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Abstract 

Open reading frame (ORF) variant libraries have advanced our ability to query the functions of a 

large number of variants of a protein simultaneously in a single experiment. Variant libraries 

targeting full-length ORFs typically consists of all possible single-amino-acid substitutions and a 

stop codon at each amino-acid position. Because a variant differs from the template ORF by 

merely a single codon variation, variant quantification presents the most profound challenge to 

this technology. Efforts such as dividing a library into sub-libraries for direct sequencing, or tag-

directed subassembly are practical only for small ORFs. Our approach, however, features 

generating and screening libraries for genes sized up to 3600 bases, shotgun sequencing and an 

enhanced variant-detecting tool. Having processed screens of ~20 ORF variant libraries, our tool 

calls variants reliably, and also presents variant annotations in datafiles enabling analyses that 

have reshaped our strategies governing library design, screen deconvolution, sequencing and its 

analysis. 

 

An open reading frame (ORF) variant library of a gene of interest provides a powerful means of 

systematically characterizing the functions of thousands of single amino acid substitutions in a 

single experiment. The functional characterization of variants of an ORF have historically been 

confined to alanine scans1,2, random mutagenesis by error-prone PCR3 or mutator E. coli strains4, 

site-directed mutagenesis5 , or transposon insertional mutagenesis6. Advances in DNA 

oligonucleotide and gene synthesis7 and in next-generation sequencing (NGS)8 have accelerated 

our ability to assess all possible single amino acid changes for every amino acid position of a 

protein. The resulting collections are also known as saturation mutagenesis libraries, or deep 
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mutational scanning (DMS) libraries. A screen of such a library, that is, a pool of all variants, 

produces a comprehensive dictionary that maps variants to phenotype strength.  

 

As illustrated in Figure 1, pooled screens allow testing the functions of thousands of genetic 

perturbation agents in a single experiment. Pooled screens rely on introduction of one genetic 

perturbation cassette, e.g. an shRNA, a CRISPR sgRNA or an ORF variant, per cell into the 

genome using delivery by a retrovirus. The perturbed cell population is then subjected to 

selection pressure, for example, growth-over-time proliferation, treatment with a drug, or flow-

sorting for a reporter marker.  Eventually, the collected cell population samples are processed to 

measure the abundance of each library perturbation in each of the samples. The perturbagen 

counts are the basis to assess the enrichment or depletion of each library perturbation by 

comparing samples that have undergone selection and samples that have been treated with 

reference conditions (e.g. pre-selection or vehicle treatment samples). In shRNA or CRISPR 

screens, the functional elements, hairpins or guides respectively, serve as the perfect barcodes, 

short and unambiguous, for screening sample deconvolution. In contrast, ORF variant library 

screens are confronted with challenges in variant detection. 

 

The complexity of a saturated ORF variant library is a function of the ORF length and the 

number of desired variants per codon position. As illustrated in Supplementary Figure 1, at a 

given amino acid position, the template amino acid is typically mutated to 19 other amino acids, 

a stop codon, and when design rules allow, one or two synonymous codons (Methods). 

Factoring in the amino acid positions to be mutagenized (N), the library is a collection of 

approximately 20*N variants, or alleles, each differing from the template ORF at a single amino 
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acid position. The coordinates of all variations in a library are spread out along the full-length 

ORF. Thus, capturing the variant-defining signature as subtle as a single codon variation located 

anywhere along the full-length ORF sequence is one of the foremost technical challenges. Over 

the years, efforts that have been made include (1) dividing an ORF variant library into sub-

libraries with mutational regions of 25 amino acids initially9,10, then 47 and 100 amino acids11,12, 

to allow the sub-libraries to be screened and sequenced for direct readout of the variants, or (2) 

subassembly approaches involving tag-directed PCR amplification13. The benefits of these 

efforts are limited to and deemed practical to small ORFs. Our methodology, on the other hand, 

emphasizes robust variant-calling tools that process massive shotgun NGS data to detect and 

accurately quantify variants, and consequently allows one to screen a single saturated variant 

library for an ORF of any size (e.g. ~500-bp KRAS or ~3600-bp EGFR) in a single experiment 

(Fig. 1b). Here, we present our methods and strategies as we draw from our ever-evolving 

knowledge from designing and constructing nearly 20 libraries and analyzing the resulting 

screening data (Supplementary Table 1). We hope that this study will help lower the access 

barrier to this technology and pave a path for sharing library resources within the scientific 

community.  

 

Results  

Despite differences in screening protocols, all ORF variant library screens converge at the 

quantification of library alleles in each of the screening samples (Fig. 1b). Variant quantification 

requires resolution of subtle differences among variants. We introduce a new variant-calling 

software, Analyze Saturation Mutagenesis v1.0 (ASMv1.0; see Methods and Supplementary 

Fig. 2), to more accurately process the NGS data and measure variant abundance.  
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ASMv1.0.  ASMv1.0 is a part of the Genome Analysis Toolkit (GATK v4.2.0.0). For each 

screening sample, this program analyzes NGS reads aligned to the reference sequence that 

includes the ORF template sequence and flank sequences defined by the primers used to amplify 

the full-length ORF from genomic DNA. It counts the number of observed molecules that have 

some given set of mutations. ASMv1.0 observes this mutational landscape without regard to the 

library design. Because the NGS reads are typically far shorter than the full-length ORF and 

because each planned variant in the library carries a single codon change from the template ORF, 

most aligned reads will be wild-type, and serve only to indicate depth of read coverage across a 

codon position.  The relative abundance of reads that do contain mutations gives information on 

the identity and abundance of the variant defined by those mutations.  

 

The ASMv1.0 variant-calling process is followed by a process that parses ASMv1.0 output files 

of all screen samples into a single datafile (see Methods). Throughout these processes, the 

toolkit preserved the variant description, which unambiguously defines the called variant. In our 

experience, the detail-rich variant descriptions and the annotations derived from them are 

invaluable datasets that allow us to perform a myriad of in-depth data analyses. 

 

The enhanced performance of ASMv1.0. The early version of variant detection software, 

ORFCallv1.0, was successfully used in analyzing many saturation mutagenesis screens14-17. 

ORFCallv1.0, however, tallies the intended variants in the space of a single codon, and it ignores 

the association of an intended codon change and any in-cis unintended changes. For a library that 

has prevalent unintended errors associated with an intended change, ignoring the presence of 
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these errors can mask the true phenotype of the intended variant by the phenotypes caused by the 

unintended changes. As an improvement, our new software, ASMv1.0, calls variants in the 

context of full-length read pairs, allowing us to separate the variants that bear only the intended 

sequence change from those that also harbor extra changes. Furthermore, in ASMv1.0, a pair of 

reads needs to pass through sequential filters such as minimum base quality, minimum read 

length, and requirement of consistency in overlapping sequences of a pair of reads, before being 

admitted for variant calling (Supplementary Fig. 2). Supplementary Table 3 summarizes the 

enhanced functionalities from ORFCallv1.0 to ASMv1.0. 

 

We used the screens performed in Giacomelli et al14 to compare the two methods. Specifically, 

the ectopically expressed TP53 variants were screened in the presence or absence of endogenous 

wild-type TP53, with selection pressure from either nutlin-3 or etoposide. Under nutlin-3 

treatment, the screen of p53NULL cells enriched TP53 loss-of-function (LOF) variants, and 

depleted wild-type-like variants (Fig. 2). Under etoposide treatment, the p53NULL cells enriched 

wild-type-like TP53 variants and depleted the TP53 LOF variants (Supplementary Fig. 3). 

Under nutlin-3 treatment, the screen of p53WT cells enriched TP53 variants exhibiting dominant-

negative effects (DNE) (Supplementary Fig. 4). Using both the ORFCallv1.0 and ASMv1.0 

variant calling methods, we reprocessed the next-generation sequencing data from these three 

screens. The phenotypic strength of each variant, measured as log-fold change (LFC) in the pre- 

and post-treatment samples, produced similar heatmaps, indicating that the two variant-calling 

algorithms are largely consistent with each other (Fig. 2a, Supplementary Figs. 3a, 4a). 

However, we also noted that several variants exhibited substantial differences in LFC calculated 
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using each algorithm; we define the differences as delta(LFC)=LFCASM-LFCORFCall in Figure 2b, 

Supplementary Figure 3b and 4b.  

 

In a perfect library that consists solely of intended variants, ORFCallv1.0 and ASMv1.0 should 

be equal in performance. However, it is inevitable that some planned codon changes are 

physically associated with one or more unintended nucleotide changes in the same molecule. We 

define the ‘variant purity’ of a planned variant as the fraction of pure intended molecules over all 

molecules that harbor the codon change of interest, whether or not they harbor additional 

nucleotide changes. When the purity of a planned variant is high, as in a high-quality library, 

both versions of the software will call variants with similar accuracy. However, when the variant 

purity is low, the enrichment and depletion scores measured by ORFCallv1.0 can be misleading, 

as they reflect the sum of effects of all species that happened to have a given codon change. We 

computed the purity of every planned variant using the reference samples of the Giacomelli 

screens, and for each purity bin we computed the Pearson correlation coefficient of two sets of 

LFCs, one using ORFCallv1.0, the other using ASMv1.0 (panel c of Fig. 2, Supplementary 

Figs. 3,4). It is clear that the two methods correlate well when the variant purity is high, and 

diverge as the variant purity decreases.  

 

We therefore reasoned that ASMv1.0 is an upgrade over ORFCallv1.0, particularly considering 

how unintended in cis changes are handled. As a way of validating the higher performance of 

ASMv1.0 over ORFCallv1.0, we compared the Giacomelli screen LFC scores called by both 

versions of the software with the results from the Kotler et al12 screen that used p53NULL H1299 

cells and a small variant library that focused on the p53 DNA binding domain (DBD) (Fig. 2d).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.16.448102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448102


 9 

Kotler et al targeted p53 DBD with 4 libraries, each covering the variants of a 141-base region of 

the ORF. The Kotler screens were processed by direct sequencing of the mutational region of 

each of the 4 libraries. Furthermore, Kotler et al processed their screen with stringent analysis 

thresholds by requiring (1) at least 80bp overlap of the two reads in a read pair, (2) perfect 

sequence agreement in the overlapping region, and (3) minimum read coverage of >200 reads for 

each variant. These stringent thresholds and the direct readout of variant counts rendered the 

Kotler dataset the best available for validating the ASMv1.0 algorithm. 

  

Similar to the Giacomelli p53NULL A549/nutlin-3 screen, the Kotler p53NULL H1299 cell screen 

enriched for TP53 alleles that exhibit LOF, and depleted wild-type-like variants. From the 7890-

variant Giacomelli p53NULL A549/nutlin-3 screen data, we extracted a 2964-variant subset that 

covered the same mutational space as the Kotler H1299 screen. Among these 2964 variants, we 

identified 76 variants from the Giacomelli p53NULL/nutlin-3 screen that were called differently by 

ORFCallv1.0 and ASMv1.0, with abs(delta(LFC))>1 (Fig. 2d, right). Of these differentially 

scored variants, the LFC scores called by two versions of the software were individually 

compared with the Kotler screen scores (Fig.1e). The ASMv1.0 LFC scores for the Giacomelli 

p53NULLA549/nutlin-3 screen agree with the Kotler calls better than the ORFCallv1.0 LFC scores 

do (Fig. 2e).  

 

ASMv1.0-enabled analysis reveals that the secondary mutations (errors) in the library are 

near the targeted mutation and introduced by errors in oligo synthesis.  The ability of 

ASMv1.0 to detect molecules with intended or unintended changes along the entire read pair 

allows one to conduct in-depth analyses of each saturated ORF variant library. Thus, in addition 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.16.448102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448102


 10 

to the variant purity discussed earlier, we can also tally and characterize the unintended 

nucleotide changes to profile the errors introduced during library construction. For example, we 

were able to determine that in the TP53 library, 84% of molecules are pure and planned variants 

(Fig. 3a,b, left), and the errors in the library are predominantly single nucleotide changes.  

 

Taking one step further with the ASMv1.0 output, we investigated the physical proximity 

distribution of errors in relation to the intended codon change. In Figure 3, we compared 

libraries made by two different methods (see Methods): the TP53 library made by MITE 

(Mutagenesis by Integrated TilEs)17, and the PDE3A library synthesized by Twist Bioscience. 

The MITE method involved oligo synthesis to cover the length of ‘tiles’ that are 90 nucleotides 

long. The Twist Bioscience technology involved the synthesis of oligos that vary, depending on 

GC content, between 30-50 nucleotides and with the variant-encoding bases in the middle. In 

Figure 3, we profiled the error rate by distance, in nucleotides, between the locations of the error 

and the planned change. What this distance profile reveals are significant: 

 

First, it indicates that the errors in the libraries are concentrated near the planned codon changes. 

The lengths of stretches with frequent errors in the library made by each method, ~90 bases for 

the library made by the MITE method and ~30 bases for the library made by Twist Bioscience, 

suggest that errors in the libraries are predominantly DNA oligo synthesis errors. In other words, 

the errors are near a planned codon change. Therefore, both intended and unintended changes 

can be detected comfortably by a read of 100 bases or more.  
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Secondly, it suggests that we can focus on the variant-signature-carrying reads to tally variant 

counts, and assume that the unseen in cis portion of the ORF, the ORF sequence outside of the 

variant-signature-carrying reads, should be otherwise wild-type and free of errors. In fact, the 

unseen portion of the ORF is subjected to errors introduced by DNA polymerase during the 

library build procedure (Twist Bioscience method) or during vector preparation (MITE method). 

However, ignoring such errors is not unreasonable, because a high-fidelity DNA polymerase 

with an error rate of 10-6 errors per cycle per amplified nucleotide will produce a small number of 

erroneous molecules (1.1% for a 1kb ORF; 4.3% for a 4kb ORF), which amount to a small 

fraction of those introduced from oligo synthesis (10% or 18% between two methods) 

(Supplementary Table 4). 

 

ASMv1.0-enabled analysis allows assessing the effect of miscalls (artifactual errors) 

introduced by processes involving PCR.  While the errors discussed above are true errors that 

are present in the libraries, it is important for us to address the artifactual errors in the form of 

miscalls introduced by the variant quantification process itself.  In the screen deconvolution 

process, PCR was used to replicate the ORF DNA from genomic DNA (up to 30 PCR cycles) 

and used again in NGS sample preparation (12 cycles). The errors introduced by these PCR steps 

are artifacts. We define ‘miscalls’ as the artifactual and mispresented base calls relative to what 

are actually in the samples. The error rate of DNA polymerases can be as low as one error per 

one million bases synthesized in a PCR cycle. When we, in parallel with the screening samples, 

processed and sequenced the reference TP53 ORFs that are clonal, pure, and without any 

variants, the sequencing results are striking – at each nucleotide position, we observed miscalls at 
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a rate of ~0.0003-0.0006 miscalls per nucleotide read-out (Fig. 4a, right), or 3-6 miscalls per 

10,000 sequenced bases.  

 

While this miscall rate may appear small, it is a significant factor in variant detection. As an 

example, illustrated in Supplementary Figure 5, these miscalls will lead to (1) inflated counts 

of variants with codons that are one-nucleotide away from the template codon (we refer to this 

variant type as ‘1-nt delta’ codon), and (2) the artifactually narrowed log-fold change range of 1-

nt delta codons (Supplementary Fig. 5, legend). Indeed, in the TP53 library screen with p53NULL 

cells/nutlin-3, we observed the inflation of counts (Fig. 4b), and the suppression in fold-change 

(Fig. 4c), in the 1-nt delta variant group relative to 2- or 3-nt delta variants. This effect of PCR 

errors on 1-nt delta codon changes has been observed, without exception, in all libraries we have 

processed, and the effect magnifies as ORF length increases.  

 

A recent report18 presented software DiMSum that used 1-nt delta codons to model PCR/NGS 

errors as a method to assess library quality. We, however, took a direct approach and opted to 

mitigate the effects of PCR/NGS miscall errors by implementing library design rules and adding 

control experiments. First, we set an important rule for saturated ORF variant library design - 

minimizing the use of codons that are one nucleotide away from the reference codons. In our 

experience, to achieve ‘saturated’ amino acid coverage in a library, we cannot completely avoid 

variant codons that are one nucleotide away from a reference codon. But we can minimize the 

use of 1-nt delta codons, reducing them from 15% to 3% of the library members. Secondly, 

dealing with these 3% 1-nt delta variants, we added a clonal template plasmid sample and 
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processing it as if it were a screening sample. One may opt to use the clonal template data to 

monitor or even correct the screen sample data (Fig. 3b, right).  

 

A justification for using next-generation sequencing (NGS) over long-read sequencing 

(LRS).  An often-debated topic is how saturation mutagenesis screen samples should be 

sequenced. It would seem evident that screen samples should be sequenced with long reads to 

widen the space of variant characterization and to capture all variants present on each molecule. 

However, the technology that can capture the read-out of full-length ORF sequences19,20 is 

currently cost-prohibitive for most labs, and more importantly, undesirable for variant detection 

due to low concordance rate of base calls21. For example, in a study by Wenger et al.22, circular 

consensus sequencing (CCS), the best of its kind, has a concordance rate of 99.772%.  This is 

equivalent to a Q26 Phred score, producing one discordance per 439 bases read out. This 

discordance rate is higher than the error rate in oligo synthesis, the key contributor of the real 

errors in the libraries. Consequently, until long-read sequencing (LRS) technology achieves a 

polymerase-level rate of concordance, for instance, 99.999%, or Q50 on the Phred scale, one 

should use NGS for variant detection.  

 

For variant quantification, we favor a sequencing platform capable of producing NGS read pairs 

of 150 bases per read with a Phred score of Q30 or more for each base call, for four main 

reasons: (1) We have demonstrated that the errors in our libraries are near the planned codon 

changes (Figure 3, right), and a 150-base read is adequate to detect both the variant-defining 

sequences and library errors from DNA oligo synthesis. (2) We have shown that it is unnecessary 

to sequence far into the regions synthesized by DNA polymerase during library construction, as 
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the errors introduced by DNA polymerase in regions outside of the planned codon changes are 

rare and negligible. In principle, our variant-detecting method is targeting the library ORF 

regions whose nucleotides are originated from oligo synthesis. To achieve this, we focus on 

reads that bear a planned codon change, with or without additional changes. (3) We have 

demonstrated that PCR-introduced miscalls produce predominantly 1-nt delta codon changes. As 

we minimize the use of 1-nt delta codon variants, the artifactual variants resulting from the 

miscalls are mostly unintended variants. By ignoring reads carrying only unintended variations, 

we largely removed the effects of sequencing miscalls. (4) With ASMv1.0 base quality threshold 

set at Phred score Q37 (with Novaseq NGS), we can comfortably achieve <1 discordance per 

5000-base NGS readout. As we focus on the reads that carry an intended-variant signature, at 

this discordance rate, >94% (0.9998^300) of 150-base read pairs used to call variants are free of 

miscalls.  

 

Silent variants in library are used as a measure of screen baseline.  Another rule we have 

implemented for library design is the inclusion of silent variants with codons that are 2- or 3-nt 

different from the reference codon. ORF variant library screening often produces a large number 

of hits. As a result, one cannot always rely on the large portion of the library producing no 

phenotype to serve as the baseline. It is therefore essential to include silent codon changes in the 

library; such nucleotide changes allow us to identify and quantify the silent alleles in parallel 

with missense and nonsense variants (see rows marked as ‘B’ in all fold-change heatmaps). 

Often, codons encoding an amino acid differ from one another at the wobble base. As a result, 

many silent codons are one nucleotide away from the reference codon. Requiring that any 
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admitted silent variants have a 2- or 3-nt difference relative to the reference codon results in 

silent variants comprising about 2% of the library. 

 

In the SMARCB1 library, we included nearly all possible silent variants, including 1-nt delta 

silent variants. As expected, due to the artifactual miscalls discussed earlier, the abundance of 1-

nt delta silent variants is inflated relative to the abundance of 2- and 3-nt delta silent variants 

(Supplementary Fig. 6a). For the same reason, the 1-nt delta silent variants show an 

artifactually narrowed log-fold change range, compared with 2- and 3-nt delta groups 

(Supplementary Fig. 6b). In our current library designer download (Supplementary Table 2), 

we avoid 1-nt delta silent variants and minimize 1-nt delta missense and nonsense variants.  

 

Discussion 

Variant detection software ASMv1.0 enabled a cascade of in-depth data analyses that allowed us 

to explore, for instance, variant purity, the rate and nature of library errors, and the artifactual 

miscalls. The results of these analyses have shaped and reshaped our strategies at many key steps 

of the projects, on both laboratory and computational fronts. We believe that the analytical and 

laboratory technical blueprint presented here, along with our library designer, variant-calling 

software, and data analysis tools will help enable the scientific community to fully utilize this 

technology in research applications.  

 

It should be noted that the strong hits among the 1-nt delta variants may still score well, even 

with the miscall-related log-fold change suppression. The issue of 1-nt delta codon variants in 

processing screening samples stems from the fact that we sequence the ORF to quantify the 
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variants. The effect of miscalls on 1-nt delta variant counts becomes less of an issue for short 

ORFs (e.g. KRAS). As illustrated in Supplementary Figure 5, the longer the ORF, for each 

readout of a variant-defining codon, the more copies of the template codon need to undergo 

PCR-based amplification and NGS, and consequently the more counts of the artifactual 1-nt 

delta codons will result. Our suggestion of minimizing 1-nt delta codon variants in ORF variant 

libraries is to insulate the true variant counts in the screening samples from PCR-introduced 

artifactual miscalls. If one prefers 1-nt delta codons in the variant libraries, we recommend 

adding the clonal template ORF as a control sample and processing it in parallel with the 

screening samples. This control sample may be used as a count-correction factor (as shown in 

Fig. 4, right).  

 

The recent establishment of an open-source platform, MaveDB, to enable variant function data 

sharing, is a significant development23. We further advocate that the scientific community find a 

way to share saturation mutagenesis reagents and resources. In many cases, the content of a 

saturated ORF variant library is well defined by the gene reference sequence. For a given gene, 

the library designed by one lab will be highly similar to one done by another lab. As a perfect 

example of resources sharing, Boettcher et al24, using the TP53 saturated ORF variant library 

created by Giacomelli et al14, quickly demonstrated that the dominant-negative activity of TP53 

missense mutations in DNA binding domain was selected for in myeloid malignancies. If the 

scientific community can come to an agreement for library sharing and repurposing, the available 

resources could be used to cover more genes, as opposed to building redundant libraries. Imagine 

what a collection of saturated ORF variant libraries of 1000 disease-related genes could do! 
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Figure 1. Pooled screens with ORF variant libraries versus shRNA/sgRNA libraries.  A 

plasmid pool of thousands of genetic perturbation agents is first packaged into lentiviral 

particles. Cells were then transduced with the pool of virus at an infection rate (the proportion of 

infected cells over total cells) of 30-50% to ensure that most of the infected cells get a single 

genetic perturbation. The perturbed cell population is then subjected to either selection pressure, 

or treatment under a reference condition. Upon the completion of the screen, the remaining cell 

population is harvested and processed for enrichment or depletion of each library perturbation by 

comparing a sample that has undergone selection and a sample that has been treated under a 

reference condition. (a) A typical pooled screen using shRNA/sgRNA libraries. For 

shRNA/sgRNA, the collected cells are first processed for genomic DNA (gDNA), which serve as 

the PCR template to amplify the perturbagen barcodes. These barcodes are in fact the functional 

elements themselves, the hairpins of shRNA or guides of sgRNA. These barcodes are short 

enough to be read straight out by a 50-base NGS read. (b) ORF variant library screens. In an 

ORF variant library, however, the variant signatures are subtle as each member of the library 

differs from the template by a single codon variation, and the variant signatures of the library are 

spread out across the entire ORF. Consequently, the detection of variant requires (1) PCR-

amplification and then shotgun shearing of the full-length ORF, (2) next-generation sequencing 

of the resulting fragments, (3) robust variant detecting tools to align the reads to the template, 

then identify, evaluate, annotate and tally the variant-defining reads. The NGS reads consist of 

variant signature-carrying reads (shown as red arrows) and wild-type reads (black arrows). The 

variant-calling software processes the NGS reads to detect variant signature-carrying reads, 

which is a minority of the total reads, and records the counts of each variant.  These counts are 
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the basis for downstream analyses that map the variants to the phenotype strength in the form of 

log2-fold change (LFC).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.16.448102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448102


 25 

 

ab
c

ASM

O
RFcall

D
elta

Figure 2

0.21

0.41

0.69

0.78
0.8

0.00

0.25

0.50

0.75

1.00

�ï�VW

�VWï��WK

��ï��WK

��ï��WK

��ï���WK

5
DQN�SHUFHQWLOH�RI�YDULDQW�SXULW\

3HDUVRQ�FRUUHODWLRQ�FRHIILFLHQW

variant
purity

A
S

M
 vs O

R
Fcall

Kotler
score

A
S

M
 vs O

R
Fcall

Kotler
score

D
N

A binding dom
ain (D

B
D

) subset
(2964 variants)

D
B

D
 &

 abs(delta LFC
A

S
M

-O
R

Fcall)>1 subset
 (76 variants)

K
otler H

1299 vs O
R

Fcall
K

otler H
1299 vs A

S
M

variant
purity

variant
purity

de
(76 variants)

(76 variants)

ï� ï� 0 2

ï�
ï�

0
2

=�/)&
B2

5
)&

DOO

Z.LFC_ASM

0.00
0.25
0.50
0.75
1.00

A119S

A129P

A138G

A161G

A189G

C
135A

C
141A

C
182L

C
277L

E180DE198K
G
108H

G
112A

G
112W

G
187R

G
187W

G
262W

H
115K

H
115N

H
168E

H
168S

H
178I

H
178T

K120R

K164S

L114A

L114G
L114K

L137W

L206W

M
169G

M
169W

N
131H

N
239Y

N
288I

P142L

P153A

P219A

P250A

Q
136H

Q
136N

Q
144S

Q
192S

R
156L

R
174G

R
175A

R
175N

R
181A

R
181T

R
202L

R
202V

R
209Q

R
283A

R
290P

S106A
S116L

S121L

S166Q

T102HT118G

T118N

T118P

T118Q

T140A

T140D

T150P

T155C
T155S

T170R

T211H

T253H

T284Q
V172P

Y103K

Y103T

Y103W

ï� ï� 0 2 4

ï�
ï�

0
2

4
'
%'

�VXEVHW�/)&
�2
5
)FDOO

'%'�VXEVHW�/)&�$60

ï� ï� 0 1 2

A119S

A129P
A138G

A161G

A189G

C
135A

C
141A

C
182L

C
277L

E180DE198K

G
108H G

112A

G
112W

G
187R

G
187W

G
262W

H
115K

H
115N

H
168E H

168S

H
178I

H
178T

K120R

K164S

L114A

L114G
L114K

L137W

L206W
M
169G

M
169W

N
131H

N
239Y

N
288I

P142L

P153A

P219A

P250A

Q
136H

Q
136N

Q
144S Q

192S

R
156L

R
174G

R
175A

R
175N

R
181A

R
181T

R
202L

R
202V

R
209Q

R
283A

R
290P

S106A

S116L

S121L

S166Q

T102H

T118G

T118N

T118P

T118Q

T140A
T140D

T150P

T155C

T155S

T170R

T211H

T253H

T284Q
V172P

Y103K

Y103T

Y103W

ï� ï� 0 2 4

ï�
ï�

0
2

4
'
%'

�VXEVHW�/)&
�2
5
)FDOO

'%'�VXEVHW�/)&�$60

ï� ï� 0 1 2

A119S

A129P A138G

A161G

A189G

C
135A

C
141A C

182L

C
277L

E180D

E198K

G
108H

G
112A

G
112W

G
187R

G
187W

G
262W

H
115K

H
115N

H
168E

H
168S

H
178I

H
178T

K120R

K164S

L114A

L114G

L114K

L137W

L206W

M
169G

M
169W

N
131H

N
239Y

N
288I

P142LP153A

P219A

P250A

Q
136H

Q
136N

Q
144S

Q
192S

R
156L

R
174G

R
175A

R
175N

R
181A

R
181T

R
202LR

202V

R
209Q

R
283AR

290P
S106A

S116L

S121L

S166Q

T102H

T118G

T118N

T118P

T118Q

T140A

T140D

T150P

T155C

T155S

T170R

T211H

T253H
T284Q

V172P
Y103K

Y103T

Y103W

ï� ï� 0 2 4

ï�
ï�

0
2

4
/)&

�2
5
)FDOOY���

5)6B+�����.RWOHU

0.00
0.25
0.50
0.75
1.00

A119S

A129P

A138G

A161G

A189G

C
135A

C
141A

C
182L

C
277L

E180D

E198K

G
108H

G
112A

G
112W

G
187R

G
187W

G
262W

H
115K

H
115N

H
168E

H
168S

H
178I

H
178T

K120RK164S

L114A

L114G

L114K

L137W

L206W

M
169G

M
169W

N
131H

N
239Y

N
288I

P142L
P153A

P219A

P250A

Q
136HQ

136N

Q
144S

Q
192S

R
156L R

174G

R
175A

R
175N

R
181A

R
181T

R
202L

R
202V

R
209Q

R
283A

R
290P

S106A

S116L

S121L

S166Q
T102H

T118G

T118N

T118P

T118Q

T140A

T140D

T150P

T155C

T155S

T170R

T211H

T253H

T284Q

V172P

Y103K
Y103T

Y103W

ï� ï� 0 2 4

ï�
ï�

0
2

4
/)&

�$60
Y���

5)6B+�����.RWOHU

0.00
0.25
0.50
0.75
1.00

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.16.448102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448102


 26 

Figure 2. Reanalysis of TP53 saturation mutagenesis screen using ASMv1.0. Screens most 

often involve the comparison of a sample subjected to selective pressure with a sample processed 

under a reference condition. This Giacomelli et al22  p53NULL A549 cell/nutlin-3 screen 

enriches TP53 variants that exhibit loss-of-function (LOF), and depletes wild-type-like variants. 

(a) Heatmaps: each variant is placed in a 2-dimensional grid, where codon position is presented 

along the horizontal dimension and the amino acid mutation along the vertical dimension. We 

assigned the letter ‘X’ to represent nonsense mutations, and ‘B’ to represent silent codon 

changes. The value of the log fold change (LFC) between treatment and reference samples is the 

heat index. We processed the same original NGS data through the two versions of software and 

presented the resulting log fold change (LFC). The pair of heatmaps are nearly identical to the 

naked eye. To help inspect all variants one by one, the third heatmap used the 

delta(LFC)=(LFCASM – LFCORFCall) as the heat index. This heatmap revealed variants that were 

scored differently by the two versions of software. (b) Scatter plot comparing all LFC values 

produced by the two versions of software, each dot representing a planned variant. The colors are 

scaled by variant purity. (c) Demonstrating the impact of variant purity on the improved 

performance of the new ASMv1.0 software. The new software’s massive output allows us to 

compute ‘variant purity’ defined by the fraction of pure planned variant over all variants that 

harbor the planned variant, with or without unintended changes in the same sequencing reads. 

We binned the variants by variant purity and in each purity bin we assessed the Pearson 

correlation coefficient between two sets of LFC values produced by the two versions of software. 

It is clear that high variant purity results in similar LFC values, whereas as the purity decreases, 

the two sets of fold-changes diverge. The new software’s ability to detect and tally variants that 

carry additional unintended changes is called for when the variant purity is low.  Similarly, we 
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analyzed two other Giacomelli et al22 screens of the TP53 saturated ORF variant library and the 

results are presented in Supplementary Figure 3 and 4. (d,e) Validation of ASMv1.0 using the 

published data by Kotler et al.25 The Kotler dataset includes a screen of p53NULLH1299 cells with 

a library covering TP53 DBD. We first took a subset of Giacomelli library to cover the 

same TP53 region as Kotler screens, resulting in a total of 2964 variants (d, left). We then 

identified 76 variants that recorded most different LFC scores by our two versions of 

software (d, right). We then compared the Kotler scores against our LFC scores called by 

ORFCallv1.0 (e, left) and ASMv1.0 (e, middle). We observed that between two versions of 

software, ASMv1.0 calls are clearly more in agreement with Kotler calls (e, right). 
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Figure 3. The errors in our saturated ORF variant libraries are low in number and local 

relative to the location of the planned codon change. In screens, the mutational spaces of 

libraries depend on how many planned variants can be detected in the final sequencing data. A 

Figure 3
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library with a high impurity rate will require a larger experimental effort. (a) Breakdown of the 

planned variants and those with errors. Going through all called variants that contain a 

planned codon change, we identified the number of unintended nucleotide changes. This bar-

chart shows that in the pMT025-TP53 library, 84% molecules are planned variants without 

additional mutations. Of 16% imperfect molecules, the majority are those with 1-2 extra 

nucleotide changes. (b) Major errors are in the vicinity of a planned change. We first pinned 

down the planned change in a read and then travelled in both directions and tallied the errors as a 

function of the distance to the pinned-down codon change. In this figure, we compared two 

libraries made with different technologies, TP53 library by MITE and PDE3A by Twist 

Bioscience. The error distribution profile along the distance to a planned variant is strikingly 

explainable by the oligo synthesis scheme involved in these technologies. MITE technology uses 

synthesized oligos of 150 bases long, of which 90 bases (called TILE) go into the final products, 

whereas Twist Bioscience introduced errors through oligo primers with the intended codon 

changes placed in the middle and flanked with 15-25 bases on either side. The major errors are 

concentrated within ~100 bases (MITE method) or ~30 bases (Twist Bioscience method) from a 

planned codon change.  This is important because the close proximity of the errors to the 

intended codon change renders the planned change and errors all detectable in a single read (e.g. 

150 bases) or read pair (e.g. 2x150=300 bases).   
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Figure 4. The effect of PCR and sequencing errors on variant quantification. (a) A clonal 

TP53 reference plasmid (i.e. all sequences are wild-type) was processed as if it were a screening 

sample. The base call at each position is predominantly, but not absolutely, the reference 

nucleotide. The non-reference calls represent artifactual variants that are not actually in the 

library. The heatmap on the left shows tallied counts of called nucleotides at each nucleotide 

position; a blank spot represents zero counts. The heatmap on the right depicts the rate of 

miscalls. Blank spots in this heatmap are either the wild-type nucleotide or nucleotides of zero 

counts. (b) The miscalls resulting from PCR errors inflate the abundance measurement of 

variants whose variant-defining codon is 1-nt away from the reference codon. In the TP53 library 

screen data, predominately affected are variants of 1-nt (not 2- or 3-nt) difference from the 

reference codons. As a result, the variants of 1-nt delta codons as a group appear more abundant 

than groups of 2- or 3-nt delta codons (left). The artificial ‘variant’ calls resulting from PCR 

errors can be corrected with abundance adjustment by subtracting the miscall rate as determined 

by the clonal sample experiment (right). The variant abundance measurements of the 2-nt and 3-

nt delta codons are not affected by the miscalls. (c) Suppression of fold-changes in 1-nt delta 

codon variants. PCR errors in the workflow inflate the counts of variants that differ from the 

template codon by one nucleotide. Using the pMT025-TP53 library as an example, 1-nt delta 

variants showed much narrower fold-change values than 2-nt and 3-nt delta variants. Thus, in the 

library design stage, when we have choices of 2- or 3-nt delta codons, we pick them over 1-nt 

delta codons. However, we do admit 1-nt delta codons when they are the only choices available; 

without them, the library would have gaps in coverage. The fold-change suppression in the 1-nt 

delta group leads to false negative calls. In order to mitigate this error, correction of variant 

counts with data from a carefully constructed clonal plasmid control experiment may be helpful 
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for 1-nt delta variants.  Altogether, we have arrived at an important rule for saturated ORF 

variant library design: minimizing the use of codons that are 1-nt away from the reference 

codons. 
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