
1 
 

A personalized network framework reveals predictive axis of anti-TNF 1 

response across diseases 2 

Shiran Gerassy-Vainberg1,2, Elina Starosvetsky#1, Renaud Gaujoux#1,4, Alexandra Blatt*2, Naama 3 

Maimon1,2, Yuri Gorelik2, Sigal Pressman2, Ayelet Alpert1, Haggai Bar-Yoseph1,2, Tania Dubovik1, Benny 4 

Perets1, Adir Katz4, Neta Milman1, Yehuda Chowers*1,2, 3, Shai S. Shen-Orr*1  5 

on behalf of the Israeli IBD research Network (IIRN) 6 

 #, * Contributed equally to the study 7 

 8 

Author affiliations   9 

1. Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel 10 

2. Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel 11 

3. Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel 12 

4. CytoReason, Tel Aviv 67012, Israel 13 

 14 

Corresponding author contact information: 15 

Shai Shen-Orr, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel; 16 

shenorr@technion.ac.il and Yehuda Chowers, Department of Gastroenterology, Rambam Health Care 17 

Campus, Haifa, Israel; y_chowers@rambam.health.gov.il. 18 

 19 

  20 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.16.448558doi: bioRxiv preprint 

mailto:shenorr@technion.ac.il
mailto:y_chowers@rambam.health.gov.il
https://doi.org/10.1101/2021.06.16.448558


2 
 

Abstract 21 

Personalized treatment of complex diseases is an unmet medical need pushing towards drug biomarker 22 

identification of one drug-disease combination at a time. Here, we used a novel computational approach 23 

for modeling cell-centered individual-level network dynamics from high-dimensional blood data to predict 24 

infliximab response and uncover individual variation of non-response. We identified and validated that 25 

the RAC1-PAK1 axis is predictive of infliximab response in inflammatory bowel disease. Intermediate 26 

monocytes, which closely correlated with inflammation state, play a key role in the RAC1-PAK1 responses, 27 

supporting their modulation as a therapeutic target. This axis also predicts response in Rheumatoid 28 

arthritis, validated in three public cohorts. Our findings support pan-disease drug response diagnostics 29 

from blood, implicating common mechanisms of drug response or failure across diseases. 30 

Keywords 31 

Precision medicine, Individual-level network analysis, Drug response, Anti-TNF antibodies, Infliximab, 32 

Immune-mediated diseases, Inflammatory bowel disease, Rheumatoid arthritis, Pan-disease drug 33 

response diagnostics. 34 

Introduction  35 

Biologic therapies are widely used in a broad range of therapeutic areas including immune-mediated 36 

diseases, oncology and hematology and have demonstrated effectiveness by improving disease clinical 37 

course, morbidity and patient quality of life. However, a sizable fraction of patients does not respond to 38 

therapy and is exposed to the consequences of uncontrolled disease activity, unwanted side effects and 39 

increasing care costs. Therefore, the development of biomarkers for response prediction is an unmet 40 

medical need, necessary for achieving a favorable therapeutic index, cost/benefit ratio and overall 41 

improved patient care. Although biologics’ targets are highly specific (e.g. PD1, TNFα) and target particular 42 

molecular processes across diseases (e.g. CD8 T-cell exhaustion,  or TNF induced inflammation), presence 43 

of these processes in an individual patient is necessary but not sufficient to predict response, implying a 44 

more complex therapeutic mechanism which may be disease specific1,2.    45 

One of the most frequently used biologic drug classes are anti-TNFα antibodies, with sales of over $US 25 46 

billion per year3.  Anti-TNF agents are thought to exert their effects through several mechanisms, including 47 

TNFα neutralization, induction of cell and complement cytotoxicity through the FC drug fragment  and 48 

cytokine suppression via reverse signaling or apoptosis4. Similar to other drugs and across target diseases 49 

including inflammatory bowel disease (IBD) and rheumatoid arthritis (RA), a sizable proportion of 20-40% 50 

of the treated patients, will primarily not-respond to treatment5,6.   51 

Previous studies used systematic screening of in-house and meta-analysis data for the identification of 52 

biomarkers associated with anti-TNFα treatment failure. Different markers were identified in different 53 

disease contexts7. Among these, in IBD, Oncostatin M (OSM) was identified as a potent mucosal 54 

biomarker8. This gene correlated closely with Triggering Receptor Expressed On Myeloid Cells 1 (TREM1), 55 

a biomarker found by us, which was predictive of response in biopsy and importantly also in blood, albeit 56 

in an inverted ratio9. In RA, myeloid related sICAM1 and CXCL13, and type I IFN activity were associated 57 

with anti-TNF response10. The identification of these markers suggests that biomarkers of pretreatment 58 

immune status may be useful for patient screening. However, little is known regarding molecular 59 

dynamics of anti-TNF response and resistance, and whether drug biomarkers are disease dependent, or 60 

represent a patient-specific property which can be generalized across diseases. 61 
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The availability of high-resolution molecular data provides opportunities for achieving improved modeling 62 

of the complex therapeutic landscape using systems biology and network-based approaches. Yet, most of 63 

the statistical methods used are based on population averages, which do not suffice to fully investigate 64 

these complex diseases. Although several personalized approaches were recently suggested for exploring 65 

sample-level network information11,12, these studies were not cell-centered, and did not decouple cell 66 

frequency and cell regulatory program changes. Network structure was used to identify individual 67 

alterations in cross-feature relationships between groups, however, these were validated only in the 68 

unicellular level. The same is true for the identification of individual-level time series analysis.  69 

Here we employed a longitudinal cell-centered systems analysis, combining high-dimensional data of 70 

whole blood from anti-TNF responding and non-responding IBD patients at baseline and following two 71 

and fourteen weeks post first treatment. We focused on immune responses in blood, because although 72 

presenting an analytical challenge due to high background noise, blood-biomarkers have a clear 73 

advantage of accessibility and cost-effectiveness for therapeutic purposes. To understand individual 74 

variation in drug resistance, we devised a single sample-based network approach, termed ‘Disruption 75 

Networks’, which provides patient specific hypotheses for lack of response with respect to a global 76 

response network. Using this approach, we demonstrate that monocytic RAC1-PAK1 axis expression, 77 

which is a final common pathway of multiple immune-receptor signaling cascades, is predictive of anti-78 

TNF response in IBD as well as for the same treatment in RA, providing validation for the signature’s 79 

predictivity and supporting common baseline elements that contribute to response across infliximab (IFX) 80 

treated immune mediated diseases. 81 

 82 

Results 83 

Treatment response is associated with forward movement along an immune health axis, whereas non-84 

responders regress. 85 

To understand the cellular and molecular changes associated with IFX response and non-response, we 86 

performed longitudinal deep immunophenotyping of peripheral blood in Crohn's disease (CD) patients 87 

who received first-time therapy with IFX during standard clinical care (Fig. 1a, left, hereon IFX cohort). 88 

Patients were profiled a total of three times: pre-treatment (day 0), week 2 (W2) and week 14 (W14) post-89 

treatment initiation. At W14, 15 patients showed clinical response whereas 9 were classified as non-90 

responders at the study end (Supp. Table 1 for clinical demographics; see Methods for response 91 

classification).  92 

Complementary to this, to define an individual-specific unbiased expectation of peripheral blood immune 93 

dynamics during disease course, we used a public gene expression dataset of whole blood samples from 94 

healthy individuals and 75 IBD patients in varying disease states treated with standard of care drugs (Fig. 95 

1a; see Methods). We constructed an external data-driven reference IBD axis (Fig. 1b, left), which 96 

describes in a dimensionality reduced Principal Component Analysis (PCA) space the molecular transition 97 

from active- through inactive disease to healthy- state, based on differentially expressed genes (hereon 98 

‘Health axis’, see Methods). Next, we projected the position of our in-house IFX cohort on the PCA (Fig. 99 

1b, right) and calculated the distance each patient traversed on the axis along the course of time, 100 

providing continuous molecular information to characterize a patient’s immune state shift (Fig. 1c). 101 

Analyzing the distance between paired sample time-points, we observed that responders progressed on 102 

the health axis (i.e., a positive shift on the axis towards the centroid of healthy reference samples), while 103 

non-responders regressed on it (Figure 1c, P<0.05, one-sided permutation test). Breaking up these 104 
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dynamics by time point, we observed that responders exhibited increased progress along the health axis 105 

following first drug treatment, and reduced progress in the following period (Figure 1c). The negative 106 

correlation between progress along the axis between baseline-W2 and progress in the following segment 107 

W2-W14 suggests that patients progressing to ‘response’ early, slow down during the following visit 108 

whereas those showing a slow progress initially, progress more thereafter (Fig. 1d). Importantly our 109 

results suggest that clinical non-responders are immunologically affected by treatment as well, with an 110 

overall opposite direction from responders’ progress. Collectively, our health axis, captures blood 111 

molecular changes which are clinically relevant for treatment response.  112 

Early IFX response reduces expression of innate immune pathways attributed mainly to monocytes 113 
function. 114 
To identify changes following treatment in each response group, we characterized major immune cell 115 

compositional changes in 16 canonical immune populations (Fig. 2, Supp. Table 2-3 for CyTOF panel and 116 

Citrus clusters annotation). Then, to compare how peripheral blood state differs as a function of treatment 117 

response, we computed a PCA on the fold change of patients’ cell phenotyping profiles (Fig. 2a, left). We 118 

observed significant difference in cell abundance changes between responders and non-responders for 119 

W2 and W14 changes relative to baseline (P=0.005, NPMANOVA).   120 

Multiple cell subset changes in responders were already apparent at W2 including reduced abundance of 121 

monocytes, granulocytes, Tregs, naïve CD4+ T cells, CD4+ central memory T cells and increased abundance 122 

of CD4+ and CD8+ effector memory T cells and B cells (FDR≤0.15, Paired Wilcoxon test; Supp. Fig. 1a). 123 

Based on the PCA loadings we deduced that monocytes and Tregs were the prime drivers of changes 124 

following treatment (Supp. Fig. 1b), evidence for which was also supported by the univariate comparison 125 

showing that monocytes were significantly reduced in responders throughout both W2 and W14, whereas 126 

in non-responders monocyte frequency was unchanged in W2 and elevated at W14  (P=0.0015 and 127 

P=0.048 in responders, as opposed to P= 0.64 and P=0.016 in non-responders at W2 and W14 respectively, 128 

Paired Wilcoxon test). Moreover, monocyte frequency was also correlated with changes in CRP 129 

(Spearman’s r = 0.4, P=0.01), suggesting their relevance to treatment response (Fig. 2a center, right and 130 

Supp. Fig. 1c for correlation of CRP with other cell-types). Taken together, our results demonstrate 131 

significant differential cell composition following IFX treatment as a function of response, with monocytes 132 

likely playing a major role.  133 

Given the observed cell composition alterations, we performed a cell-centered analysis to identify 134 

changes in transcriptional programs following treatment in each response group, by adjusting the gene 135 

expression for variation in major cell-type proportions. This procedure places focus on detection of 136 

differences between conditions of the gene regulatory programs the cells are undergoing rather than 137 

those differences detected due to cell compositional differences, and has been shown to unmask 138 

additional signal (i.e. false-negative of direct bulk analysis) while decreasing false-positives (Fig. 2b, see 139 

Methods)9. In this analysis, we identified 1400 (5.99%) and 589 (2.52%) differential features in responders 140 

(FDR<0.15, permutation test; Supp. Tables 7) at W2 and W14 compared to baseline respectively, 141 

suggesting enhanced response at W2 followed by reduced dynamics in W14. Compared to responders, 142 

non-responders showed attenuated dynamics in the parallel treatment periods, with only 542 (2.32%, 143 

Supp. Table 7) differential features at W2 compared to baseline, and no significantly detected dynamics 144 

at W14. To ensure the differences in dynamics between the two response groups were not due to sample 145 

size, we subsampled responders to match the non-responder group size and observed that responding 146 

patients exhibit more dynamic changes compared to non-responders (Supp. Fig. 2). Furthermore, 147 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.16.448558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448558


5 
 

comparing the two response groups, we observed only a minor overlap in the post treatment dynamic 148 

features (23 features, 1.2% at W2). In line with the ‘health axis’, these results suggest that there are 149 

increased early dynamics in responders compared to non-responders and that responders and non-150 

responders presented different alterations following treatment.  151 

To understand the relationship during IFX response between gene regulatory programs in a biological 152 

context, we constructed a cell-centered co-expression network, which was expanded by known 153 

interacting genes, followed by functional enrichment analysis (see Methods, Supp. Tables 8 for network 154 

edges and Supp. Fig. 3b for functional enriched pathways respectively). Interestingly, despite this being a 155 

blood-based network, we noted genes which were previously associated with anti-TNF response in IBD 156 

biopsies such as TREM1 and OSM8,9, suggesting that relevant signals originally detected in tissue, are also 157 

reflected in blood. We identified potential mediating pathways, i.e. pathways possessing higher 158 

connectivity to other nodes in the response network, using degree and betweenness centrality 159 

measurements (Fig. 2c).  160 

We observed that most central pathways associated with the W2 early response were related to the 161 

innate immune system (Supp. Fig. 3b). At the pathway level, consistent with the ‘health axis’ and feature 162 

level analysis, we found augmented response at W2, which was attenuated in the following period (151 163 

vs. 88 enriched dynamic pathways in responders at W2 and W14 respectively; Supp. Fig. 3a-b). As 164 

expected, among the innate related altered functions, we observed pathways related to downregulation 165 

of NF-kB and TNF signaling via NF-kB (Fig. 2c, FDR<0.005 for W2 vs. baseline pathway score comparison, 166 

by Wilcoxon test; FDR<0.01 for enrichment in network by GSEA). Pathways with high network centrality 167 

included downregulation of FC receptor signaling and phagocytosis, cytoskeleton organization, Toll-like 168 

receptors (TLRs) and vascular endothelial growth factor (VEGF) signaling responses (Fig. 2c; top 25th 169 

percentile for both degree and betweenness; FDR<0.005 for W2 vs. baseline, by Wilcoxon test; FDR<0.1 170 

for enrichment by GSEA). These pathways also correlated with CRP measured in the clinical setting 171 

(Spearman’s r FDR<0.05 and Supp. Fig. 3d). Of note, FCƳR is known to be regulated by TNFα13 and 172 

mediates a number of responses, including the phagocytosis of IgG-coated particles, accompanied by 173 

cytoskeleton rearrangements and  phagosome formation, central pathways that were downregulated in 174 

responders (Fig. 2c and Supp. Fig. 3b, FDR<0.001 for W2 vs. baseline, by Wilcoxon test; FDR<0.15 for 175 

enrichment by GSEA). We also observed the downregulation of reactive oxygen species (ROS) pathway, 176 

which is crucial for the digestion of engulfed materials in phagosomes (FDR<0.001 for W2 vs. baseline, by 177 

Wilcoxon test; FDR<0.05 for enrichment by GSEA). This pathway was also correlated with CRP (Spearman’s 178 

r 0.43, FDR<0.005, Supp. Fig. 2b and Supp. Fig. 2d). To identify the most likely cell expressing these 179 

pathways, we regressed the unadjusted fold change gene expression on major blood immune cell 180 

abundance changes (see Methods). We observed that monocytes and granulocytes were the major 181 

contributors associated with the dynamic pathways (Supp. Fig. 3c). This further supports the considerable 182 

contribution of monocytes to treatment response, on top of their significant frequency alteration and 183 

their frequency correlation with CRP. 184 

‘Disruption Networks’ as a framework to understand individual variation in non-responders’ dynamics.  185 
Whether non-responders' transcriptional profile reflects fundamental routes of IFX resistance, is essential 186 

for tailoring treatment. To elucidate molecular mechanisms of individual-specific pathways of treatment 187 

non-response, we devised a systematic framework we term ‘Disruption Networks’. The underlying 188 

principle of this method is the study of relations between features across a population of individuals (i.e., 189 

a population level reference network), and then infer of how these relations differ (i.e., are disrupted) at 190 

the single sample level; providing understanding of how each individual’s molecular network behaves in 191 

a specific condition. 192 
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To identify how non-responding individuals differ with respect to the IFX response dynamics, we 193 

iteratively added a single non-responding patient to the response reference network we had studied and 194 

calculated the disruption in the correlation structure in each edge for that patient (hereon ‘dropout’). This 195 

procedure was performed separately for each non-responder. We considered only negative dropouts, 196 

that is, events in which the relation (i.e., correlation) between two features was weakened once the non-197 

responder data was spiked into the responders’ group, indicating deviance from treatment response (Fig. 198 

3a right, for an example). To evaluate non-responders’ dropout significance, we generated empirical null 199 

distribution of dropouts (‘normal response’ dropouts) by iterative addition of each responder’s sample to 200 

the other responders’ samples. We calculated P-values as a left-tail percentile, within the null distribution 201 

of the normal dropouts, which were further corrected for multiple testing (Fig. 3a; see Methods). By 202 

applying the ‘Disruption Networks’ framework, we considerably expanded the detected differential signal 203 

between response groups as compared to standard differential analysis (one feature by Wilcoxon test 204 

(FDR<0.1) vs. 180 features by mean drop intensity, including the single feature identified by Wilcoxon test 205 

(FDR<0.1 for dropout significance and 10th top percentile of mean drop intensity);  Fig. 3b and Supp. Fig. 206 

4a-b for mean drop intensity, disrupted edge ratio parameters and the agreement of both respectively). 207 

To understand disruption in the functional context, we aggregated the dropouts to calculate a pathway-208 

level personalized disruption (Fig. 3c; see Methods). We found that the major disrupted dynamics at W2 209 

was related to the cytoskeleton/fiber organization and VEGFR signaling which were central functions 210 

during normal treatment dynamics. Interestingly, nodes related to these disrupted pathways exhibited 211 

high centrality (P<9.999e-05 and P=0.034 for degree and betweenness correspondingly by permutation 212 

test; Fig. 3d). On the meta-pathway level, monocytes were the most central cell-type associated with the 213 

disrupted pathways (Fig. 3e, left, top 5th percentile for degree and betweenness centrality). The disrupted 214 

meta-pathway included the core genes consisting of the HCK-RAC1-PAK1 signaling cascade, which 215 

presented high combined degree and betweenness centrality (P=0.017, n=1000 random triple node 216 

subsampling). This core perturbed axis is a final common pathway involving signaling through several 217 

proximal immune-receptors by a range of inflammatory ligands including chemokines, growth factors 218 

such as VEGFR, and FC receptor ligands which induce FC-mediated phagocytosis involving coordinated 219 

process of cytoskeleton rearrangement14. Indeed, these pathways were functionally enriched in the 220 

disrupted meta-pathway (q-value<0.05, hypergeometric test; Fig. 3e, right). The latter are also linked to 221 

ROS and NADPH oxidase activation through the regulation of RAC115.Of note, suppression of RAC1-PAK1 222 

signaling, predominately in innate immune cells was shown to mediate remission in CD16. Taken together, 223 

these observations showcase the power of ‘Disruption Networks’ to identify masked, individual level, 224 

signal and suggest that the RAC1-PAK1 signaling cascade, is significantly disrupted in non-responders, 225 

during treatment. 226 

RAC1-PAK1 signaling is elevated in responders’ peripheral monocytes pre-treatment. 227 

We next asked whether cellular programs found to be disrupted during treatment dynamics can be 228 

identified pre-treatment, since direct differential analysis in the feature expression space did not yield 229 

significant signal. Looking at the feature level, we found that most of the pre-treatment differentially 230 

expressed genes were increased in responders, including genes involved in the RAC1-PAK1 axis (FDR<0.1, 231 

Wilcoxon test, Supp. Fig. 5a). On the pathway level we observed that the fiber organization pathway, 232 

presented pre-treatment disparity between the two response groups (FDR<0.1, NPMANOVA) and 233 

correlated with clinical CRP (Spearman’s r =0.4, P=0.06), in addition to its high centrality in the response 234 

network (Fig. 4a, left). The relative pathway score of the cytoskeleton-organization pathway was higher 235 

in responders pre-treatment compared to non-responders (P<0.0006, one-tailed Wilcoxon test), and was 236 

downregulated following efficient treatment (P<0.001 and P<0.05 for W2 and W14 compared to baseline, 237 
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one-tailed Wilcoxon test). This was in contrast to non-responders which showed insignificant dynamics at 238 

W2 and even an opposite trend in W14 (P=0.52 and P=0.041 for W2 and W14 compared to baseline, one-239 

tailed Wilcoxon test) (Fig. 4b).  240 

The fiber organization pathway associated with treatment dynamics and response already at pre-241 

treatment state, represents distinctive differences in cellular transcriptional states between response 242 

groups, rather than differences reflecting cellular composition alterations, as our analyses accounted for 243 

cell proportions. Therefore, we next aimed to dissect the cellular origin of the fiber organization related 244 

core genes. First, we tested the correlation between the canonical cellular frequencies as obtained by 245 

CyTOF, and the bulk unadjusted expression of the fiber organization genes (Supp. Fig. 5b). We observed 246 

that the majority of the genes in the target pathway were positively associated with monocytes 247 

abundance. To further validate the cellular origin and the fiber organization related transcriptional cell 248 

state in the two response groups, we performed single-cell RNA sequencing (scRNA-seq) using peripheral 249 

blood mononuclear cells (PBMCs) from pre-treatment samples of representative responder and non-250 

responder patients (Fig. 4c, left; see Methods). Assessment of the fiber organization related expression in 251 

the cellular level, confirmed that monocytes were highly associated with the distinctive pathway 252 

expression (P<2.2e-16, for expression in monocytes compared to the other cell types, Wilcoxon test, Fig. 253 

4c, right and Supp. Fig. 6a).   254 

To understand the molecular events associated with the fiber organization pathway in the relevant cell 255 

and subset specific context, we expanded the fiber organization differential genes through intersection of 256 

knowledge- and data-driven based networks (see Methods). Then, we assessed the pathway related 257 

expression in monocyte subsets, which were previously shown to exhibit distinct phenotypes and 258 

functions in health, and immune-mediated disease states17. The results indicated that intermediate 259 

monocytes contributed most to the fiber organization distinctive expression between the response 260 

groups, pre-treatment (|FC|=2.13, P<2.2e-16 in intermediate monocytes vs. |FC|=1.3, P<2.2e-16 and 261 

|FC|=1.1, P<0.05 in classical and non-classical monocytes respectively by Wilcoxon test, Fig. 4d). 262 

Interestingly, we detected significantly increased membrane TNF (mTNF) on intermediate monocytes 263 

compared to the other subsets (P<5e-07, one-tailed Wilcoxon test, Fig. 4e), suggesting these cells serve 264 

as drug targets, thereby explaining their tight linkage to drug response. 265 

Pre-treatment RAC1-PAK1 axis is predictive for IFX response across immune mediated diseases. 266 

We next tested whether the pre-treatment fiber organization pathway could predict treatment response 267 

(see Methods). We observed that the pathway score of a set of 6 core genes (RAC1, PAK1, LYN, ICAM1, 268 

IL1B and FCGR3A) could discriminate responders from non-responders at a mean AUC of 0.90 (95CI 0.74, 269 

1; P=0.0001 by Permutation test), supporting a common mechanism of non-response to treatment (Fig. 270 

5a). By applying targeted network analysis of the predictive fiber organization pathway in intermediate 271 

monocytes, we found that the FCƳR signaling and functionally related pathways including phagocytosis 272 

and ROS metabolism were highly enriched in the co-expression network effectively differentiating 273 

between response groups at baseline (Supp. Fig. 7). 274 

To further validate our findings, we tested an additional independent validation cohort of 29 CD patients, 275 

which were naive to biological treatment and were treated with thiopurines or steroids only as a co-276 

therapy (Supp. Table 9 for clinical demographics). The results indicated that the pre-treatment RAC1-PAK1 277 

axis, was differentially expressed between response groups in the validation cohort (P<0.01, Wilcoxon 278 
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test) as well, supporting the primary findings and thereby demonstrating that reduced pre-treatment 279 

expression of the RAC1-PAK1 axis is associated with non-response (AUC=0.78; Fig. 5b).   280 

To assess whether the predictive RAC1-PAK1 axis is disease dependent or whether it could be generalized 281 

across diseases, we tested public datasets of blood samples from RA patients, pre-IFX treatment 282 

(GSE2069018, GSE3337719, GSE4229620). Gene expression was adjusted to major cell type contributions 283 

which was evaluated by deconvolution (see Methods). The results confirmed the increased pre-treatment 284 

expression of the axis genes in RA responders, (representative cohort GEO20690, Fig. 5c). Application of 285 

fiber organization predictive signature to multiple pre-treatment RA cohorts separated IFX response 286 

groups effectively (Meta ROC AUC=0.72, Fig. 5d). These findings expand the predictive value of the RAC1-287 

PAK1 axis to other IFX-treated related diseases such as RA. Taken together, these observations 288 

demonstrate that the baseline RAC1-PAK1 axis expression in monocytes differentiates response groups 289 

and ultimately impacts response potential across diseases.  290 

Discussion  291 

Despite substantial inter-individual heterogeneity and our growing ability to measure it, commonly used 292 

statistical frameworks for analyzing high-dimensional data describe changes happening on average 293 

between conditions or groups. This is especially true in the case of networks which form a natural way of 294 

describing the possible interactions occurring between measured biological species, yet are population-295 

based, and thus limited in their ability to monitor individual variation from those interactions and the 296 

ensuing emergent phenomena these interactions yield. Here we studied the dynamics of IFX response in 297 

IBD, in a small cohort, over time. To address this challenge, we devised the ‘Disruption Networks’ 298 

approach, a cell-centered personalized statistical framework which unmasks differences between 299 

individuals. The approach enables a systematic dissection of IFX effect response dynamics from blood, 300 

considering both cellular composition changes and changes in cellular regulatory programs, allowing us 301 

to identify robust functional pathways deviating from normal response in non-responders, and robustly 302 

associate these with drug resistance in both IBD and RA. 303 

Although TNF is a pleiotropic cytokine, functioning in both the innate and adaptive immune system21, we 304 

found that the early response alterations following IFX treatment were mostly related to innate pathways 305 

of which monocytes were the major driver. Evidence supporting this has been previously implicated by 306 

the decreased frequency of monocytes during treatment in anti-TNF treated IBD22 and RA23 patients. 307 

Furthermore, the anti-proliferative and cell-activation suppressive effect of IFX was shown to depend on 308 

FC-expressing monocytes in a mixed lymphocyte reaction24. In addition, the regained long term response 309 

following granulocyte/monocyte adsorption treatment following loss of response during IFX treatment 310 

further corroborates our findings25. Taken together, these results support the potential for subset specific 311 

targeted therapy to augment IFX treatment.  312 

By applying the ‘Disruption Networks’ framework, we identified RAC1-PAK1 signaling, as a central 313 

pathway associated with IFX response. This pathway exhibited disrupted dynamics in non-responders and 314 

was predictive of treatment response at baseline.  Although abnormal RAC1 signaling was linked to 315 

immune-mediated diseases pathogenesis26, its direct relation to anti-TNF response has not been 316 

demonstrated. The RAC1-PAK1 axis is a final common pathway shared by several proximal immune 317 

receptors, controlling actin cytoskeletal movement, activation of the respiratory burst and phagocytic 318 

activity in innate cells. RAC1 was identified as a susceptibility gene for IBD27, and TNF was shown to 319 

stimulate RAC1-GTP loading16, supporting efficacy of antagonizing this effect by anti-TNF. In line with our 320 
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findings demonstrating IFX suppressive effect on the RAC1-PAK1 axis during treatment, thiopurines, 321 

another effective IBD treatment were also shown to inhibit RAC1 activity28. The superior effect of anti-322 

TNF -thiopurines combination over monotherapy29 suggests that the enhanced therapeutic effect is 323 

mediated not only by controlling anti-drug antibody (ADA) levels, but conceivably also by the induction of 324 

a mutual additive effect on RAC1 suppression. Interestingly, the TREM adaptor (TYROBP/DAP12), which 325 

we previously found to be predictive for anti-TNF response by meta-analysis9, was detected in the 326 

differential RAC1-PAK1 signature, exhibiting significant correlation with the RAC1-PAK1 axis in monocytes, 327 

and is also functionally related through shared signaling30 .  328 

The monocytes single-cell based RAC1-PAK1 co-expression network demonstrated pre-treatment 329 

differential expression, primarily in intermediate monocytes, related to FcyR dependent phagocytosis and 330 

interferon signaling. This is consistent with prior reports showing that FcγR affinity affects anti-TNF 331 

therapeutic response31–33. Interestingly, RAC1-PAK1 axis was predictive of IFX responsiveness also in RA, 332 

an observation which provides additional validation for the signature predictivity and supports common 333 

baseline elements contributing to response across IFX-treated immune-mediated diseases. Similarly to 334 

IBD, also in RA,  the RAC1-PAK1 upstream activator FcγR was linked to disease susceptibility34,35. The 335 

FcγR3A is known as a key receptor for monocytes effector response including antibody-dependent cellular 336 

cytotoxicity (ADCC), immune IgG-containing complexes clearance and phagocytosis36,37. These further 337 

corroborate the common element of enhanced RAC1-PAK1 signaling through increased expression or 338 

affinity for FcγR3A expressed on monocytes that may enhance the efficacy of IFX in IBD and RA. These 339 

results extend the relevance of molecular commonalities for disease activity38 and pan-pathology39, also 340 

to interconnected pathways of drug responsiveness across diseases.  341 

Whether the RAC1-PAK1 axis and the upstream FcγR are applicable to IFX response in other immune-342 

related diseases or other anti-TNF therapeutic antibodies remains to be determined. While we identified 343 

the RAC1-PAK1 axis as predictive for IFX response in naive patients, our results do not yet provide an 344 

understanding of how this axis is expressed in non-naive patients. Considering the backwards immune 345 

shift in non-responders along the ‘health axis’ we identified, analysis of non-naive patients should be 346 

addressed separately. The ‘health axis’ further provides a potential explanation for the inferior response 347 

rates to subsequent treatments in treatment-experienced compared to naïve patients treated with the 348 

same agents40. Of note, our real-life cohorts consisted of clinically comparable responding and non-349 

responding groups, in terms of demographics and concurrent therapies, except for lower drug levels in 350 

non-responders at W14 in the primary cohort. The disrupted axis was identified at the early W2 response 351 

period in which drug levels were comparable and thus response is not expected to be affected by the 352 

subsequent difference. In this context, the lower drug levels are likely a consequence rather than a cause 353 

of non-response, maybe due to “inflammatory sink” drug consumption, or  drug loss through a “leaky 354 

gut”41,42.  355 

Blood-based pre-treatment biomarkers are highly important for precision medicine, since when identified 356 

across  diseases and drugs as performed here, they offer the vision of data-driven choices for physician 357 

treatment and personalized care. Our results suggest that the road to this vision may be shorter than 358 

anticipated, as at least for immuno-therapies, blood is a relevant tissue for signal detection and drug non-359 

response mechanisms appear to be conserved pan-disease. We note that this pan-disease drug response 360 

conserved pattern may not necessarily hold in biopsies from the site of disease, which being different 361 

tissues, may present different cells playing a role. Our combined experimental-computational approach, 362 

where small time series experiments are combined with an individual-level analytical framework, can be 363 
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generalized to other diseases and conditions including mechanisms of drug mode of action, drug non-364 

response, comparison of drug effects and disease courses. These will ultimately allow to make sense of 365 

blood and accelerate an era of immune-based precision diagnostics.  366 

 367 

Methods 368 

Patients and study design 369 

Primary real-life IBD cohort 370 

A primary real-life cohort consisting of 24 Crohn’s disease (CD) patients who received IFX treatment at the 371 

gastroenterology department of the Rambam Health Care Campus (RHCC). All patients met the study 372 

inclusion criteria as follows: 1) Adequately documented active luminal CD, as phenotyped by a 373 

gastroenterologist with expertise in IBD. 2) Documented decision to initiate full IFX induction regimen 374 

with 5 mg/kg induction dosing (i.e., at weeks 0, 2, 6). Patients that had past exposure to Infliximab, 375 

Adalimumab or Vedolizumab, or patients who had active infection including febrile diseases or intra-376 

abdominal or perianal abscess were excluded. The study was approved by the institutional review board 377 

(0052-17-RMB), and patients provided written informed consent. Demographic and clinical characteristics 378 

of the patients are shown in Supp. table 1.  379 

Patient samples were obtained at three time points: at baseline, before IFX treatment, and two and 380 

fourteen weeks post first treatment and assayed for gene expression microarray data, high-resolution 381 

granulocytes and lymphocytes subtype frequencies and functional markers by CyTOF, and a panel of 51 382 

cytokines and chemokines by Luminex. CyTOF panel including Clone, vendor, and conjugation 383 

information, and Luminex panel are detailed in Supp. table 2 and 3 respectively. 384 

Patient response classification was defined by decision algorithm, which we used and described previously  385 
9. Briefly, patients were classified as responders based on clinical remission, which was defined as 386 

cessation of diarrhea and abdominal cramping or, in the cases of patients with fistulas, cessation of fistula 387 

drainage and complete closure of all draining fistulas at W14, coupled with a decision of the treating 388 

physician to continue IFX therapy at the current dosing and schedule. In patients that were initially 389 

clinically defined as partial responders, classification was determined by a decision algorithm that 390 

included the following hierarchical rules: 1) steroid dependency at week fourteen; 2) biomarker dynamics 391 

(calprotectin and CRP) and 3) response according to clinical state at week 26. Applying the decision 392 

algorithm and exclusion criteria, yielded a final study cohort of 15 and 9 responding and non-responding 393 

patients respectively.  394 

As shown in Supp. table 1, responders significantly reduced CRP, already at W2 post first treatment while 395 

non-responders presented a trend of reduced CRP at W2, but their CRP level following 14 weeks was 396 

elevated and significantly higher than CRP level in responders. No significant difference was found in 397 

target TNFα levels, neither in responders or non-responders, as measured by either serum cytokine level 398 

using Luminex or by adjusted gene expression. As expected, IFX drug levels were shown to be significantly 399 

reduced, in both responders and non-responders at W14 compared to W2, due to the transition from 400 

induction to maintenance therapy. Drug levels of responders were significantly higher compared to non-401 

responders at W14. However, at W2, no significant difference in drug levels was measured. Responders 402 
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also showed improved albumin levels along treatment, with significantly higher levels compared to non-403 

responders at W14. All other parameters were comparable between the two response groups. 404 

Validation real life IBD cohort 405 

The validation cohort consisted of 29 CD patients from the RHCC, which were classified to 20 and 9 clinical 406 

responding and non-responding respectively patients according to the above-described decision 407 

algorithm (Supp. table 9).  408 

CyTOF sample processing and analysis 409 

A total of 2 × 106 cells of each sample were stained (1 h; room temperature) with a mixture of metal-410 

tagged antibodies (complete list of antibodies and their catalog numbers is provided in Supp. table 2). This 411 

mix contained antibodies against phenotyping markers of the main immune populations and some central 412 

cytokine and chemokine receptors. All antibodies were validated by the manufacturers for flow 413 

application (as indicated on the manufacturer's datasheet, available online) and were conjugated by using 414 

the MAXPAR reagent (Fluidigm Inc.). Iridium intercalators were used to identify live and dead cells. The 415 

cells were fixed in 1.6% formaldehyde (Sigma-Aldrich) at 4°C until they were subjected to CyTOF mass 416 

cytometry analysis on a CyTOF I machine (Fluidigm Inc.). Cell events were acquired at approximately 500 417 

events/s. To overcome potential differences in machine sensitivity and a decline of marker intensity over 418 

time, we spiked each sample with internal metal-isotope bead standards for sample normalization by 419 

CyTOF software (Fluidigm Inc.) as previously described43. 420 

For data preprocessing, the acquired data were uploaded to the Cytobank web server (Cytobank Inc.) to 421 

exclude dead cells and bead standards. The processed data were analyzed using Citrus algorithm, which 422 

performs hierarchical clustering of single cell-events by a set of cell-type defining markers and then assigns 423 

per sample, per cluster its relative abundance in each sample as well as the median marker expression for 424 

each functional marker per cluster44. Citrus analysis was applied separately on PBMCs and Granulocytes 425 

population in each sample using the following parameters: minimum cluster size percentage of 0.01 and 426 

0.02 for PBMCs and Granulocytes respectively, subsampling of 15,000 events per sample and arcsin 427 

hyperbolic transform cofactor of 5. The gating for the classification of the clusters is detailed in Supp. table 428 

3.  429 

Blood transcriptome analysis 430 

Whole blood was maintained in PAXgene Blood RNA tubes (PreAnalytiX). RNA was extracted and assayed 431 

using Affymetrix Clariom S chips (Thermo Fisher Scientific). The microarray data are available at the Gene 432 

Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). The raw gene array data were 433 

processed to obtain a log2 expression value for each gene probe set using the RMA (robust multichip 434 

average) method available in the affy R package. Probe set annotation was performed using affycoretools 435 

and clariomshumantranscriptcluster.db packages in R. Data were further adjusted for batch effect using 436 

empirical Bayes framework applied by the Combat R package. 437 

Gene expression data were further adjusted for variations in frequency of major cell types across samples 438 

as measured by CyTOF, including CD4+ T cells, CD8+ T cells, CD19+ B cells, NK cells, monocytes and 439 

granulocytes, to allow detection of differential biological signals that do not stem from cell proportion 440 
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differences, which might be otherwise masked in unadjusted gene expression data.  Adjustment was 441 

performed using the CellMix R package. 442 

Cytokines and chemokines measurement using Luminex bead-based multiplex assay 443 

Serum was separated from whole blood specimens and stored at -80°C until used for cytokine 444 

determination. Samples were assayed in duplicate according to the manufacturers' specifications 445 

(ProcartaPlex™ Immunoassay, EPX450-12171-901, eBioscience, Cytokine/Chemokine/Growth Factor 45-446 

Plex Human Panel 1, Supp. table 4). 447 

Data were collected on a Luminex 200 instrument and analyzed using Analyst 5.1 software (Millipore) and 448 

NFI (Median Fluorescence Intensity) values were used for further data processing. A pre-filtering was 449 

applied as follows: samples with low mean bead count, below 50 were excluded from analysis.  In addition, 450 

duplicates with high CV values (Coefficient of variation) above 40% were omitted. NFI values with low 451 

bead count, below 20 were filtered out, but in cases which one replicate had acceptable bead count and 452 

the CV values for both replicates were less than 25%, NFI values were retained.  453 

Finally, net MFI values were calculated by blank reduction followed by log2 transformation. Data were 454 

further adjusted for batch effect using the empirical Bayes framework applied by the Combat R package. 455 

Characterization of IFX responders and non-responders’ dynamics through integrative molecular 456 
response axis combining external and in-house data 457 

An integrative molecular response axis was constructed to recapitulate the complex nature of anti-TNFα 458 

response progression dynamics which enables to track individual immune dynamics of both responding 459 

and non-responding patients. This methodology was assessed using an external data-based axis.  460 

For unbiased definition of the ’Health axis’ and validation of our own data we used public gene expression 461 

data of whole blood from 25 UC patients and 50 CD patients in active or inactive disease states, available 462 

in Gene Expression Omnibus (GSE94648). The patients in this external cohort were treated with different 463 

medications including 5-ASAs, Immunosuppressants, anti-TNF agents, steroids and combinations of these 464 

therapies, as previously described45, representative of a relatively large portion of the treated IBD patient 465 

population. The analysis was performed in several steps: (1) Differential expression analysis between 466 

active disease and healthy states for UC and CD separately (Supp. Table 5), using the limma R package, 467 

followed by PCA (Principal Component Analysis). (2) Ordinal lasso was used to select the principal 468 

components that best describe the desired directionality from active through inactive to healthy state, 469 

based on optimal absolute coefficient values and percentage of variance explained parameters (Supp. 470 

Table 6). (3) The ‘Health axis’ coordinates were defined based on initial and terminal points determined 471 

as the mean of the two end-point coordinates of active and healthy states. (4) Applying vector 472 

multiplication (dot product) for the calculation of the projection of sample vector from our in-house 473 

cohort in the direction of the external ‘health axis’, to estimate sample position on the axis. (5) Evaluation 474 

of the distance of patient samples between two time points based on sample axis location. 475 

 476 

 477 
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Multi-omics network of anti-TNF blood response dynamics 478 

Core co-expression response network 479 

To identify features that change over time in responders, a linear mixed-effects model was used, in which 480 

time was treated as a fixed effect and individuals were treated as a random effect (lmer R package) to 481 

allow testing differential expression by time while accounting for between-subject variations. P-values 482 

were calculated empirically through a permutation test (n perm=1000). In each permutation, feature 483 

measurements were shuffled between visits for each responding patient. Permutation based p-values 484 

were obtained by comparing the absolute value of the non-permuted β coefficient for each feature to the 485 

null distribution of permuted β coefficients for the same feature. In order to calculate FDR based on the 486 

permutation results, permuted p-value was determined for each permuted β coefficient, by comparing 487 

the tested permuted β coefficient to the distribution of the other permuted β coefficients for each feature. 488 

Then FDR was estimated by comparing the non-permuted p-values to the null distribution of the 489 

permuted p-values. A similar calculation was performed for non-responders (max n perm =512).   490 

In addition to the determination of dynamic features in the full responders’ sample data, a random 491 

subsampling of samples from the responders group, without replacement, was applied to achieve equal 492 

sample size between responders and non-responders. Two-hundred subsamples were generated and 493 

tested using linear mixed-effects models. In this part, for the comparison of equally sized responders and 494 

non-responders’ groups, p-values were calculated based on the t-statistic using the Satterthwaite 495 

approximation, implemented in the lmerTest R package, followed by multiple hypotheses correction 496 

using the Benjamini-Hochberg procedure. 497 

Co-expression network based on V1-V2 fold-change expression values of the significantly altered features 498 

(FDR<0.15) was constructed, based on pairwise Spearman’s rank correlation using the psych R package. 499 

Filtering was applied to remove feature-pairs with insignificant correlation with a cutoff of FDR<0.1.  500 

Network propagation 501 

Network propagation procedure was applied to enhance the biological signal of the obtained networks as 502 

previously described 46 with slight modifications. Briefly, for each node in the network, protein interactors 503 

with a combined score above 700 were extracted based on STRING database (functional protein 504 

association networks; https://string-db.org/cgi/download.pl) using STRINGdb R package. A node 505 

interactor was added as a linker gene to the network if its own interactors (hubs) were significantly 506 

enriched in the core network features. Enrichment was calculated using the hypergeometric test in the 507 

stats R package. Calculated p-values were adjusted for multiple hypotheses using the Benjamini-Hochberg 508 

procedure. A cutoff of FDR<0.05 was selected for significant enrichment of the tested interactor hubs in 509 

the immune network.  510 

Functional enrichment assessment for the response network 511 

To assess dynamics in the functional level, genes were grouped to functional sets by using a semi-512 

supervised approach combining both network structure and known gene set annotations from Hallmark, 513 

Kegg, Reactome, Biocarta, PID and BP Go terms. Each edge in the network was classified to a specific 514 

pathway if its two linked nodes were annotated in the same biological group. Pathways with less than 5 515 

mapped edges were filtered out. This was followed by a global gene set enrichment analysis using fGSEA 516 

(FDR<0.15, nperm=1000, minSize=10, maxSize=400). 517 

The dynamic enriched pathway structures were further tested for significance by comparing the density 518 

(graph density score) of each pathway associated sub-network to a parallel sub-network density obtained 519 
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from 100 random networks with a matched size according to the Erdos-Renyi model which assigns equal 520 

probability to all graphs with identical edge count (igraph R package). P-value was evaluated as the 521 

proportion of random module density scores that were higher than the real module density score. 522 

Additional filtering was applied according to the number of connected components in a pathway sub-523 

graph (igraph R package). Only highly connected pathways (percentage of largest connected 524 

component>50%, size of the connected component>10 ) were included. 525 

The dynamic pathways list was further condensed by filtering out high overlapping pathways using Jaccard 526 

index. Accordingly, in overlapping pathways pairs that presented a Jaccard index above 0.5 the smaller 527 

module was omitted.  528 

To further associate the assigned pathways with treatment response, the Wilcoxon test was used to 529 

compare V1 to V2 and V1 to V3 relative pathway scores in responders and non-responders. p-values were 530 

adjusted for multiple hypotheses using the Benjamini-Hochberg procedure (FDR<0.05). Relative pathway 531 

scores were calculated for each sample as previously described 38,47 (see Relative pathway score 532 

evaluation). To assess cellular contributions for each pathway, the non-adjusted expression of each gene 533 

in the dynamic pathways was regressed over the major peripheral cell type frequencies as determined by 534 

CyTOF including granulocytes, CD4 and CD8 T cells, B cells, NK cells and monocytes. The cell-specific 535 

contribution to each pathway was determined as the mean of the coefficients of the tested cell type across 536 

all genes in the module. The centrality of each pathway in the response network was also evaluated by 537 

calculating the pathway based mean betweenness and degree across all gene members of the pathway 538 

(igraph R package). To further assess the clinical relevance of the dynamic pathways to the treatment 539 

response, the calculated pathway score at all tested time points was correlated with CRP using Spearman's 540 

rank correlation test.  541 

Relative pathway score evaluation 542 

The expression of each gene in the pathway was standardized by the z-score transformation, to enable 543 

comparable contribution of each gene member to the pathway score, followed by mean value calculation 544 

across the transformed genes in the pathway for each sample.  545 

‘Disruption Networks’ framework  546 
To understand individual variation in non-response dynamics, we developed an approach termed 547 

‘Disruption Networks’ in which individual non-responders are iteratively added to the obtained normal 548 

IFX response network, and the disruption in the correlation structures is assessed for each edge in the 549 

reference response network. The disruption is evaluated in the node (gene/cell) or the module level to 550 

determine biological mechanisms that may explain patterns of the non-response.   551 

More specifically, consider a feature matrix Fn×m where n is the number of samples for a given condition, 552 

in our case, n is the number of samples of responding patients and m is the number of features, where 553 

f(i,j) refers to a fold change measured value at a given time point relative to baseline, of the j-th feature 554 

in the i-th sample. Let matrix Rm×m be the feature pairwise Spearman’s rank correlation matrix based on 555 

F which represents the global response network, where r(j,k)=cor(j,k) for genes j and k. Insignificant 556 

correlation values according to FDR thresholds, as described above, were presented as NAs in the matrix.  557 

The ‘Disruption Networks’ construction was assessed individually for each non-responder as follows: a 558 

new F’(n+1) ×m matrix was generated by the addition of the tested non-responder to the responders’ 559 

samples. Based on F’, a new pairwise Spearman’s rank correlation matrix was calculated to obtain R’m×m, 560 
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in which r’(j,k) is the correlation between j and k genes when including the non-responder in the 561 

responders’ samples.   562 

For correlation coefficients comparison, correlation coefficient values were transformed using Fisher z-563 

transformation by the following formula:  564 

𝑧(𝑟) = 0.5 ∗ 𝑙𝑛⁡(
1+𝑟

1−𝑟
) and a standard error of 𝑆𝐸𝑧(𝑟) =

1

√𝑛−3
 where n is the number of samples. 565 

We define a ‘disruption’ term as the drop in the Fisher z transformed values between two genes as a result 566 

of the non-responder addition using the statistical z score which is defined as: 567 

 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛(𝑗, 𝑘) = 𝑧⁡𝑠𝑐𝑜𝑟𝑒 =
𝑧(𝑟′)−𝑍(𝑟)

𝑃𝑜𝑜𝑙𝑒𝑑.𝑆𝐸𝑧
=

𝑧(𝑟′)−𝑍(𝑟)

√
1

(𝑛+1)−3
+

1

𝑛−3

. 568 

Only negative values of 𝑠𝑖𝑔𝑛(𝑟 ∗ (𝑧(𝑟′) − 𝑍(𝑟))), which indicate weakening of the original 569 

correlation obtained in responders were included, while positive values were set to zeros. Drop degree of 570 

confidence for non-responders was assessed empirically for each drop value in each edge, based on the 571 

non-responder drop value percentile in the responders’ normal drop distribution. This was further 572 

corrected for multiple testing using the Benjamini-Hochberg procedure. Edges with drop adjusted 573 

percentile <0.1 were considered as significantly disrupted. Insignificant drop values were set to zeros. 574 

Analysis of disruption parameters in the feature level, revealed a considerably expansion of the detected 575 

differential signal between response groups, compared to standard differential analysis by Wilcoxon test. 576 

While using the Wilcoxon test we detected only one feature (0.06%), with significant differential dynamics 577 

between response groups at W2, we identified this feature together with 179 additional features (10%) 578 

when using disruption parameter of top mean drop intensity (FDR<0.1 by Wilcoxon test,  FDR<0.1 for 579 

significant dropout and top 0.1 percentile of mean drop intensity, Figure 3b). We observed similar results 580 

for the disrupted edge ratio (0.06% Vs. 14.4% significant features identified by Wilcoxon test (FDR<0.1) 581 

and top disrupted edge ratio parameter (FDR<0.1 for significant dropout and top 0.1th percentile of node 582 

disrupted edges) respectively, Supp. figure 4a). Testing the agreement of both disruption parameters, we 583 

identified 9.4% dynamics differential features including the single feature identified by Wilcoxon test 584 

(Supp. figure 4b). 585 

Disruption was also measured in the pathway level for each individual using three different 586 

measurements: (1) Pathway specific mean drop intensity in which a mean drop intensity was calculated 587 

across the relevant edges in the module, for a specific individual. (2) Pathway specific percentage of 588 

disrupted edges which determines the percentage of edges in the pathway that the specific individual is 589 

significantly disrupted in. (3) Pathway specific percentage of disrupted nodes which evaluate the 590 

percentage of disrupted nodes for a specific individual out of all module nodes. 591 

For binary classification of disrupted pathways, we quantify the disruption measure across a range of 592 

percentile values in each parameter. For each parameter, in each percentile, the selected positive 593 

disrupted modules were those that were disrupted in at least 50% of the non-responding patients and in 594 

less than 20% of the responders, or in cases where the difference between the percentage of disrupted 595 

non-responders to responders is higher than 50%. The top significantly positive disrupted modules were 596 

defined as those with a complete agreement of all three parameters in the highest percentile with shared 597 

selected pathways across all parameters, which in our case was determined as the 0.8 percentile.  598 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.16.448558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448558


16 
 

Single cell RNA sequencing  599 

Peripheral blood mononuclear cells (PBMCs) cryopreservation and thawing 600 

Blood samples were drawn before IFX first infusion. PBMCs were isolated using density gradient 601 

centrifugation by spinning blood over UNI-SEPmaxi+ tubes (Novamed Ltd.) following the manufacturer’s 602 

protocol. Isolated cells were resuspended in 1 ml freezing solution, containing 10% DMSO and 90% FCS. 603 

The samples were kept in Nalgene Mr. Frost® Cryo 1°C Freezing Container (ThermoFisher scientific) with 604 

Isopropyl alcohol at -80OC over-night, and immediately after placed in a liquid nitrogen container for long-605 

term storage.  606 

For thawing, frozen PBMCs were immediately transferred to a water bath at 37°C for 2-3 min, until a 607 

tiny ice crystal was remained. Thawed cells were transferred into 50 mL centrifuge tubes and rinsed with 608 

1 mL of warm (37 °C) RPMI 1640 supplemented with 10% of FCS which was added dropwise to the 609 

DMSO containing fraction while gently shaking the cells. Next, the cells were sequentially diluted by first 610 

adding 2 mL of medium followed by another 4, 8 and 16 mL respectively with 1 min wait between the 611 

four dilution steps. The diluted cell suspension was centrifuged for 5 min at 300 g. Most of the 612 

supernatant was discarded leaving ~1 ml, and the cells were resuspended in 9 ml of medium followed by 613 

additional centrifugation for 5 min at 300 g and resuspended with the same media to reach the desired 614 

cell concentration. 615 

Single cell RNA sequencing in 10X genomics platform  616 

PBMCs from responder and non-responder patients pre-treatment (N=2) were prepared for scRNA-seq 617 

according to the 10x Genomics Single Cell protocols for fresh frozen human peripheral blood mononuclear 618 

cells (see above for cell preservation and thawing). The cells were adjusted to a final cell concentration of 619 

1000 cells/Ul and placed on ice until loading into the 10x Genomics Chromium system. The scRNA 620 

sequencing was performed in the genomic center of the biomedical core facility in the Rappaport faculty 621 

of medicine at the Technion - Israel Institute of Technology. Libraries were prepared using 10x Genomics 622 

Library Kits (Chromium Next GEM Single Cell 3’ Library & Gel Bead Kit v3.1, PN-1000121) using 20,000 623 

input cells per sample. Single cell separation was performed using the Chromium Next GEM Chip G Single 624 

Cell Kit (PN-1000120). The RNAseq data was generated on Illumina NextSeq500, high-output mode 625 

(Illumina, FC-404-2005), 75 bp paired-end reads (Read1- 28 bp, Read2- 56 bp, Index- 8 bp). 626 

Single cell data analysis  627 

Cell Ranger single cell software suite was used for sample de-multiplexing, alignment to human reference 628 

genome (GRCh38-3.0.0), cell barcode processing and single cell UMI counting following default settings. 629 

The UMI count matrix was further processed using the Seurat R package (version 3.1.4). First, as a QC 630 

step, cells that had a unique feature count of less than 200 were filtered out. Additional filtering was 631 

applied to remove features detected in less than 3 cells.  we further filtered cells based on mitochondrial 632 

gene content above 0.25%. After this step, 19275 single cells and 20673 genes in total were retained and 633 

included in downstream analyses. This was followed by Global-scaling library size normalization. Genes 634 

were scaled in comparison to all other cells and regressed out the effects of unwanted sources of variation 635 

including UMI counts and percentage of mitochondrial genes for the remaining cells. At the next step, we 636 

performed linear dimensionality reduction on the scaled data of the top 2000 highly variable genes.  637 

Resampling test based on the jackstraw procedure and Elbow plot were performed to identify the first 30 638 

significance principal components that were used for downstream visualization by t-SNE plot.  639 
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SingleR  was used to annotate cell types based on correlation profiles with two different resolutions of 640 

cell classification using the Blueprint-Encode48  and the Monaco Immune Cell49 reference datasets of pure 641 

cell types. Differential expression analysis between responders and non-responders was performed for 642 

each cell population using a Wilcoxon Rank Sum test implemented in the FindAllMarkers function in the 643 

Seurat package.  644 

Relative pathway score based on the expended fiber-organization baseline differential genes was 645 

calculated for each single cell and compared between cell subsets and response groups using Wilcoxon 646 

test (for the expended fiber organization differential genes assessment see below description for selection 647 

and evaluation of predictive model for IFX treatment response; see the above description for relative 648 

pathway score calculation). 649 

To identify cell specific enriched pathways that are associated with the predictive fiber-organization 650 

related signature, we constructed a co-expression network based on the pre-treatment expression of the 651 

predictive genes: RAC1, PAK1, ICAM1, LYN, FCGR3A and IL-1β,  in intermediate monocyte subset in each 652 

response group using the MTGOsc R package (Spearman's correlation, thinning net by 0.1 top percentile). 653 

Functional enrichment analysis was performed based on the co-expressed network nodes, by a 654 

hypergeometric test based on the Reactome database using the Clusterprofiler R package (P-adjust<0.05). 655 

Wilcoxon test was assessed to identify significant differences in pathway scores between response groups 656 

for each enriched pathway in each monocyte subset. P-values were further adjusted for multiple testing 657 

using the Benjamini-Hochberg procedure. 658 

Predictive model for IFX treatment response  659 

Given the significant linkage between monocytes and the differential fiber organization pathway, in order 660 

to build a cell specific pre-treatment classifier, we expanded the fiber organization adjusted-bulk based 661 

differential genes through intersection of knowledge based- (combined score>900, 662 

9606.protein.links.detailed.v11.0 from the STRING protein interaction database: http://string-db.org/ and 663 

data-driven networks (Monocytes single-cell based co-expression from a representative responder and 664 

non-responder patients at baseline , Spearman’s r, thinning percentile: 0.05, MTGOsc R package). This 665 

yielded a combined network of 42 edges containing 23 nodes. To build a predictive signature, we used 666 

elastic net regularized logistic regression for predictors selection, which has the advantage of including all 667 

correlated predictors sharing transcriptional signal (grouping effect), rather than selecting one variable 668 

from a group of correlated predictors while ignoring the others50. We used the glmnet R package 669 

implemented within the caret R package for model fitting by tuning over both alpha (ranging from 0.5-1, 670 

n=6) and lambda (ranging from 0.0001-1, n=20) parameters with 100 repeated 2-fold cross-validation. 671 

The optimized model was chosen based on the best performance value using the Receiver operating 672 

characteristic (ROC) metric (alpha=0.5, lambda=0.26). 673 

After variable selection, we calculated AUC based on relative pathway score combining the selected genes 674 

using the pROC R package.  675 

Internal validation was performed by bootstrapping (n=1000 bootstrap samples) for the AUC by randomly 676 

drawing subjects with the same sample size from the original cohort (with replacement).  677 

A permutation test was used for estimating one-tailed P-value (n=10000 permutations) by shuffling the 678 

subject labels between the response groups and the expression of the selected signature genes. Then we 679 

tested the null hypothesis that the observed AUC was drawn from this null distribution. 680 

 681 
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External validation of the predictive signature using additional independent real-life IBD cohort 682 

For independent validation of the predictive signature, we used an independent IBD cohort of 29 patients 683 

(see Patient in the validation real life cohort). RNA was then extracted using RNeasy mini kit (QIAGEN) 684 

according to the manufacturer’s  instruction (for preservation and thawing of PBMCs see Peripheral blood 685 

mononuclear cells (PBMCs) cryopreservation). Complementary DNA was synthesized using Maxima first 686 

strand cDNA synthesis kit with dsDNase (Thermo Scientific). qPCR was performed using 7300 Real-Time 687 

PCR System (AB Applied Biosystems). Relative cytokine expression was calculated following normalization 688 

to glyceraldehyde-3 phosphate dehydrogenase (GAPDH) expression (Supp. table 10 for the PCR primer 689 

sets). Primers were purchased from Sigma Aldrich. The expression of the genes in the predictive signature 690 

was calculated relative to CD14 expression, to measure monocytes' centered differential expression 691 

between response groups pre-treatment. Relative pathway score was used to assess prediction 692 

performance (see Relative pathway score evaluation). 693 

Assessment of the predictive signature performance in RA 694 

The prediction performance of the RAC1-PAK1 signature in RA public expression datasets was evaluated 695 

using the following datasets: GSE20690 (n=68 of which 43 and 25 are responders and non-responders 696 

respectively), GSE33377 (n=42 of which 18 and 24 are responders and non-responders respectively) and 697 

GSE42296 (n=19 of which 13 and 6 are responders and non-responders respectively). 698 

Gene expression was adjusted to major cell type contributions (see Blood transcriptome analysis), which 699 

were evaluated by deconvolution using a linear regression framework in which individual samples were 700 

regressed based on a characteristic expression of marker genes expressed in 17 cell-types (CellMix R 701 

package). This was followed by performance prediction calculation for each study based on the relative 702 

signature score based on the adjusted gene expression. Due to differences in expression platforms 703 

between studies, there were genes in the signature which were not present in a specific dataset, therefore 704 

those genes were not used in the calculation of the relative signature score for the prediction of the 705 

specific study. To combine prediction performance from these independent studies we constructed a 706 

summary ROC curve (meta-ROC) using the nsROC R package which performs a simple linear interpolation 707 

between pairs of points of each individual ROC. 708 

709 
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Figure titles and legends 865 

Fig 1| External data-driven disease specific molecular response metric, termed ‘health axis’, indicated 866 
that responders exhibit a trajectory of treatment-induced immune dynamics while non-responders 867 
exhibit an overall opposite direction. a, Overview of the ‘health axis’ analysis. b, ‘Health axis’ assessment. 868 
Left panel, external public (GSE94648) based ‘health axis’ which defines a transition from IBD active 869 
disease through inactive disease to healthy state by PCA based differential expressed genes between 870 
disease/health states. Right panel, the projection distance of responding and non-responding patients’ 871 
samples from our real-life cohort on the ‘health axis’ at W2 compared to baseline. c, Boxplots comparing 872 
responders’ and non-responders’ projection dynamics on the ‘health axis’ at each treatment interval 873 
(One-tailed permutation P-values shown, n=10000). d, Scatterplot of the relationship between progress 874 
on the ‘health axis’ between W2 to baseline and between W2 to W14 (n=23, Spearman’s r=-0.44, P<0.1).  875 

Fig 2| Normal infliximab dynamics correlated with changes in monocytes and reduced expression of 876 
innate immune related pathways. a, Cell frequency alterations following IFX treatment. Left panel, PCA 877 
presenting immune cell frequency changes following treatment based on 16 canonical immune 878 
populations determined by CyTOF. Arrow tail and head indicate the early W2 and later W14 relative to 879 
baseline compositional changes correspondingly. Ellipses represent the Euclidean distance from the 880 
center. Center panel, boxplots showing change in monocytes abundance following treatment relative to 881 
baseline in responders and non-responders (paired-Wilcoxon P-values shown). Right panel, scatterplot 882 
showing the relationship between changes in monocytes abundance (log transformed fold change relative 883 
to baseline) and changes in CRP (fold change relative to baseline) (n=23, Spearman correlation=0.4, 884 
P=0.01). b, Venn diagram showing dynamic features which significantly changed over time at 2 weeks and 885 
14 weeks post treatment compared with baseline for each response group using linear mixed-effects 886 
models (FDR<0.15, n=1000 & n=519 permutations for responders and non-responders respectively). c, 887 
Scatterplot presenting the normal response network centrality of significantly enriched dynamic pathways 888 
at the early response period (GSEA, FDR<0.25, n perm=1000). Colors indicate pathway median fold change 889 
expression at the early response period relative to baseline in responders (colored dots denote significant 890 
change in relative pathway score by Wilcoxon test, FDR<0.05). 891 

Fig 3| ‘Disruption Networks’ as a framework to perform sample level inferences to identify individual 892 
variation in drug response. a, ‘Disruption Networks’ concept, Left panel – a network is generated from a 893 
reference group (IFX responders) and then individual subjects from a test group (IFX non-responders) are 894 
iteratively added to the obtained response reference network, and the disruption in the correlation 895 
structure, defined as a dropout, is assessed for each patient across all edges. Right panel, representative 896 
highly disrupted edge demonstrating significant dropout values for non-responders. b, Feature specific 897 
differential signal between responders and non-responders dynamics at the early response period using 898 
disruption measurement of top mean drop intensity (x axis) and standard statistics by Wilcoxon test (y 899 
axis). c, ‘Disruption Networks’ statistic was aggregated across pathways to estimate sample specific 900 
disruption in the functional level, according to three parameters including percentage of disrupted edges, 901 
mean drop intensity and percentage of disrupted nodes. Heatmaps represent the disrupted dynamics in 902 
each parameter for each pathway and sample at W2 compared to baseline. Top significantly disrupted 903 
pathways are presented, defined as those with a complete agreement of all three parameters in the 0.8 904 
percentile. Line graphs describe the percentage of disrupted patients in each response group. d, 905 
Distribution of degree and betweenness centrality for nodes belonging to the top disrupted pathways 906 
compared to other nodes in the network. Significance was determined using permutation test (n 907 
perm=10000). e, Meta disrupted pathway. Left panel, response network subgraph consist of nodes from 908 
the baseline differential disrupted pathways (FDR<0.1). Dimond shape and orange color represent cell 909 
frequency, circle shape represent cell centered expression. Red circles indicate the fiber organization 910 
pathway related central axis. Right panel, enrichment analysis of the disrupted pathways by 911 
hypergeometric test. 912 
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Fig. 4| Fiber-organization signaling, highly expressed in monocytes, predicts infliximab response at 913 
baseline. a, Baseline expression differences in the disrupted pathways between response groups 914 
(NPMANOVA; bottom primary axis). Colors denote response network betweenness. The line graph 915 
represent correlation of changes in pathway score with changes in CRP  (top secondary axis). b, The fiber 916 
organization differential nodes dynamics assessed by mean relative score across visits for each response 917 
group (Wilcoxon one-tailed P-values shown). c, Analysis of the cellular origin of the baseline differential 918 
fiber organization pathway using scRNA-seq analysis of PBMCs collected from representative responder 919 
and non-responder pre-treatment. Left panel, tSNE plot representing cell types identities annotated using 920 
singleR based on correlation profiles based on two reference datasets: the Blueprint-Encode and the 921 
Monaco Immune Cell datasets. Right panel, tSNE plot colored by the expended fiber organization scaled 922 
expression. The fiber organization baseline differential genes were expended through intersecting 923 
knowledge based (stringDB) and data-driven based (Monocyte single cell data) networks. d, The expended 924 
fiber organization scaled expression in the different monocyte subsets (Wilcoxon P-values shown). e, 925 
Mean mTNF expression in the different monocyte subsets as measured by CyTOF (Wilcoxon one-tailed P-926 
values shown).  927 

Fig. 5| Validation of the fiber organization predictive signature in an independent IBD cohort and three 928 
public RA cohorts pre IFX treatment. a, Baseline prediction of IFX response in the primary IFX cohort 929 
based on the expended fiber organization predictive signature score, in the cell adjusted space. Left panel, 930 
receiver operating characteristic (ROC) plots of 1000-bootsraps. The predictive signature was determined 931 
using elastic net (a=0.5, lambda=0.26, 100 repeated 2-fold CV) based on the adjusted baseline differential 932 
fiber organization related genes. Significance was determined by permutation test (n perm=10000). Right 933 
panel, boxplots of the fiber organization predictive signature score pre-treatment, in the different 934 
response groups in the cell-centered bulk expression. b, Validation of the pre-treatment predictive fiber 935 
organization signature in an additional independent cohort of 20 and 9 responders and non-responders 936 
respectively by qPCR. Gene values were normalized to CD14 expression for cell-centered values. Left 937 
panel, bar graph of the pre-treatment normalized expression of the signature genes and signature 938 
pathway score in each response group (Wilcoxon one-tailed P-values shown). Right panel, ROC based on 939 
the predictive signature relative score. c, Prediction performance of fiber organization signaling signature 940 
in RA public expression datasets. Left panel, boxplots comparing the fiber organization signature related 941 
genes and the pathway score between IFX RA responders (n=43) and non-responders (n=25) in a 942 
representative public dataset GSE20690 (Wilcoxon one-tailed P-values shown). Right panel, ROC based on 943 
the predictive signature relative score of the relevant cohort. d, Meta-ROC presenting the predictive 944 
performance of three independent public RA cohorts.  945 

946 
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Supplemental Information titles and legends 947 

Supp. Fig 1| CyTOF reveals multiple cell subset changes in responders following treatment and 948 
differences between response groups. a, Loading plot of PC2 based on major canonical cell composition 949 
changes at W2 and W14 compared to baseline. b, Cell-type specific alteration in cellular relative 950 
abundance during IFX treatment in responders and non-responders (paired-Wilcoxon P-values shown). c, 951 
Correlation of cell abundance changes at W2 and W14 relative to baseline, with changes in CRP 952 
(Spearman’s correlation coefficients are shown, P-values are calculated by two tailed probability of the t-953 
statistic, P<0.05 for significant p-values). 954 

Supp. Fig 2| The cumulative number of discovered dynamic features, at a range of target FDR values by 955 
data-type for each response group. Top and bottom panels represent significant changes at W2 and W14 956 
relative to baseline respectively. FDR was calculated using the Benjamini-Hochberg procedure. 957 
Responders were subsampled (n=200) to match the non-responder group size. For responders, mean± 958 
SEM values are shown.  959 

Supp. Fig 3| Functional pathways associated with IFX response. a, Scatterplot of p-values obtained by a 960 
comparison of pathway scores between W2 and baseline against those obtained by comparing W14 to 961 
baseline (-log10 of paired-Wilcoxon P-values shown). Only globally enriched and network connected 962 
pathways were included.  b,  Pathway score related dynamics between W2 and W14 relative to baseline. 963 
Top 70 pathways are shown. Pathways are ordered by fold change effect size. P-values for pathway score 964 
differences between time points were calculated by paired-Wilcoxon test. Significance was determined 965 
by FDR<0.05 (Benjamini-Hochberg procedure). c, Heatmap representing a cell-specific contribution for 966 
the change in the dynamic pathways. The contribution was determined for each gene in the pathway by 967 
regressing its unadjusted fold change expression over the major peripheral cell type frequencies. The 968 
reported values represent the mean of the coefficients across all genes in the pathway.  d,  Correlation of  969 
pathway score expression with CRP. All time point and response groups are included. (Spearman’s 970 
correlation coefficients are shown, P-values are calculated by two tailed probability of the t-statistic, 971 
Pathway which significantly correlated with CRP (FDR<0.05, Benjamini-Hochberg procedure) are colored. 972 

Supp. Fig 4| Comparison of the differential signal between response groups dynamics as obtained by 973 
the ‘Disruption Networks’ framework and standard statistics in the feature level. a, Feature specific 974 
differential signal between responders and non-responders dynamics at W2 relative to baseline, based 975 
on the top disrupted edge ratio (x axis, FDR<0.1 for dropout significance and 10th top percentile of 976 
disrupted edge ratio) and standard statistics by Wilcoxon test (y axis, FDR<0.1). b, Scatterplot showing 977 
feature specific disruption parameters of mean drop intensity against disrupted edge ratio. Points are 978 
colored by quartile thresholds (FDR<0.1 for dropout significance and 10th top percentile of the specific 979 
disruption parameter). The feature which agreed with the disruption parameters and standard Wilcoxon 980 
test is marked with black border.  981 

Supp. Fig 5| Baseline differences of the significantly dynamics disrupted pathways. a, Heatmap 982 
representing the feature-level baseline differences among genes in the dynamics meta-disrupted pathway 983 
(FDR<0.1, Wilcoxon test).  b, Correlation between the canonical cellular frequencies as obtained by CyTOF, 984 
and the bulk unadjusted expression of the fiber organization related genes in responders (Spearman’s 985 
correlation coefficients are shown, P-values are calculated by two tailed probability of the t-statistic). Only 986 
significant correlation values are shown (P<0.05 and |r|≥0.5). 987 

Supp. Fig 6| scRNA-seq based comparison of the baseline fiber organization related expression between 988 
the main cell-types and response groups. The fiber organization scaled score based on its baseline 989 
differential genes was compared between PBMCs major cell types, and between response groups for 990 
monocytes (Wilcoxon P-values shown).  991 
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Supp. Fig 7| Intermediate monocytes functional pathways associated with the predictive fiber 992 
organization signature. Heatmap representing the top 20 intermediate-monocytes specific enriched 993 
pathways associated with the predictive fiber-organization related signature is shown. Pathways were 994 
determined by co-expression network based on the pre-treatment expression of the signature predictive 995 
genes in intermediate monocyte based on the scRNA-seq data in each response group followed by 996 
enrichment analysis (Spearman's correlation, thinning net by 0.1 top percentile, P-adjust<0.05 for 997 
functional enrichment significance by hypergeometric test). Pathways displaying significant differences 998 
between response groups in each cell subset are colored (FDR<0.05 by Wilcoxon test). 999 
 1000 
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