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Abstract

Due to the close interaction between the host and the gut microbiota, the alterations in
gut microbiota metabolism may therefore contribute to various diseases. How to use
antibiotics more wisely in clinical practice is a promising task in the field of
pathophysiology related to gut microbiota. The hope fueling this research is that the
alteration of gut microbial communities are paralleled by their capacity on metabolomic
from the combined perspective of microbiome and metabolomics. In order to reveal the
impacts of antibiotics on microbiota-associated host metabolomic phenotypes, a feasible
methodology should be well developed to assess the pervasive effects of antibiotics on
the population structure of gut microbial communities. Our attempt starts from
predicting specific resistance phenotypes of the individuals in isolation from the rest of
the gut microbiota community, according to their resistant genotypes. Once resistance
phenotypes of microbiome is determined, we integrated metabolomics with machine
learning by applying various analysis algorithms to explore the relationship between the
predicted resistance and metabolites, including what the microbial community is after
medication, which microbes produce metabolites, and how these metabolites enrich.

Introduction 1

The human gut is colonized by a high abundance of microorganisms, which have been 2

attested to be deeply integrated with human physiological function [18]. Previous 3

researches revealed the diverse roles of gut microbiota on human physiology, including 4

energy metabolism, behavioral and mental states, as well as pathogen defence and 5

immune functions [8, 17,19]. And products of microbial metabolism exist at a nexus 6

between host and microbiome in a wide range of human tissues such as feces, urine, and 7

cerebrospinal fluid [6, 9]. Due to the close interaction between the host and the gut 8

microbiota, the alterations in gut microbiota metabolism may therefore contribute to 9

various diseases, for instance, inflammatory diseases, metabolic ailments, cancer and 10

mental disorders. 11

Several host factors influence the physiological state of gut microbiota, and hence 12

participate in the pathophysiological process of disease occurrence. Turnbaugh et al. 13

revealed that diet-induced obesity is linked to marked but reversible alterations in the 14

mouse distal gut microbiome [20]. Azad et al. explained hygiene hypothesis about 15

infant allergic disease by implying the impact of hygiene on microbiota composition and 16
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diversity [3]. Besides, dozens of studies have reported that drug application exerts the 17

protective or harmful effect against many diseases. Especially for antibiotics, increasing 18

evidences support the correlation between their overuse and the development of many 19

disorders associated with the alteration of gut microbiota [14]. Pinato et al. reported 20

that broad-spectrum ATB use can cause prolonged disruption of the gut ecosystem and 21

impair the effectiveness of the cytotoxic T-cell response against cancer [15]. Khodaie et 22

al. found that the administration of the antibiotic minocycline can induce changes in 23

microbiota composition and potentiate the effect of the antipsychotic drug risperidone 24

in people with chronic schizophrenia from a double-blind study [10]. How to use 25

antibiotics more wisely in clinical practice is a promising task in the field of 26

pathophysiology related to gut microbiota. 27

Regular bench works has concerned the effects of individual antibiotics on individual, 28

cultivated strains of bacteria in the laboratory, or on specific species of bacteria 29

cultivated from antibiotic-exposed hosts [13]. Given that gut microbiota affect host 30

physiology in the form of functional community, a system-wide perspective is apparently 31

more powerful for monitoring the dynamic changes of pathological metabolic [21]. 32

However, traditional omics analysis focus on the final variation of the disease process 33

and intervention measures, leaving the endogenous mechanism of the change of gut 34

microbiota and metabolite products unclear. [7]. Thus, metabolomics alone may Limits 35

the comprehend of how antibiotics affect the metabolic state of the host by changing 36

the gut microbiota. 37

From the combined perspective of microbiome and metabolomics, it can be found 38

that the alteration of gut microbial communities are paralleled by their capacity on 39

metabolomic [13]. In order to reveal the impacts of antibiotics on microbiota-associated 40

host metabolomic phenotypes, a feasible methodology should be well developed to 41

assess the pervasive effects of antibiotics on the population structure of gut microbial 42

communities. Our attempt starts from predicting specific resistance phenotypes of the 43

individuals in isolation from the rest of the gut microbiota community, according to 44

their resistant genotypes. Once resistance phenotypes of microbiome is determined, we 45

integrated metabolomics with machine learning by applying various analysis algorithms 46

to explore the relationship between the predicted resistance and metabolites, including 47

what the microbial community is after medication, which microbes produce metabolites, 48

and how these metabolites enrich. And the workflow is shown in Fig. 1. 49

Materials and Methods 50

Data collection 51

We used two public databases: the Virtual Metabolic Human Database for the gut 52

microbiota-metabolomics relations and the NCBI nucleotide database for the gut 53

microbiota-genomics relations. 54

The gut microbiota resource from Virtual Metabolic Human Database contains the 55

collection of over 800 semi-automatically curated strain-specific microbial recon- 56

structions, belonging to 205 genera and 605 species. All microbial reconstructions were 57

based on literature-derived experimental data and/or comparative genomics. And a 58

typical reconstruction contains an average of 771 (±262) genes, 1198 (±241) reactions, 59

and 933 (±139) metabolites [11]. After preprocessing, a numeric vectors of 818 bacteria 60

and 753 metabolites were constructed to express the binary status of specific metabolite, 61

1 (produce) and 0 (not produce), for individual gut microbe. 62

The genomes & maps resource from NCBI Nucleotide Database is a collection of 63

sequences from several sources, including GenBank, RefSeq, TPA and PDB. Genome, 64

gene and transcript sequence data. These sequences are obtained primarily through 65
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submissions from individual laboratories and batch submissions from large-scale 66

sequencing projects, including whole-genome shotgun (WGS) and environmental 67

sampling projects. [4]. The sequences of 787 gut microbiota involved, mainly WGS 68

projects, are acquired manually and formed for next step drug resistance prediction. 69

Antimicrobial resistance prediction 70

Clinical microbiology laboratories currently perform antimicrobial susceptibility testing 71

(AST) using phenotypic methods, such as the minimum inhibitory concentration (MIC). 72

However, these methods are unpractical in this case because a part of gut microbiota is 73

difficult to isolate or slow-growing for cultured. To remove the obstacle of traditional 74

phenotypic AST based on strain-culturing, a number of molecular-level supplementary 75

techniques have been developed. WGS provides a comprehensive inventory of an 76

organism’s functional potential, making it an attractive approach for AST [12]. And 77

various feasible tools and algorithms for detecting antimicrobial resistance (AMR) from 78

WGS data are publicly accessible. 79

We performed AMR detection from WGS data using Resistance Gene Identifier 80

(RGI) website portal version (RGI 5.2.0) from Comprehensive Antibiotic Resistance 81

Database (CARD 3.1.2) [1]. CARD stands out for its high quality, manually curated 82

resistance detection models derived from experimentally verified phenotype-genotype 83

associations reported in the scientific literature, and through collaborations with public 84

health and clinical microbiology laboratories [5]. When WGS of each bacteria from gut 85

microbiota are submitted, RGI first predicts complete open reading frames (ORFs) 86

using Prodigal and analyzes the predicted protein sequences. Resistomes from protein 87

or nucleotide are predicted based on homology using double index alignment of 88

next-generation sequencing data (DIAMOND), and strict significance are determined 89

based on CARD curated bitscore cut-offs. The RGI analyzes genome or proteome 90

sequences is under the Loose paradigms and parameters included for percent identity 91

filtering is 50%. 92

Machine Learing Algorithms 93

Proteomics methods that directly detect the presence and abundance of the proteins 94

that confer AMR should, in theory, provide the strongest molecular evidence of 95

resistance [2]. Transcriptomics approaches to AMR detection are problematic due to 96

their low correlation with protein abundance levels. The suitability of the application of 97

CARD for AMR prediction is promising but still questionable, and not to mention the 98

further integration of metabolomics. For this sake, we deploy some machine learning 99

algorithms to eliminate this uncertainty. Based on the clustering result of metabolites, 100

we reconstructed a gut microbiota dataset with the label referring to the clustering 101

result. And then random forest (RF) performed the contrastive classification task on 102

predicted AMR features to evaluate the labeling. If the metabolite labeling is 103

well-perform considering to the AMR features, it can be infer that there are some 104

coherence between the predicted AMR and metabolite products. So that we could exert 105

the intgrated research of gut microbiota and metabolomic to reveal the impact of 106

antibiotics. 107

K-means: K-means is a widely used unsupervised learning algorithms for clustering. 108

The procedure firstly set through a certain number (k) of clusters fixed a priori. The 109

center of each cluster are defined as much as possible far away from each other. 110

Subsequently, K centroids is recalculated until the centers are the same as the cluster 111

centers obtained in the previous iteration. As a result of this iteration it may notice 112

that the k centroids moves by each loop until their location are fixed. 113
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The number of centers should be set up properly to achieve a valid clustering task 114

on the dataset. In this case we aims at minimizing two objective function, squared error 115

function and silhouette coefficient function. 116

W (S,C) =
K∑

k=1

∑
i∈Sk

||yi − ck||2 (1)

s(i) =
b(i)− a(i)

max {a(i), b(i)}
, SC = kmaxs̃(k) (2)

Random Forest (RF): The RF is an ensemble model that grows a number of 117

tree-based weak classifiers by randomly selecting partial bootstrapped variables. The 118

salient features are voted by bootstrapped training process of classification task. 119

Although each sample labeled as a binary class, the interleaving herbs that were 120

contained in samples and the sizable feature vector will lead to an excessive variance. 121

The RF reduces the predictive variance by decorrelating the individual weak classifier as 122

the following equation: 123

RFvar = ρσ2 +
1− ρ
B

σ2 (3)

where ρ is the correlation of trees and σ2 is the variance of the herbs. By increasing the 124

tree numbers B (the maximum is 100), the second term on the right-hand side becomes 125

minor. Moreover, the hyperparameter max depth of a tree set as 13 in this study to 126

avoid over fitting problem. ana 127

TF-IDF Algorithms 128

Term Frequency Inverse Document Frequency (TF-IDF) is a commonly used weighting 129

technique for information retrieval and data mining. The main idea of TF-IDF is to 130

calculate values for each word in a document through an inverse proportion of the 131

frequency of the word in a particular document to the percentage of documents the 132

word appears in [16]. In this work, term frequency, tf(t,d), is the frequency of term t, 133

tf(t, d) =
ft,d∑

t′∈dft′,d
(4)

where ft,d is the raw count t of bacteria containing a certain metabolite in the bacterial 134

population d that survived the application of a certain antibiotic. And the inverse 135

document frequency is a measure of how much information the word provides, 136

idf(t,D) = log
N

|d ∈ D : t ∈ d|
(5)

It is obtained by dividing the total number of 787 gut microbes by the number of 137

bacteria containing the certain metabolite, and then taking the logarithm of that 138

quotient. This algorithm aims to reflect the importance of a certain metabolite to the 139

survival of the gut microbes after the application of a certain antibiotic. 140

Metabolomics profiling 141

Metabolic pathway analysis was performed by MetaboAnalyst 5.0 142

(https://www.metaboanalyst.ca/). Pathway enrichment analysis usually refers to 143

quantitative enrichment analysis directly based on the compound concentration values 144

as compared to the compound lists used by over representation analysis. The available 145
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algorithms include Fishers’ exact test, the hypergeometric test, global test and Global 146

Ancova [22]. According to the enrichment analysis, the pathways significantly affected 147

by all the 41 antibiotics in gut microbes were displayed. 148

Results 149

Machine Learning Model Evaluation 150

To eliminate the uncertain relationship between the AMR detection of gut microbes and 151

their metabolomics, we applied the machine learning algorithms to the gut microbe 152

dataset. And the endogenous consistency between the predicted AMR features and the 153

metabolite product features of the same bacteria was evaluated. The results of the 154

machine learning algorithms are shown in Fig 2. 155

Focusing on the clustering, when the number of centers set up to 6, it achieve a valid 156

clustering task on the dataset with the metabolite product features. Two objective 157

function, squared error and silhouette coefficient, were taken into consideration and 158

shown in Fig 2(a). The result of the K-means was used for clustering the dataset and 159

re-labeled all the samples, in this case, the 787 types of common gut microbes. 160

Focusing on the RF model, we further investigated the effect of the clustering-based 161

label on the dataset with the predicted AMR features. The confusion matrix in Fig. 2 162

(b) gives more details about the RF model. It can be seen that label 2 and 6 are clearly 163

separated without mismatching. For label 1, the subclassification is accurate, and only 164

two misclassification occurred. Although there is a certain degree of misclassification in 165

labels 3-5, all the specificity, according to the metrics in Table 1, are greater than 0.90. 166

In another word, the machine learning models prove the proposed methodology for AMR 167

prediction of gut microbiota. The dataset has latent compatibility to bridge the AMR 168

detection of gut microbes and their metabolites. Furthermore, the selected features can 169

be fully utilized for the next step of feature integrated metabolomics analysis. 170

class 1 class 2 class 3 class 4 class 5 class 6
Precision 0.9250 0.9091 0.7097 0.7000 0.8636 0.9318
Recall 1.0000 0.7143 0.7458 0.5833 0.9268 0.9425
Specificity 0.9753 0.99291 0.9308 0.9791 0.9784 0.9739

Table 1. The metrics of the RF model on the clustering-based label on the dataset
with the predicted AMR features.

Differential metabolite identification 171

Different antibiotic classes provide different patterns of microbiota alteration because of 172

their different spectrum and bacterial target. After the endogenous consistency between 173

the predicted AMR and the metabolite is verified by the machine learning algorithm, 174

the predicted AMR is methodologically proven effective. We logically mapped the 175

resistance of the included 41 antibiotics, against a total of 787 gut microbes, into an 176

antibacterial spectrum, as shown in Fig 3. 177

According to the prediction strength, 6 kinds of antibiotics, ethionamide, 178

bicyclomycin, free fatty acids, pyrazinamide, nitrofuran, and polyamine incur the least 179

resistance, which shows consistent with the types of broad-spectrum antibiotics in 180

clinical practice. 181
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Pathway enrichment analysis 182

To explore the affected metabolic pathways of common antibiotics in gut microbiota, we 183

imported these differential metabolites to MetaboAnalyst 5.0. As shown in Fig 4 and 184

Fig 5, based on pathway impact threshold which set up to 0.1, top 25 pathways affected 185

significantly were visualized among the 41 antibiotics. Fatty acid degradation are most 186

notably affected with 38 kinds of antibiotics, including acridine dye, aminocoumarin, 187

aminoglycoside, antibiotic efflux, benzalkonium chloride, bicyclomycin, carbapenem, 188

cephalosporin, cephamycin, diaminopyrimidine, elfamycin, fluoroquinolone, fosfomycin, 189

fusidic acid, glycopeptide, glycylcycline, fusidic acid, lincosamide, macrolide, 190

monobactam, mupirocin, nitrofuran, nitroimidazole, nucleoside, oxazolidinone, 191

para-aminosalicylic acid, penam, penem, peptide, phenicol, pleuromutilin, polyamine, 192

rhodamine, rifamycin, streptogramin, sulfonamide, tetracycline, and triclosan, as the 193

related antibiotics application. For the other three kinds of antibiotics, the top affected 194

enriched pathway are porphyrin and chlorophyll(antibacterial free fatty acids), fatty acid 195

elongation in mitochondria (ethionamide) and butanoate metabolism (pyrazinamide). 196

Discussion 197

Commonly, a large number of bench work are indispensable when whether the gut 198

microbiota is a valid mechanism target for disease occurrence is discussed. And whether 199

intervention trials, in this case, administration of antibiotics, are of clinical relevance 200

need to be examined with longitudinal trials. Nevertheless, the workflow adopted in this 201

work can be considered as a top down approach. Because we started with the 202

antibiotics-resistant prediction of large-scale microbiota in silico. Then we moved down 203

to the metabolite level and utilized state of the art machine learning techniques to 204

identify the significant consistency between predicted AMR and gut microbe 205

metabolites. Hence the approach is also a computational approach, in which our input 206

data corresponds to the survival of the gut microbes and the identified differential 207

metabolites against each common antibiotics. And the results we obtained are 208

promising showing integrated pathway enrichment, providing a breakthrough point for 209

future mechanism research. 210

Another thing that is interesting to discuss is the enriched pathway regarding to the 211

differential metabolites. The enrichment analysis show more than 90% antibiotics are 212

related to the changed on fatty acid degradation with the greatest p values. Further 213

research is needed to consider the directly or indirectly mechanism for taking this 214

pathway as the potential target to bridge antibiotics application and gut 215

microbiota-associated pathophysiology. 216

Last but not least, what needs to be further discussed is how the process of forming 217

the predicted antibiotics resistance, is enough with a three-level representation as in this 218

study or needs to be divided into the subtler classes. 219

Conclusion 220

In this study, assuming that it can be found that the alteration of gut microbial 221

communities are paralleled by their capacity on metabolomic, we first developed a novel 222

integrated approach to predict the specific resistance phenotypes of the individuals in 223

isolation from the rest of the gut microbiota community, according to their resistant 224

genotypes. We identified the relationship between the predicted resistance and 225

metabolites, including what the microbial community is after medication, which 226

microbes produce metabolites, and how these metabolites enrich. The consistency 227

between the predicted AMR and metabolomics was further validated by supervised and 228
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unsupervised machine learning methods. With the TF-IDF algorithms, the importance 229

of a certain metabolite to the survival of the gut microbes after the application of a 230

certain antibiotic was determined. The integrated pathway metabolomic analysis 231

revealed fatty acid degradation are most notably affected with 38 kinds of antibiotics. It 232

also provides a novel paradigm to identify the potential mechanisms of pharmacological 233

effects derived from the affected gut microbiota. 234
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Figure 1. The workflow of integrated metabolomics analysis to reveal the impacts of
common antibiotics based on AMR prediction of gut microbiota.
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(a) 

(b) 
Figure 2. The results of machine Learning models. (a), To achieve a valid
clustering task on the dataset, the number of clustering centers was set up by minimizing
two objective function, squared error function and silhouette coefficient function. (b),
Confusion matrix of RF model input with the clustering-based labelled dataset with the
predicted AMR features.
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Figure 3. Antibacterial spectrum according to the predicted AMR. The
resistance of the included 41 antibiotics, against a total of 787 gut microbes, are mapped
into an antibacterial spectrum. The prediction strength of resistance to specific antibiotics
are perfect (yellow), strict (green), and loose (blue).
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acridine dye aminocoumarin aminoglycoside

antibacterial free fatty acids antibiotic efflux benzalkonium chloride

bicyclomycin carbapenem cephalosporin

cephamycin diaminopyrimidine elfamycin

ethionamide fluoroquinolone fosfomycin

fusidic acid glycopeptide glycylcycline

fusidic acid lincosamide  macrolide  

Figure 4. visualizing pathway enrichment analysis of the top 25 pathways
affected significantly among the 41 antibiotics. The kinds of antibiotics are
acridine dye, aminocoumarin, aminoglycoside, antibacterial free fatty acids, antibiotic
efflux, benzalkonium chloride, bicyclomycin, carbapenem, cephalosporin, cephamycin,
diaminopyrimidine, elfamycin, ethionamide, fluoroquinolone, fosfomycin, fusidic acid,
glycopeptide, glycylcycline, fusidic acid, lincosamide, and macrolide.
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Figure 5. visualizing pathway enrichment analysis of the top 25 pathways
affected significantly among the 41 antibiotics. The kinds of antibiotics are
monobactam, mupirocin, nitrofuran, nitroimidazole, nucleoside, oxazolidinone, para-
aminosalicylic acid, penam, penem, peptide, phenicol, pleuromutilin, polyamine, pyrazi-
namide, rhodamine, rifamycin, streptogramin, sulfonamide, tetracycline, and triclosan.13/13
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