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Abstract 

Metabolite-protein interactions affect and shape diverse cellular processes. Yet, despite 

advances, approaches for identifying metabolite-protein interactions at a genome-wide scale 

are lacking. Here we present an approach termed SLIMP that predicts metabolite-protein 

interactions using supervised machine learning on features engineered from metabolic and 

proteomic profiles from a co-fractionation mass spectrometry-based technique. By applying 

SLIMP with gold standards, assembled from public databases, along with metabolic and 

proteomic data sets from multiple conditions and growth stages we predicted over 9,000 and 

20,000 metabolite-protein interactions for Saccharomyces cerevisiae and Arabidopsis thaliana, 

respectively. Extensive comparative analyses corroborated the quality of the predictions from 

SLIMP with respect to widely-used performance measures (e.g. F1-score exceeding 0.8). 

SLIMP predicted novel targets of 2’, 3’ cyclic nucleotides and dipeptides, which we analysed 

comparatively between the two organisms.  Finally, predicted interactions for the dipeptide Tyr-

Asp in Arabidopsis and the dipeptide Ser-Leu in yeast were independently validated, opening 

the possibility for future applications of supervised machine learning approaches in this area of 

systems biology.  
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Introduction  

 

Small-molecules, whether a metabolite, short peptide, or drug, bind to a macromolecular 

partner, most commonly a protein, to exert their function (X. S. Li 2011). Binding can be both 

non-covalent or covalent and is associated with a conformational change of the protein target 

that results in a downstream effect. Small-molecule regulation of proteins, ranging from 

enzymes and transporters to transcription factors and structural proteins, constitutes an 

evolutionary conserved mechanism that enables organisms to respond to the developmental and 

environmental cues (M. S. Kosmacz 2020). While covalent modification often requires 

additional enzymes (e.g. (de)acetylase), non-covalent interactions are determined by the 

binding affinity, enabling fast and reversible regulation driven by the change in metabolite 

concentrations. The best-studied example of a metabolite-protein interaction (MPI) network is 

that of competitive or allosteric regulation of enzyme activities by small-molecules that share 

similarity with either the substrate or the product of the enzyme (Link 2013, Reznik 2017, Alam 

2017, M. N. Diether 2019, Razaghi-Moghadam 2021).  However, it has become increasingly 

clear that similarly to enzymes, many more proteins can bind and be regulated by a plethora of 

small-molecule ligands (Lempp 2019, Gallego 2010, X. G. Li 2010, Piazza 2018).  

 

Despite their importance, cell-wide characterisation of the protein-metabolite complexes has 

lagged behind protein-protein interaction (PPI) studies, limited by the lack of suitable 

experimental approaches. Emergence of novel methods to capture MPIs and improvements in 

mass-spectrometry proteomics and metabolomics technologies now allow the use of the 

synthesized knowledge along with computational approaches to discover new MPIs (M. S. 

Luzarowski 2019, M. S. Diether 2017). We have recently adapted the co-fractionation mass 

spectrometry (CF-MS) method, historically used for protein-protein (McWhite 2020) and 

protein-RNA (Mallam 2019) interaction studies, for cell-wide characterization of  MPIs (D. S. 

Veyel 2018, D. K. Veyel 2017), in an approach referred to as PROMIS. PROMIS relies on the 

size-based separation of molecular complexes present in the native lysate. While metabolites 

present in the protein complexes separate into high molecular weight fractions, free small-

molecules separate in the slower eluting fractions of low molecular weight. Collected fractions 

are subjected to concurrent protein and metabolite extraction, followed by proteomic and 

metabolomic mass spectrometry-based analysis. Protein and metabolite elution profiles are in 

turn deconvoluted into single peaks, and co-elution is used to delineate putative protein-protein 

and metabolite-protein interactors. What distinguishes PROMIS from other methods used to 

study ligand-protein complexes is that instead of focusing on a single compound, it enables 

untargeted, metabolome-wide identification of metabolite-protein complexes. However, and as 

the separation is limited to 30-40 fractions, on average, every metabolite will co-elute with 

several hundred of proteins, of which only one may constitute a true interactor, while the 

remaining ones represent coincidental co-elution. To identify bona fide MPIs we complemented 

PROMIS with the orthogonal small molecule centred approaches such as affinity purification 

and thermal proteome profiling (M. V. Luzarowski 2021, D. S. Veyel 2018, M. L.-B. Kosmacz 

2018). While the latter two approaches are limited to investigating MPIs that include known 

metabolites, available as purified compounds, and are highly laborious and time-consuming, 

the main advantage of PROMIS is its untargeted exploration of MPIs.  
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Here we explored an alternative approach to identify MPIs by using the established knowledge 

of interactions between metabolites and proteins present in our data sets, in a form of a gold 

standard, in combination with supervised machine learning methods. We hypothesize that, 

unlike coincidental, true MPIs will be predicted as present across different CF-MS data sets 

within and across species. Notably, combination of multiple CF-MS data sets has been 

successfully employed to identify functional protein-protein interactions (Wan 2013). To test 

our hypothesis, we combined multiple PROMIS experiments corresponding to different growth 

stages for two model organisms, the plant Arabidopsis thaliana and budding yeast 

Saccharomyces cerevisiae. We refer to the combination of CF-MS data sets with supervised 

machine learning method as SLIMP, for Supervised Learning of Interactions between 

Metabolites and Proteins. As a result, we predict 9,434 MPIs between 54 metabolites and 1,556 

proteins in Saccharomyces cerevisiae and 20,148 MPIs between 78 metabolites and 4,202 

proteins in Arabidopsis thaliana.  Extensive analyses corroborated the quality of the predictions 

from SLIMP with respect to widely-used performance measures (e.g. F1-score exceeding 0.8) 

and characteristics (e.g. learning and ROC curves). Functional characterisation of predictions 

from SLIMP verified known and provided a list of previously unknown MPIs. In summary, we 

demonstrate that the combination of multiple PROMIS experiments with SLIMP can be used 

to get insights in the complexity of metabolite-protein interactome across multiple species.    

Results and Discussion 

 

Data sets employed in prediction of metabolite-protein interactions  

To predict metabolite-protein interactions we relied on proteomic and metabolomic profiles 

obtained from size exclusion chromatography (SEC) followed by liquid chromatography - mass 

spectrometry (LC-MS) applied on cell lysates from experiments with: (i) three different data 

sets from Arabidopsis thaliana as well as (ii) four different data sets from Saccharomyces 

cerevisiae (Supplemental Table S1). If a protein and a metabolite form a complex, these 

molecules are expected to co-elute and, hence, are found in the same fractions (D. S. Veyel 

2018, M. V. Luzarowski 2021). Unbound metabolites are much smaller than proteins and elute 

last, making fractions separable into those that contain only metabolites and those that include 

both proteins and metabolites. For the performed experiments, 36-40 SEC fractions that include 

both proteins and metabolites were collected, covering sizes from 13 to 6037.7 kDa (see 

Methods). To increase the quality of the predictions, the data from experiments on each 

organism were jointly employed for feature engineering. As a result, we used 31% of all 

proteins and 24% of all metabolites, as they were detected over all experiments in A. thaliana 

and 36% and 17% of proteins and metabolites, respectively, in S. cerevisiae experiments 

(Supplemental Table S1). Further, the metabolomic and proteomic profiles from different data 

sets and replicates were combined (Methods). The pooling of elution profiles from different 

replicates of one experiment is justified if they are concordant. Indeed, we found that the 

metabolomic and proteomic profiles over the different fractions were highly concordant, as 

quantified by the RV-coefficient of value at least 0.7 (Figure 1A) (Abdi 2007).  

We used BRITE classes and KEGG pathways (Aoki-Kinoshita 2007) to annotate the 

proteins and metabolites; moreover, proteins were also classified with enzyme commission 

numbers (Webb 1992) and GO terms (Gene Ontology Consortium 2008) (Supplemental Table 
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S2). The used annotations showed that the data sets from A. thaliana and S. cerevisiae included 

proteins and metabolites from various processes, pathways and classes, indicating that they can 

be used to get a broad overview of MPIs (Figure 1B).  

 

Generation of a gold standard for supervised learning of metabolite-protein interactions 

Building a supervised approach to learn metabolite-protein interactions requires access to a 

high-quality gold standard (Hastie 2009). We collected information about presence and absence 

of interactions from the STITCH (D. S. Szklarczyk 2016) and PubChem (Y. S. Wang 2013) 

databases to assemble positive and negative gold standards for A. thaliana and S. cerevisiae, 

respectively. The gold standards contain more proteins than metabolites, as is the case in the 

employed data sets (Supplemental Table S1). Moreover, we ensured that the gold standards are 

balanced with respect to the number of interacting and non-interacting metabolite-protein pairs, 

referred to as positive and negative instances (Supplemental Table S3). While the positive and 

negative gold standards are balanced, we noted that they cover 22 % and 26 % of metabolites, 

2% of proteins and 0.04 % and 0.06 % of MPIs occurring in the intersection over the gathered 

experimental datasets for A. thaliana and S. cerevisiae, respectively. Nevertheless, the 

assembled gold standards provided a good coverage of metabolite and protein classes from the 

abovementioned annotations (Figure 1B).  

 

Feature engineering for predicting metabolite-protein interactions in SLIMP 

The elution profiles were normalized to their profile’s maximum peak intensity and combined 

over experiment replicates using a selected pooling method, such that for every metabolite and 

protein a data profile per experiment was constructed (Methods). Next, we combined the 

resulting proteomic and metabolomic data profiles to arrive at a feature vector employed in 

machine learning. To this end, for every metabolite-protein pair we calculated the cross-

correlation profile whose elements correspond to the sum of fraction-wise products of protein 

and metabolite elution profiles at a certain displacement (Figure 2, Methods). The cross-

correlation profile of co-eluting molecules, that are assumed to interact, has a peak at zero 

displacement (Figure 2A). In contrast, proteins and metabolites that do not co-elute show no 

peak at zero displacement (Figure 2B). Cross-correlation peaks at medium displacement may 

indicate that the metabolite interacts with another protein eluting close to the investigated 

protein. We assumed that larger displacements do not hold information about the interaction 

between the investigated metabolite-protein pair, because distant peaks are only expected to 

result from interactions with other molecules. Therefore, to build the feature vector, we used 

the cross-correlation profile that is cut off at different displacements, referred to as bin sizes 

(e.g. 2, 4, 10, and the length of the entire profile). The organism-specific final feature vector for 

a given metabolite-protein pair in SLIMP was obtained by concatenating the cross-correlation 

profiles over the different experiments (with selected bin sizes for displacement).  

 

Design of machine learning classifiers of metabolite-protein interactions 

To train and evaluate the performance of a classifier using well-established machine learning 

approaches, the gold standard was split into training and test sets used in a 10-fold cross-

validation. The classifiers varied with respect to the used pooling methods to combine 
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experimental elution profiles over replicates of an experiment, bin sizes and normalization of 

the cross-correlation profile as well as the machine learning approaches employed.  

To illustrate the effect of these factors on the performance of the classifiers, we first used 

linear support vector machines (SVM) with regularization on the features from S. cerevisiae for 

which the gold standard was of smaller size (Figure 2C,D). Most of the predicted interactions 

were shared when using cross-correlation profiles with different bin sizes. Predictions obtained 

when using cross-correlation profiles with displacement that corresponded to the length of the 

elution profile showed the worst agreement with every other tested bin size. This was likely a 

result of false positives due to over-weighting of larger displacements. In the prediction of MPIs 

we expect smaller displacements to exhibit better performance; however, a larger displacement 

may be favoured since the resulting classifier is expected to be more robust in a larger space of 

informative features. If a bin size includes larger displacements to peaks that are farther away, 

the classifier may suffer from over-fitting. In addition, a medium-sized bin size includes 

information about close elution peaks, excluding false positives caused by high cross-

correlation due to broader, adjacent elution peaks which are included in too small bin sizes. 

Based on these arguments and since the performance of the classifier for different bin sizes was 

similar (Figure 2C), we decided to use a bin size of 4 in the remaining analyses. 

Next, we investigated the effect of the different pooling methods (i.e. minimum, maximum, 

mean and median per fraction) used to combine the replicates of the elution profiles. Cross-

validation results for the F1-score revealed that the performance of the linear SVMs with 

different pooling methods was similar (Figure 3A). The same could be concluded when other 

measures (i.e. precision, recall, accuracy, sensitivity and specificity) were used to assess 

performance, except for the higher standard deviation in sensitivity and specificity 

(Supplemental Figure S1). However, the predicted interactions vary: SVM classifiers trained 

on profiles pooled by taking the minimum resulted in the smallest, while that based on the mean 

yielded the largest number of predicted MPIs, (Figure 3B). Pooling profiles over replicates by 

the minimum of each fraction led to noise reduction, as peaks that were not observed in all 

replicates were excluded. Therefore, due to its robustness (and expected smaller number of false 

positives), we selected the minimum as a pooling method, at the cost of not identifying a larger 

number of interactions. 

Further, we analysed the effect of normalization of the cross-correlation profiles to the 

maximum peak or the sum over the profile. We expect that normalization could help identify 

interactions between co-eluting molecules for which the intensity from mass spectrometry of 

one molecule type was much higher than the intensity of the other. However, this, too, might 

lead to false positives if the overlap is small. The comparison showed that most of the 

interactions predicted by the classifier without normalization were also predicted by the 

classifier based on normalized cross-correlation profiles (Figure 3C). As a result, we decided 

not to normalize the cross-correlation profiles, to reduce the number of false positive 

interactions. 

Finally, we inspected the performance of the following machine learning approaches for 

classification: random forest, linear SVM with and without regularization or SVMs with 

polynomial, Gaussian radial basis function (RBF), and sigmoid kernel. In contrast to the other 

approaches, the SVM with a sigmoid kernel exhibited the largest number of predicted MPIs, 

resulting in a poor performance (Figure 3A,D). All the other approaches resulted in classifiers 

that performed equally well, reaching values of the F1-score greater than 0.8. Despite the best 
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performance of the random forest we focussed on predictions of the SVM, since the random 

forest classifier tends to over-fitting as documented by the learning curves (Supplemental 

Figure S2). Further, given the size of the employed gold standard, we selected the linear SVM 

without any kernel as the classifier of choice. Regularization of the linear SVM had a small 

effect on prediction (Figure 3A,E). A smaller value for the regularization parameter C in our 

classification problem decreased the risk of over-fitting and resulted in a better performance 

according to the learning curve (Supplemental Figure S2, Methods).  

Based on this evaluation, SLIMP is based on training a linear SVM with regularization using 

minimum-based pooled elution profiles without normalization of the cross-correlation profiles. 

Both classifiers showed excellent performance with respect to different performance measures 

on the data sets from S. cerevisiae (Figure 3F) and A. thaliana (Supplemental Figure S3). 

 

 

Representative value of the gold standard of metabolite-protein interactions 

Apart from assessing different performance measures, there are other widely used 

characteristics to evaluate the performance of a classifier, including learning curves and 

receiver operating characteristic (ROC) curves. Learning curves provide insight on whether the 

gold standard (training data) is large enough and if the classifier suffers from under- or over-

fitting (Pedregosa 2011). The small difference between the training and test scores implied that 

the SLIMP classifier did not suffer from over-fitting and does not exhibit high variance and 

high bias (Figure 4A). In addition, the learning curve implied that a bigger gold standard is not 

expected to increase the performance of our classifier estimator (Pedregosa 2011). We also 

investigated the diagnostic ability of our classifier by determining the ROC curve. The high 

value for the area under the ROC curve (AUC) indicated that the SLIMP classifier predicts well 

the presence and absence of interactions with low error rates (Figure 4B, upper panel). 

Another test to investigate on the applicability of machine learning on the experimental data 

is to compare the performance of the SLIMP classifier to classifiers generated with randomized 

data. We decided to construct classifiers trained with the same gold standard, but with 

randomized labels (presence and absence of interactions, purple in Figure 4A-D). In addition, 

we trained a classifier on randomly drawn metabolite-protein pairs from the experimental data 

with random labels (green in Figure 4A-D). For every of the two types of random classifiers 

we took the average performance over 1000 classifiers, all trained with different randomized 

labels and profiles. The learning curves showed accuracy ~ 0.5, supporting random assignment 

of predicted interactions (Figure 4A). As seen in the high accuracy score on the training set, 

both classifiers trained on randomized data suffered from over-fitting. In addition, the poor 

performance is supported by the ROC curves, but not as a typical random assignment of the 

interactions (Figure 4B, dotted line). The shape of the ROC curves indicated that small false 

positive rates were associated with higher-than-random true positive rate; in contrast, larger 

false positive rates were associated with true positive rates that were smaller than those expected 

at random. As a result, the classifiers trained with random labels and profiles tended to predict 

absence of interactions resulting in a classification performance that is worse than random.  

Further, we compared the prediction of the SLIMP classifier and the 1000 classifiers trained 

with randomized data. The results indicated no significant agreement between the predictions 

from the SLIMP classifier and those from a classifier trained on the gold standard with random 
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labels (Figure 4D, purple) and randomly sampled profiles from all observed possible 

metabolite-protein pairs in the datasets (Figure 4D, green). Hence, the predictions made by the 

SLIMP classifier could not be obtained based on randomized data. We could also not see any 

agreement according to the Cohen's kappa scores of the different random classifiers, as expected 

with completely random assignments (Figure 4D, blue), indicating that the profiles used in the 

gold standard match randomly drawn profiles from the pool of all observed MPIs. Summarizing 

the comparison to random classifiers, we showed that the gold standard of experimentally 

confirmed metabolite-protein (non)interactions are representative and that the engineered 

features contain valuable information about metabolite-protein interactions. 

 

 

Properties of the network of predicted metabolite-protein interactions 

The previous findings corroborated the robustness of performance of the selected classifiers. 

Therefore, we next used the SLIMP classifiers along with 84,024 and 323,554 metabolite-

protein pairs in S. cerevisiae and A. thaliana and predicted 9,434 and 20,148 MPIs, respectively. 

These MPIs can be represented as a bipartite network, with the two partitions composed of 

metabolites and proteins and edges denoting the MPIs. We first investigated the degree 

distributions of the metabolites and proteins as a seminal network property (Figure 4C, upper 

panel). We found that the degrees of metabolites in the network of predicted metabolite-protein 

interactions of S. cerevisiae did not follow a power-law distribution, in contrast to observations 

from analyses of networks assembled by mining of publically available databases of enzyme-

metabolite inhibitory interactions (Alam 2017). On the other hand, the degrees of proteins 

tended to follow power-law, with the proteins that interact with the largest number of 

metabolites involved in folding and binding processes (e.g. chaperones and heat shock 

proteins). The degrees of proteins and metabolites in a network of predictions by classifiers 

trained on randomized data followed empirically a right-skewed distribution and covered a 

broader range of interactions than our predicted network (Figure 4C). Analogous findings were 

obtained for the network of predicted MPIs for A. thaliana (Supplemental Figure S4). 

Altogether, the analysis of the degree distributions of proteins and metabolites in the bipartite 

network of MPIs, predicted based on the selected SLIMP classifier, showed that this seminal 

network property differs from those of networks obtained from classifiers trained on 

randomized data, and may be considered biologically relevant. 

Validation and enrichment analysis of predicted metabolite-protein interactions  

In the next step of our analysis, we focussed on identifying enriched interactions in the network 

of MPIs predicted by SLIMP. Different enzyme classes (according their EC numbers) showed 

different preferences to interact with metabolites of particular KEGG BRITE metabolite classes 

(Figure 5A). For instance, all enzymes have significantly enriched interactions to coenzymes. 

On the other hand, proteins with non-enzymatic function, many of which are involved in DNA-

binding, showed enriched interactions to nucleotides and nucleosides.  As in the network 

displayed in Figure 5A, some well-known interactions were supported by our predictions when 

we inspected the enrichment of interactions between protein and metabolite KEGG BRITE 

classes (Figure 5B).  
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For instance, our predictions indicated that enzymes tend to interact with coenzymes and their 

precursors, proteins involved in transcription and translation preferably interact with 

nucleosides. Nucleotides were found in more interactions with proteins from synthesizing 

processes (Figure 5C). Interestingly, we also found that most interactions are found across and 

not within pathways. For A. thaliana similar tendencies were observed; for instance, enzymes 

tend to interact with coenzymes and their precursors, while translation factors favour 

interactions with nucleosides; moreover, many MPIs tend to bridge different pathways 

(Supplemental Figure S5). These results represent well-known characteristics of MPIs, which 

support the accuracy and value of the interactomes predicted by SLIMP.  

 

 

Novel targets of 2’, 3’ cyclic nucleotides and dipeptides identified by SLIMP 

Following the enrichment analysis, we focused on the two groups of metabolites present in the 

SLIMP dataset, with recently described regulatory functions, namely: 2’, 3’ cyclic nucleotides 

(2’, 3’-cNMPs) and proteogenic dipeptides. 2’, 3’-cNMPs are evolutionarily conserved RNA 

degradation products, which accumulate under stress conditions (Jackson 2015). It has been 

shown that 2’, 3’-cAMP, and 2’, 3’-cGMP bind to the RNA Recognition Motif (RRM) of the 

Arabidopsis Rbp47 protein (M. L.-B. Kosmacz 2018). RRM domain is conserved among the 

eukaryotes, and proteins such as Rbp47 characterized by RRM motif and prion-like 

unstructured domain are known to play a central role in the stress granules (SGs) assembly 

(Protter 2016). In agreement with the binding data, 2’, 3’-cAMP treatment-induced cytosolic 

SGs assembly in the Arabidopsis seedlings (M. L.-B. Kosmacz 2018).  Corroborating the 

published work, seven of the 31 high-confidence 2’, 3’-cGMP targets  predicted by SLIMP 

(prediction probability for interaction > 80 %) are characterized by RRM domain, Rbp47 

among them, which is 12.8-times more than expected by chance.  The list also contains a 

plastidial protein CP29, speculated to play a similar role to the Rbp47 for the assembly of 

plastidial SGs (Chodasiewicz 2020). Furthermore, of the 31 proteins, six were shown to 

sequester in either cytosolic or plastidial SGs (Chodasiewicz 2020, M. G. Kosmacz 2019). 

Based on the SLIMP results, we now hypothesize that 2’, 3’-cNMP facilitate both cytosolic and 

plastidial SGs formation via binding to the RRM motif of the SGs proteins.  

 

Similar to 2’, 3’-cNMPs, dipeptides are degradation products and accumulate under conditions 

associated with proteolysis, such as heat stress in plants (Thirumalaikumar 2021) and glucose 

depletion in yeast (M. V. Luzarowski 2021). We have demonstrated that dipeptides bind and 

regulate the activity of the glycolytic/gluconeogenic enzymes, and supporting the binding data, 

dipeptide feeding leads to acute metabolic changes. SLIMP predicted dipeptide-protein 

interaction network (prediction probability for interaction > 80 %) comprising of 607 

interactions between 31 dipeptides and 221 proteins in A. thaliana and 1951 interactions 

between 14 dipeptides and 516 proteins in S. cerevisiae. Based on the published regulatory 

interactions between dipeptides and central metabolism, we focused specifically on interactions 

between dipeptides and enzymes in carbon metabolism. The predictions of the dipeptide-

enzyme interaction network by SLIMP based on data from Arabidopsis comprised glycolytic 

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH/GAPC) and gluconeogenic 

enzyme phosphoenolpyruvate carboxykinase (PCK1) (Moreno 2021)  We have already 
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demonstrated that Tyr-Asp inhibition of the GAPC activity is associated with the diverting of 

glycolytic flux towards pentose phosphate pathway (PPP) and NADPH production(Moreno 

2021). Interestingly, among the new, putative targets identified by SLIMP we found Glucose-

6-phosphate dehydrogenase (G6PDH) whose regulation may further contribute to the observed 

metabolic phenotype, since the concomitant regulation of the GAPDH and G6PDH activities 

controls the flux into PPP in bacteria, yeast, and human cell lines (Christodoulou 2019).  

Additional enzymes identified in our analysis in both Arabidopsis and yeast included 

phosphofructokinase, pyruvate kinase, and NAD-dependent malic enzyme, all of which are 

focal points for metabolic regulation. Based on the SLIMP results, we now hypothesize a 

multisite regulation of carbon metabolism by dipeptides.  

 

Finally, we compared the MPIs predicted by SLIMP with interactions retrieved previously 

using affinity purification (AP) and thermal proteome profiling (TPP) for dipeptide Tyr-Asp in 

Arabidopsis and dipeptide Ser -Leu in yeast.  In both cases, we found a significant overlap 

between SLIMP and AP targets lists (Fisher exact test, p-value <0.05) but not between SLIMP 

and TPP, which may reflect the common, chromatographic principle behind SLIMP and AP. In 

contrast, TPP looks for the difference in a protein melting temperature upon ligand binding, and 

will miss interactions that elicit no or only weak effect on a protein thermal stability. However, 

the interactors found in at least two of the three approaches constitute priority for future 

characterisation, because of the inherit differences between the three methods interactors 

identified by one approach, only, should not be dismissed.  

 

In summary, SLIMP analysis retrieved known interactions, validating our approach, but also 

generated novel hypothesis to be tested experimentally.  

 

Conclusion 

Here we designed, evaluated, and tested the performance of a supervised approach for 

prediction of metabolite-protein interactions termed SLIMP. Our approach relies on combining 

SEC and LC-MS to obtain metabolomic and proteomic profiles, and can be applied on 

organisms of different complexity, as shown for S. cerevisiae and A. thaliana. With the 

advances in mass spectrometry and development of techniques for identification of metabolite-

protein interactions, SLIMP provides a scalable strategy to predict the entirety of metabolite-

protein interactions. Key to this prospect is the availability of high-quality gold standard, 

particularly of negative instances which are often missing or are not reported in biological 

studies. While SLIMP predicts metabolite-protein interactions with good quality, as assessed 

by different performance measures, it does not distinguish between interactions of a protein in 

monomeric state and those with protein complexes. Nevertheless, our data sets and approach 

can be adapted to predict protein-protein interactions. In addition, SLIMP does not categorize 

the type of interactions (e.g. activating, inhibiting, structural, and non-functional). Provided 

detailed gold standard, future efforts will be directed at using SLIMP in combination with 

metabolic networks to allow for more refined predictions about the putative function of MPIs.  

The comprehensive comparative analyses with state-of-the-art approaches for identification 

of metabolite-protein interactions indicated significant agreement of predictions from SLIMP 

with findings from an independent experimental procedure. Further, we corroborated the 
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quality of the network of MPIs predicted from SLIMP with enrichment and structural analyses 

as well as cross-species comparisons of new MPIs involving dipeptides.  Therefore, since there 

exists no standard approach to obtain a global map of MPIs in vivo, SLIMP can be viewed as a 

valuable approach for generation of hypotheses about such interactions.   

 

Materials and Methods 

Method Details 

The data acquisition is based on size exclusion chromatography and further proteomic and 

metabolomic analyses, as in the PROMIS approach (Sokolowska 2019, D. S. Veyel 2018, M. 

V. Luzarowski 2021). In contrast to PROMIS, SLIMP is a supervised approach which relies on 

carefully engineered features that combine the SEC elution profiles. The overall procedure was 

applied to different cell-lysates of A. thaliana and S. cerevisiae. 

Plant and yeast material grow conditions  

Arabidopsis thaliana Ler cell suspension culture, was grown in MSMO (Murashige and Skoog 

basal salts with minimal organics, Sigma) medium, in a in constant light (c. 80 μmol m–2 s–1), 

at 21 °C, on orbital shaker (110–120 rpm). Cells were harvested at the logarithmic growth phase 

(7 days after last passage) by filtration and immediately frozen in liquid nitrogen. As described 

in (Veyel et al., 2018). Arabidopsis thaliana Col-0 seedlings (1.5 mg seeds, c. 100 plants) were 

grown in sterile liquid cultures (100-ml Erlenmeyer glass flasks) in 35 ml ½ MS (half strength, 

Murashige and Skoog, Sigma) liquid medium with 1% sucrose. The seedlings were kept 

shaking for 10 days on orbital shakers (110–120 rpm), in constant light (c. 80 μmol m–2 s–1) 

and temperature (21°C) conditions. Plants were harvest and snap frozen in liquid nitrogen. 

Arabidopsis thaliana Col-0 rosettes were grown on soli in a controlled condition, in a growth 

chamber (Phytotron GmbH) with 12-h light at 120 μmol m-2 s-1, in the constant temperature 

of 21°C. Four weeks old plants were harvest and snap frozen in liquid nitrogen. The 

Saccharomyces cerevisiae strain YSBN2 was cultivated at 30 °C with moderate shaking (120-

140 RPM) using Innova Shakers. Cultures were started using a single colony grown on YPD 

(Yeast extract Peptone Dextrose, Sigma) plate. After 6 (logarithmic phase), 24 (diauxic phase) 

and 72 (stationary phase) hours of cultivation, cells were collected by centrifugation (4,000 g, 

4 °C, 20 min), washed with AmBIC buffer (50 mM ammonium bicarbonate, 150 mM NaCl, 

1.5 mM MgCl2), transferred to 50 mL tube and centrifuged again (4,000 g, 4 °C, 20 min). The 

yeast pellet was then snap frozen in liquid nitrogen. 

 

Experimental generation of elution profiles 

PROMIS experiments was performed as described previously in (D. S. Veyel 2018) (M. V. 

Luzarowski 2021). Briefly, native lysate containing endogenous protein- protein and protein-

metabolites complexes corresponding to 40 mg of protein, was separated by size-exclusion 

chromatography (SEC) with Sepax SRT SEC-300 21.2 × 300 mm column (Sepax 

Technologies, Inc., Delaware Technology Park, separation range 1.2 mDa to 10 kDa) with the 

ÄKTA explorer 10 (GE Healthcare Life Science, Little Chalfont, UK). 36-40 1-mL protein 
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containing fractions covering sizes from 13 to 6037.7 kDa were collected, snap frozen in liquid 

nitrogen and lyophilized. 

Liquid-Chromatography Mass Spectrometry  

Metabolites and Proteins from the lyophilized fractions were extracted using a methyl-tert-butyl 

ether (MTBE)/methanol/water method (Giavalisco 2011), where, molecules are simultaneously 

separated into organic phase (lipids), aqueous phase (polar and semi-polar metabolites) and 

protein pellets. Aqueous phase and protein pellets were dried in a SpeedVac and subjected 

metabolomic and proteomic analysis as described by Sokolowska, 2019. Briefly, the dried 

aqueous phase was suspended in 100 µL water.  Samples were analysed by ACQUITY UPLC 

I Class (Waters) coupled with Exactive mass spectrometer (Thermo Fisher Scientific) in 

positive and negative ionization modes. The mobile phases consisted of 0.1% formic acid in 

water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B) and the gradient ramped as 

fallows: 1 min 1% B, 11 min 1% to 40% B, 13 min 40% to 70% buffer B, then 15 min 70% to 

99% B, followed 2 min washout with 99% B. Mass spectra were acquired using following 

settings: mass range from 100 to 1500 m/z, resolution set to 25,000, loading time restricted to 

100 ms, AGC target set to 1e6, capillary voltage to 3 kV with a sheath gas flow and auxiliary 

gas value of 60 and 20, respectively. The capillary temperature was set to 250 °C and skimmer 

voltage to 25 V. Acquired chromatograms were further processed with Expressionist Refiner 

MS  (http://www.genedata.com) and obtained metabolite clusters were matched to in-house 

reference compounds library for annotation. Protein pellets obtained after MTBE extraction 

were resuspended in 50 µL denaturation buffer (6 M urea, 2 M thiourea in 40 mM ammonium 

bicarbonate). Reduction of cysteines, alkylation and enzymatic digestion using LysC/Trypsin 

Mix (Promega Corp., Fitchburg, WI) followed by desalting of a digested peptide was performed 

according to the protocol described in 1. Dried peptides were resuspended in MS loading buffer 

(3% ACN, 0.1 % FA) and measured with Q Exactive HF (Thermo Fisher Scientific) coupled to 

a reverse-phase nano liquid chromatography ACQUITY UPLC M-Class system (Waters).  

Equivalent of 1ug of proteins was injected per run and the gradient ramped from 3.2% ACN to 

7.2% ACN over 20 min, then to 24.8% ACN over next 70 min and to 35.2% ACN over next 30 

min, followed by a 5 min washout with 76% ACN. The MS was run using a data dependent 

acquisition method. Full scans were acquired at a 120,000 resolution, m/z ranging from 300.0 

to 1600.0, a maximum fill time of 50 ms and an AGC target value of 3e6 ions. Each dd-MS2 

scan was recorded at the resolution of 15,000 with an AGC target of 1e5, maximum injection 

time 100 ms, isolation window 1.2 m/z, normalized collision energy 27 and the dynamic 

exclusion of 30 sec. Raw proteomics files were analyzed using MaxQuant software with 

Andromeda an integrated peptide search engine with a fallowing setting: maximum of two 

missed cleavages were allowed and threshold for peptide validation was set to 0.01 using a 

decoy database, methionine oxidation and N-terminal acetylation was considered as variable 

modification while cysteine carbamidomethylation as a fixed modification. The minimum 

length of peptide was set to at least seven amino acids. Moreover, following options were 

selected: “label-free quantification” and “match between runs”. Peptides were identified for 

Arabidopsis data sets using: A. thaliana Uniprot protein sequences (UP000006548) or 

Arabidopsis TAIR database (Version 10, The Arabidopsis Information Resource,  

www.Arabidopsis.org)  and Saccharomyces cerevisiae protein database, Uniprot 

(UP000002311). 
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Feature Engineering for Machine Learning 

Further analysis aimed to determine whether two profiles, one from a protein and the other from 

a metabolite, show a co-elution behaviour. The relation between molecules (interaction or no 

interaction) was predicted by testing every protein against every metabolite on co-elution. 

Profile Normalization 

Comparability of profiles with MS intensity from different molecules was achieved by 

normalization of every profile to its maximum intensity. Normalization to the maximum 

intensity was chosen over normalization to the sum of the profile to address the challenge 

resulting from protein-protein interactions. More specifically, it is not only that metabolite-

protein complexes elute through the SEC column, but it also contains protein-protein-

complexes. If a protein multimerizes or assembles with other proteins, and therefore shows 

several peaks in the elution profile, normalization to the sum of the profile would decrease 

normalized peak intensities compared to monomeric proteins. With normalization to the 

maximum of each profile the peak intensity becomes independent of the total number of peaks 

per profile 

Profile Pooling 

For all the experiments with the different cell lysates replicates were made to provide 

reproducibility and the profiles of every molecule were combined over replicates using a 

pooling method (one of mean, median, minimum, or maximum). The pooling method of choice 

was selected a posteriori based on the by the performance of the classifier.  

Data Analysis Experiments 

To increase the robustness of made predictions we concatenated profiles of each molecule from 

different datasets. We designed two data analysis experiments with the datasets from different 

experiments. One experiment was performed on metabolite-protein pairs in the three datasets 

from A. thaliana, the second on all four datasets from S. cerevisiae.  

Combination of Protein and Metabolite Profiles 

For the application of machine learning approaches the profiles of every metabolite-protein pair 

were combined. Theoretical considerations led to the use of the cross-correlation profile of two 

molecules.  

Cross-correlation is a measure of similarity, which gives a function of the displacement of one 

series relative by another (Bracewell 1986). For finite, discrete series 𝑝 and 𝑚  describing the 

elution profiles of proteins and metabolites, respectively, the cross-correlation function (𝑝 ⋆ 𝑚), 

giving the displacement of the protein profile by the metabolite profile is defined as following 

(C. Wang 2019): 

(𝑝 ⋆ 𝑚)[𝑖] = ∑ 𝑝[𝑗]𝑚[(𝑖 + 𝑗)𝑚𝑜𝑑 𝑛]

𝑛−1

𝑗=1

 

where 𝑚𝑜𝑑 defines the modular arithmetic operation and [𝑥] accesses the 𝑥𝑡ℎ element of the 

series, in our case the normalized MS-intensity of an elution profile. 

With no displacement, two profiles from co-eluting molecules should show highest similarity 

(overlapping elution peaks), whereas further displacement should reduce similarity. Molecules 

that do not co-elute, show overlap of their elution peaks only after profile displacement and 
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exhibit low or no similarity without displacement (Figure 2). We assume that larger 

displacements do not hold information about interactions, since more distant peaks may induce 

false interpretations due to interactions with other molecules and therefore tested different 

maximum displacements, further referred to as binsizes (4,10, and total profile length). The 

resulting cross-correlation profiles were concatenated over the included experimental datasets 

per data analysis experiment.  

The shape of the cross-correlation profile denoting an interaction between two molecules is 

expected to have one peak at zero displacement per dataset. However, we cannot estimate the 

mathematical parameters describing the peaks, so we used machine learning classifiers which 

are able to mimic the shape and assign values to the unknown parameters. 

The cross-correlation profiles served as feature vectors for these different machine learning 

classifiers. Every element of the vector describing the cross-correlation profile corresponds to 

the sum of fraction-wise products of displaced protein and metabolite elution profiles. The 

cross-correlation profiles cut off at the different bin sizes were used as engineered features for 

the classifiers and the best performing classifier was selected. 

Prediction of Interactions Using Machine Learning 

The different classifiers learned with the engineered feature vectors from given metabolite-

protein pairs present in the gold standard with their respective relation (presence or absence of 

interaction) to identify patterns of feature vectors for interactions and non-interactions. A 

classifier trained with the gold standard is able to make predictions about interactions on 

metabolite-protein pairs with unkown relations.  

Based on the amount of available training data (Supplemental Table S3), we compared different 

support vector machines (SVM) and random forest classifiers. These binary classifiers were 

trained with cross-correlation profiles of metabolite-protein pairs with known relation extracted 

from databases and estimated a decision function to predict the presence or absence of 

interactions by categorizing metabolite-protein pairs into "interacting" or "not-interacting" per 

our experimental data in combination with published evidence. 

Support Vector Machines 

A support vector machine constructs a multidimensional space with as many dimensions as 

given features, in our case elements in the cross-correlation profile. Every cross-correlation 

profile is represented in this space as a point with its profile elements as coordinates and the 

SVM finds a separating hyperplane with maximized margin between the agglomerations of 

these points from interacting and not interacting profiles. The hyperplane assigns weights to 

every feature. Features describing no or low displacement between a metabolite and protein 

profile obtained positive weights, features describing medium displacements were 

characterized by negative weights. The decision function describing the hyperplane is 

calculated by choosing a function that minimizes the training error on the gold standard. 

Regularization in the SVM chooses a function that additionally minimizes the norm of the 

function to reduce the sum over all feature weights and avoid overfitting on the training data 

(Bishop 2006). A higher value of the regularization parameter C makes the classifier more 

sensitive to outliers and therefore prone to over-fitting, whereas a lower value forces the 

classifier to be more generic and prone to under-fitting. We also tested the effect of various 

kernel functions that extend the multidimensional space by an additional dimension described 
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via a similarity function. To this end, we used Gaussian radial basis function, sigmoid kernel 

and polynomial with maximum degree d=8 such that the kernel function has as many peaks as 

datasets are aligned to match the shape of the estimated cross-correlation profile (Figure 2A). 

A SVM is well applicable to our cause with little training data and high-dimensional feature 

space (Pedregosa 2011). 

Random Forests 

Another classifier we used is the random forest classifier, which builds many decision trees that 

each decide on selected features from the cross-correlation profile over presence or absence of 

interactions (Breiman 2001). The overall categorization of the metabolite-protein relation is 

done by a majority vote over all decision trees. Random forest classifiers provide weights to 

the features used and are therefore theoretically suitable to make predictions from our data. 

Creation of the Gold Standard 

The machine learning classifiers need to be trained based on features for the instances in the 

gold standard to predict presence or absence of MPIs. The classifiers trained with the cross-

correlation profiles assigned labels which state whether the two molecules do or do not interact. 

To obtain balanced classifiers that show no bias towards any tendency of relation (interaction 

or no interaction), the training set is assembled of a negative and a positive set of equal size, 

containing not interacting and interacting metabolite-protein pairs, respectively. 

Positive Set 

The positive set was extracted from the STITCH database (D. S. Szklarczyk 2016) and 

PubChem Bioassays (Y. S. Wang 2013). The database assigns scores between 0 and 1000 to 

interactions between proteins and small molecules which state the confidence of the interaction. 

For the construction of the positive set only interactions with a score of 800 (80 % confidence) 

or above were included. Additionally, PubChem Bioassays was used for the acquisition of the 

positive set to access binding assay data for orthologous proteins in Homo sapiens, 

Escherichia coli and Saccharomyces cerevisiae and interacting metabolites. Since these 

databases consist of mostly experimental in vitro data, which may differ from in vivo- like 

conditions, we manually selected profiles which respect the assumption of co-elution between 

molecules to create a gold standard. 

Negative Set 

The negative set, describing absence of interactions is as important as the positive set for 

balanced training data. Negative results are often neglected in research and their value is 

underestimated, although they are highly valuable for supervised machine learning. However, 

it is still difficult to find research publishing absence of interactions. The PubChem Bioassays 

database keeps track of binding assays asserting absence of interactions, and not interacting 

metabolite-protein pairs were extracted via orthologous proteins in Homo sapiens, 

Escherichia coli and Saccharomyces cerevisiae.  

 

For the search in PubChem Bioassays proteins were annotated to orthologous groups using the 

STRING database. This database uses hierarchical orthology imported from the eggNOG 

database (Huerta-Cepas 2016) to collect similar proteins between and within species (D. M. 

Szklarczyk 2016). An orthologous group was assumed to interact with a metabolite only, if all 
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proteins with interaction records in the database of that orthologous group were interacting with 

the metabolite. 

 

Quantification and Statistical Analysis 

Data sets employed in prediction of metabolite-protein interactions 

The provided datasets (Supplemental Datasets S1-S2) only include all intersecting proteins and 

metabolites. 

Design of machine learning classifiers of metabolite-protein interactions 

The mean values and standard deviation for different performance measures (precision, recall, 

F1-score, accuracy, sensitivity, specificity) on all used classifiers are collected in the 

Supplemental Table SourceDataForFig3AF.  

Representative value of the gold standard of metabolite-protein interactions 

Learning and ROC curves were calculated for using 10-fold cross-validation, for classifiers 

trained on randomly selected profiles on 1000 repetitions. The obtained mean and standard 

deviation values for the SLIMP classifier can be found in Supplemental Table 

SourceDataForFig4. For the calculation of learning curves 80% of the gold standard were used 

for training, whereas the remaining 20% were reserved for the test set.  

Properties of the network of predicted metabolite-protein interactions 

Detailed values for the agreement between predictions of the SLIMP classifier and classifiers 

based on randomized training data as well as accuracies are summarized in the Supplemental 

Table SourceDataForFig4. The code for the generation of randomized networks is provided 

(Data Availability). 

Validation and enrichment analysis of predicted metabolite-protein interactions 

The network of interactions between metabolite and protein classes was constructed for 

metabolites with annotated KEGG metabolite classes and proteins with annotated EC numbers 

(Figure 5A). Proteins without annotated EC numbers were classified as ‘Other Proteins’. In the 

network the size of every node represents the number of interactions the given class is involved 

and the colour the number of annotated molecules in the class. The width of the triangular edges 

represents how many interactions of a given class are present towards another class. If 

significantly more interactions from one class to another were found, the centre of the edge was 

marked black. The significance was determined using Fisher’s exact test with Bonferroni 

correction for multiple testing on a significance level of 0.05.  

We assigned BRITE classes and KEGG pathways to metabolites and proteins to construct 

heatmaps of interaction tendencies among classes and pathways (Figure 5B,C). (Macro-) 

molecules without annotated class/pathway were excluded from the analysis. Interactions 

between classes that are found significantly enriched are marked with a star. To calculate the 

significance we used Fisher’s exact test with Bonferroni correction for multiple testing on a 

significance level of 0.05. The number of interactions and non-interactions among classes and 

pathways used for the generation of heatmaps are summarized in Supplemental Table 

SourceDataForFig5. 
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Figure Legends 

 

Figure 1: Descriptive analysis of the data sets employed in SLIMP. 

(A) Experimental reproducibility. Heatmaps describe the RV-coefficients of proteomic (red) and metabolomic 

(blue) profiles over the replicates of each experiment. (B) Protein and metabolite class distributions. Histograms 

present the number of proteins per assigned EC number (left) (Webb 1992) and metabolites per KEGG BRITE 

metabolite class (right) (Aoki-Kinoshita 2007) in the performed  experiments on A. thaliana (green), S. cerevisiae 

(orange) and the corresponding training sets (blue). 

 

Figure 2: Feature engineering used in SLIMP. 

(A) Feature engineering for interacting molecules. Example of the feature engineering by calculating the full cross-

correlation profile (red) from two given elution profiles of the co-eluting, interacting molecules malate 

dehydrogenase (green) and biotin (blue) (D. S. Szklarczyk 2016). (B) Feature engineering for not interacting 

molecules. Example of feature engineering for two not co-eluting, not interacting molecules Glyceraldehyde-3-

phosphate dehydrogenase (green) and uridine (blue) with their resulting cross-correlation profile (red) (PubChem 

BioAssay AID: 2472).  (C) Performance of the classifier on different bin sizes. Histograms show the values of 

various performance measures for the different bin sizes of the cross-correlation profiles. The selected bin size of 

4 is marked in red. Means and standard deviations of the performance measures are calculated with 10-fold cross 

validation with 100 repetitions each. (D) Intersections of predicted interactions. Venn diagram showing the 

intersections of predicted interactions for different bin sizes on the full cross-correlation profile. All data from the 

performance on the S. cerevisiae experiment, profile pooling method "min", linear support vector machine with 

regularization parameter C=0.1. 

 

Figure 3: Effects of data- and algorithm-related factors on the performance of SLIMP. 

(A) Performance of different profile pooling methods. Histograms showing means and standard deviation of F1 

scores for the performance with different profile pooling methods to combine repetitions of experiments (columns) 

for various classifiers (C=regularization parameter, d=degree of the polynomial kernel). (B) Venn diagram 

showing the intersections of interactions for different methods. (C) Intersection of interactions from classifiers 

trained on normalized vs. not normalized cross-correlation profiles to the maximum peak. (D) Comparison of the 

intersecting interactions for different classifiers. (E) Intersection of interactions for different regularization 

parameters C for the linear SVM. (F) Performance of the finally selected classifier. Radar chart displaying the 

value from 10-fold cross-validation of different performance measures for the selected classifier, SVM with linear 

kernel, regularization parameter C=0.1, pooling method minimum. Finally selected classifier is marked red. 

Abbreviations: lin.=linear, poly.=polynomial, Gauss.=Gaussian, norm.=normalized, SVM=support vector 

machine. 

 

 

Figure 4: Comparison of predictions from classifiers trained on randomised data. 

 (A) Learning curves for the classifier trained on the gold standard (red), a classifier trained with randomized labels 

on the training set (purple) and a classifier with randomly selected protein and metabolite profiles with random 

labels from the experiments (green, n=1000). Black lines represent mean accuracy on the training set and coloured 

lines on the test set, filled area shows the standard deviation from 10-fold cross-validation. (B) ROC curves for 

classifiers trained on the gold standard (red), the gold standard with randomized labels (purple) and randomly 

drawn profiles from the experiments (green, n=1000). Black dotted lines represent the diagonal. (C) Degree 

distributions (metabolites blue, proteins red for training on the gold standard, purple for training on the gold 

standard with randomized labels or green for training on randomly drawn profiles). (D) Boxplots display the 

agreement (Cohen's kappa) of the predicted network (pn), network from randomly labelled gold standard (rts), and 

randomly drawn profiles (rp), n=1000.  

 

Figure 5: Enrichment analysis of the metabolite-protein interactions predicted from SLIMP. 

(A) Bipartite network of MPIs between EC-classes and KEGG metabolite classes. The size of a node describes 

the fraction of all determined interactions, the colour describes the number of molecules in the given class and the 

triangular directed edges how many of the interactions from the given source class are with the target class. Black 
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edges symbolize significantly larger tendency of interactions from source to target class than expected by chance, 

α=0.05. (B) Heatmap for number of interactions between proteins of different BRITE classes (rows) and KEGG 

metabolite classes (columns). (C) Heatmap for number of interactions from proteins (rows) to metabolites 

(columns) between different pathways, m.=metabolism, b.=biosynthesis. Asterisks mark significantly more 

interactions than expected by chance, α=0.05, p-values corrected for multiple testing using Bonferroni-correction. 

Figure 6: Novel interactions between 2’, 3’-cNMP, dipeptides and proteins revealed by SLIMP.  

(A) 31 high-confidence 2’, 3’-cGMP targets delineated by SLIMP. RRM, RNA binding motif; cSG, cytsolic stress 

granule, pSG, plastidial stress granule. (B, C) Sub-network depicting interactions between dipeptides and enzymes 

from the central carbon metabolism in (B) Arabidopsis and (C) yeast. (D) Schematic representation of the main 

pathways in the central carbon metabolism (glycolysis, gluconeogenesis, TCA cycle and pentose phosphate 

pathway). Enzymes found among dipeptides’ high confidence protein interactors in either Arabidopsis or yeast are 

highlighted. (E, F) Comparison of targets delineated by SLIMP, affinity purification (AP) and thermal proteome 

profiling (TPP) for (E) Tyr-Asp in arabidopsis (all interactions predicted by SLIMP) and (F) Ser-Leu in yeast 

(SLIMP prediction probability for interaction > 80 %).  (A-C) were constructed using Cytoscape, (D) was prepared 

using Biorender.com.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5.  
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Figure 6.  
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