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Abstract 
 
Genetically-encoded biosensors are valuable for the optimization of small-molecule biosynthesis 
pathways, because they transduce the production of small-molecule ligands into a readout 
compatible with high-throughput screening or selection in vivo. However, engineering biosensors 
with appropriate response functions and ligand specificities remains challenging. Here, we show 
that the continuous hypermutation system, OrthoRep, can be effectively applied to evolve 
biosensors with high dynamic range, reprogrammed activity towards desired non-cognate 
ligands, and proper operational range for coupling to biosynthetic pathways. In particular, we 
encoded the allosteric transcriptional factor, BenM, on OrthoRep such that propagation of host 
yeast cells resulted in BenM’s rapid and continuous diversification. When these cells were 
subjected to cycles of culturing and sorting on BenM activity in the presence and absence of its 
cognate ligand, muconic acid, or the non-cognate ligand, adipic acid, we obtained multiple BenM 
variants that respond to their corresponding ligands. These biosensors outperform previously-
engineered BenM-based biosensors by achieving substantially greater dynamic range (up to 
~180-fold-induction) and broadened operational range. Expression of select BenM variants in the 
presence of a muconic acid biosynthetic pathway demonstrated sensitive biosensor activation 
without saturating response, which should enable pathway and host engineering for higher 
production of muconic and adipic acids. Given the streamlined manner in which high-performance 
and versatile biosensors were evolved using OrthoRep, this study provides a template for 
generating custom biosensors for metabolic pathway engineering and other biotechnology goals. 
 
Introduction 
 
Microbial biosynthesis of small-molecules is an attractive alternative to traditional chemical 
synthesis for a wide array of therapeutically and commercially relevant compounds. For example, 
yeast have been utilized for the biosynthetic production of the anti-malarial precursor, artemisinic 
acid (1); a range of opioids, such as thebaine and  hydrocodone (2); perfume agents, such as 
santalene (3); biofuels (4); and oleochemicals (5). However, engineering microbes to efficiently 
produce a target small-molecule often requires substantial modification of heterologous enzymes 
and host cell metabolism, necessitating search through a vast space of designs. Although large 
libraries of pathway and host modifications can be readily constructed using modern genetic 
engineering techniques, finding the most efficient producers is typically low throughput: agar plate 
screens on colonies, utilizing a visual output or growth complementation, are limited to small 
library sizes of up to 105; and microtiter plate-based screening approaches coupled analytical 
techniques such as mass spectrometry and liquid/gas chromatography are limited to libraries of 
up to104 (6, 7).  
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To convert the identification, engineering, and evolution of metabolic pathways into a high 
throughput exercise, synthetic biologists have focused on the generation of custom genetically-
encoded biosensors that can specifically report on the production levels of desired molecules in 
vivo (8–13). Properly engineered, such biosensors transduce the amount of a target small-
molecule into a biological output, such as the strength of reporter gene expression. These outputs 
can then be used for sorting, as in the case of fluorescence reporters, or selection, as in the case 
of a selectable gene, forming the crucial link between an arbitrary molecule’s production and the 
high-throughput enrichment of pathways and host modifications that efficiently produce the 
molecule. The generation of custom biosensors has therefore emerged as an important area of 
research within the field of metabolic engineering. 
 
A powerful class of potential custom biosensors are allosteric transcription factors (aTFs), which 
have an effector-binding domain responsible for recognizing cognate ligands and a DNA binding 
domain that modulates target gene transcription when the cognate ligand is bound (14, 15). 
Because of their modular architecture and abundance, natural aTFs are attractive starting points 
for engineering custom biosensor properties, such as regulatory response, regulatory logic, and 
specificity for non-cognate ligands (11, 12). Recently, Jensen, Keasling, and colleagues 
demonstrated that the largest family of transcriptional regulators found in prokaryotes, the LysR-
type transcriptional regulators (LTTRs), are both portable into workhorse bioproduction hosts such 
as Saccharomyces cerevisiae and highly engineerable for custom biosensor behaviors (16, 17). 
For example, they showed that the homotetrameric prokaryotic LTTR, BenM, can activate 
transcription of genes of interest in S. cerevisiae when BenM’s cognate ligand, cis,cis-muconic 
acid (CCM), is present. This was done by engineering a common yeast promoter, CYC1p, to 
contain BenM’s DNA operator sequence, BenO. This hybrid CYC1p-BenO promoter was then 
used to control GFP expression, allowing for a series of directed evolution campaigns that yielded 
new BenM variants through fluorescence activated cell sorting (FACS). In these efforts, the 
Jensen Lab generated BenM variants with increased dynamic and operational range for CCM, 
inverted regulatory logic, as well as reprogrammed specificity for adipic acid (AA). For example, 
the most prominent BenM mutants identified in Snoek et al. (17) displayed a 15-fold increase in 
output level, a 40-fold shift in operational range, and complete inversion-of-function from ligand-
induced activation to repression when compared to the parental BenM biosensor. However, there 
is need for additional BenM biosensors with expanded dynamic range, operational range, and 
higher specificity given the diversity of metabolic engineering contexts in which BenMs may be 
applied. 
 
In this study, we sought to evolve high-performance BenM-based biosensors using the in vivo 
continuous hypermutation system, OrthoRep. By encoding BenM on OrthoRep, straightforward 
cycles of culturing and FACS in the presence and absence of CCM or AA yielded BenM variants 
with desired behaviors. Because BenM continuously diversifies when encoded on OrthoRep, we 
were able to implement many cycles of evolutionary improvement in a straightforward manner, 
resulting in superior multi-mutation BenM variants with high dynamic range, broad operational 
range, and improved specificity compared to literature benchmarks. This contrasts with past 
biosensor directed evolution strategies that carried out cycles of FACS enrichment on a static 
library of BenMs (16, 17), restricting the improvements accessible. Combinatorial examination of 
mutations found in our evolved BenM variants showed that all mutations characterized improved 
functionality in at least one context, validating the utility of OrthoRep-driven evolution cycles. 
Finally, we expressed our evolved BenM variants in the presence of a CCM production pathway 
to show operational sensing for the goal of evolving CCM and AA metabolic pathways. We argue 
that the demonstrated effectiveness of OrthoRep-driven BenM evolution combined with the 
inherent scalability of OrthoRep-based evolution experiments will advance future biosensor 
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engineering campaigns, as the scope of desired biosensors, both in specific molecules sensed 
and performance across different operational ranges, is vast. 
 
Results 
 
Directed evolution of BenM with OrthoRep 
 
We sought to demonstrate OrthoRep-driven biosensor evolution by 1) increasing the ability of 
BenM to sense CCM and 2) reprogramming BenM to respond to AA. To establish the BenM 
evolution strain, we started with a CEN.PK113-5A S. cerevisiae strain previously engineered to 
express GFP under the control of the hybrid CYC1p-BenO promoter, which is activated by BenM 
in the presence of CCM (MeLS0138). We fully deleted the URA3 and TRP1 genes in this parent 
strain and inserted OrthoRep components by protoplast fusion and transformation following 
established pipelines (18–20). The resulting BenM evolution strain includes a recombinant 
orthogonal p1 plasmid that encodes WT BenM along with a selectable marker (URA3) and a 
nuclear (CEN6/ARS4) plasmid that encodes the error-prone orthogonal DNA polymerase, TP-
DNAP1-4-2, along with a selectable marker (TRP1) (Figure 1A). This evolution strain uses the 
error-prone orthogonal DNAP to continuously replicate BenM at a high mutation rate of 10-5 
substitutions per base (spb) (19).  
 
To evolve BenM, we first passaged the evolution strain for ~150 generations to accumulate BenM 
mutational diversity before introducing selection. Then, FACS-based evolution cycles were 
initiated. Each cycle consisted of 1) culturing cells in the presence of CCM or AA, 2) a positive 
sort where the top 0.5% most fluorescent cells were collected, 3) culturing cells in the absence of 
CCM or AA, and 4) a negative sort to remove any BenM mutants that constitutively activate GFP 
expression (Figure 1B). During culturing steps, BenM autonomously diversifies, allowing cycles 
of this process to improve BenM activity over time. Over the span of 11 total cycles, with the 
concentration of ligand increasing from ~7 mM to ~14 mM at cycle 7 to further broaden operational 
range, the overall behavior of each population adapted as desired: the average fluorescence of 
the population increased when cultured in the presence of CCM or AA and remained at 
background levels in the absence of CCM and AA. BenM alleles present in the cultures after cycle 
11 were then isolated via PCR from population p1 DNA and integrated into the genome of a fresh 
yeast reporter strain as a single copy (ura3∆0::REV1p-BenM-tTDH1) through transformation. The 
reporter strain, which does not include OrthoRep components, encodes GFP under the control of 
the hybrid CYC1p-BenO promoter. This allowed us to measure BenM activity in a context where 
BenM is encoded on the yeast genome, replicating how it would be applied as a biosensor for 
metabolic engineering and biotechnology goals. Ninety-six clones were randomly picked and 
tested for their ability to respond to ~14 mM CCM or AA, and the top 7 clones with highest dynamic 
range, defined as the fold-induction of GFP relative to the condition with no ligand present, were 
sequenced (Figure 1C). 
 
The top 7 BenM variants evolved to sense CCM (CCM-1-7) contained between 6 and 9 non-
synonymous mutations including a core set of five mutations shared among all variants (V88A, 
A115V, L174S, E223G, and Y257H) (Figure 1C). Additional mutations that some CCM 
biosensors contained include D213G, which is structurally located in the dimer-dimer interface of 
BenM (21, 22); and a near-consensus mutant, A28T, which was hypothesized in a prior structural 
study to enhance BenM’s interaction with the phosphate backbone of DNA (23). Specifically, it 
was suggested that replacing A28 with T or S could provide a hydroxyl to enhance BenM’s 
interaction with the phosphate backbone of DNA. Interestingly, other LTTRs contain a T or S at 
the position homologous to A28 (23). The top 7 BenM variants evolved to sense AA (AA-1-7) 
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contained 5 to 8 non-synonymous mutations including a core set of four mutations shared among 
all variants (D76G, P199T, P201S, and Y293C) (Figure 1C). One of these mutations, P201S, is 
at a position involved in the dimer-dimer interface of BenM and was also uncovered in previous 
work evolving BenM to sense AA; it likely functions to change ligand specificity, as P201 forms 
an interaction with CCM (17, 22). Two other mutations, D76G and G44D, were notable because 
many LTTRs have a charged or polar amino acid at D76, and G44 is highly conserved (23). 
Although D76G and G44D could be neutral or deleterious hitchhiker mutations, we found this was 
not the case (see below). Overall, mutations were found throughout BenM, highlighting the wide 
range of interdomain mutations that can modulate allosteric regulation of BenM (Figure 1D). 
 
Evolved CCM and AA biosensors exhibit high dynamic range, operational range, and 
specificity 
 
To fully characterize the performance of biosensors CCM-1-7 and AA-1-7, we obtained in vivo 
ligand response curves using the fluorescence of GFP driven by CYC1p-BenO as the readout 
(Figures 2A and B). Strains were grown in a range of ligand concentrations up to saturation in 
biological triplicate, and the dynamic range was determined for all concentrations (Figures 2C 
and D). For comparison, WT BenM and a set of benchmark BenM-based biosensors evolved in 
previous studies were tested alongside CCM-1-7 and AA-1-7. These benchmark biosensors 
include TM (H110R, F211V, Y286N) and MP17_D08 (A230V, F253S, Y286N, Y293H), which 
were previously evolved to sense CCM with improved dynamic range and expanded operational 
range, respectively (16, 17); and TiSNO120 (A130D, A153G, P201S, E287V), which was 
previously evolved for sensing AA (17).  
 
Nearly all variants evolved in this study outperformed benchmark biosensors in their dynamic 
range and have comparable or broadened operational ranges that span multiple orders of 
magnitude (Figures 2A and B). For example, CCM-4 had a dynamic range of ~180-fold and 
CCM-6 had a dynamic range of ~135-fold with a graded response over at least ~0.02-14 mM 
CCM. This contrasts with TM, with a dynamic range of ~29-fold and a response that saturates at 
~2 mM CCM, and MP17_D08, with a dynamic range of ~13-fold and a response that saturates at 
~1 mM CCM. Likewise, AA-5 had a dynamic range of ~180-fold and AA-3 had a dynamic range 
of ~150-fold with a graded response over at least ~1.5-112 mM AA. This contrasts with TiSNO120 
with a dynamic range of ~30-fold and a response that saturates at ~3.5 mM AA. Notably, the large 
operational range of our AA biosensors, with several capable of discriminating up to ~110 mM 
AA, resulted from evolution campaigns that only used up to ~14 mM AA. This suggests that 
continued evolution of our AA biosensors may yield variants that are sensitive to even lower 
concentrations of AA, although these would have limited value for metabolic pathway evolution, 
because existing production pathways can already yield AA above the minimum concentrations 
our AA biosensors can detect (24). 
 
Several BenM variants we evolved also exhibited high specificity for their cognate ligands 
compared to benchmark biosensors. For example, CCM-4 had no detectable activity for AA, in 
contrast to TM and MP17_D08 (Figure 2E). Likewise, AA-5 and AA-6 responded poorly to the 
non-cognate ligand, CCM, such that the saturation response for AA was ~24- and ~10-fold higher 
than the saturation response for CCM, respectively. This contrasts with TiSNO120 where the 
saturation response for AA is ~5-fold higher than the saturation response for CCM (Figure 2F). 
Notably, we did not perform any negative selection against non-cognate ligands in our evolution 
campaigns. Therefore, observed improvements in specificity were likely the byproduct of the 
many cycles of functional evolution enabled by OrthoRep, which may have resulted in 
specialization and associated specificity for the cognate ligand. Taken together, our OrthoRep-
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evolved BenMs form a new set of in vivo biosensors for CCM and AA distinguished by their 
diverse and exceptional performance. This should translate to versatility in their future application. 
 
Analysis of biosensor mutations reveals complex contributions to function 
 
We next sought to determine how individual and collections of mutations in our evolved CCM and 
AA biosensors contribute to their functions. Because the evolved CCM-1-7 and AA-1-7 BenM 
variants each contain 4-9 mutations, it was impractical to analyze all possible mutant 
combinations. Instead, we divided mutations into two categories: those shared by (almost) all 
alleles (consensus) and those that were unique to only some alleles (secondary). For CCM-1-7, 
5 mutations were shared among all variants and 6 mutations were shared among 6 of the 7 
variants, so we chose to include 6 mutations as the consensus set: Y67C, V88A, A115V, L174S, 
E223G, and Y257H or CAVSGH for short. Likewise for AA-1-7, 4 mutations were shared among 
all variants, defining the consensus set: D76G, P199T, P201S, and Y293C or GTSC for short. 
We then carried out a series of studies focusing primarily on the CAVSGH and GTSC consensus 
sequences and, in select cases, the combination of consensus with secondary mutations. Yeast 
reporter strains with GFP driven by CYC1p-BenO were engineered to encode genomically-
integrated biosensor variants (ura3∆0::REV1p-BenM_Variant-tTDH1) containing the various 
mutant combinations of interest and GFP fluorescence was measured for all strains in the 
presence of no, medium, or high levels of CCM (0 mM, 0.88 mM or 14.08 mM) and AA (0 mM, 
7.04 mM, or 112.60 mM) (Figure 3). 
 
For CCM biosensors, we tested how each mutation in the consensus set contributes to function 
as an individual mutation in BenM or if removed from the consensus. We found that a set of 
mutations (C, A, V) increased biosensor response in the presence of CCM but did so in a way 
that also increased background activity in the absence of ligand as well as activity in the presence 
of the non-cognate ligand, AA (Figures 3A and B), implying that these individual mutations can 
generically enhance BenM activity. However, the consensus mutations S, G, and H individually 
resulted in activity comparable to WT, indicating that these mutations were modulating BenM 
activity only in the context of other mutations (Figure 3A). The subtractive analysis on the 
CAVSGH consensus revealed more nuanced outcomes. CAVSGH had the desired biosensor 
behavior of high dynamic range for CCM (Figure 3A), including near-zero response in the 
absence of CCM and minimal sensitivity for the non-cognate ligand, AA (Figure 3B). However, 
when S, G, or H were individually removed, activity in the absence of CCM substantially 
increased, which was not the case when either A or V was removed (Figure 3A). This implies 
that S, G, and H enforce CCM-dependent activity and substantially improve dynamic range, 
whereas A and V generically increase BenM activity in the context of the other consensus 
mutations. Interestingly, removal of C from CAVSGH resulted in an inactive BenM. This combined 
with the observation that C alone increased generic BenM activity (Figures 3A and B) implies 
that C interacts with at least one other mutation in the consensus set in an epistatic manner. It is 
notable that the active biosensor, CCM-3 (Figures 1C and 2A), does not contain C but does 
contain AVSGH, suggesting that the secondary mutations in CCM-3, namely A29T or D213G, 
compensate for the loss of C in the CAVSGH consensus. Although we did not characterize the 
contributions of all secondary mutations individually, we can conclude that the secondary 
mutations in CCM-1-6 contribute additional function to the biosensing properties of the 
consensus. This follows from the fact that CCM-7 is identical to the CAVSGH consensus (Figure 
1C) and CCM-1-6, containing secondary mutations, all have greater dynamic range, higher 
response at saturating CCM concentrations, and larger operational range than CCM-7 (Figure 
2A). 
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For AA biosensors, we comprehensively tested all 16 combinations of mutations found in the 
GTSC consensus (Figure 3C and D). We found that all individual mutations in the GTSC 
consensus are important for increased AA biosensor activity (Figure 3D). However, G and C 
showed activity increases in the presence of both CCM (Figure 3C) and AA (Figure 3D) whereas 
S and (to a lesser extent) T showed pronounced activity increases only in the presence of AA, 
suggesting that T and S are consensus mutations responsible for changing the ligand specificity 
of BenM to AA. When combined, GTSC exhibited high activity in the presence of AA but also 
appreciable activity in the absence of any ligand and in the presence of the non-cognate ligand, 
CCM (Figure 3C). This high background activity and/or low specificity was observed in all 
combinations of G, T, S, and C except the TS mutant, providing further evidence that T and S are 
primarily responsible for reprogramming BenM’s ligand specificity. Likewise, high background and 
low specificity was exaggerated in the GC double mutant, supporting the conclusion that G and 
C increase the activity of BenM in a generic manner. Overall, we observed that the functional 
contributions of mutations in the GTSC consensus could be qualitatively explained by an additive 
model wherein the activity of BenMs in the presence of AA largely increased with the number of 
consensus mutations and the background activity of BenMs was lowered by T and/or S, which 
also lowered activity in the presence of AA to a small extent in rare cases. 
 
Secondary mutations found in the AA biosensors were important for further reducing the 
background activity of the GTSC consensus in the absence of ligand (Figures 3E and F). For 
example, G44D, T82I, I188N, S284P, and A294V, improved the dynamic range of GTSC by 
reducing background without substantially changing response in the presence of AA (Figure 3F). 
This suggests a model of evolution where there are a small number of large-effect mutations that 
increase the induced activity of BenM, and a more diverse number of small-effect background-
lowering mutations accumulated throughout the mutational trajectories. This model is consistent 
with the higher stringency of positive selection steps versus negative selection steps during our 
evolution campaign. Taken together, these data reveal the subtleties of how OrthoRep-driven 
evolution achieved a diverse set of high-performance BenM biosensors that respond to CCM and 
AA and provide an additional collection of BenM variants with intermediate activities that may be 
useful in biosensor applications.  
 
Evolved BenM variants show broad operational range in presence of pathway enzymes 
producing CCM 
 
To show that our evolved BenM variants are applicable in the metabolic engineering of CCM and 
AA production pathways in vivo, we tested the performance of our biosensors in the presence of 
an established biosynthetic pathway for the production of CCM in S. cerevisiae (16). The goal of 
this experiment was to demonstrate that our evolved biosensors 1) could properly report on the 
biosynthesis of CCM or AA and 2) possess an operational range that extends wide enough such 
that improvements in the biosynthesis pathway could be robustly detected in a high-throughput 
screen or selection. With these criteria in mind, we chose to test a subset of our CCM (CCM-3, 
CCM-4, and CCM-6) and AA (AA-3, AA-5, and AA-6) biosensors that exhibit high dynamic ranges, 
diverse operational ranges, and specificity for their cognate ligand (Figures 1C and 2). 
 
We genomically integrated the selected BenM variants (ura3∆0::REV1p-BenM_Variant-tTDH1) 
into a strain containing 1) GFP driven by the hybrid CYC1p-BenO promoter and 2) a CCM 
biosynthesis pathway consisting of codon-optimized AroZ from Podospora anserina (PaAroZ), 
CatA from Candida albicans (CaCatA), and AroY from Klebsiella pneumonia (KpAroY). As 
previously described, this particular combination of PaAroZ, CaCatA, and KpAroY results in the 
efficient production of CCM in S. cerevisiae (16). While the addition of an enoate reductase (ERBC 
from Bacillus coagulans) can reduce CCM into AA, allowing us to also test our AA biosensors in 
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the context of AA bioproduction, a multi-stage fermentation strategy utilizing a bioreactor in 
anaerobic conditions is required to produce active enoate reductase and consequent AA (24). For 
practical reasons, we decided to forgo direct production of AA, instead only supplying AA 
exogenously, which would still allow us to assess the operational range and specificity of AA 
biosensors in the presence of the upstream CCM pathway. 
 
As shown in Figure 4A, CCM-3, CCM-4, and CCM-6 were all activated in the presence of the 
CCM biosynthetic pathway. They also all demonstrated the capacity for substantial further 
activation for the detection of improvements in CCM biosynthesis. For example, CCM-4 shows 
an additional ~6-fold activation in response to 7.04 mM exogenous CCM and an additional ~16.5-
fold activation in response to 14.08 mM exogenous CCM. The benchmark TM biosensor is also 
capable of detecting endogenously biosynthesized CCM without saturating response, but only 
weakly senses the addition of exogenous CCM, while the benchmark MP17_D08 biosensor and 
WT BenM are both already saturated by the amount of endogenously biosynthesized CCM 
(Figure 4A). Compared to the benchmarks, our evolved CCM biosensors should therefore be 
more versatile in their application to the engineering of CCM biosynthetic pathways. 
 
A similar set of behaviors was found for our AA biosensors. As shown in Figure 4B, variants AA-
3, AA-5, and AA-6 all exhibited significant further activation upon addition of AA in the presence 
of biosynthesized CCM, up to ~60-fold, ~65-fold, and ~19-fold for AA-3, AA-5, and AA-6, 
respectively. Additionally, even when 14.08 mM of exogenous CCM was used to supplement 
endogenously biosynthesized CCM, AA-3, AA-5, and AA-6 responded at levels well below their 
corresponding responses in the presence of 14.08 mM AA. This suggests that AA-3, AA-5, and 
AA-6 discriminate AA over high amounts of CCM, which should enable their application in 
engineering AA biosynthesis pathways that produce CCM as an intermediate. For comparison, 
the benchmark AA biosensor, TiSNO120, already exhibits saturation at AA concentrations below 
14.08 mM. Overall, these data suggest that the BenM variants evolved in this study will be useful 
in the further optimization of CCM and AA production pathways in yeast. 
 
Discussion 
 
We have shown here the successful generation of high performance in vivo aTF biosensors for 
CCM and AA using a directed evolution process where a parent biosensor is encoded on 
OrthoRep for continuous hypermutation in vivo. The biosensors we report have substantially 
improved dynamic range (up to ~180-fold in several cases), operational range, and ligand 
specificity compared to literature precedents, which should broadly expand the application space 
for CCM and AA biosensing, especially in the context of metabolic engineering. Indeed, we have 
demonstrated that our evolved biosensors successfully coupled to an existing CCM production 
pathway while retaining capacity for an additional ~16-fold activation with higher concentrations 
of CCM. Recently, Jensen et al. showed that OrthoRep could be used to drive the evolution of a 
biosynthetic enzyme in the CCM production pathway, using the MP17_08 BenM biosensor to 
guide selection for increased CCM titers (25). Since the BenM variants from this study have higher 
dynamic range than MP17_08 and are more effective at detecting high CCM and AA 
concentrations, they should be immediately applicable in the further evolution of CCM pathway 
productivity, as well as AA biosynthesis pathways that use an additional enzyme to convert CCM 
to AA. In the long run, we envision a general process where OrthoRep is first used to evolve aTF 
biosensors against desired small-molecules and then used to drive the evolution small-molecule 
production pathways with the biosensor to guide selection.  
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We attribute the high performance of our biosensors to the OrthoRep-driven evolution process 
through which they were generated. Specifically, OrthoRep effected the continuous 
hypermutation of BenM, allowing us to easily carry out many cycles of diversification and 
selection, because the process of evolution required only passaging of cells and FACS-based 
selection in the presence and absence of desired ligands. In this manner, our evolution campaigns 
were able to reach complex multi-mutant evolutionary outcomes that encompassed a variety of 
desired biosensor behaviors. The streamlined nature of biosensor evolution with OrthoRep is well 
matched to the demands of the broader biosensor engineering field. There are many small-
molecules beyond CCM and AA for which effective aTF biosensors are lacking and for each 
distinct small-molecule, multiple concentration ranges need to be sensed. OrthoRep-driven 
evolution may prove uniquely scalable to match such breadth of target functions in the biosensor 
engineering space. Indeed, it may be possible to encode libraries of biosensor parents onto 
OrthoRep, such as those containing all natural LTTR effector-binding domains, in order to 
maximize the chance of finding initial biosensor activity against any small-molecule. Subsequent 
cycles of OrthoRep-driven evolution would automatically improve towards high dynamic range 
and hone towards desired operational ranges as demonstrated already with BenM. These 
directions will guide future efforts in our lab and others, with the ultimate goal of having effective 
in vivo biosensors for all small-molecules of interest. 
 
Materials and Methods 
 
DNA plasmid construction 
 
Plasmids used in this study are listed in Table S1. E. coli strain Top10 was used for all the DNA 
cloning steps. All primers used in this study were purchased from IDT. All enzymes for PCR and 
cloning were obtained from NEB. All plasmids were cloned via Gibson assembly (26). Cloning of 
sgRNAs was performed as described by Ryan et al. (27). 
 
Yeast strains and Media/chemicals 
 
All yeast strains used in this study are listed in Table S2. The auxotrophic selection marker used 
on p1 (URA3) was first fully deleted from the genome via CRISPR/Cas9 (27) before integrating 
genetic cassettes onto p1 or p1/p2 transfer through protoplast fusion. The auxotrophic selection 
marker for the nuclear plasmid containing TP-DNAP1-4-2 (TRP1) was also fully deleted, in this 
case after protoplast fusion. Spacer sequences were designed using Yeastriction v0.1 (28). 
Protoplast fusion was used to transfer OrthoRep into strain TrayBP-A7 and was performed as 
described before (20). Yeast strains were grown in standard media including YPD (10 g/L Bacto 
Yeast Extract; 20 g/L Bacto Peptone; 20 g/L Dextrose) and appropriate synthetic drop-out media 
(6.7 g/L Yeast Nitrogen Base w/o Amino Acids (US Biological); 2 g/L Drop-out Mix Synthetic minus 
the appropriate nutrients w/o Yeast Nitrogen Base (US Biological); 20 g/L Dextrose). CCM (Sigma 
#15992) and AA (Sigma #A26357) were dissolved directly into SC media. Afterwards, the pH was 
adjusted to 4.0 and the media filter-sterilized. CCM was found to be insoluble above 2 g/L (14.08 
mM). 
 
Yeast Transformation 
 
All transformations were performed via the high efficiency Gietz method (29). p1 integrations were 
performed as before (18, 20). For p1 integrations, 2-4 μg of plasmid was linearized by digestion 
with ScaI, which generated blunt ends containing homologous regions to p1. For CEN6/ARS4 
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nuclear plasmid transformations, roughly 100-500 ng of plasmid was transformed. Combinatorial 
mutants were synthesized as gBlocks (IDT) and transformed directly into yeast. Transformants 
were selected on the appropriate selective solid SC media. Plates were grown at 30°C for 2 days 
for nuclear transformations and 4-5 days for p1 integrations.  
 
FACS-based evolution 
 
Initial drift was performed by growing cells in 150 mL of SC-UW (pH 5.8) at 30 °C (250 r.p.m.) 
with daily 1:128 passages. After 21 passages (~150 generations), FACS-based screening began, 
consisting of alternating positive and negative sorts. After culture saturation (~20 hrs growth), 
cells were harvested and washed with a buffer containing HEPES-buffered saline (HBS; 20 mM 
HEPES pH 7.5, 150 mM NaCl) containing 0.2% maltose. After resuspending in buffer, FACS was 
performed with a Sony SH800 using a 70 μm Sony Sorting Chip. For positive sorting, cells were 
grown in SC-UW media (pH 4.0) containing 7.04 mM (rounds 1-6) or 14.08 mM (rounds 7-14) 
ligand (CCM or AA), whereas for negative sorting, cells were grown in SC-UW media (pH 4.0) 
without any ligand. Roughly 50,000,000 events and 20,000,000 events were measured for 
positive and negative sorting, respectively, for each evolution condition. Fluorescence was 
measured using a 488 nm laser and the top 0.5% fluorescence cells were recovered for positive 
sorts, while cells exhibiting background fluorescence were recovered for negative sorts. Cells 
were recovered in 40 mL of SC-UW (pH 4.0) until saturation (30 °C, 250 r.p.m.) and were 
subsequently diluted 1:100 into 40 mL of appropriate media, as described above, for the next 
round of selection. 
 
Flow cytometry 
 
All measurements to characterize biosensor responses were taken by flow cytometry. Strains 
were streaked onto solid media and single colonies picked into 400 μL of SC or SC-UW media 
(pH 4.0). After 24 hrs growth (30 °C, 750 r.p.m.), cultures were diluted 1:100 into control (SC or 
SC-UW, pH 4.0) or induction media (SC or SC-UW + CCM/AA, pH 4.0). After 21 hrs growth (or 
16 hrs for CCM-pathway containing strains), cells were diluted into 0.9% NaCl and measured on 
an Attune NxT Flow Cytometer (Life Technologies). Fluorescence of GFP was measured for 
20,000 events, and the mean fluorescence for each population was determined. Fold-induction 
was calculated by dividing mean fluorescence of the induced condition (for a given concentration 
of ligand) by the mean fluorescence of the uninduced condition. To fit the titration curves, a non-
linear least squares regression using a four-parameter model was performed in GraphPad 
PRISM. Each concentration measured corresponds to the mean of 2 or 3 biological replicates. 
 
Data Availability 
 
The datasets analyzed are available from the corresponding author upon reasonable request. 
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Figures 
 

 
 
 
Figure 1. Evolution of BenM biosensors for cis,cis-muconic acid (CCM) and adipic acid (AA). (A) 
OrthoRep evolution strain. The accessory plasmid p2 is not shown for simplicity. (B) Overview of 
FACS-based evolution pipeline. (C) Tables showing mutations sequenced from top 7 CCM and 
AA hits. (D) Crystal structure of BenM (PDB: 3K1N) with mutations in (C) shown. 
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Figure 2. Performance of evolved CCM and AA biosensors. (A) CCM response curves for top 7 
CCM biosensors. (B) AA response curves for top 7 AA biosensors. (C and D) Heat maps for CCM 
and AA biosensor response displaying mean fold-induction over the uninduced control (0 mM 
ligand) for CCM (C) and AA (D). (E and F) CCM and AA biosensor responses for off-target ligand. 
For all panels, data were collected in biological triplicate, and the means ± one standard deviation 
(error bar) are shown. 
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Figure 3. Combinatorial analysis of mutations observed in top 7 CCM and AA hits. (A) All 6 CCM 
consensus mutations as single or quintuple mutants induced with 0 mM (first bar in each set), 
0.88 mM (second bar in each set), or 14.08 mM (third bar in each set) CCM. The consensus 
mutation that was removed to yield a given quintuple mutant is listed in parenthesis. (B) Same as 
(A), but induced with 0 mM, 7.04 mM, or 112.60 mM AA. (C) All combinations of the 4 AA 
consensus mutants induced with 0 mM (first bar in each set), 0.88 mM (second bar in each set), 
or 14.08 mM (third bar in each set) CCM. (D) Same as (C), but induced with 0 mM, 7.04 mM, or 
112.60 mM AA. (E) Secondary AA mutants induced with 0 mM (first bar in each set), 0.88 mM 
(second bar in each set), or 14.08 mM (third bar in each set) CCM. (F) Same as (E), but induced 
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with 0 mM, 7.04 mM, or 112.60 mM AA. Consensus mutation abbreviations for (A) and (B): C, 
Y67C; A, V88A; V, A115V; S, L174S; G, E223G; H, Y257H. Consensus mutation abbreviations 
for (C)-(F): G, D76G; T, P199T; S, P201S; C, Y293C. Data were collected in biological duplicate, 
and the means ± range (error bar) are shown. 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.15.448565doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448565


 
Figure 4. Performance of biosensors in strains producing endogenous CCM. (A) CCM biosensor 
response in a strain producing CCM with varying amounts of exogenous ligand added. (B) AA 
biosensor response in a strain producing CCM with varying amounts of exogenous ligands added. 
Exogenous ligand was added to culture media. Data were collected in biological triplicate, and 
the means ± one standard deviation (error bar) are shown. 
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