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Abstract 20 

Smoking is associated with worse clinical outcomes for lung cancer patients. Cell-based studies 21 

suggest that NNK (a tobacco specific carcinogen) promotes lung cancer progression. Given its 22 

short half-life, the physiological relevance of these in vitro results remains elusive. NNAL, a major 23 

metabolite of NNK with a similar structure, a chiral center, and a longer half-life, has never been 24 

evaluated in cancer cells. In this study, we characterized the effect of NNAL and its enantiomers 25 

on cancer progression among a panel of NSCLC cell lines and explored the associated 26 

mechanisms. We found that (R)-NNAL promotes cell proliferation, enhances migration, and 27 

induces drug resistance while (S)-NNAL has much weaker effects. Mechanistically, (R)-NNAL 28 

phosphorylates and deactivates LKB1 via the β-AR signaling in the LKB1 wild type NSCLC cell 29 

lines, contributing to the enhanced proliferation, migration, and drug resistance. Of note, NNK 30 

exposure also increases the phosphorylation of LKB1 in A/J mice. More importantly, human lung 31 

cancer tissues appear to have elevated LKB1 phosphorylation. Our results reveal, for the first time, 32 

that NNAL may promote lung cancer progression through LKB1 deactivation in an isomer-33 

dependent manner.  34 
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1. Introduction 35 

Lung cancer has been the leading cause of cancer-related deaths for decades [1-3]. It accounts 36 

for one in every five cancer deaths worldwide with about 160,000 deaths annually in the United 37 

States. While there are several other factors that may increase lung cancer risk, tobacco smoke is 38 

the main etiological factor associated with lung cancer development [4]. It is also associated with 39 

worse clinical outcome, including reduced therapeutic efficacy and shorter survival [5, 6]. For 40 

instance, the medium survival for non-smokers, former smokers, and active smokers among 41 

patients with non-small cell lung cancer (NSCLC) is 41.9, 22.6, and 14.7 months respectively [7]. 42 

However, 30 – 65% of NSCLC patients were active smokers at diagnosis and a significant portion 43 

of them continued to smoke (Table 1) [7-13]. It is therefore imperative to understand how tobacco 44 

use contributes to the worse clinical outcomes of lung cancer patients. 45 

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (commonly known as “NNK”, Fig. 1A) is a 46 

tobacco specific lung carcinogen [14]. As a carcinogen, NNK is bioactivated by cytochrome P450 47 

enzymes to induce DNA damage followed by subsequent mutations and carcinogenesis [15, 16]. 48 

NNK also promotes cell proliferation, enhances cell migration, and suppresses apoptosis in various 49 

cancer cell lines [17, 18]. Nicotinic acetylcholine receptors (nAChRs) [19] and β-adrenergic 50 

receptors (β-ARs) [20] have been suggested as the potential upstream targets of NNK. One key 51 

uncertainty of these in vitro results is their physiological relevance since NNK has a short-half life 52 

in vivo [21-24]. Indeed, NNK has never been detected in human biospecimens. Because of this, 53 

the metabolites of NNK have been used to investigate its human exposure and carcinogenic risk 54 

[25-28]. 55 
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The major metabolite of NNK is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (commonly 56 

known as “NNAL”, Fig. 1A), which is formed via carbonyl reduction [29, 30]. Although 57 

structurally similar, NNAL has two key differences from NNK. First, NNAL has a much longer 58 

half-life in vivo relative to NNK [24]. In fact, NNAL is detectable in human urine samples weeks 59 

after the last tobacco exposure [31-33]. NNAL is also readily detected in blood samples from 60 

smokers [25]. For instance, Church et al. profiled serum levels of NNAL among 200 smokers 61 

selected from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). One 62 

hundred of these participants eventually developed lung cancer while the rest did not. Although 63 

the participants in these two groups were not rigorously matched in terms of age, gender and 64 

smoking history, NNAL concentrations were 92.4 ± 40.7 pM in the lung cancer cases and 77.4 ± 65 

39.3 pM in the control groups. Second, NNAL has a chiral center (Fig. 1A). Its formation from 66 

NNK is catalyzed by a range of carbonyl reductases [26] and its elimination is mainly mediated 67 

through glucuronidation via UDP-glucuronosyltransferases (UGT) [27, 34]. Because of germline 68 

genetic variance in these metabolizing enzymes, smokers have a heterogeneous ratio of (R)-NNAL 69 

and (S)-NNAL [35]. These two enantiomers could have distinct biological activities. For instance, 70 

(S)-NNAL is much more carcinogenic than (R)-NNAL in A/J mice [34]. With the same dose 71 

treatment, (S)-NNAL resulted in much higher levels of DNA damage in the lung tissues and 72 

subsequently more lung adenoma formation than (R)-NNAL while (R)-NNAL was more 73 

efficiently eliminated via glucuronidation. These data argue that NNAL enantiomers may induce 74 

different biological effects and should be characterized as distinct individual entities. To date, the 75 

effect of NNAL on transformed lung cancer cells has not been reported. Such knowledge is 76 
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important to help understand the reason for the worse outcome of lung cancer patients who 77 

continue to smoke. 78 

In this study, we evaluated the effect of NNAL enantiomers on five human NSCLC cell lines 79 

at physiologically relevant concentrations. (R)-NNAL promoted cell proliferation, enhanced cell 80 

migration, and induced drug resistance while (S)-NNAL was substantially less effective. The 81 

effects of NNAL on cell migration and drug resistance required wild type liver kinase B1 (LKB1). 82 

Mechanistically, NNAL exposure, particularly the R enantiomer, led to LKB1 phosphorylation 83 

and deactivation through activating β-ARs. LKB1 phosphorylation was also observed in the lung 84 

tissues of A/J mice upon NNK exposure. Human lung cancer tissues had substantially higher levels 85 

of phosphorylated LKB1 relative to the paired normal lung tissues. In summary, NNAL, 86 

particularly (R)-NNAL, deactivates LKB1 through β-ARs in NSCLC cancer cell lines. Such LKB1 87 

deactivation confers drug resistance and promotes invasion. In addition, LKB1 loss-of-function 88 

human lung cancers may be highly prevalent via phosphorylation due to common tobacco 89 

exposure in addition to the mutational deactivation. Overall, our results depict a novel mechanism 90 

through which active smoking may contribute to the worse outcome of lung cancer patients. 91 

 92 

2. Results 93 

2.1. Detection and quantification of NNK and NNAL in human blood samples from smokers 94 

and non-smokers 95 

To determine the physiologically relevant compound(s) and concentrations for our studies, we 96 

quantified NNK and NNAL in the plasma from smokers (n = 46) and non-smokers (n = 3) via an 97 
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established liquid chromatography with tandem mass spectrometry (LC-MS/MS) method [36]. 98 

The smoking status of the plasma donors was confirmed by measuring their urinary total nicotine 99 

equivalents (TNE). Some of the results have been published [37, 38]. Consistent with its short 100 

half-life, NNK was not detected in any of these samples (Fig. 1B). NNAL was not detectable in 101 

the plasma samples from non-smokers (not shown) while it was readily detected in the plasma 102 

samples from smokers (Fig. 1B). The plasma concentration of NNAL ranged between 10.4 pM to 103 

296.0 pM with a mean value of 59.7 ± 61.1 pM. NNAL was therefore evaluated in our in vitro 104 

study instead of NNK. 105 

 106 

2.2. The effects of NNAL enantiomers on cell proliferation, migration and drug resistance in 107 

NSCLC cancer cells with different LKB1 status 108 

The concentrations of NNAL detected in the plasma samples from smokers were in the 109 

picomolar range, consistent with those reported in the literature [25, 39, 40]. NNAL concentrations 110 

in the lung are expected to be much higher because of the direct exposure of lung to tobacco smoke. 111 

We proposed that NNAL concentrations between 1-100 nM are physiologically relevant, and this 112 

range was therefore used in our subsequent in vitro studies. 113 

NNAL exposure in H1299 and A549 cells resulted in no detectable O6-mG (data not shown), 114 

suggesting the lack of NNAL bioactivation and associated carcinogenesis. However, NNAL at 10 115 

nM significantly increased cell proliferation (Fig. 2A). When the two enantiomers of NNAL were 116 

evaluated, (R)-NNAL recapitulated this activity in both cell lines while (S)-NNAL had minimal 117 

effects (Fig. 2B). Similarly, (R)-NNAL significantly increased colony formation in H1299 and 118 
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A549 cells while (S)-NNAL was not effective (Fig. 2C). The potential of NNAL enantiomers on 119 

cell migration was evaluated via wound healing assay (Fig. 2D) and trans-well assays (Fig. 2E) in 120 

H1299 and A549 cells. In both assays, (R)-NNAL substantially increased cell migration while (S)-121 

NNAL had little effects in H1299 cells. Intriguingly, NNAL treatment had no effects in A549 cells 122 

(Fig. 2D and 2E). Lastly, the effect of NNAL on the cytotoxicity of gemcitabine and cisplatin was 123 

evaluated via a cell viability assay. (R)-NNAL significantly reduced the cytotoxicity of 124 

gemcitabine and cisplatin. (S)-NNAL conferred less resistance compared with (R)-NNAL (Fig. 125 

2F). Both NNAL enantiomers failed to induce resistance in A549 cells (Fig. 2F). 126 

Although there are many molecular and genetic differences between H1299 and A549 cell 127 

lines that could account for the observed differences in cellular migration and drug resistance, we 128 

focused on LKB1 because of its importance in lung cancer development [41-48] and its different 129 

status in H1299 (wild-type) and A459 (mutational deactivation). Moreover, LKB1 is a potential 130 

down-stream target for β-ARs, which NNK has been reported to activate [19, 20]. We therefore 131 

evaluated the effect of (R)-NNAL in HCC827 (LKB1 WT), H1975 (LKB1 WT) and H460 (LKB1 132 

mutant) cells. As have been observed in H1299 and A549, (R)-NNAL enhanced cell proliferation 133 

in all of these cell lines (Fig. S1). While (R)-NNAL reduced the sensitivity of HCC827 and H1975 134 

cells to cisplatin and gemcitabine, it failed to reduce the sensitivity of H460 to these therapies (Fig. 135 

S2). Together, these data suggest that the status of LKB1 in NSCLC cancer cell lines may be critical 136 

to the detrimental effects of NNAL, particularly in cell migration and drug resistance. 137 

 138 

2.3. The role of LKB1 on NNAL-mediated cell migration and drug resistance in NSCLC cells 139 
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To characterize the role of LKB1 in mediating the cellular effects of NNAL, an LKB1-140 

knockout H1299 cell line was generated using a CRISPR knockout approach (LKB1-KO H1299, 141 

Fig. 3A). As expected, (R)-NNAL failed to facilitate cell migration in LKB1-KO H1299 cells (Fig. 142 

3B) and did not induce resistance to gemcitabine nor cisplatin (Fig. 3C). Similarly, WT LKB1 was 143 

knocked into A549 cells (Fig. 3D). (R)-NNAL was able to promote cell migration (Fig. 3E) and 144 

confer drug resistance in A549 cells with LKB1 knock-in (Fig. 3F). Altogether, these data suggest 145 

that LKB1 plays a key role in NNAL-mediated migration and drug resistance in LKB1 WT lung 146 

cancer cells and the loss of LKB1 significantly reduced the impact of (R)-NNAL exposure. 147 

 148 

2.4. The effect of NNAL enantiomers on LKB1 phosphorylation in lung cancer cells 149 

We next characterized the effect of NNAL enantiomers on LKB1 phosphorylation in H1299, 150 

H1975, and HCC827 cells. Increased deactivating phosphorylation of LKB1 at Ser428 was 151 

observed in all of these cells with greater increase upon the (R)-NNAL exposure than the (S)-152 

enantiomer (Fig. 4A). The time course of LKB1 phosphorylation by (R)-NNAL was characterized 153 

in H1299 cells (Fig. 4B). (R)-NNAL treatment also led to a significant reduction in phosphorylated 154 

AMPK, and increase in phosphorylated mTOR and 4E-B1 (Fig. 4C). Since AMPK, mTOR and 155 

4EB-P1 are downstream proteins of LKB1, the reduction in AMPK phosphorylation and increase 156 

in mTOR and 4E-BP1 phosphorylation suggest the deactivation of LKB1, consistent with its 157 

increased phosphorylation. (R)-NNAL treatment also reduced cleaved PARP caused by cisplatin 158 

treatment, had little effect on cisplatin-induced DNA damage, and may slightly reduce the level of 159 

Bim protein (Fig. 4D and Fig. 4E), which may explain the reduced sensitivity of H1299 cells to 160 
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cisplatin treatment in the presence of (R)-NNAL. In addition, (R)-NNAL treatment resulted in a 161 

slight increase in the level of PCNA (Fig. 4F), potentially accounting for its stimulation of cell 162 

proliferation.  163 

 164 

2.5. The upstream signaling responsible for NNAL-mediated LKB1 phosphorylation 165 

Upon establishing the role of LKB1, we explored the potential upstream targets of NNAL 166 

responsible for LKB1 phosphorylation and associated phenotypes. NNK has been reported to act 167 

as an agonist for nAChRs [19] and β-ARs [20]. This could result in the activation of protein kinase 168 

A (PKA) via intracellular calcium influx and cAMP synthesis, which would phosphorylate and 169 

deactivate LKB1 [49]. First, we found (R)-NNAL could promote PKA-Cα nucleus translocation 170 

in H1299 (Fig. 5A). And then, we utilized a panel of pharmacological inhibitors to probe the 171 

relevance of these potential upstream signaling processes, including propranolol (a β-AR 172 

antagonist), nifedipine (a calcium channel blocker), H89 (a PKA inhibitor) and yohimbine (an α2-173 

AR antagonist as a control). We evaluated their effects on NNAL-induced proliferation in H1299 174 

cells (Fig. 5B). At non-cytotoxic concentrations, each pharmacological inhibitor, except 175 

yohimbine, effectively blocked (R)-NNAL-induced enhanced proliferation. Similarly, these 176 

pharmacological inhibitors, with the exception of yohimbine, effectively blocked (R)-NNAL 177 

induced resistance against gemcitabine or cisplatin in H1299 cells (Fig. 5C). Consistently, each 178 

pharmacological inhibitor, with the exception of yohimbine, reduced the phosphorylation of LKB1 179 

(Ser428) induced by (R)-NNAL exposure (Fig. 5B). Overall, these data delineate the signaling 180 

process of LKB1 deactivation by NNAL. 181 
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 182 

2.6. The effect of prolonged (R)-NNAL exposure on H1299 cells 183 

The lung tissue of smokers may be chronically exposed to NNAL due to the habitual use of 184 

tobacco and the slow elimination of NNAL. We therefore evaluated the effect of long-term (R)-185 

NNAL exposure on H1299 cells. Specifically, H1299 cells were cultured with (R)-NNAL (1 nM) 186 

for 60 days. Then, in the absence of NNAL, the phosphorylation status of LKB1 was characterized 187 

and cell proliferation, colony formation, cell migration and the sensitivity of such cells to 188 

gemcitabine and cisplatin treatment was evaluated. Long-term NNAL exposure resulted in a 189 

substantial increase in LKB1 (Ser428) phosphorylation even in the absence of NNAL (Fig. 6A). 190 

These H1299 cells proliferated faster, supported by the cell proliferation data (Fig. 6B) and colony 191 

formation data (Fig. 6C). And these H1299 cells were also significantly less sensitive to cisplatin 192 

and gemcitabine treatment in the absence of NNAL (Fig. 6D). These data suggest that the effect 193 

of long-term NNAL exposure on LKB1 deactivation and drug resistance could be long-lasting. 194 

Interestingly, the addition of NNAL to such cells failed to further enhance drug resistance (data 195 

not shown). Mechanically 60 days exposure to 1 nM (R)-NNAL has little effect on cisplatin 196 

induced DNA damage indicated by the level of γH2A.X, and significantly reduced PARP cleavage 197 

(Fig. 6E.). In addition, H1299 cell migration was also enhanced upon 60 days exposure to (R)-198 

NNAL (Fig. 6F. and Fig. 6G). 199 

 200 

2.7. The effect of NNK exposure in A/J mice on LKB1 phosphorylation 201 
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To explore whether NNK induces LKB1 phosphorylation in vivo, a pilot study in A/J mice was 202 

performed. In this study, NNK was administered in drinking water at a concentration of 40 ppm. 203 

This treatment regimen mimics the chronic exposure of NNK among smokers although liver 204 

instead of lung is the tissue of main exposure. The dose of NNK (40 ppm) in mice is comparable 205 

to the level of NNK exposure among heavy smokers [50]. A similar treatment regimen has been 206 

demonstrated to induce lung adenoma formation in A/J mice [51-53]. The lung and liver tissues 207 

were collected after a 4-week NNK exposure. Again, NNK was not detectable in any serum 208 

samples while NNAL was detected all (Fig. 6H), consistent with human data. The serum 209 

concentration of NNAL in the mice ranged between 0.83 – 3.55 nM, similar to the concentration 210 

used in our in vitro studies. NNK treatment substantially increased LKB1 phosphorylation in the 211 

liver tissues with a slight increase in the lung tissues (Fig. 6H), indicating the deactivation of LKB1 212 

in A/J mice upon NNK exposure. The higher levels of LKB1 phosphorylation in the liver tissues 213 

than the lung tissues in this model may be caused by the NNK drinking water regimen that the 214 

liver tissues have higher exposure to NNK than the lung tissues. In human smokers, the lung tissues 215 

have higher exposure to NNK that may favor LKB1 phosphorylation in the lung tissues. 216 

 217 

2.8. LKB1 status in lung cancer tissues 218 

To explore the potential clinical significance of LKB1 phosphorylation by NNAL, we 219 

characterized the phosphorylation status of LKB1 protein in five lung cancer tissues in comparison 220 

to the normal tissues from the same patients (Fig. 6I). Although there are variations and no obvious 221 

patterns in the total protein levels of LKB1 between the normal and cancer tissues, p-LKB1 222 
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(Ser428) were substantially higher in the cancer tissues relative to the normal tissues irrespective 223 

of the lung cancer pathology. 224 

 225 

3. Discussion 226 

Clinical management of lung cancer has not been very successful and the overall survival from 227 

lung cancer remains frustratingly low [1-3]. There are many contributing factors, including late 228 

diagnosis and higher risk of drug resistance and metastasis [54-56]. At the same time, many lung 229 

cancer patients are active smokers at the time of diagnosis and a significant portion of them 230 

continue to smoke, which is associated with worse outcomes [5, 6]. NNK has been proposed as a 231 

contributing factor because it could enhance lung cancer proliferation and survival, and promote 232 

metastasis in vitro and in vivo [17, 18, 57, 58]. Potential mechanisms have been characterized in 233 

vitro, including the activation of CREB, ERK1/2, and Akt with nAChRs and β-ARs as the 234 

upstream targets [19, 20, 58, 59]. These mechanistic studies, however, may have limited 235 

physiological relevance because NNK is not detectable in human plasma samples. Its major 236 

metabolite, NNAL, on the other hand, is detected in the plasma samples from all smokers in our 237 

study with a concentration approaching 300 pM. Given that lung tissue has the highest exposure 238 

to tobacco smoke, NNAL between 1 and 100 nM in vitro is likely physiologically relevant. Within 239 

this concentration range, NNAL enhanced cell proliferation in all five NSCLC cancer cell lines 240 

tested, with (R)-NNAL being more potent than (S)-NNAL. NNAL also promoted cell migration 241 

and induced drug resistance in NSCLC cell lines that have wild-type LKB1. Such effects were 242 

also more pronounced with (R)-NNAL than (S)-NNAL. These results suggest that the detrimental 243 
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effects of NNAL may vary among smokers because of genetic polymorphisms in NNAL 244 

metabolizing enzymes, such as carbonyl reductases and UGTs. It should also be noted that 245 

although the stimulating effects by NNAL on proliferation, migration and resistance are not very 246 

strong under our experimental conditions, the cumulative impact should not be underestimated 247 

given the chronic exposure of the lungs to NNAL among smokers. Indeed, a 60-day exposure of 248 

H1299 cells to (R)-NNAL (1 nM) resulted in significant enhancing of cell proliferation, migration 249 

and drug resistance in combination with LKB1 phosphorylation even in the absence of NNAL. 250 

LKB1 mutational deactivation has been observed in 10 – 30% of lung cancer patients of 251 

different pathological subtypes [41-44]. Results from a number of genetic mouse models strongly 252 

indicate that LKB1 inactivation plays an important role in lung cancer initiation, development, and 253 

progression [46-48, 60]. Indeed, lower levels of LKB1 expression has been reported to be 254 

associated with higher recurrence in NSCLC [61] and loss of LKB1 has been discussed beyond 255 

just mutations [62]. Upon analyzing a limited number of lung cancer tissues, we observed 256 

enhanced LKB1 phosphorylation in lung cancer tissues compared with paired normal lung tissues. 257 

These data suggest that the function of wild-type LKB1 protein in lung cancers may be 258 

compromised and the potential contribution of LKB1 deactivation to human lung cancer could be 259 

substantially higher than its mutational frequency, something that warrants future investigation. It 260 

is therefore of great importance to understand how wild-type LKB1 is phosphorylated in lung 261 

cancer patients. Our results showed for the first time that NNAL, particularly (R)-NNAL, induces 262 

LKB1 phosphorylation (Ser428) in NSCLC cancer cells. Since a 60-day NNAL exposure resulted 263 

in phosphorylated LKB1 even upon NNAL removal, prior or active tobacco use among former 264 

and current smokers, respectively, could contribute to the phosphorylation and deactivation of 265 
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LKB1 in human lung cancer tissues. This was further supported by our A/J mouse data that a 4-266 

week NNK exposure resulted in LKB1 phosphorylation in the lung tissues. Based on our results 267 

with pharmacological inhibitors, β-ARs are the potential up-stream target(s) for NNAL that then 268 

activate PKA, leading to LKB1 phosphorylation (Fig. 7). Other agonists for β-ARs, such as mental 269 

stress-related stress hormones norepinephrine and epinephrine, may also deactivate LKB1 in 270 

humans, which again warrants future investigation. Indeed, nicotine exposure and mental stress 271 

have also been documented as potential factors contributing to the worse outcome of lung cancer 272 

patients [63, 64]. 273 

 274 

Of note, (R)-NNAL stimulated cell proliferation in all NSCLC cancer cells irrespective of 275 

LKB1 status, suggesting that NNAL modulates signaling mechanisms independent of LKB1. 276 

NNK has been reported to activate CREB, a master oncoprotein [57, 65, 66], to promote 277 

progression in established tumors. CREB activation is dominantly mediated via PKA as well. We 278 

therefore evaluated the effect of NNAL on CREB phosphorylation in all five NSCLC cells. NNAL 279 

rapidly activated CREB in these cell lines independent of LKB1 status with (R)-NNAL being more 280 

potent than (S)-NNAL (Fig. S3). Thus, increased CREB phosphorylation and activation may 281 

contribute to the increased proliferation of NSCLC cancer cells induced by NNAL. 282 

In summary, our results show that NNAL can deactivate LKB1 in lung cancer cells at 283 

physiologically relevant concentrations in an isomeric dependent manner. Such deactivation may 284 

be of great clinical relevance given the tumor suppressive functions of LKB1 in lung cancer 285 

initiation, development and progression and the high prevalence of tobacco exposure among lung 286 
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cancer patients. Further in vivo and clinical studies are warranted to validate NNAL’s tumor 287 

promoting effects, its contribution to LKB1 deactivation and the worse clinical outcome of lung 288 

cancer patients who continue to smoke. 289 

 290 

4. Materials and Methods 291 

Caution: Both NNK and NNAL are highly carcinogenic. They should be handled in a well-292 

ventilated hood with extreme care, and with proper personal protective equipment. 293 

 294 

4.1. Chemicals and Reagents 295 

NNK, [13C6]NNK, [13C6]NNAL, [CD3]O6-mG were purchased from Toronto Research 296 

Chemicals (Toronto, Ontario, Canada). (±)-Propranolol hydrochloride, bupropion and H89 were 297 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Nifedipine was purchased from Alfa Aesar 298 

(Ward Hill, MA, USA). Yohimbine hydrochloride was purchased from Acros Organics (Morris, 299 

NJ, USA). All reagents were used without further purification. 300 

 301 

4.2. Human samples 302 

Plasma samples from active smokers were collected from a clinical trial previously conducted 303 

at the University of Minnesota [36] and from active smoking population controls in the NCI-MD 304 

Lung cancer Case Control Study [67]. Plasma samples from non-smokers were purchased from 305 

Bioreclamation IVT (Baltimore, MD). Demographic information of these donors has been 306 
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published before [37, 68]. Paired normal and cancerous lung tissues from five patients were 307 

acquired from University of Florida CTSI Biorepository. The protocols for human sample use were 308 

reviewed and approved by Institutional Review Boards (IRB) at the University of Florida. 309 

 310 

4.3. NNAL synthesis, chiral resolution, and characterization 311 

Racemic NNAL was synthesized from NNK via sodium borohydride reduction. (R)- and (S)-312 

NNAL were separated from the racemic mixture via chiral chromatography by a contract service 313 

from Kermanda Biotech Co Ltd. (Shanghai, China). Racemic, (R)- and (S)-NNAL were 314 

characterized by 1H-NMR and HPLC with > 95% purity. The chirality of the two enantiomers, 315 

(R)- and (S)-NNAL, was assigned on the basis of reported optical rotations of NNAL [69]. 316 

 317 

4.4. NNK and NNAL quantification in human plasma samples and mouse serum samples 318 

The concentrations of NNK and NNAL in human plasma and mouse serum samples were 319 

quantified following a previously reported mass spectrometry method [70]. 320 

 321 

4.5. Cell lines and culturing conditions 322 

H1299, H1975, HCC827, H460 and A549 cells were purchased from ATCC (Manassas, VA). 323 

H1299, A549 and H460 were authenticated via the Cell Line Authentication Service provided by 324 

Genetica DNA Laboratories (Burlington, NC). H1975 and HCC827 were authenticated by ATCC. 325 

All of these cell lines were confirmed to be free from mycoplasma infection. H1299, H1975, 326 
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HCC827 and H460 cells were maintained in RPMI 1640 medium supplemented with 10% FBS 327 

(Gibco). A549 cells were maintained in DMEM medium supplemented with 10% FBS. All cells 328 

were cultured in a 37 ºC, 5% CO2 atmosphere. H1299 LKB1 knockout was reported before [71]. 329 

For A549 LKB1 knock-in, STK11(LKB1) gene was subcloned into PLX-304 vector. Lentivirus 330 

production was performed using psPAX2 (Addgene#12260) and pMD2.G (Addgene#12259) as 331 

previously described [72]. Single clones of cells expressing LKB1 were selected using blasticidin 332 

(5ug/ml) and LKB1 expression was confirmed by western blot. 333 

 334 

4.6. Analysis of O6-methylguanine (O6-mG) in H1299 cells upon NNAL treatment 335 

Among the various forms of DNA damages caused by NNK and NNAL, O6-mG was the most 336 

abundant in A/J mouse lung tissues [73] and of comparable abundance to other types of DNA 337 

damage in F344 rat lungs [74] although such DNA damage has not been detected in human lung 338 

tissues. We therefore quantified O6-mG in H1299 cells upon NNAL exposure (100 nM) using an 339 

established mass spectrometry method [75]. 340 

 341 

4.7. Cell counting assay 342 

Cell proliferation was determined using a cell count assay. Briefly, 5,000 cells/well were 343 

seeded in a 24-well plate with 10% FBS medium. After overnight incubation, medium was 344 

replaced with 0.5% FBS medium containing NNAL. After a 6-day incubation, cells were 345 

trypsinized and cell numbers were determined using the Bio-Rad Automated Cell Counter. 346 
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 347 

4.8. Colony formation assay 348 

Cell proliferation was also determined using colony formation assay. Briefly, cells were plated 349 

in a 24-well plate (500 cells/well) in 0.5% FBS medium with or without NNAL. The number of 350 

colonies was counted after a 7-day incubation under the microscope. 351 

 352 

4.9. Wound healing assay 353 

Cell migration was measured using the wound healing assay. Briefly, cells were seeded into a 354 

six-well plate and allowed to grow to ~90% confluency. After starvation with FBS-free medium 355 

for 48 h, cell monolayers were wounded with a 200-µL pipette tip. Wounded monolayers were 356 

washed three times with PBS and incubated in serum-free medium with different concentrations 357 

of NNAL for 24 h. Cells were monitored under a microscope equipped with a camera. The wound 358 

area was quantified using Image J software. 359 

 360 

4.10. Transwell assay 361 

Cell migration was also evaluated with the transwell migration assay using 6.5 mm diameter 362 

inserts (Corning) with 8 µm pore size. The inserts were plated in a 24-well plate with 600 µL 10% 363 

FBS medium. Briefly, 30,000 cells in 200 µL serum free medium with 100 nM (R)- or (S)-NNAL 364 

were seeded into each insert. After incubation at 37 °C for 24 h, the cells in the upper surface of 365 

the membrane were removed with a cotton swab. Cells in the lower chamber were fixed with 70% 366 
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ethanol and stained with 0.2% crystal violet (Sigma-Aldrich in St. Lewis, MO, USA). Images were 367 

taken with an inverted microscope and the number of cells was quantified using ImageJ. 368 

 369 

4.11. Cell viability assay 370 

Drug resistance was evaluated via a cell viability assay. Briefly cells were plated in 96-well 371 

plates (5,000 cells/well) with 10% FBS medium. After attachment, cells were treated with the test 372 

compounds at the specified concentrations or combinations in triplicate with 0.5% FBS medium. 373 

The relative cell viability in each well was determined after 72 h treatment using the MTT assay 374 

(Life Technologies). 375 

 376 

4.12. NNK exposure in A/J mice 377 

Female A/J mice (5-6 weeks of age) were purchased from the Jackson Laboratory (Bar Harbor, 378 

ME) and maintained in specific pathogen-free facilities, according to animal welfare protocols 379 

approved by Institutional Animal Care and Use Committee at the University of Florida. After 1-380 

week acclimation, mice were weighed, randomized into two groups (n = 5) and switched to AIN-381 

93G powdered diet, defined as Day 1. From Day 1, mice in the control group were given regular 382 

drinking water while the NNK group was given NNK in drinking water (40 ppm). Mice were 383 

euthanized 4 weeks after NNK exposure. The lung and liver tissues were harvested, snap-frozen 384 

in liquid N2 and stored at −80 °C until protein analysis. Serum was collected for NNK and NNAL 385 

detection. 386 
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 387 

4.13. Western blotting 388 

Whole cell lysates from H1299, H1975, HCC827, A549 and H460 cells were prepared in RIPA 389 

lysis buffer. Protein lysates from human and mouse lung tissues were prepared similarly. Briefly, 390 

20 mg tumor or normal tissue was homogenized in 250 µL RIPA buffer and the supernatant was 391 

collected after centrifugation at 13,000 g for 15 min at 4 ºC. The concentration of protein in each 392 

sample was quantified using BCA assay. Forty - sixty µg of protein from each sample was 393 

denatured in SDS-PAGE sample buffer and resolved on 4-12% Bis-Tris PAGE gels. The separated 394 

proteins were transferred to Polyvinylidene difluoride (PVDF) membrane followed by blocking 395 

with 5% non-fat milk powder (w/v) in Tris-buffered saline (10 mM Tris–HCl, pH 7.5, 100 mM 396 

NaCl, 0.1% Tween-20) for 1 h at room temperature. After blocking, the membranes were probed 397 

with desired primary antibodies overnight at 4 °C followed by appropriate peroxidase-conjugated 398 

secondary antibody for 2 h at room temperature and visualized by the Bio-Rad ChemiDoc Imaging 399 

system. To ensure equal protein loading, each membrane was stripped with Restore Western Blot 400 

stripping buffer (Thermo Scientific) and re-probed with β-actin antibody. Detailed information on 401 

antibodies is in Table S1. 402 

 403 

4.14. Immunofluorescence staining 404 

Treated cells were fixed with 4% paraformaldehyde for 15 min and permeabilized with 1% 405 

Triton X-100 in PBS for 10 min, followed by blocking with 5% BSA in PBS for 1 h. After 406 

blocking, cells were incubated with PKA-Cα antibody overnight at 4 °C and secondary antibody 407 
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for 1 h at room temperature. Nucleus were stained with Dapi for 15 min. Cells were imaged using 408 

Fluorescence microscopy (Nikon Ti2, Japan). 409 

 410 

4.15. Flow cytometry 411 

Detection of γH2A.X and cleaved PARP protein level in cisplatin treated H1299 with/without 412 

(R)-NNAL were performed using Apoptosis, DNA Damage and Cell Proliferation Kit (BD 413 

Pharmingen), following the manufacturer’s instructions. Briefly, H1299 cells were plated in 6-414 

well plates with 10% FBS medium. After attachment, cells were starved with 0.5% FBS medium 415 

overnight and treated with test compounds. Treated cells were harvested, stained with Alexa 416 

Fluor® 647 Mouse Anti-H2AX (pS139) antibody and PE Mouse Anti-Cleaved PARP (Asp214) 417 

Antibody. The signals were assessed with a CytoFlex flow cytometer (Beckman Coulter Life 418 

Sciences). 419 

4.16. Statistical analysis 420 

Two tailed Student’s t tests were used for data analysis with two groups. One-way analysis of 421 

variance (ANOVA) was used for data analysis with no less than three groups followed by 422 

Dunnett’s test for comparison between different groups. A P value ≤ 0.05 was considered 423 

statistically significant. All analyses were conducted in GraphPad Prism4 (GraphPad Software, 424 

Inc.) 425 

 426 
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 734 

Figure 1. A. Simplified major pathways of NNK metabolism, carcinogenesis, and potential effects 735 

of NNK and NNAL on transformed lung cancer cells. B. Concentrations of NNK and NNAL in 736 

the plasma samples from human smokers. 737 
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 739 

Figure 2. Effect of NNAL enantiomers on malignant phenotypes in H1299 and A549 lung cancer 740 

cells. 741 

A. Effect of NNAL (10 nM) on cell proliferation. B. Effect of NNAL enantiomer (10 nM) on cell 742 

proliferation. C. Effect of NNAL enantiomers (100 nM) on colony formation. D. Effect of NNAL 743 

enantiomers (100 nM) on cell migration via wound healing assay. E. Effect of NNAL enantiomers 744 

(100 nM) on cell migration via transwell assay. F. Effect of NNAL enantiomers (100 nM) on 745 

conferring drug resistance to gemcitabine (40 µM) or cisplatin (120 µM) treatment. *, P<0.05; **, 746 

P<0.01; ***, P<0.001. 747 
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 749 

Figure 3. The function of LKB1 on malignant phenotypes promoted by NNAL exposure. 750 

A. Expression of LKB1 in H1299 LKB1 knockout cells. B. Effect of (R)-NNAL on cell migration 751 

in H1299 LKB1 knockout cells. C. Effect of (R)-NNAL on the cytotoxicity of gemcitabine and 752 

cisplatin in H1299 LKB1 knockout cells. D. Expression of LKB1 in A549 LKB1-knockin cells. 753 

E. Effect of (R)-NNAL on cell migration in A549 LKB1-knockin cells. F. Effect of (R)-NNAL on 754 

the cytotoxicity of gemcitabine and cisplatin in A549 LKB1-knockin cells. *, P<0.05; **, P<0.01; 755 

***, P<0.001. 756 
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 758 

 759 

Figure 4. Effects of NNAL on LKB1 phosphorylation and associated signaling in LKB1 WT lung 760 

cancer cells. 761 

A. The effects of (R)- and (S)-NNAL on LKB1 deactivating phosphorylation at Ser428. Cells were 762 

treated with 10 nM NNAL for 30 min. B. Time course effect of (R)-NNAL on the phosphorylation 763 

of LKB1 at Ser428 (H1299). C. Time course effect of (R)-NNAL on AMPK, mTOR and 4EBP1 764 

phosphorylation in H1299. D. and E. Effect of (R)-NNAL on cisplatin induced DNA damage and 765 

PARP cleavage. F. Time course effect of (R)-NNAL exposure on PCNA levels in H1299.  766 
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 768 

Figure 5. The potential upstream signaling events governing NNAL-promoted phenotypes with 769 

pharmacological inhibitors. 770 

A. Effect of (R)-NNAL on PKA-Cα nucleus translocation in H1299. Cells were treated with 100 771 

nM (R)-NNAL for 60 min. DAPI was used to stain the nucleus. B. Effect of inhibition of β-ARs 772 

(propranolol), Ca
2+

 channels (nifedipine), PKA (H89) and α-ARs (yohimbine) on NNAL-773 

promoted cell proliferation and LKB1 phosphorylation (Ser428). H1299 cells were co-treated with 774 

10 nM (R)-NNAL and 0.1 µM nifedipine, 0.1 µM propranolol, 2.5 µM bupropion, 0.5 µM H89 or 775 

0.1 µM yohimbine for 6 days. C. Effect of inhibition of β-ARs (propranolol), Ca
2+

 channels 776 
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(nifedipine), PKA (H89) an α-ARs (yohimbine) on NNAL-promoted resistance to gemcitabine and 777 

cisplatin. H1299 cells were co-treated with 40 µM gemcitabine or 120 µM cisplatin along 778 

inhibitors. *, P<0.05; **, P<0.01; ***, P<0.001. 779 
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 781 

Figure 6. LKB1 phosphorylation status in vitro, in vivo and in clinical samples with potential 782 

chronic NNAL exposure. 783 

Effect of 60-day (R)-NNAL exposure on cell proliferation (A), colony formation (B), sensitivity 784 

to gemcitabine and cisplatin treatment (C), cell migration (D and E), and LKB1 phosphorylation 785 

(F) in H1299 cells. H1299 cells was treated with (R)-NNAL (1 nM) for 60 days and no additional 786 

(R)-NNAL was added when running these assay. G. Concentrations of NNK and NNAL in mouse 787 

serum (n = 5) and LKB1 status in the lung and liver tissues of A/J mice upon 4-week NNK 788 

exposure. A/J mice were given NNK in drinking water (40 ppm) for 4 weeks. H. Status of LKB1 789 

in normal (N) or tumor (T) tissues of five lung cancer patients (SCC: squamous cell carcinoma; 790 

ADC: adenocarcinoma; NEC: neuroendocrine carcinoma; NET: neuroendocrine carcinoid). 791 
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 793 

Figure 7. Proposed mechanisms of NNAL in promoting progression of lung cancer cells with wild 794 

type LKB1.  795 
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Table 1. Smoking status among NSCLC patients. 796 

Number of 
Patients 

Non-
smokers 

Former 
smokers 

Continue 
smoking after 

diagnosis 

Quit smoking 
after 

diagnosis 

No 
information 

Reference 

1124 64 (5.7%) 696 (61.9%) 293 (26.1%) 71 (6.3%)  [8] 
206 15 (7.3%) 98 (47.6%) 47 (22.8%) 46 (22.3%)  [9] 
388 191 (49.2%) 79 (20.4%) 82 (21.1%) 36 (9.3%)  [10] 
311 25 (8.0%) 82 (26.4%) 169 (54.3%) 35 (11.3%)  [11] 
313 92 (29.4%) 125 (39.9%) 96 (30.7%)  [7] 

4200 618 (14.7%) 2099 (50.0%) 1483 (35.3%)  [12] 
3212 266 (8.3%) 1603 (49.9%) 1232 (38.4%) 111 (3.4%) [13] 
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