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ABSTRACT  21 

Efforts to model the gut microbiome have yielded important insights into the mechanisms of 22 

interspecies interactions, the impact of priority effects on ecosystem dynamics, and the role of diet and 23 

nutrient availability in determining community composition. However, the model communities studied to 24 

date have been defined or complex but not both, limiting their utility. Here, we construct a defined 25 

community of 104 bacterial strains composed of the most common taxa from the human gut microbiota. 26 

By propagating this community in growth media missing one amino acid at a time, we show that branched-27 

chain amino acids have an outsize impact on community structure and identify a pathway in Clostridium 28 

sporogenes for generating ATP from arginine. We constructed and propagated the complete set of single-29 

strain dropout communities, revealing a sparse network of strain-strain interactions including a novel 30 

interaction between C. sporogenes and Lactococcus lactis driven by metabolism. This work forms a 31 

foundation for studying strain-strain and strain-nutrient interactions in highly complex defined communities, 32 

and it provides a starting point for interrogating the rules of synthetic ecology at the 100+ strain scale.  33 
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INTRODUCTION  34 

Model systems have proven invaluable for the development of mechanistic insight in biology (Müller 35 

and Grossniklaus, 2010). Although much has been learned from detailed studies of individual gut 36 

commensal species (Cullen et al., 2015; Cuskin et al., 2015; Sonnenburg et al., 2010; Wexler and 37 

Goodman, 2017), models of the gut microbiome are less well developed (Blasche et al., 2017; Pacheco 38 

and Segrè, 2019; Walter et al., 2018; Widder et al., 2016; Xavier, 2011). Pioneering efforts showed that a 39 

synthetic community can model the impact of diet on the microbiome (Faith et al., 2011), identified genes 40 

required for Bacteroides thetaiotaomicron growth in the mouse intestine in the presence of a 15-member 41 

community (Goodman et al., 2009), and demonstrated that complex communities composed of species 42 

isolated from a single donor can stably colonize mice (Goodman et al., 2011). More recently, defined 43 

communities of up to 20 naturally occurring (Abreu et al., 2019; Friedman et al., 2017; Gutiérrez and 44 

Garrido, 2019; Hoek et al., 2016; Medlock et al., 2018; Patnode et al., 2019; Sanchez-Gorostiaga et al., 45 

2019; Yurtsev et al., 2016) or genetically engineered (Hart et al., 2019; Hsu et al., 2019; Kong et al., 2018; 46 

Mee et al., 2014; Ziesack et al., 2019) bacterial strains have been studied in vitro or in mice, revealing 47 

insights into the mechanisms of interspecies interactions. Complex but undefined communities from the 48 

gut, soil, and plants have also been studied in detail, illuminating the role of priority effects and the 49 

environment—especially nutrient availability—in determining community composition and dynamics 50 

(Aranda-Díaz et al., 2020; Goldford et al., 2018; Martínez et al., 2018). 51 

Although these studies have provided foundational insights into the ecology of the gut microbiota, 52 

the synthetic communities used have been defined or complex, but not both. An optimal model system 53 

would have both features: Near-native complexity would allow a model microbiome to capture properties 54 

of an ecosystem that are missing from simpler model systems, including emergent phenomena such as 55 

resilience to perturbation (Dethlefsen and Relman, 2011; Ng et al., 2019) and cooperative metabolism 56 

(Morris et al., 2013). Moreover, complex consortia are a promising starting point for in vivo studies of the 57 

gut microbiome, for which they are better suited to model community-level phenomena such as immune 58 

modulation and the formation of structured multispecies biofilms. 59 

Complete definition (i.e., communities composed entirely of known organisms) would enable 60 

reductionist experiments to probe mechanism. Studies with relatively simple defined communities have 61 

demonstrated the power of strain dropout and gene deletion experiments for probing community function. 62 

The ability to construct communities with defined composition is especially relevant in the context of 63 

experiments testing whether phenotypes can be transferred to germ-free mice via fecal transplant 64 

(Gopalakrishnan et al., 2018; Ridaura et al., 2013; Routy et al., 2018). At present, since transplanted 65 

communities are typically undefined, it is difficult to uncover the mechanisms underlying these phenomena. 66 

A defined model system of sufficient complexity would enable reductionist follow-up experiments, bringing 67 

the gut microbiome in line with other model systems in which mechanistic studies are possible. 68 
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Here, echoing efforts focused on the plant microbiota (Bai et al., 2015; Carlström et al., 2019; 69 

Lebeis et al., 2015), we constructed a complex defined community that contains the most prevalent 70 

bacterial species in the human gut microbiome. We demonstrate that the assembly of this 104-member 71 

community is reproducible even for very low abundance species. By systematically perturbing this 72 

community and its growth medium, we uncover a set of strain-nutrient and strain-strain (e.g. syntrophic) 73 

interactions that underlie its composition. This work constitutes a starting point for studying complex 74 

synthetic communities at high resolution across orders of magnitude of relative abundance. 75 

 76 

RESULTS 77 

Designing and building a complex synthetic community 78 

We set out to design a community consisting of the most common bacterial strains in the human 79 

gut microbiome. We analyzed metagenomic sequence data from the NIH Human Microbiome Project 80 

(HMP) to determine the most prevalent organisms—those that were present in the largest proportion of 81 

subjects, regardless of abundance. Although the HMP is not broadly representative of microbiomes from 82 

diverse geographies and ethnicities (Deschasaux et al., 2018; He et al., 2018; Sonnenburg and 83 

Sonnenburg, 2019), this data set was well suited to our purposes since it was sequenced at very high 84 

depth, enabling us to identify low-abundance organisms that are nevertheless highly prevalent (Kraal et 85 

al., 2014). After rank-ordering bacterial strains by prevalence, we found that ~20% (166/844) were present 86 

in >45% of the HMP subjects. Of these 166 strains, we were able to obtain 99 from culture collections or 87 

individual laboratories (Figure 1A). The profiled strains of three additional species were unavailable, so 88 

we used alternative strains of the same species (Lactococcus lactis subsp. lactis Il1403, Bacteroides 89 

xylanisolvens DSM 18836, and Megasphaera sp. DSM 102144). We added two additional strains to enable 90 

downstream experiments: Ruminococcus bromii ATCC 27255, a keystone species in polysaccharide 91 

utilization (Ze et al., 2012); and Clostridium sporogenes ATCC 15579, a model gut Clostridium species for 92 

which genetic tools are available (Dodd et al., 2017; Funabashi et al., 2020; Guo et al., 2019). Together, 93 

these 104 strains resemble the phylogenetic distribution of a typical Western human gut community 94 

(Figure S1). Notably, unlike other defined communities used to model the gut microbiome, our consortium 95 

is within ~2-fold of the estimated number of strains in a typical human gut (Faith et al., 2013; Qin et al., 96 

2010). 97 

A streamlined strain growth protocol simplified the assembly of the complete community and single-98 

strain dropouts. By testing the growth of each strain in a panel of candidate growth media, we identified 99 

two media, at least one of which supports the growth of all 104 strains (Table S1). Each culture was 100 

passaged daily 2-3 times with dilution into fresh medium. Growth rates, carrying capacities, and time of 101 

entry into stationary phase varied widely across strains and media; by passaging fast-growing strains more 102 

frequently than slow-growing organisms, we synchronized culture saturation to the extent possible. Before 103 
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mixing individually cultured strains, we adjusted the volumes of each culture to achieve similar optical 104 

densities. We confirmed that these cultures were pure using metagenomic sequencing and high accuracy 105 

read mapping, as described in the next section. 106 

 107 

Development of a highly accurate metagenomic read-mapping pipeline 108 

Having assembled a community of 104 strains, we next addressed how to quantify the abundance 109 

of each strain accurately, a major challenge in light of our expectation that some strains would be present 110 

at low abundance. Various strains in the community have identical 16S hypervariable sequences, ruling 111 

out 16S amplicon-based methods. We considered designing a custom amplicon-based pipeline, but such 112 

an approach would require the design and validation of new primer sets for future communities, which we 113 

wished to avoid. Instead, we sought to use metagenomic sequencing as a means of quantifying community 114 

composition. 115 

To test the performance of existing metagenomic analysis tools, we generated three ‘ground truth’ 116 

data sets. The first two consisted of simulated reads generated from the assembled genome sequences 117 

of each strain: one in which all 104 strains were equally abundant (to test sensitivity and specificity), and 118 

another in which strain abundance varied over five orders of magnitude (to test dynamic range). The third 119 

set consisted of actual reads derived from sequencing each strain individually using the same protocol on 120 

the same sequencing instrument used for subsequent community analyses. This data set allowed us to 121 

account for biases introduced by library construction and sequencing. 122 

We found that metagenomic read mappers based on a combination of Bowtie2 (Langmead and 123 

Salzberg, 2012) and SAMtools (Li et al., 2009) were sensitive but inaccurate: there was substantial mis-124 

mapping of reads from one strain to others, such that whole-genome sequencing data from an individual 125 

strain was often interpreted as having arisen from multiple strains. Read mis-mapping from any abundant 126 

strain would therefore create noise that exceeds signal from low-abundance strains, degrading accuracy. 127 

In contrast, algorithms that focus on a few universal genes or unique k-mers such as MetaPhlan2 (Truong 128 

et al., 2015), MIDAS (Nayfach et al., 2016), Kraken2/Bracken (Lu et al., 2017; Wood et al., 2019), 129 

IGGsearch (Nayfach et al., 2019), or Sourmash (Titus Brown and Irber, 2016) were generally accurate to 130 

the species level, but since they only use a small fraction of the reads (<1%), their ability to detect low-131 

abundance or closely related strains is limited. 132 

To address these challenges, we developed a new algorithm, NinjaMap (Figure 2A). Taking 133 

advantage of the fact that every strain in our community has been sequenced, NinjaMap quantifies strain 134 

abundances with high accuracy across >6 orders of magnitude. In brief, NinjaMap considers every read 135 

from a sample. If a read does not match perfectly to any of the genomes in the community (typically 3-4% 136 

of the reads), it is tabulated but not assigned. If a read has a perfect match to only one strain, it is assigned 137 

unambiguously to that strain. If a read matches more than one strain perfectly, it is temporarily placed in 138 
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escrow. After all of the unambiguous assignments are made, an initial estimate of the relative abundance 139 

of each strain is computed. Reads in escrow are then fractionally assigned in proportion to the relative 140 

abundance of each strain, normalized by the total size of the genomic regions available for unique mapping 141 

to avoid bias in favor of strains with large or phylogenetically distinct genome sequences. Finally, relative 142 

abundances are computed. 143 

To assess the performance of NinjaMap, we performed two tests. First, we assessed the degree 144 

of read mis-mapping from and into each strain’s ledger—e.g., we quantified how many reads from 145 

Bacteroides ovatus ATCC 8483 were mis-assigned to other strains (which would underestimate its 146 

abundance in a community), and how many reads from other strains were mis-assigned to B. ovatus (which 147 

would overestimate its abundance). For simulated reads, most instances of read mis-mapping resulted in 148 

relative abundance errors <10-4 (Figure S2A). For actual reads, mis-mapping was more frequent but still 149 

typically below a threshold of 10-3; most mis-mapping arose from deviations between the database genome 150 

sequence and the actual sequence of the strain in our collection (Figure S2B). In general, if the abundance 151 

of a strain in a community was within 10-fold of what would be expected from mis-mapping, we excluded 152 

the strain from analyses (Methods). 153 

Second, we used Ninjamap to analyze simulated reads from a 104-strain community. We found 154 

that this tool can accurately quantify strains with abundances as low as 10-5 in the context of a mixed 155 

community of known composition (Figure 2B). Thus, NinjaMap is capable of quantifying strains accurately 156 

over a wide dynamic range of relative abundances. 157 

 158 

Community construction is highly reproducible 159 

Our protocol for assembling communities with >100 members involves several growth passages 160 

and liquid transfer steps, and we were concerned that variability in any step of our protocol could make it 161 

difficult to interpret results. To address this concern, we measured the degree of reproducibility in 162 

community composition data by constructing and propagating the 104-member community multiple times. 163 

We included technical replicates to assess variation in bacterial growth, DNA extraction, and sequencing, 164 

and biological replicates to determine the impact of differences in the preparation of the inocula. We 165 

propagated the communities for 48 h and extracted DNA for sequencing at 0, 12, 24, and 48 h.  166 

Despite our attempts to inoculate equal densities of each strain, the range of densities at t=0 167 

spanned several orders of magnitude (Figure 2B), with a mean log10(relative abundance) of -2.5±0.8 for 168 

all detectable strains. Nonetheless, 95/104 strains were detectable at t=0; the remaining strains were below 169 

the limit of detection or had abundances that could potentially be explained by read mis-mapping. The 170 

communities reached a relatively stable configuration by 12 h (Figure 2B), with a remarkable degree of 171 

reproducibility among biological replicates (Figure 2C). Technical replicates were even more similar 172 

(Figure 2D), indicating that community growth, DNA extraction, and sequencing contributed only modestly 173 
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to variability. Notably, very low-abundance strains (<10-4) were only slightly more variable than high-174 

abundance strains (Figure 2C). Taken together, these results indicate that community composition is 175 

robust to experimental variation.  176 

 177 

A nutrient drop-out screen to map strain-nutrient interactions in the community 178 

We next sought to explore the network of strain-nutrient interactions in the community. Although 179 

much is known about polysaccharide foraging by gut commensals (Martens et al., 2014), far less is known 180 

about amino acid utilization, so we performed the experiment in a defined growth medium (SAAC) from 181 

which we could remove one amino acid at a time. Since amino acids are often utilized in pairs (Nisman, 182 

1954; Smith and Macfarlane, 1997), eliminating one at a time from a complete background rather than 183 

adding one at a time to a null background has a greater potential to reveal phenotypes relevant to 184 

community function. Moreover, performing this screen in the context of a complex community (as opposed 185 

to the traditional practice of analyzing the growth of isolated strains) enables us to study community-186 

dependent effects such as nutrient competition or mutualism-dependent nutrient utilization. 187 

To map strain-amino acid interactions, we constructed the 104-member community by mixing 188 

cultures of each strain propagated in a rich growth medium. We then sub-cultured this consortium in 20 189 

defined growth media, each deficient in a single amino acid; the complete defined medium was used as a 190 

control (Figure 3A). Samples were taken at 48 h and metagenomic sequencing data were analyzed to 191 

determine the impact of amino acid deficiency on the relative abundance of each strain. 192 

 193 

Global analysis of strain-amino acid interactions 194 

To identify strain-amino acid interactions, we tabulated strains whose relative abundance deviated 195 

significantly from the mean across conditions, taking advantage of the fact that that most amino acid 196 

dropouts had little effect on most strains (Figure 3B, Methods). When the community was propagated in 197 

the complete defined medium, relative abundances spanned >6 orders of magnitude. 36% of the strains 198 

were present at 10-4–10-2 relative abundance, 8 strains were >10-2 and 50 were <10-4 (Figure 3B). 199 

NinjaMap was sensitive to strains with relative abundances as low as 10-6, enabling us to quantify the 56% 200 

of strains that were below the 10-3 limit of detection commonly used for metagenomic analyses (Franzosa 201 

et al., 2015). Our system is therefore capable of studying low-abundance microbes, some of which are 202 

known to have a large biological impact (Buffie et al., 2015; Funabashi et al., 2020). 203 

To identify significant responses, we calculated the standard deviation of the relative abundance of 204 

each strain across experiments and computed z-scores (Figure 3C). Strain-amino acid interactions that 205 

were previously identified in mono-culture studies were also observed in our community format. 206 

Anaerostipes caccae, whose growth is stimulated by methionine (Soto-Martin et al., 2020), decreased in 207 

relative abundance in a community grown in methionine-deficient medium (z=-3.48). Likewise, C. 208 
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sporogenes was impeded by the absence of leucine (z=-2.56), a substrate it oxidatively decarboxylates to 209 

isovalerate to generate electrons (Guo et al., 2019). These observations demonstrate that even though 210 

>100 strains are competing for the same nutrients, the effects of eliminating one amino acid on the growth 211 

of one strain are readily observable in the context of a complex community.  212 

Most strains responded to the removal of ≤4 amino acids. Moreover, relative abundances showed 213 

little variability, with a mean standard deviation of log10(relative abundance) across strains <0.43. Only 214 

three strains, all of which are Firmicutes, were responsive to more amino acids: Lactococcus lactis DSM 215 

20729, Clostridium sporogenes ATCC 15579, and Lactobacillus ruminis ATCC 25644 (Figure S3, Table 216 

S2). Thus, under these growth conditions, most strains are largely insensitive to amino acid removal while 217 

a small minority are highly responsive. We note that the response of a strain to amino acid removal may 218 

be direct (e.g. due to utilization for energy) or indirect (e.g. amino acid removal impacts an interacting 219 

strain). 220 

In contrast, amino acids varied widely in terms of their impact on community composition (Figure 221 

3D). More than half of the strains responded to cysteine removal, likely due to its effect as a reducing 222 

agent. More than 5% of the strains responded to methionine, histidine, isoleucine, arginine, valine, and 223 

tyrosine, while for eight amino acids there were no significant changes to the community at all (Figure 3D). 224 

Interestingly, there were large differences among similar amino acids: no strains responded to lysine, while 225 

10.6% and 7.6% of the strains responded to histidine and arginine, respectively. The removal of isoleucine, 226 

leucine, and arginine had a particularly large impact on community structure: C. sporogenes and L. lactis, 227 

the two most abundant strains when grown in complete defined medium, each decreased >500-fold in 228 

relative abundance when any of these amino acids were removed. Thus, certain amino acids are ‘keystone’ 229 

nutrients that play an important role in determining community composition. 230 

 231 

C. sporogenes uses arginine to generate ATP 232 

 Among the 86 candidate strain-amino acid interactions revealed by our screen, we were particularly 233 

intrigued by those involving C. sporogenes. Although C. sporogenes can oxidize and reduce aromatic 234 

amino acids (Dodd et al., 2017), its relative abundance was unaffected by the removal of phenylalanine, 235 

tyrosine, or tryptophan (Figure S4). In contrast, the removal of leucine, isoleucine, and arginine each had 236 

large impact on its fitness in the community. The second strongest phenotype was a decrease in relative 237 

abundance in the absence of arginine (Figure 3E); although C. sporogenes is known to metabolize 238 

arginine (Venugopal and Nadkarni, 1977; Wildenauer and Winter, 1986), no impact of arginine on growth 239 

or energy metabolism had been observed in prior work. To validate and characterize this interaction, we 240 

compared C. sporogenes growth in complete defined versus arginine-deficient medium. Although C. 241 

sporogenes grew well in complete defined medium, it exhibited a large growth defect in the absence of 242 

arginine (Figure 3F), indicating that this amino acid is an important substrate for growth. 243 
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C. sporogenes can use other amino acids as substrates to support ATP synthesis (Dodd et al., 244 

2017). Hypothesizing that the same is true for arginine, we incubated wild-type C. sporogenes in a culture 245 

medium deficient in substrates for ATP synthesis. Upon addition of arginine, intracellular ATP levels rose 246 

sharply (Figure 3G), indicating that C. sporogenes generates ATP (directly or indirectly) from arginine. 247 

To identify the enzymes involved in this process, we parsed the C. sporogenes genome for 248 

pathways known to capture energy from arginine. This search yielded candidate genes for each of the 249 

three steps in the arginine deiminase pathway (Figure 3H), which catalyzes the net conversion of arginine 250 

to ornithine plus CO2 and two equivalents of ammonium, generating one equivalent of ATP (Cunin et al., 251 

1986). Using a method we recently developed to construct scarless deletions in C. sporogenes (Guo et 252 

al., 2019), we generated strains deficient in the putative arginine deiminase (CLOSPO_00894, Dadi) or 253 

ornithine carbamoyltransferase (CLOSPO_02415, Dotc). The Dotc mutant was unable to generate ATP in 254 

response to arginine provision, consistent with a role for the arginine deiminase pathway in C. sporogenes 255 

energy production (Figure 3G). In contrast, the Dadi mutant showed no defect in arginine-induced ATP 256 

production (Figure S5A), suggesting the possibility of an alternative pathway to generate citrulline from 257 

arginine. Consistent with these observations, the Dotc mutant (but not the Dadi mutant) was deficient in 258 

growth in complete defined medium (Figures 3F, Figure S5B). The deficiency was partial, suggesting that 259 

an alternative pathway can generate energy from arginine under these conditions. Together, these results 260 

show that arginine metabolism by the arginine deiminase pathway contributes directly to the cellular ATP 261 

pool, augmenting our understanding of how amino acid metabolic pathways contribute to the fitness of a 262 

prominent gut commensal within a complex community. 263 

 264 

A strain drop-out screen to map strain-strain interactions 265 

Next, we sought to map strain-strain interactions within the community. A wide variety of interaction 266 

types have been characterized (Little et al., 2008; Shank and Kolter, 2009), including mutualistic or 267 

commensal interactions based on nutrient exchange (e.g. syntrophies and secondary fermentation) (Morris 268 

et al., 2013) and antagonistic interactions based on antibiotic production or nutrient competition (Zipperer 269 

et al., 2016). However, relatively little effort has been applied to characterizing strain-strain interactions 270 

systematically; previous efforts have focused on interactions in binary culture (Limoli et al., 2019; Traxler 271 

et al., 2013; Vetsigian et al., 2011), where the rules and selective conditions are likely distinct from those 272 

in a complex community (Bairey et al., 2016). 273 

To address this gap in knowledge, we constructed all 104 single-strain dropout communities 274 

(Figure 4A, Methods). These 103-member communities as well as the full community were grown in 275 

complete defined medium, and samples were taken at 0 and 48 h to assay growth dynamics over the 276 

course of a single passage (Table S3). We quantified the relative abundance of each strain by analyzing 277 

metagenomic sequencing data using NinjaMap. 278 
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We observed that the relative abundances in our data were correlated due to batch effects arising 279 

from the order in which communities were constructed (Figure S6); they clustered naturally into four sets. 280 

The two smallest sets (8 and 12 dropouts) were not considered further due to challenges in evaluating 281 

statistical significance. Within the two larger sets—60 and 24 dropouts—the relative abundances of each 282 

strain across samples were tightly distributed (Figure 4B, S7), enabling us to identify statistically significant 283 

responses using z-scores. 284 

To test whether the single-strain dropout communities were deficient in the intended strain, we 285 

compared the relative abundance of each strain across all samples (Figure 4B, Table S3). For 71 of 84 286 

communities, the strain we intended to remove had z<-3, indicating that the dropout was successful. In the 287 

remaining 13 communities, the intended strain was either below our limit of detection or was detected at 288 

48 h; in both cases, the corresponding communities were not considered further (Methods). 289 

Two additional filters were applied, resulting in the removal of six additional samples. First, five 290 

samples that had <106 reads were not considered further due to the underrepresentation of low-abundance 291 

strains. Second, the E. siraeum dropout was missing an additional strain, A. caccae, and was removed 292 

from further consideration.  293 

 294 

Global analysis of strain-strain interactions 295 

We analyzed the remaining 65 communities (Table S4) to identify strains whose relative 296 

abundance changed significantly in response to the absence of another strain. Putative interactions a®b 297 

(where the arrow indicates that strain b increases or decreases in relative abundance in response to the 298 

absence of strain a) were considered further if they had |z|>2. We removed potentially spurious interactions 299 

that could have resulted from read mis-mapping or relative abundances near the lower limit of detection 300 

(Methods). 301 

Despite the community’s complexity, large effects could be observed when certain strains were 302 

dropped out. For example, removing Acidaminococcus sp. D21 resulted in a 4-fold increase in the 303 

abundance of Acidaminococcus fermentans DSM 20731 (Figure 4B), presumably reflecting nutrient 304 

competition between strains of the same genus. The relative abundances of A. fermentans DSM 20731 305 

were tightly distributed in other samples (Figure 4A, inset), so the change in relative abundance due to 306 

Acidaminococcus sp. D21 dropout was highly significant (z=5.1). 307 

Most of the strain dropouts affected <5% of the other strains (Figure 4C). However, seven strains—308 

when dropped out—impacted >10% of the remaining strains positively or negatively. Two of those strains, 309 

Acidaminococcus sp. D21 and A. caccae DSM 14662, were present at high relative abundance, so it is 310 

not surprising that relative abundances within the community redistribute upon their removal. However, the 311 

remaining strains—Dorea formicigenerans ATCC 27755, Dialister invisus DSM 15470, Bacteroides dorei 312 

5_1_36/D4, B. fragilis 3_1_12, and C. sporogenes ATCC 15579—were present at a relative abundance of 313 
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just ~10-3–10-2, yet their removal altered the relative abundance of >7 other strains (Figure 4D). 314 

Conversely, four strains (Bacteroides sp. 2_1_16, Bacteroides cellulosilyticus DSM 14838, Bacteroides 315 

ovatus ATCC 8483, and Mitsuokella multacida DSM 20544) had relative abundances >1% but affected <2 316 

strains when removed (Figure 4D), consistent with functional redundancy or another mechanism by which 317 

these strains are insulated from the rest of the community. Thus, the community is largely insensitive to 318 

strain removal even though a small subset of strains exhibit keystone-like properties. 319 

 320 

Validating candidate interactions in binary culture 321 

Next, we tested whether interactions uncovered by the strain dropout screen could be observed in 322 

binary culture. Interactions can be direct or indirect (i.e. involve one or more additional strains), and context-323 

independent or dependent (i.e. occur only in the background of a complex community). Only those 324 

interactions that are direct and context-independent would be reproducible in binary culture. We focused 325 

on interactions with z<-2 (rather than z>2), since the former involve growth promotion and are therefore 326 

simpler to validate in binary culture (Table S4).  327 

We selected 32 candidate interactions with highly negative z-scores for further characterization. 328 

For these strain pairs, we compared the optical density of each strain when grown in monoculture versus 329 

co-culture, using the same defined medium as in the dropout screen. 23/32 strain pairs exhibited an 330 

increased carrying capacity relative to an additive growth model (Figure 4E) and/or decreased time to 331 

saturation in co-culture (Figure S8). These data indicate that the screen is an effective means of 332 

uncovering direct, context-independent strain-strain interactions. For 9/32 strain pairs, no interaction was 333 

observed in binary culture. While these negative results could be due to imperfections in the strain dropout 334 

experiment or analysis, they might also suggest that certain interactions can only be observed in the setting 335 

of a complex community. 336 

 We were intrigued that the level of Lactococcus lactis DSM 20729 decreased when C. sporogenes 337 

ATCC 15579 was dropped out of the community (z=-2.10). Although the effect size was small, the 338 

distribution of L. lactis relative abundances was particularly narrow, so the absence of C. sporogenes 339 

disrupted the growth of an otherwise context-insensitive strain.  340 

To determine whether this interaction occurred in binary co-culture, we cultured C. sporogenes and 341 

L. lactis individually or together; C. sporogenes grew rapidly in defined medium while L. lactis was unable 342 

to grow on its own. The optical density of the co-culture was substantially higher than the sum of the optical 343 

densities of the individual cultures, suggesting that at least one of the strains grew more robustly in co-344 

culture (Figure 4F). By counting colonies from the co-culture, we determined that C. sporogenes levels 345 

were unaffected but the density of L. lactis increased ~10-fold (Figure 4G). These results validate the 346 

postulated interaction between C. sporogenes and L. lactis and suggest the possibility that the apparent 347 

sensitivity of L. lactis to leucine and arginine (Figure 3E) may in fact be a response to the drop in relative 348 
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abundance of C. sporogenes. More broadly, our findings show that a growth stimulatory interaction 349 

between two strains can manifest even over one round of growth in the presence of 102 other strains. 350 

 351 

DISCUSSION 352 

Our experimental system has three important features. First, by developing a community that is 353 

both defined and reasonably complex, we have generated a model system that will likely capture much of 354 

the biology of a native microbiome. Future refinements are needed, including additional bacterial strains 355 

to occupy unfilled niches as well as archaea, fungi, and viruses, all of which are important components of 356 

the native ecosystem.  357 

Second, the computational pipeline we developed for read mapping makes it possible to analyze 358 

complex defined communities with high precision. Community structure can be quantified across six orders 359 

of magnitude in relative abundance, enabling the interrogation of low-abundance community members that 360 

play an important role in community function and dynamics (Buffie et al., 2015; Funabashi et al., 2020). 361 

The degree of technical and biological reproducibility (Figure 2E) is remarkable in a system this complex, 362 

which bodes well for future experimental efforts. 363 

Third, the nutrient and strain dropout assays are a powerful format for probing the interactions that 364 

underlie community dynamics. The amino acid dropout screen tested 2,080 potential interactions (104 365 

strains × 20 amino acids) using only 20 metagenomic sequencing samples, and the strain dropout screen 366 

tested 10,712 interactions (104 × 103 strains) using only 104 sequencing samples. Candidate interactions 367 

were observed in the background of a community and are therefore more likely to be relevant under native 368 

conditions; many of them were validated in co-culture experiments (Figure 4E). Taken together, our 369 

system for community assembly and measurement establish a framework for rapid, robust experimentation 370 

with complex consortia. 371 

In its current form, our approach has two important limitations. First, when propagated in vitro, our 372 

community exhibits a different architecture than is observed in vivo. The consortium was dominated by 373 

Firmicutes that are typically found at lower relative abundances in the human gut, likely because the 374 

defined growth medium we used (SAAC) is rich in amino acids. Lowering the free amino acid content of 375 

the growth media and adding glycans, complex polypeptides, and host-derived factors such as bile acids 376 

could help steer the community toward a more typical in vivo architecture.  377 

Second, the scale and complexity of our amino acid and strain dropout experiments precluded the 378 

possibility of carrying out multiple replicates. During the single passage over which communities were 379 

propagated, biomass increased by only 200-fold. As a result, the interactions we identified likely include 380 

some false positives; replicate experiments and additional growth passages could yield a larger or higher 381 

confidence set of interactions. Nonetheless, the strain-amino acid and strain-strain interactions we 382 
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validated show that the experiments were sufficiently sensitive and reproducible to uncover real 383 

interactions. 384 

The properties of this community in the context of host colonization are described in an 385 

accompanying manuscript. Together, these efforts constitute a starting point for a defined, full-scale model 386 

system for the gut microbiome. Such a system would yield great dividends, as the research communities 387 

around yeast, worms, flies, and mice have shown over decades. It would be even more powerful in 388 

conjunction with new genetic tools to manipulate specific members of this community. 389 

 390 

STARêMETHODS 391 

Detailed Methods are provided in the online version of this paper and include the following: 392 

• KEY RESOURCES TABLE 393 

• RESOURCE AVAILABILITY 394 

o Lead contact 395 

o Materials availability 396 

o Data and code availability 397 

• EXPERIMENTAL MODEL AND SUBJECT DETAILS 398 

o Bacterial strains and culture conditions 399 

• METHOD DETAILS 400 

o Metagenomic sequencing 401 

o Metagenomic read mapping 402 

o Amino-acid dropout experiments 403 

o Creation of C. sporogenes mutants 404 

o ATP assay 405 

o Strain-dropout experiments 406 

o Pairwise co-culture growth measurements 407 

• QUANTIFICATION AND STATISTICAL ANALYSIS 408 

 409 

STARêMETHODS 410 

Lead contact 411 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 412 

the lead contact, Michael Fischbach (fischbach@fischbachgroup.org). 413 

 414 

Materials availability 415 

C. sporogenes mutants are available on request. The strains used in this study are available from the 416 

sources listed in the Key Resource Table. 417 
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 418 

Data and code availability 419 

Metagenomic and whole-genome sequencing datasets generated for this study will be available at the 420 

Sequence Read Archive at the time of publication. Ninjamap is available at 421 

https://github.com/FischbachLab/ninjamap and the associated docker containers are available at 422 

https://hub.docker.com/orgs/fischbachlab/repositories. 423 

 424 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 425 

Bacterial strains and culture conditions 426 

Bacterial strains were selected based on metagenomic sequencing data from the NIH Human 427 

Microbiome Project (Kraal et al., 2014). The mean relative abundance and prevalence of each strain were 428 

quantified using the 81 samples from healthy human patients from North America. The ~200 strains that 429 

appeared in ≥37 of the 81 samples were considered for inclusion in the community. We were able to obtain 430 

104 of these strains from public repositories (Key Resources Table).  431 

Strains were cultured in anaerobic conditions (10% CO2, 5% H2, 85% N2) in 2 mL 96-well plates for 432 

24-48 h in their respective growth media (Table S1): Mega Medium (McNulty, et. al. 2015) supplemented 433 

with 400 µM Vitamin K2, or Chopped Meat Medium supplemented with Mega Medium carbohydrate mix 434 

(McNulty, et. al. 2015) and 400 µM Vitamin K2. For strain storage, 200 µL of liquid culture was aliquoted 435 

1:1 into sterile 50% glycerol in a 1 mL 96-well plate. The plate was covered with an airtight silicone fitted 436 

plate mat, edges were sealed with O2-impervious yellow vinyl tape, and the plate was frozen at -80 °C. To 437 

revive cultures, the storage plate was defrosted in the anaerobic chamber and 100 µL from each well was 438 

used to inoculate 900 µL of appropriate fresh medium. Twenty-four hours post-revival, each well was 439 

visually inspected and wells that did not exhibit obvious growth were re-inoculated with an additional 100 440 

µL of frozen stock. Each storage plate included 3-4 “sentinel” wells containing only growth medium that 441 

were used to monitor potential contamination. 442 

 443 

METHOD DETAILS 444 

Constructing high quality genome assemblies 445 

We obtained the latest RefSeq (O’Leary et al., 2016) assembly for each strain in our community 446 

and assessed its quality based on contig statistics from Quast (Gurevich et al., 2013) v. 5.0.2 and SeqKit 447 

(Shen et al., 2016) v. 0.12.0, using GTDB-tk (Chaumeil et al., 2019) v. 1.2.0 for taxonomic classification. 448 

A linear combination of the completeness and contamination scores (completeness–5×contamination) 449 

derived from the CheckM (Parks et al., 2015) v. 1.1.2 lineage workflow was used along with the other 450 

metrics to include or exclude genomes in the GTDB (Parks et al., 2018, 2020) release 89 database 451 

(https://gtdb.ecogenomic.org/faq#gtdb_selection_criteria). Genomes that contained any number of Ns, 452 
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contained over 100 contigs, contained GTDB lineage warnings or multiple matches, or had CheckM 453 

completeness <90, contamination >10, and combination score <90 were resequenced and reassembled. 454 

Our hybrid assembly pipeline contains a workflow for de novo and reference-guided genome 455 

assembly using both Illumina short reads and PacBio or Nanopore long reads. The workflow has three 456 

main steps: read pre-processing, hybrid assembly, and contig post-processing. Read pre-processing 457 

included 1) quality trimming/filtering (bbduk.sh adapterFile="adapters,phix" k=23, hdist=1, qtrim=rl, ktrim=r, 458 

entropy=0.5, entropywindow=50, entropyk=5, trimq=25, minlen=50), with adaptors and phix removed with 459 

kmer right trimming, kmer size of 23, Hamming distance 1 (allowing one mismatch), quality trimming of 460 

both sides of the read, filtering of reads with an average entropy <0.5 with entropy kmer length of 5 and a 461 

sliding window of 50, trimming to a Q25 quality score, and removal of reads with length <50 bp; 2) 462 

deduplication (bbdupe.sh); 3) coverage normalization (bbnorm.sh min=3) such that depth <3x was 463 

discarded; 4) error correction (tadpole.sh mode=correct); and 5) sampling (reformt.sh). All pre-processing 464 

was carried out using BBtools v. 38.37 for short reads. For long reads, we used filtlong v. 0.2.0 (fitlong --465 

min_length 1000 --keep_percent 90 --length_weight 10) to discard any read <1 kb and the worst 10% of 466 

read bases, as well as to weigh read length as more important when choosing the best reads. Hybrid 467 

assembly was performed by Unicycler (Wick et al., 2017) v. 0.4.8 with default parameters using pre-468 

processed reads. After assembly, the contigs from the assembler were scaffolded by LRScaf (Qin et al., 469 

2018) v. 1.1.9 with default parameters. If the initial assembly did not produce the complete genome, gaps 470 

were filled by long reads TGS-GapCloser (Xu et al., 2019) v. 1.0.1 with default parameters. 471 

If no long reads were available, short paired-end reads were assembled de novo using SPAdes 472 

(Bankevich et al., 2012) v. 3.13.1 with the --careful option to reduce the number of mismatches and short 473 

indels during assembly of small genomes. Assembly quality was assessed based on the CheckM v. 1.1.2 474 

lineage. If contamination was detected, contigs corresponding to the genome of interest were extracted 475 

from the contaminated assembly using MetaBAT2 (Kang et al., 2019) v. 2.2.14 with default parameters. 476 

Finally, the assembled genomes were evaluated using the same criteria as the RefSeq assemblies, 477 

and the assembly for each species with the best overall quality metrics was chosen as the reference 478 

assembly. This procedure resulted in the replacement of eight genomes: two from a PacBio/Illumina hybrid 479 

assembly, one from a Nanopore/Illumina hybrid assembly, one from a reference-guided Illumina assembly, 480 

and four from short-read assemblies of the respective isolate samples followed by binning (Table S5). 481 

 482 

Generating simulated sequencing reads 483 

In silico data were generated to evaluate the Ninjamap algorithm in the absence of genome 484 

assembly errors and sequencing quality issues. Grinder (Angly et al., 2012) v. 0.5.4 was applied to each 485 

genome to generate error-free reads with the following parameters: -read_distribution 140, -insert_size 486 

800, -mate_orientation FR, -delete_chars '-~*NX', -mutation_dist uniform 0, -random_seed 1712, -487 
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abundance_model uniform, -qual_levels 33 31, -fastq_output 1. The -coverage_fold parameter was 488 

adjusted based on the cases described below. 489 

 490 

Uniform abundance isolate dataset 491 

This dataset was created to test the sensitivity and specificity of the algorithm against our database 492 

of genomes. In silico data were generated for each genome with uniform coverage of 10X or 100X. We 493 

were able to consistently identify the correct genome regardless of coverage (Figure 2C). Some cross 494 

mapping was observed at ~0.01% relative abundance, likely because some genomes in our database 495 

shared more than 99% average nucleotide identity, making cross-mapping unavoidable. Thus, we 496 

generally treat 10-4 as a conservative lower bound for confident relative abundance estimation.  497 

 498 

Variable abundance community dataset 499 

In silico reads were generated for each genome at 10X, 0.1X, and 0.001X uniform coverage. Three 500 

datasets of mixed community reads were generated including every genome at a coverage randomly 501 

selected from the three levels. The observed relative abundance of each genome in our database was 502 

calculated using the NinjaMap algorithm and compared to the expected relative abundance based on 503 

coverage level, which ranged from ~3×10-6 to 0.03. We could estimate relative abundances accurately for 504 

genomes present at >10-5 (Figure 2D). However, for lower relative abundances, we observed some 505 

discrepancies corresponding to the same genomes with mis-mapping against isolate datasets, indicating 506 

that high similarity between genomes begins to confound the algorithm at very low relative abundances. 507 

 508 

Metagenomic sequencing 509 

The same experimental pipeline was used for sequencing bacterial isolates and synthetic 510 

communities. Bacterial cells were pelleted by centrifugation under anaerobic conditions. Genomic DNA 511 

was extracted using the DNeasy PowerSoil HTP kit (Qiagen) and quantified in 384-well format using the 512 

Quant-iT PicoGreen dsDNA Assay Kit (Thermofisher). Sequencing libraries were generated in 384-well 513 

format using a custom low-volume protocol based on the Nextera XT process (Illumina). Briefly, the 514 

concentration of DNA from each sample was normalized to 0.18 ng/µL using a Mantis liquid handler 515 

(Formulatrix). If the concentration was <0.18 ng/µL, the sample was not diluted further. Tagmentation, 516 

neutralization, and PCR steps of the Nextera XT process were performed on a Mosquito HTS liquid handler 517 

(TTP Labtech), leading to a final volume of 4 µL per library. During the PCR amplification step, custom 12-518 

bp dual unique indices were introduced to eliminate barcode switching, a phenomenon that occurs on 519 

Illumina sequencing platforms with patterned flow cells (Sinha et al., 2017). Libraries were pooled at the 520 

desired relative molar ratios and cleaned up using Ampure XP beads (Beckman) to achieve buffer removal 521 

and library size selection. The cleanup process was used to remove fragments <300 bp or >1.5 kbp. Final 522 
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library pools were quality-checked for size distribution and concentration using a Fragment Analyzer 523 

(Agilent) and qPCR (BioRad). Sequencing reads were generated using a NovaSeq S4 flow cell or a 524 

NextSeq High Output kit, in 2x150 bp configuration. 5-10 million paired-end reads were targeted for isolates 525 

and 20-30 million paired-end reads for communities. 526 

 527 

Generating and normalizing the NinjaMap database  528 

The first step in the pipeline was to assess the uniqueness of each genome in the community. We 529 

generated error-free in silico reads such that each genome was uniformly covered at 10x depth. Each such 530 

genome read set was aligned to all genomes in the community. The uniqueness of a genome was defined 531 

as the fraction of the genome that did not have reads cross-mapped from another strain; uniqueness values 532 

were between 0 and 1, such that more unique genomes have a value closer to 1. The uniqueness value 533 

of a strain was used to normalize its final relative abundance in any community sample. All genome 534 

sequences were combined into one fasta file and a Bowtie2 (Langmead and Salzberg, 2012) v. 2.3.5.1 535 

index was computed for future alignments. The database and strain weights were recomputed each time 536 

the community or a genome was updated. 537 

 538 

Metagenomic read mapping 539 

 Paired-end reads from each sample were aligned to the database using Bowtie2 with maximum 540 

insert length (-maxins) 3000, maximum alignments (-k) as 300, suppressed unpaired alignments (--no-541 

mixed), suppressed discordant alignments (--no-discordant), suppressed output for unaligned reads (--no-542 

unal), required global alignment (--end-to-end), and using the “--very-sensitive” alignment preset. The 543 

output was processed in Samtools (Li et al., 2009) to convert the alignment output from SAM output stream 544 

to BAM format. The BAM file was sorted and indexed by coordinates. 545 

 546 

NinjaMap alignment scoring  547 

 A primary goal of the NinjaMap algorithm is to analyze and tabulate every input read. A successful 548 

match was defined as a read aligned to a genome at 100% identity across 100% of the read length. If a 549 

read was uniquely matched to a single strain, its mate pair was also recruited as long as it had at least one 550 

match to the same strain. If exactly 1 strain was a perfect match for both reads, the pair was considered a 551 

“primary pair” and a score of 1 was given for each read. If >1 or 0 strains were a match for both reads, 552 

both reads were placed in escrow and analyzed separately as described below. 553 

By prioritizing paired-read scoring, noise was significantly reduced while ensuring that as many 554 

reads as possible were considered for abundance estimates. Once preliminary strain abundances were 555 

calculated based on primary pairs, reads in escrow were then assigned fractionally to the strains to which 556 

they aligned perfectly. The fractional assignment was calculated based on the primary read abundances 557 
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of each strain, normalized by the size of the unique region of each genome within the database, such that 558 

the total contribution for a read was 1. In some cases, an individual escrowed read matched to a strain 559 

without any matches to primary pairs; such reads were discarded and not used in the final estimates. 560 

 Finally, the total score for each strain in the database was normalized by the number of reads that 561 

aligned to the database, so that the relative abundances of all strains summed to 1. 562 

 563 

Amino acid dropout experiments 564 

Strains were passaged by diluting 1:10 into fresh growth medium every 24 h for 2-3 days. The day 565 

before amino acid dropout experiments, cultures were diluted 1:10 into 1 mL of fresh medium and grown 566 

for 24 h as inoculation working stocks. To measure OD600, strains were diluted 1:10 into 150 µL of the 567 

appropriate culture medium and a plate reader was used to measure absorbance at 600 nm. Stocks were 568 

diluted to a final OD600 of 0.1 using fresh growth medium. If a culture did not reach OD600 of 0.1, the entire 569 

culture was used as the working stock for community assembly. Equal volumes of each stock were pooled 570 

to create a 104-member synthetic community. The community was centrifuged at 5000 x g for 5 min, 571 

washed, and resuspended in an equivalent volume of PBS to generate the pooled community working 572 

stock. SAAC medium (Dodd et al., 2017) was made containing all amino acids at 1 mM concentration 573 

except for cysteine, which was added at 4.126 mM (Table S6). Twenty similar media were made in which 574 

one amino acid at a time was removed. 1.6 mL of each medium was aliquoted in triplicate and inoculated 575 

with the pooled community at 1:10 or 1:100 dilution. Four 100 µL aliquots of each culture were collected 576 

at 48 h and processed for metagenomic sequencing. 577 

 578 

Constructing C. sporogenes mutants 579 

C. sporogenes deletion mutants were constructed using a previously reported protocol (Guo et al., 580 

2019); the strains and primers used for each mutant are listed in Table S7. In brief, from plasmids CS_OTC 581 

and CS_ADI—which harbor the targeting and repair templates—we amplified DNA sequences encoding 582 

the gRNA locus (the gRNA plus adjacent elements and the repair template) and ligated the amplicon into 583 

the pMTL82254 backbone. These repair templates consist of 700- to 1200-bp sequences flanking the 40- 584 

to 100-bp sequence targeted for excision.  585 

To construct the ∆adi strain, a gRNA fragment was purchased from Quintara and amplified with 586 

primers fwd_pMTL82254_NotI, rev_gRNA_flank1. The two flanking regions were amplified from C. 587 

sporogenes genomic DNA using the primers 5rev_flank1 and 5fwd_flank1_flank2 for flank 1 and 588 

5rev_flank1_flank2 and 5fwd_flank1_flank2 for flank 2. Next, the flanking regions were joined by amplifying 589 

with primers fwd_gRNA_flank1 and rev_flank2. The amplified gRNA fragment was attached to the joined 590 

flank construct by amplifying with primers fwd_pMTL82254_NotI and rev_pMTL82254_AscI. Finally, the 591 
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pMTL82254 plasmid and the construct containing the gRNA, flank1, and flank2 regions were digested with 592 

NotI and AscI and ligated with T4 ligase (NEB). The final construct was named CS_ADI. 593 

To make the ∆otc strain, the gRNA fragment was purchased from Quintara and amplified with 594 

fwd_pMTL82254_NotI and rev_OTC_gRNA_flank1. The two flanking regions were amplified from C. 595 

sporogenes genomic DNA using the primers fwd_OTC_gRNA_flank1 and rev_OTC_flank1_flank2 for flank 596 

1 and fwd_OTC_flank1_flank2 and rev_OTC_flank2 for flank 2. Next, the flanking regions were joined by 597 

amplifying with the primers fwd_OTC_gRNA_flank1 and rev_OTC_flank2. The amplified gRNA fragment 598 

was attached to the joined flank construct by amplifying with fwd_pMTL82254_NotI and 599 

rev_pMTL82254_AscI. Finally, the pMTL82254 plasmid and the construct containing the gRNA, flank1, 600 

and flank2 regions were digested with NotI and AscI and ligated with T4 ligase (NEB). The final construct 601 

was named CS_OTC.  602 

CS_OTC or CS_ADI was electroporated into Escherichia coli S17 cells and conjugated into C. 603 

sporogenes strain ATCC 15579 using a previously described method (Guo et al., 2019). In brief, a single 604 

colony of wild-type C. sporogenes was used to inoculate 2 mL of TYG broth (3% (w/v) tryptone, 2% (w/v) 605 

yeast extract, 0.1% (w/v) sodium thioglycolate) and incubated anaerobically in an atmosphere consisting 606 

of 10% CO2, 5% H2, and 85% N2. E. coli S17 cells with CS_OTC or CS_ADI were grown in LB broth 607 

supplemented with 250 μg/mL erythromycin at 30 °C with shaking at 225 rpm. After 17-24 h, 1 mL of this 608 

culture was centrifuged at 1000 x g for 1 min and washed twice with 500 µL of PBS (40 mM potassium 609 

phosphate, 10 mM magnesium sulfate, pH 7.2). The pellet was transferred into the anaerobic chamber 610 

and 250 µL of C. sporogenes overnight culture was added and mixed with the cell pellet. 30 µL aliquots of 611 

the mixture were plated on a pre-reduced TYG agar plate in eight spots. The plate was tilted to coalesce 612 

the spots and incubated for 24 h. Biomass from the plate was scraped using a sterile inoculation loop and 613 

suspended in 250 µL of pre-reduced PBS. 100 µL of the cell suspension was plated on TYG agar 614 

containing 10 µg/mL erythromycin and 250 μg/mL D-cycloserine to isolate single colonies. One colony was 615 

picked, sequence verified, and used as the starting point for the next conjugation. 616 

 In the second conjugation, E. coli S17 cells containing pMTL83153_fdx_Cas9 were grown in LB 617 

broth supplemented with 25 μg/mL chloramphenicol at 30 °C with shaking at 225 rpm. After washing, the 618 

pellet was moved into the anaerobic chamber and 250 μL of an overnight culture of C. sporogenes 619 

harboring the CS_OTC vector was thoroughly mixed with the E. coli cell pellet. 30 µL aliquots of the mixture 620 

was plated on a pre-reduced TYG agar plate in eight spots. The plate was tilted to coalesce the spots and 621 

incubated for 72 h. Biomass from the plate was scraped using a sterile inoculation loop and resuspended 622 

in 250 μL of pre-reduced PBS. 100 µL of the cell suspension was plated on each of two pre-reduced TYG 623 

agar plates containing 10 μg/mL erythromycin, 15 μg/mL thiamphenicol, and 250 μg/mL D-cycloserine. C. 624 

sporogenes colonies typically appeared after 36-48 h, and 8-10 colonies were re-streaked on pre-reduced 625 

TYG agar plates containing 10 μg/mL erythromycin, 15 μg/mL thiamphenicol, and 250 μg/mL D-cycloserine 626 
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to isolate single colonies. The isolated colonies were used to inoculate pre-reduced TYG broth 627 

supplemented with 10 μg/mL erythromycin and 15 μg/mL thiamphenicol, and genomic DNA was isolated 628 

using a Quick DNA fungal/bacterial kit (Zymo Research). Primers ADI_532_fwd and ADI_22_rev or 629 

OTC_5_up_fwd and OTC_930_down_rev (Table S2) were used to verify deletions. 630 

 631 

ATP assay 632 

An aliquot from a frozen stock of C. sporogenes was used to inoculate 5 mL of TYG broth and 633 

grown to stationary phase (~24 h). Cells were diluted 1:1000 into 20 mL of TYG broth and grown to late-634 

log phase (~16 h). Cells were harvested by centrifugation (5,000 x g for 10 min at 4 °C) and washed twice 635 

with 20 mL of pre-reduced PBS. 100 µL of cells was seeded into rows of a 96-well microtiter plate (12 wells 636 

per condition). 200 µL of pre-reduced 2 mM substrate (arginine) in phosphate washing buffer, or 200 µL of 637 

buffer alone, were dispensed into rows of a separate 96-well microplate. At t=0, 100 µL of substrate or 638 

buffer were added to the cells and mixed gently by pipetting. At t=-5 min, -1 min, 30 s, 1 min, 2 min, 5 min, 639 

10 min, 20 min, 30 min, 45 min, 60 min, and 90 min, 10 µL of cells were extracted and mixed with 90 µL 640 

of DMSO to quench the reaction and liberate cellular ATP. For the time points t=-5 min and -1 min—prior 641 

to the addition of buffer or substrate—5 µL of cell suspension was harvested and 5 µL of either buffer or 642 

substrate were added to the cell-DMSO mixture to bring the total volume to 100 µL. The ATP content from 643 

10 µL aliquots of lysed cells was measured using a luminescence-based ATP determination kit (Invitrogen, 644 

Cat. #A22066). Absolute ATP levels were calculated using a calibration curve with known concentrations 645 

of ATP. 646 

 647 

Strain dropout experiments 648 

Strains were passaged by diluting 1:10 into fresh growth medium every 24 h for 2-3 days. The day 649 

before strain dropout experiments, cultures were diluted 1:10 into 1 mL of medium and grown overnight as 650 

inoculation working stocks. To measure OD600, strains were diluted 1:10 into 150 µL of the appropriate 651 

culture medium and a plate reader was used to measure absorbance at 600 nm. Stocks were normalized 652 

using fresh growth medium to a final OD600 of 0.1. If an overnight culture did not reach OD600 of 0.1, the 653 

entire culture was used as the working stock for community assembly. For community assembly, 10 mL of 654 

each stock were pipetted into a 12-well reservoir plate. 655 

Strain dropouts were performed on a row-by-row basis in a 96-well deep-well plate. For example, 656 

to individually dropout each of the 12 strains in row A, equal volumes of all community members not in row 657 

A were pooled and aliquoted into 12 sterile 1.5 mL Eppendorf tubes. This process resulted in 120 µL of 658 

each of 104-12=92 strains for each of 12 communities being combined into a 11.04 mL pool, which was 659 

divided into 12 aliquots of 920 µL in sterile Eppendorf tubes. To add the strains in row A, 12 sub-660 

communities were created by pooling 10 µL of each of the 12 strains except for the intended dropout. 10 661 
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µL of PBS were added, for a total volume of 120 µL, which was added to the 920 µL pooled community 662 

lacking row A, resulting in the creation of 12 communities with volume 1040 µL, each lacking one of the 663 

104 strains. This process was repeated for all rows to cover the 104 strains over 2 days; 24 and 80 dropouts 664 

were constructed on day 1 and 2, respectively. Each dropout community was washed once via 665 

centrifugation at 5000 x g for 5 min and resuspended in an equal volume of sterile PBS. Sixteen microliters 666 

of each dropout community were used to inoculate 1.6 mL of SAAC medium. Four hundred microliter 667 

aliquots were collected at 12 h, 24 h, and 48 h post-inoculation. The initial dropout community stocks and 668 

all aliquots were processed for metagenomic sequencing using a Power Soil DNA extraction kit (Qiagen). 669 

 670 

Pairwise co-culture growth measurements 671 

Each strain was inoculated from a frozen stock into its optimal growth medium (Mega Medium or 672 

Chopped Meat Medium) and the culture was incubated for 24 h at 37 °C. OD600 was measured, and 1 mL 673 

of each strain was washed with sterile 1x PBS. 0.75 µL of each strain (for co-cultures) or PBS (for 674 

monocultures) was added to 148.5 µL SAAC medium for a total volume of 150 µL. The baseline OD600 and 675 

growth curves were measured using an Epoch plate reader (Biotek). For C. sporogenes and L. lactis, 676 

cultures were normalized to OD600=1.0 before mixing. All cultures were performed in technical triplicate 677 

with 2-6 biological replicates.  For each growth curve, the interaction score 𝛼 was computed based on an 678 

additive null model (Aranda-Díaz et al., 2020): 679 

𝛼 = ODco#(ODs1%ODs%)
'ODs1ODs%

, 680 

where ODco, ODs1, and ODs2 are the maximum OD values of the co-culture and the individual strains s1 681 

and s2, respectively. The time to reach half maximum absorbance (t1/2) was measured for individual 682 

cultures and co-cultures and labeled as significant if average co-culture t1/2 was greater than either 683 

individual average t1/2. Student’s t-test was utilized to determine significant changes with p<0.05. 684 

 685 

Mis-mapping estimation using monoculture sequencing 686 

Read fractions were analyzed using custom Matlab (Mathworks, R2018a) code. Read fractions 687 

were rescaled to sum to 1, thereby reflecting the relative abundances of reads mapped to one of the 104 688 

genomes in our database. These data were used to calculate expected relative abundances of each strain 689 

from mis-mapping data as described below. The expected mis-mapped relative abundance (Ei,j) for strain 690 

i in a sample j was calculated as 691 

𝐸!,# =#𝑅$,# × 𝑟!,$
!%$

 692 
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where Rk,j is the relative abundance of strain k in sample j and ri,k is the relative abundance of strain i in 693 

sequencing data of strain k as an isolate. Strains whose relative abundance was comparable to the 694 

expected mis-mapped relative abundance (Ei,j<10ri,j) were removed from further analysis. 695 

 696 

Amino acid dropout data analysis 697 

Read fractions were rescaled to sum to 1, thereby reflecting the relative abundances of reads 698 

mapped to one of the 104 genomes in our database. The effect of removal of an amino acid on a strain 699 

was estimated by calculating the z score 𝑧$,# =
&!,#'(!
)!

, where Rk,j is the log10(relative abundance) of strain 700 

k in sample j and 𝜇$ and 𝜎$ are the mean and standard deviation, respectively, of log10(relative abundance) 701 

for strain k across all samples except the cysteine dropout. The cysteine dropout sample was excluded 702 

from the calculation of µk and sk because this sample was an obvious outlier. Data points that could be 703 

explained by mismapping were removed. Putative interactions were identified based on |zj,k|>2, i.e. amino 704 

acid dropouts that changed the log10(relative abundance) of strain k by ≥2 standard deviations relative to 705 

its mean. Some strains varied in relative abundance by several orders of magnitude; as a result, 𝜎$  was 706 

large, so putative interactions would be missed using z-scores. 707 

To identify clusters of strains that responded similarly or amino acids that elicited a similar 708 

response, we normalized Rk,j for each strain across samples by subtracting 𝜇$ and performed hierarchical 709 

clustering of both strains and amino acid dropouts on a dataset including strains that were detected in all 710 

21 amino acid dropout samples. 711 

 712 

Strain interactions in strain-dropout data 713 

Read fractions were rescaled to sum to 1, reflecting the relative abundances of reads mapped to 714 

one of the 104 genomes in our database. Samples with <106 reads, as well as the Eubacterium siraeum 715 

DSM 15702 dropout (which appeared to be missing an additional strain, A. caccae), were discarded from 716 

further analysis. 717 

To identify batch effects that caused unintentional groupings within the dataset, we subtracted the 718 

mean log10(relative abundance) of each strain in t=48 h samples from the log10(relative abundance) in each 719 

sample. These normalized relative abundances were used to calculate the Pearson correlation coefficient 720 

of each pair of samples. Based on this correlation matrix, samples were split into 4 experimental groups 721 

that corresponded to natural groupings arising from the experimental setup (Figure S6), with group sizes 722 

n=21, 57, 12 and 8. For the two largest groups, z-scores were calculated for each strain based on the 723 

mean and standard deviation of log10(relative abundances) within the corresponding experimental group. 724 

To account for noise in low-abundance strains, z-scores were only calculated for strains that were 725 

undetected in <5 samples in the experimental group. Data points that could be explained by mismapping 726 

were removed. Statistics were calculated using only detected strains in each sample; undetected strains 727 
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were only set to an arbitrary small number for graphical representation. Putative interactions were defined 728 

based on |zj,k|>2. 729 

 730 

Statistical analysis 731 

The statistical details of experiments can be found in the figure legends. Reported n values are the 732 

total samples (cultures) per group. Unless otherwise stated, p-values were not corrected for multiple 733 

hypothesis testing. Benjamini-Hochberg corrections, hypergeometric tests, Student’s t-tests (unpaired or 734 

two-tailed), and Kruskal-Wallis tests were performed in MATLAB. 735 
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Figure 1: A complex gut bacterial community. A phylogenetic tree of the 104 strains in the community 760 

based on a multiple sequence alignment of conserved single-copy genes. The community was designed 761 

by identifying the most prevalent strains in sequencing data from the NIH Human Microbiome Project 762 

(HMP). Colors indicate the phylum of each strain: Firmicutes = red, Actinobacteria = blue, Verrucomicrobia 763 

= orange, Bacteroidetes = green, and Proteobacteria = purple. Also shown are the prevalence and relative 764 

abundance of each strain in the data set from the NIH HMP (n=81 subjects), and the size of each strain’s 765 

genome.  766 
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Figure 2: A sensitive and specific read mapping pipeline. (A) A schematic of NinjaMap, a new 767 

algorithm that quantifies strain abundances in defined communities with high accuracy. Reads that match 768 

a single genome unambiguously are assigned to that genome; reads that match multiple genomes are 769 

placed in escrow. An initial estimate of the relative abundance of each strain is computed from the 770 

unambiguous alignments and used to assign escrow reads proportionally. The final read counts are then 771 

normalized to obtain relative abundances. (B) The community reaches a stable configuration quickly. Each 772 

dot is an individual strain; the collection of dots in a column represents the community at a single timepoint. 773 

Strains are colored according to their rank-order abundance in the community at 48 h. By 12 h, The relative 774 

abundances of strains in the community span six orders of magnitude and remain largely stable through 775 

48 h. (C) Communities generated from the same inoculum (i.e., technical replicates) have a nearly identical 776 

composition at 48 h. (D) Communities generated from two inocula prepared on different days (i.e., 777 

biological replicates) have a similar architecture at 48 h. In (C) and (D), the color of each circle represents 778 

the phylum of the corresponding species, and circles with gray outlines represent strains whose presence 779 

could be explained by read mis-mapping.   780 
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Figure 3: Systematic analysis of strain-amino acid interactions. (A) Schematic of the amino acid 781 

dropout experiment. Frozen stocks of the 104 strains were used to inoculate cultures that were grown for 782 

24 h, diluted to similar optical densities (to the extent possible), and pooled. The mixed culture was used 783 

to inoculate one of twenty defined media lacking one amino acid at a time. After 48 h, communities were 784 

sequenced and analyzed by NinjaMap to determine changes relative to growth in the complete defined 785 

medium. (B) Community composition is impacted by amino acid dropout. Each dot is an individual strain; 786 

the collection of dots in a column represents the community at a single timepoint. Strains are colored 787 

according to their rank-order abundance in the community grown in complete defined medium. Strains 788 

whose relative abundance could be explained by read mis-mapping from a more abundant strain in the 789 

same sample are plotted with a gray outline. Undetected strains were set to 10-7 for visualization. (C) A 790 

heat map showing the log10(relative abundance) normalized to strain mean for a subset of strains (full set 791 

is shown Figure S3A). The Firmicutes L. lactis, C. sporogenes, and L. ruminis grow less robustly in the 792 

absence of Leu and Ile. (D) The effect of amino acid removal varies widely across amino acids. A z-score 793 

was calculated based on the standard deviation of strain abundance across all samples except the cysteine 794 

dropout. The fraction of strains with |z|>2 is shown for each amino acid dropout (n=66). (E) The absence 795 

of leucine or arginine leads to a large decrease in C. sporogenes relative abundance. Strains are colored 796 

according to their rank-order abundance in the community grown in complete defined medium. Only strains 797 

that were detected in at least one of the three samples were included (n=92). C. sporogenes is highlighted 798 

in black. Undetected strains were set to 10-7 for visualization. (F) C. sporogenes growth in complete defined 799 

medium is dependent on the presence of arginine, and ornithine transcarbamoylase (otc) is partially 800 

responsible for Arg metabolism. Wild type C. sporogenes and a Dotc mutant were grown in complete 801 

defined medium +/- Arg. Growth curves depict the mean of 3 replicates. Error bars represent 1 standard 802 

deviation. (G) C. sporogenes requires otc to produce ATP from arginine. Intracellular ATP levels in C. 803 

sporogenes incubated in PBS containing 2 mM Arg are shown. (H) A proposed pathway for Arg metabolism 804 

in C. sporogenes. Based on these data, we propose that Arg is converted to citrulline by the putative Arg 805 

deiminase CLOSPO_00894; citrulline is then hydrolyzed to ornithine and carbamoyl phosphate by the 806 

putative ornithine transcarbamoylase CLOSPO_02415, leading to the production of ATP.  807 
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Figure 4: Systematic analysis of strain-strain interactions. (A) Schematic of the strain dropout 808 

experiment. Frozen stocks of the strains were used to inoculate cultures that were grown for 24 h, diluted 809 

to similar optical densities (to the extent possible), and combined into 104 communities, each of which is 810 

missing a single strain (i.e., 103-member communities). After 48 h, communities were sequenced and 811 

analyzed by NinjaMap to determine changes relative to the growth of the full 104-member community. (B) 812 

Relative abundances for most strains are narrowly distributed. Each column depicts the relative abundance 813 

of an individual strain across a set of 57 strain dropouts (black dots); the relative abundance of each strain 814 

in its own dropout is shown as a red dot. Relative abundances in samples with |z|>2 are shown as gray 815 

dots. Undetected strains were set to 10-7 for visualization. Inset: an enlarged view of the relative abundance 816 

of Acidaminococcus fermentans DSM 20731 across 57 strain dropouts, showing that the elimination of 817 

Acidaminococcus sp. D21 led to the expansion of A. fermentans DSM 20731. The red circle is the mean 818 

log10(relative abundance); error bars show one (wide bar) or two (narrow bar) standard deviations from the 819 

mean. (C) Response of the community to the removal of a single strain. Each dot is an individual strain; 820 

the collection of dots in a column represents the community at a single timepoint. 76 strains are shown; 821 

they are colored according to their rank-order mean log10(relative abundance) across all samples in the 822 

experimental group (n=57). Both Acidaminococcus strains in the community are labeled; the removal of 823 

Acidaminococcus sp. D21 leads to an increase in A. fermentans DSM 20731, with most other strains 824 

staying at a similar level. (D) Removal of certain strains affected a large proportion of the community. The 825 

effect of a strain dropout on each strain was determined by calculating the z-score across all samples 826 

within an experimental group (Methods). The fraction of putative interactions was calculated based on the 827 

strains with |z|>2 for each strain dropout (z<-2 in blue, z>2 in red). Only strains above the limit of detection 828 

in the experimental group were counted, thus n is variable. (E) Some strains whose removal affected a 829 

large portion of the community were at high relative abundance, others low. The plot shows the mean 830 

log10(relative abundance) for each strain in the largest experimental group (n=57), excluding the sample in 831 

which that strain was dropped out. (F) A subset of the predicted interactions in the 104-member community 832 

can be recapitulated in binary culture. Interaction scores were high for some strain pairs (a→b, where 833 

removal of strain a affected strain b) with z<-2.6 (predicted positive interaction). We also included a pair 834 

with slightly smaller z-score (z=-2.1, C. sporogenes → L. lactis). Data are the mean of 2-6 replicates, and 835 

error bars represent 1 standard deviation from the mean. (G) C. sporogenes promotes L. lactis growth in 836 

binary culture. Growth curves are plotted for mono- or co-cultures of C. sporogenes and L. lactis in 837 

complete defined medium. Data are means and error bars represent 1 standard deviation from the mean 838 

(n=3). (H) Colony forming units for both strains in mono- or co-culture in complete defined medium. C. 839 

sporogenes levels were unaffected but the density of L. lactis increased ~10-fold in co-culture (p-values 840 

correspond to Student’s t-tests (n=6). **: p<0.05.  841 
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