degrees of freedom, we choose a reduced alphabet of 4 479

letters. Our 4 letter alphabet reduction gives a Pearson’s R2 coefficient of 0.995, 0.984, 480

0.980, and 0.992, for protease, reverse transcriptase, integrase, and p24 capsid, 481

respectively between the MI of bivariate marginal distributions with the full 21 letter 482
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alphabet and the reduced 4 letter alphabet, representing minimal loss of information 483

due to the reduction. 484

Due to reduction in alphabet, some mutations may not be amenable to our analysis 485

when comparing to experimental fitness measurements such as replicative capacities, etc. 486

We choose mutations corresponding to marginals with higher values in the MSA to be 487

more representative of the model predictions. 488

Model inference 489

The goal of the Potts model inference is to find a suitable set of fields and couplings 490

{h, J}, parameters that fully determine the Potts Hamiltonian E(S), and best 491

reproduce the empirical bivariate marginals. 492

A number of techniques have been developed for inferring the model parameters 493

previously [10, 11, 22, 31, 48, 58–62]. The methodology followed here is similar to the one 494

in [31], where, the bivariate marginals are estimated by generating sequences through a 495

Markov Chain Monte Carlo (MCMC) sampling procedure, given a set of fields and 496

couplings. The Metropolis criterion for the generated sequence(s) is proportional to 497

their Potts energies. This is followed by a gradient descent step using a 498

multidimensional Newton search, to determine the optimal set of Potts parameters that 499

minimizes the difference between the empirical bivariate marginal distribution and the 500

bivariate marginal estimates from the MCMC sample. Although the methodology 501

involves approximations during the computation of the Newton steps, the advantage of 502

the methodology is that it avoids making explicit approximations to the model 503

probability distribution at the cost of being heavily computationally extensive. We have 504

employed a GPU implementation of the MCMC methodology, which makes it 505

computationally tractable without resorting to more approximate inverse inference 506

methods. The MCMC algorithm implemented on GPUs has been previously used to 507

infer accurate Potts models as in [23,34,38]. 508

The scheme for choosing the Newton update step, however is critical. A 509

quasi-Newton parameter update approach determining the updates to J ij and hi by 510

inverting the system’s Jacobian was developed in [31], which we follow here. We further, 511

take advantage of the gauge invariance of the Potts Hamiltonian and use a fieldless 512

gauge in which hi = 0 for all i, and compute the expected change in the model bivariate 513

marginals ∆f ijm (hereafter dropping the m subscript) due to a change in J ij to the first 514

order by: 515

∆f ijSiSj
=

∑
kl,SkSl

∂f ijSiSj

∂JklSkSl

∆JklSkSl
+
∑
k,Sk

∂f ijSi,Sj

∂hkSk

∆hkSk
(6)

The challenging part of the computation is computing the Jacobian
∂fij

SiSj

∂Jkl
SkSl

and 516

inverting the linear system in equation 6 in order to solve for the changes in ∆J ij and 517

∆hi given the ∆f ij . We choose the ∆f ij as: 518

∆f ij = γ(f ijempirical − f
ij) (7)

with a small enough damping parameter γ such that the linear (and other) 519

approximations are valid. 520

The site-independent model is inferred based on the univariate marginals hi in the 521

MSA alone, giving the “field” parameters as: 522

f indi = − log hi (8)

with a small pseudo-count added to the hi to avoid indeterminate logarithms. The 523

independent model energies of a sequence S are given as E(S) =
∑L
i h

i
Si

, where i is a 524

position in the sequence, and L is the length of the sequence. 525
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The computational cost of fitting
(
L
2

)
∗ (4− 1)2 + L ∗ (4− 1) model parameters for 526

the smallest protein in our analysis, PR, on 2 NVIDIA K80 or 4 NVIDIA TitanX GPUs 527

is ≈ 20h. For a more detailed description of data preprocessing, model inference, and 528

comparison with other methods, we refer the reader to [19] and [17,23,38,49]. 529

Prediction of higher order marginals 530

The Potts model inferred using the methodology described above is generative, allowing 531

for generation of new synthetic sequences which very closely represent the sequences in 532

the MSA of protein sequences obtained from HIV patients. For prediction and 533

comparison of the higher-order marginals, both the Potts and independent models are 534

used to generate new sequences, and subsequence frequencies (marginals) are compared 535

between the dataset MSA and the Potts/independent model generated MSAs. For each 536

subsequence of length 2− 14, the process is repeated for 500 randomly picked 537

subsequences and the Spearman correlation coefficient is calculated for all subsequences 538

which appear with a frequency greater than the threshold (to avoid noise). 539

Statistical Robustness of HIV Potts models 540

Finite sampling and overfitting can affect all inference problems, and the inverse Ising 541

inference is no exception. In case of the Potts model, the number of model parameters 542

can vastly outsize the number of sequences in the MSA, yet it is possible to fit accurate 543

Potts models [49] to those MSAs, as the model is not directly fit to the sequences but to 544

the bivariate marginals of the MSA. However, finite sampling can affect the estimation 545

of the marginal distributions, which, in turn, affects model inference. In fact, overfitting 546

in the inverse Ising inference arises due to the finite-sampling error in the bivariate 547

marginals estimated from a finite-sized MSA. The degree of overfitting can be 548

quantified using the “signal-to-noise ratio” (SNR), which is a function of the sequence 549

length L, alphabet size q, number of sequences in the MSA N , and the degree of 550

evolutionary conservation in the protein. If the SNR is small, the Potts model is unable 551

to reliably distinguish high scoring sequences in the data set from low-scoring sequences. 552

If SNR is close to or greater than 1, then overfitting is minimal and the Potts model is 553

more reliable. In the analysis presented here, IN has the lowest SNR (0.14 compared to 554

43.7 for RT, and 21.6 for PR) on account of being one of the more conserved proteins 555

with the lowest number of sequences in the MSA, and may be more affected by 556

overfitting. Different predictions of the Potts model, however are differently affected by 557

finite sampling errors with predictions of ∆Es which form the basis of Potts model 558

“fitness” predictions among the more robust [49]. The Potts model is also able to 559

accurately capture the higher-order marginals in the MSA. Thus, we conclude that the 560

MSA sample sizes used in this study are sufficiently large to construct Potts models for 561

these HIV proteins that adequately reflect the effect of the sequence background on 562

mutations. 563

Protein stability analysis 564

The changes in folding free energies due to mutations are analyzed using FoldX [44,45], 565

which uses an empirical force field to determine the energetic effects of point mutations. 566

The HIV-1 protease structure (PDB: 3S85) is used as reference, repaired using the 567

RepairPDB function in the FoldX suite, and the free energy of mutants is calculated 568

with the BuildModel function under default parameters. For each mutation, the mean 569

of 10 FoldX calculations is used as the ∆∆G value. 570
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Supporting information 571

Supplementary File 1. Supplementary methods, details and figures. 572

Details of the evolutionary conservation in different HIV enzymatic proteins and its 573

effect on the observable evidence for epistasis is given in Section 1. Details on 574

comparison with different experimental measures of fitness and Potts and independent 575

models, along with comparisons with FoldX predicted changes in folding energetics due 576

to mutations are given in Section 2, as well as details of why comparisons for double 577

mutant cycles are difficult. Details of the weak evidence for epistasis that can be drawn 578

from hamming distance distributions are given in Section 3. (PDF). 579

Supplementary File 2. Supplementary figures and tables for double 580

mutant cycles. Figures and tables showing the distribution of Potts model predicted 581

double mutant cycle effects for all double mutations indicating the strongest, predicted 582

double mutant cycle effects involving mutations (at least one amongst the pair) at 583

drug-resistance-associated sites and corresponding literature references in HIV-1 584

protease and integrase are given. (PDF). 585
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