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Abstract 20 

In the past decade, single cell technologies have revolutionized our ability to study cellular 21 

heterogeneity. Spatial omics represents the next technological wave, granting spatial context 22 

to single cell transcriptomes.  Integration analysis of transcripts and spatial information will 23 

greatly enable us to dissect tissue organization and inter-cellular communications. Here, we 24 

present SEDR, an unsupervised spatial embedded deep representation of both transcript and 25 

spatial information. The SEDR pipeline uses a deep autoencoder to construct a gene latent 26 

representation in a low-dimensional latent space, which is then simultaneously embedded with 27 

the corresponding spatial information through a variational graph autoencoder. SEDR was 28 

tested on the 10x Genomics Visium spatial transcriptomics and Stereo-seq datasets, 29 

demonstrating its ability to create a better data representation that benefits various follow-up 30 

analysis tasks. In benchmarking test, SEDR achieved better clustering accuracy than 31 

contemporary methods, and in conjunction with trajectory analysis, it correctly retraced 32 

retraces the prenatal development of the human dorsolateral prefrontal cortex. We also found 33 

the SEDR representation to be eminently feasible for batch integration. Finally, we used SEDR 34 

to characterize the intratumoral heterogeneity of human breast cancer. We identified regions 35 

with different immune microenvironments, ranging from pro-inflammatory to immune 36 

suppressive areas with infiltrated tumor associated macrophages (TAMs). Analysis suggested 37 

a cancer cell dissemination trajectory from cells in pre-metastatic state to invasive carcinoma. 38 

   39 

 40 

  41 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
3 

Introduction 42 

Single-cell omics technologies enable measurements at single cell resolution, leading to 43 

discoveries of new subpopulations across various tissues, in both healthy and diseased states. 44 

However, tissue dissociation into single cells prior to high throughput omics data acquisition 45 

leads to cellular spatial information being lost, hindering our dissection of spatial organization 46 

and intercellular interactions of individual cells. While computational tools have been 47 

developed to predict cell-cell interactions from ligand and receptor expression, they require 48 

validation using immunohistochemistry (IHC) or immunofluorescence (IF). Emerging spatial 49 

omics technologies overcome these limitations through simultaneous measurements of 50 

gene/protein expression and spatial location of cells. Such spatially-resolved transcriptomes 51 

of histological tissues enable the reconstruction of tissue architecture and cell-cell 52 

interactions1,2,3,4,5,6,7,8,9 . This approach has proven its value in many applications including 53 

studies on brain disorders2,10, tumour microenvironment3,11, and embryonic development12. 54 

Among currently available spatial transcriptomics approaches, in situ capturing-based 55 

technologies such as 10x Genomics Visium and Nanostring GeoMX DSP have gained more 56 

popularity owning to their accessibility and ability to profile a large number of mRNA targets 57 

within each spot. In principle, a histological section from a tissue sample is permeabilized and 58 

the released mRNA is captured by either spatially-arrayed oligos on slide surfaces or by pre-59 

hybridized RNA-target barcodes in manually defined regions of interest (ROI). However, both 60 

technologies suffer from limitations in the size of mRNA capture area, where the smallest size 61 

is typically ~50µm, which is larger than the diameter of a single cell. To overcome this limitation, 62 

computational methods have been developed to deconvolute the cell mixture of spatial 63 

spot13,14,15,16,17,18,19,20. Recently, improvements in mRNA capture methods have led to smaller 64 

subcellular capture areas that are ~1-10µm in diameter. These high-resolution spatial 65 

transcriptomics methods can obtain spatially-resolved transcriptomes with increased spatial 66 

fidelity but without any compromise in the number of genes captured. These methods include 67 
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Slide-seq8, DBiT-seq9, with the highest resolution (~1µm) thus far obtained by Stereo-seq5, 68 

PIXEL-seq6, and Seq-Scope7. These submicrometer-resolution methods usually require voxel 69 

binning or cell segmentation to produce a gene-by-cell expression matrix for downstream 70 

analysis. Recent technologies have also improved on the size of captured area and thus 71 

increased cell throughput, necessitating new computational methods that can handle big 72 

spatial data.  73 

When analyzing spatial transcriptomics data, combining both gene expression and spatial 74 

information to learn a discriminative representation for each cell or spot is crucial. However, 75 

established workflows, e.g., Seurat21, still employs pipelines for single-cell RNA-seq analysis, 76 

which primarily focus on gene expression data and ignore the spatial neighborhood structural 77 

relationship. Recently, several new methods have been developed for spatial transcriptomics 78 

to overcome this limitation. For example, BayesSpace22 creates a model starts from a Markov 79 

Random Filed (MRF) priors which hypothesizes that spots belong to same cell type should be 80 

closer to one another and updates models with Bayesian approach. Giotto23  implements a 81 

hidden Markov random filed (HMRF) model to detect domains with coherent patterns by 82 

comparing gene expression between cells and their neighbors. SpaGCN24 uses graph 83 

convolutional network (GCN) to integrate gene expression, spatial location and histology in 84 

spatial transcriptomics data analysis. But the algorithm that SpaGCN integrates histology with 85 

spatial location is oversimplified and more evidence should be provided to support its 86 

rationality. stLearn25 developes a Spatial Morphological gene Expression (SME) normalization 87 

method to normalize spatial omics data. Standard Louvain clustering algorithm is implemented 88 

to do unsupervised clustering on SME normalized data. Then stLearn divides broad clusters 89 

into sub-clusters according to spatial information if broad clusters spread into several locations. 90 

The strategy of stLearn may not make full usage of spatial omics data, because it integrates 91 

morphology and spatial information separately at normalization and clustering steps. In 92 

general, all stat-of-the-art methods have limitations for properly integration of spatial and 93 

morphological information. Moreover, the downstream analyses often require proper low-94 
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dimension representation features of the data, which is either neglected or not optimized by 95 

state-of-the-art methods. 96 

In this work, we developed an unsupervised spatial embedded deep representation (SEDR) 97 

method for learning a low-dimensional latent representation of gene expression embedded 98 

with spatial information. Our SEDR method consists of two main components, a deep 99 

autoencoder network for learning a gene representation, and a variational graph autoencoder 100 

network for embedding the spatial information. These two components are optimized jointly to 101 

generate a latent representation for spatial transcriptomics data analysis. We applied SEDR 102 

on the 10x Genomics Visium spatial transcriptomics dataset and demonstrated its ability to 103 

achieve better representation for various follow-up analysis tasks including clustering, 104 

visualization, trajectory inference and batch effects correction. 105 

Results 106 

Overview of SEDR.  107 

SEDR learns a gene representation in a low-dimensional latent space with jointly embedded 108 

spatial information. As shown in Figure 1, given spatial transcriptomics data, SEDR first learns 109 

a nonlinear mapping from the gene expression space to a low-dimensional feature space using 110 

a deep autoencoder network. Simultaneously, a variational graph autoencoder is utilized to 111 

aggregate the gene representation with the corresponding spatial neighboring relationships to 112 

produce a spatial embedding. Then, the gene representation and spatial embedding are 113 

concatenated to form the final latent representation used to reconstruct the gene expression. 114 

Thereafter, an unsupervised deep clustering method26 is employed to enhance the 115 

compactness of learned latent representation. This iterative deep clustering generates a soft 116 

clustering by assigning cluster-specific probabilities to each cell, leveraging the inferences 117 

between cluster-specific and cell-specific representation learning. Finally, the learned latent 118 

representation can be applied towards various analyzing tasks. 119 
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Quantitative assessment of SEDR on human dorsolateral prefrontal cortex (DLPFC) 120 

dataset.  121 

To perform a quantitative comparison between SEDR and other methods, we downloaded the 122 

10x Genomics Visium spatial transcriptomics data and the manually annotated layers for LIBD 123 

human dorsolateral prefrontal cortex (DLPFC) data2. The LIBD data includes 12 slices from 124 

the human DLPFC that spans six cortical layers plus white matter. We chose this dataset 125 

because the human DLPFC has clear and established morphological boundaries which can 126 

serve as the ground truth. We first applied the Seurat standard pipeline21 to process and cluster 127 

cells using only expression profiles and set the result as the baseline result to benchmark 128 

SEDR, in order to investigate the extent to which spatial information improves cell clustering. 129 

Moreover, there are some methods that can integrate spatial information and RNA-seq data, 130 

including Giotto23, stLearn25, SpaGCN24, and BayesSpace22. To compare SEDR with these 131 

methods, we also employed them to process the same dataset with the recommended default 132 

parameters. 133 

In slice 151673 (Figure 2A) with 3,639 spots and 33,538 genes, SEDR and BayesSpace had 134 

the best performance in terms of both layer borders and ARI. When comparing the results on 135 

all 12 DLPFC samples, SEDR had the highest mean ARI (0.426) (Figure 2A bottom right), 136 

though the difference between SEDR and BayesSpace (0.418) was not significant (Mann-137 

Whitney U Test27: p-value=0.78). Given the fact that BayesSpace is optimized for clustering, 138 

while the objective function of SEDR is to find the best latent representation, comparable 139 

clustering performance of SEDR and BayesSpace might indicate that SEDR makes better use 140 

of spatial information and gene expression. Besides clustering, BayesSpace does not produce 141 

latent representation, in contrast, SEDR derived embedding can be used for not only clustering 142 

but also various down-stream analysis tasks such as UMAP visualization, trajectory inference 143 

and batch effect correction, and thus provides more flexibility and utilities. Similar to SEDR, 144 

SpaGCN also uses GCN to process spatial transcriptomics data. Moreover, it incorporates 145 

histology information which is not included in SEDR. However, the clustering performance of 146 
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SEDR is better than SpaGCN (Mann-Whitney U Test  p-value < 0.05). stLearn also integrates 147 

histology data, but the performance is likewise poorer. This may indicate that the current 148 

approaches utilized by SpaGCN and stLearn to incorporate histological data is not optimal. To 149 

make full usage of histology information, we may need to treat it as a separate data modality 150 

and use dedicated multi-view algorithms for integration. 151 

SEDR generates a set of low dimensional representation features which can be used in 152 

various down-stream analyses, such as trajectory inference28. Here, we used Monocle329 to 153 

perform trajectory inference on sample 151673 with the Seurat output (RNA-only) and the 154 

SEDR low dimensional representation features. We found that SEDR showed significantly 155 

improved performance over Seurat (Figure 2B). In the UMAP plot of SEDR’s output, cells 156 

belonging to different layers were well-organized, and when we selected white matter (WM) 157 

as the root, the pseudo-time reflected the correct “inside-out” developmental ordering of 158 

cortical layers (Figure 2B). This demonstrated that compared to RNA-only analyses, 159 

incorporating spatial information enabled SEDR to generate a better latent representation that 160 

summarized the spatial transcriptomics data. We further confirmed our observations with 161 

another trajectory inference method named PArtition-based Graph Abstraction (PAGA)30 162 

using the SEDR-derived latent space embedding instead of UMAP coordinates (Figure 2C). 163 

The PAGA results showed that the adjacent cortical layers tend to share greater similarity, 164 

suggesting spatial adjacency is linked with transcriptomic and even functional similarity. 165 

Notably, our trajectory is concordant with the chronological order of cortex development31,32,33. 166 

We then compared PAGA graphs generated using Seurat-derived principal components and 167 

SEDR embedding. For each of 12 DLPFC slices, we calculated the ratio of weights of edges 168 

between adjacent cortical layers over the total sum of weights of all edges. We found 169 

significantly higher ratio by SEDR compared to Seurat (Mann-Whitney U test p-value < 0.05) 170 

(Figure 2C right).  171 

SEDR corrects for batch effects. 172 

The proliferation of spatial omics application is generating ever increasing volumes of spatially 173 
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resolved omics data across different labs. However, differences in protocols and technologies 174 

complicate comparisons and data integration to produce consensus spatially resolved atlases 175 

of tissues. As with scRNA-Seq, removing batch effects in spatial omics dataset is a significant 176 

challenge. To date, there are no methods available for batch effects correction of spatial omics.  177 

Here, we demonstrate that SEDR is able to learn a joint embedding across multiple batches 178 

and project them into a shared latent space. Furthermore, it employs a DEC loss function that 179 

enables SEDR to retain biological variations while reducing technical variations. We evaluated 180 

the batch correcting performance of SEDR on the DLPFC datasets. We first assessed the 181 

batch variations among the 12 datasets and selected 3 sets (151507, 151672, 151673) which 182 

exhibit substantial batch effects. The common cortical layers from different batches were 183 

separated as shown in the UMAP plot (Figure 3A). We first applied Harmony to remove batch 184 

effects based on its superior performance in single-cell RNA-seq data integration34. Harmony 185 

was able to mix batches while keeping different layers apart; however, when zoomed into the 186 

individual layers, distinct batch-specific sub-clusters were still observable, suggesting that the 187 

batch effects were not completely removed (Figure 3B). Next, we applied SEDR on these 3 188 

datasets and found that the batch effects were substantially reduced (Figure 3C). Common 189 

layers across batches were brought very close and were well-aligned, while different layers 190 

were minimally mixed. Further application of Harmony on the SEDR embedding evenly mixed 191 

the batches while maintaining separation between layers (Figure 3D). Notably, batch-specific 192 

clusters were no longer present within individual layers. Our test showed that by combining 193 

SEDR with Harmony, we were able to effectively remove the batch effects present. Among the 194 

other spatial omics analysis methods, only stLearn produces a latent space embedding which 195 

can be fed to Harmony for batch correction, therefore we benchmarked SEDR against stLearn. 196 

As stLearn is unable to jointly project different batches to a shared latent space due to its 197 

requirement of histological images as input, we generated a latent space embedding from each 198 

dataset and then concatenated them for Harmony integration. The results showed that batches 199 

were not well mixed, and the layers were poorly separated (Figure 3E). In conclusion, SEDR 200 

combined with Harmony outperforms both Harmony alone and stLearn with Harmony, and this 201 
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can serve as an effective method for batch correction of spatial omics data.  202 

Dissecting tumor heterogeneity and immune microenvironment using SEDR. 203 

Intratumor heterogeneity in cancer complicates effective treatment formulations and is 204 

associated with poor survival prospects35. Spatial transcriptomics is an effective tool for 205 

meeting the challenge to dissect and characterize intratumor heterogeneity and tumor-immune 206 

crosstalk. Here, we tested SEDR on the 10x Visium spatial transcriptomic data of human breast 207 

cancer, which is known for its high intratumoral and intertumoral differences. To aid the 208 

interpretation of SEDR results, we performed manual pathology labeling based on the H&E 209 

staining. It should be noted that unlike the cerebral cortex that has clear and established 210 

morphological boundaries, tumor tissues are highly heterogeneous and encompass complex 211 

tumor microenvironments. Manual labeling solely based on tumor morphology is inadequate 212 

to characterize such complexity. Based on pathological features, we manually segmented the 213 

histological image into 20 regions and grouped them into 4 main morphotypes: Ductal 214 

Carcinoma in Situ/Lobular Carcinoma in Situ (DCIS/LCIS), healthy tissue (Healthy), Invasive 215 

Ductal Carcinoma (IDC), and tumor surrounding regions with low features of malignancy 216 

(Tumor edge) (Figure 4A). Visually, all five clustering methods agree with the manual 217 

annotation at the macroscopic level. Nevertheless, the SEDR clusters presented a smoother 218 

segmentation compared to other methods, while Seurat, stLearn and SpaGCN derived clusters 219 

appear fragmented and have irregular boundaries. Notably, SEDR found more sub-clusters 220 

within the tumor regions, while other methods were prone to divide the healthy regions into 221 

sub-clusters, given that all methods were set to generate the same number of clusters. For 222 

instance, within DCIS/LCIS_3, SEDR separated an outer “ring” (cluster 7) from the tumor core 223 

(cluster 3), and partitioned IDC_2 into 3 sub-clusters. These SEDR sub-clusters suggested 224 

transcriptomic heterogeneity within the seemly homogeneous tumor regions. In addition to 225 

clustering analysis, we also employed Seurat3 ‘anchor’-based integration workflow to perform 226 

probabilistic transfer of annotations from a reference scRNA-seq data of human breast 227 

cancer36 to the spatial data and output, for each spot, a probabilistic classification for each of 228 
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the scRNA-seq derived classes (Figure 4B, Supplementary Figure 1). The transferred class 229 

probabilities were able to delineate the tumor regions and regions where immune cells or 230 

fibroblasts were present, which will aid in further dissecting the tumor micro-environment.  231 

 232 

A number of driving forces have been hypothesized for the metastatic transition of tumor cells 233 

from a pre-invasive state to invasive carcinoma, including pro-tumor immune 234 

microenvironment and reduced cell-cell interactions within the tumor37. Here, we employed 235 

PAGA to infer the inter-relatedness between the manually annotated DCIS/LCIS and IDC 236 

regions in an attempt to trace the metastatic transition process. The PAGA graph generated 237 

using the SEDR embedding showed that DCIS_LCIS_3 was the only DCIS/LCIS region that 238 

was likely to spread to its neighboring invasive tumor region IDC_6 (Figure 4C). DEGs 239 

between DCIS_LCIS_3 and all other DCIS_LCIS regions and enriched pathways showed that 240 

DCIS_LCIS_3 had more immune infiltrates (Supplementary Figure 2A, 2B, 2C), in particular 241 

tumor associated macrophages (TAM) (Figure 4B, Supplementary Figure 2D), while the other 242 

DCIS_LCIS regions were mainly comprised of epithelial cells that were actively dividing / 243 

cycling (Figure 4B) and had up-regulated glycolytic and metabolic processes (Supplementary 244 

Figure 2C). TAM infiltration is known to strongly associate with poor survival in solid tumor 245 

patients by promoting tumor angiogenesis and inducing tumor migration, invasion and 246 

metastasis38,39. We then performed Monocle3 analysis to infer the pseudo-time of the 247 

transition from DCIS_LCIS_3 to IDC_6. As DCIS_LCIS_3 and IDC_6 coincide with SEDR 248 

clusters 3, 7, and 11 (Figure 4A), we performed Monocle3 on these three clusters and set 249 

cluster 3 as the starting point (Figure 4C bottom). We subsequently identified genes that 250 

changed expression along Monocle3 pseudotime and revealed sequential waves of gene 251 

regulation along the trajectory (Figure 4D). As SEDR cluster 3 and 7 marked the core and 252 

outer ring of DCIS/LCIS_3, we identified genes differentially expressed between these two 253 

clusters and enriched pathways to further dissect intratumoral heterogeneity (Figure 4E). In 254 

cluster 3, we observed the up-regulation of interferon signaling pathways (IFIT1, IFITM1, 255 
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IFITM3 and TAP1) and NK or neutrophil activities (FCGR3B and TNFSF10) (Figure 4E, 256 

Supplementary Figure 2E). In addition, upregulation of RHOB in this region points towards 257 

reduced metastatic potential40. Cluster 3 represents a region where cancer growth was limited 258 

by pro-inflammatory immune responses. On the other hand, in cluster 7, we observed the 259 

presence of TAMs (Figure 4B), memory B cells (IGHG1, IGHG3, IGHG4, IGLC2 and IGLC3) 260 

and fibroblasts (COL1A1, COL1A2, COL3A1, COL5A1, COL6A1, COL6A2 and FN1) (Figure 261 

4E, Supplementary Figure 2E). Upregulated cathepsin activities (CTSB, CTSD and CTSZ) 262 

and complement pathway (C1QA, C1S and C4) indicate pro-tumor activities by the TAMs in 263 

this region41,42,43. Moreover, upregulated cathepsin activity and metalloprotease inhibitors 264 

(TIMP1 and TIMP3) also suggests disturbance in extracellular matrix integrity. Overall, cluster 265 

7 represents a region with an immune-suppressed pro-tumor microenvironment and had high 266 

potential of cancer metastasis. In summary, SEDR analysis led to the identification of a 267 

potentially invasive DCIS region: DCIS/LCIS_3, where the outer ring cluster 7 had TAM 268 

infiltration and cancer associated fibroblasts (CAFs) presence, of which both have been 269 

reported to facilitate tumor spread44,45. SEDR also enabled the mapping of a molecular path 270 

or trajectory from DCIS to IDC. Taken together, SEDR can help dissect intratumoral 271 

heterogeneity and understand the relationships between different tumor compartments. 272 

SEDR can handle spatial transcriptomics data with high resolution. 273 

Currently available spatial omics technologies including 10x Visium Spatial Omics,  Nanostring 274 

GeoMX DSP, SLIDE-seq4, and DBIT-seq46, do not have single-cell resolution with each 275 

capture spot containing 1 to 10 cells. Meanwhile, new emerging methods such as Stereo-seq5, 276 

PIXEL-Seq6 and Seq-Scope7 can achieve submicrometer and thus subcellular resolution. With 277 

continued advances of spatial omics technologies, spatial resolution and number of cells 278 

detected per tissue will significantly improve, producing big datasets with high throughput. 279 

Here, we evaluated SEDR’s performance on one type of such data (Stereo-seq) of mouse 280 

olfactory bulb (Figure 5). Coronal section of the mouse olfactory bulb shows the olfactory nerve 281 

layer (ONL), glomerular layer (GL), external plexiform layer (EPL), mitral cell layer (MCL), 282 
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internal plexiform layer (IPL), granule cell layer (GCL) and rostral migratory stream (RMS) 283 

(Figure 5A). We performed unsupervised clustering using Seurat-derived principal 284 

components and SEDR-derived embedding to computationally reconstruct the spatial identity 285 

of the olfactory bulb profiled with Stereo-seq. Compared to Seurat clusters, SEDR clusters 286 

better reflected tissue organization and were more consistent with known anatomical layers 287 

(Figure 5B, 5C). We also performed quantitative assessment using local inverse Simpson’s 288 

index (LISI) and found SEDR produced significantly lower LISI than Seurat showing SEDR 289 

clusters were better spatially separated.  290 

 291 

Discussion 292 

Cell type heterogeneity is a feature of tissue, both healthy and diseased. Capturing this 293 

heterogeneity, coupled with their spatial arrangement in the tissue, is crucial when studying 294 

the roles of these cells and their cross-talk. Spatial omics technologies represent the state-of-295 

the-art approach to capture omics data with corresponding spatial information from tissue 296 

samples.  We present SEDR, which leverages on cutting edge machine learning techniques 297 

to achieve a better representation of spatial omics data that can be used for clustering and 298 

further downstream analyses. SEDR first learns a low dimension latent space representation 299 

of the transcriptome information with a deep autoencoder network, which is then aggregated 300 

with spatial neighbor information by a variational graph autoencoder to create a spatial 301 

embedding. This spatial embedding is then concatenated with the gene expression to be 302 

decoded to reconstruct the final gene expression for further analyses. We first demonstrated 303 

its efficacy in delineating the different cerebral cortex layers with higher clarity than competing 304 

methods, and recapitulated the associated development order by using the joint latent 305 

representation with Monocle3.  306 

To enhance the analytical power and resolution of spatial omics, we need to integrate multiple 307 

datasets from the same tissue. Similar to single-cell transcriptomic data, spatial omics datasets 308 

generated in different batches also contain batch-specific systematic variations that present a 309 
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challenge to batch-effect removal and data integration. In our study, we demonstrated that by 310 

combining SEDR and Harmony, we were able to effectively remove batch effects present. In 311 

the future, we will integrate Harmony into the SEDR workflow.   312 

Spatial omics technologies such as Stero-seq are able to measure large number of cells per 313 

experiment through high spatial resolution and large tissue sizes. In the near future, we expect 314 

to see ever increasing throughput from spatial omics experiments, which will result in spatial 315 

omics big data that pose significant challenges to data analysis and integration. Computational 316 

methods that employ graph neural network require loading the entire graph into GPU memory, 317 

which inhibits their applications to very large datasets. We will improve the memory efficiency 318 

of SEDR by using GCN min-batch or parallel techniques to construct large-scale graphs for 319 

spatial omics data of high throughput and high resolution. Furthermore, technologies with 320 

capture spot size smaller than the size of a cell will also require new computational methods 321 

that can accurately delineate cells based on capture spots. In the future, we will integrate cell 322 

segmentation based on H&E or DAPI staining into SEDR workflow. 323 

The current SEDR methodology focuses on gene expression and spatial information, and does 324 

not make use of histological images. Contemporary methods such as SpaGCN and stLearn 325 

use histological images as input, but in a suboptimal fashion, as demonstrated in our study. 326 

SpaGCN utilizes histological image pixels as features by calculating the mean color value from 327 

the RGB channels directly. However, the pixel values are easily affected by noise and cannot 328 

provide a semantic feature for cell analysis. A more effective approach could be adopting deep 329 

CNN model which can learn a high-level representation for histological image. stLearn 330 

introduces a deep learning model to extract image features of the spots, and integrates them 331 

with the spatial location and gene expression. However, stLearn employs a pre-model trained 332 

based on natural images, and does not fine-tune the network towards histological images. In 333 

the future, we will incorporate histological images as an additional modality into the SEDR 334 

model. We will utilize an image autoencoder network to learn image features, and jointly learn 335 

the latent representation by integrating gene expression, image morphology, and spatial 336 
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information. 337 

In summary, SEDR is a promising new approach that builds an integrated representation of 338 

cells using both transcriptomic data and spatial coordinates. SEDR derived low dimensional 339 

embedding enables more accurate clustering, trajectory inference and batch effect correction. 340 

It is able to handle both spatial transcriptomics with capture spot sizes ranging from 50um to 341 

less than 1um. Application of SEDR on human breast cancer revealed heterogeneous sub-342 

regions within seemly homogenous tumor regions and shed light on the role of immune 343 

microenvironment on tumor invasiveness.    344 
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Methods 345 

Dataset preprocessing.  346 

Our SEDR method takes spatial transcriptomics gene expression and spatial coordinates as 347 

inputs. The raw gene expression counts are first normalized using the respective library sizes 348 

(by normalize_total in Scanpy (v.1.5.0)), with very highly expressed genes excluded from the 349 

computation of the normalization factor (size factor) for each cell47. Principal component 350 

analysis (PCA) is then performed to extract the first 300 principal components to generate the 351 

initial gene expression matrix. 352 

Graph construction for spatial transcriptomics data. 353 

To create the graph representing the cell–cell spatial relationships of spatial transcriptomics 354 

data, we calculated the Euclidean distance in the image coordinates of all cells and selected 355 

the top 10 nearest neighbors of each cell to construction the adjacency matrix. The adjacency 356 

matrix, denoted by 𝐴, is a symmetric matrix, where 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1 if 𝑖 and 𝑗 are neighbors, and 357 

0 otherwise.    358 

Deep autoencoder for latent representation learning.  359 

The latent representation of the gene expression is learned through a deep autoencoder. The 360 

encoder part, consisting of two fully connected stacked layers, generates the low-dimensional 361 

representation 𝑍𝑓  ∈ ℝ𝑁×𝐷𝑓  from the input gene expression matrix 𝑋 ∈  ℝ𝑁×𝑀 , while the 362 

decoder part with one fully connected layer, reconstructs the expression 𝑋′ ∈  ℝ𝑁×𝑀 from the 363 

latent representation 𝑍 ∈  ℝ𝑁×𝐷 , which is obtained by concatenating the low-dimensional 364 

representation 𝑍𝑓  and spatial embedding 𝑍𝑔  ∈ ℝ𝑀×𝐷𝑔 , where 𝑁 is the number of cell, 𝑀 is 365 

the number of input genes, and 𝐷𝑓 , 𝐷𝑔, 𝐷 are the dimensions of the learned low-dimensional 366 

expression representation of encoder, spatial embedding of GCN, and final latent 367 

representation of SEDR with 𝐷 = 𝐷𝑓 + 𝐷𝑔. The objective function of the deep autoencoder 368 

maximizes the similarity between the input gene and reconstructed expressions, as measured 369 
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by the mean squared error (MSE) loss function, ∑(𝑋 − 𝑋′)2. 370 

Variational graph autoencoder for spatial embedding. 371 

SEDR utilizes a variational graph autoencoder48 (VGAE) to embed the spatial information of 372 

neighborhood cells.  With the adjacency matrix 𝐴 and its degree matrix 𝐷, the VGAE learns a 373 

graph embedding 𝑍𝑔  with the formal format as: 𝑔: (𝐴, 𝑍𝑓) ⟶ 𝑍𝑔 , where 𝑍𝑓  is the node/gene 374 

representation from the deep autoencoder. The inference part of VGAE is parameterized by a 375 

two-layer graph convolutional network49 (GCN): 376 

𝑔(𝑍𝑔|𝐴, 𝑍𝑓) = ∏ 𝑔(𝑧𝑖|𝐴, 𝑍𝑓), with 𝑔(𝑧𝑖|𝐴, 𝑍𝑓) = 𝒩(𝑧𝑖|𝜇𝑖 , 𝑑𝑖𝑎𝑔(𝜎𝑖
2)), 377 

where  𝜇 = 𝐺𝐶𝑁𝜇(𝐴, 𝑍𝑓) is the matrix of mean vectors, and 𝑙𝑜𝑔𝜎 = 𝐺𝐶𝑁𝜎(𝐴, 𝑍𝑓). The two-layer 378 

GCN is defined as 𝐺𝐶𝑁(𝐴, 𝑍𝑓) = 𝐴̃ 𝑅𝑒𝐿𝑈(𝐴̃𝑍𝑓𝑊0)𝑊1 , with weight 𝑊𝑖  and symmetrically 379 

normalized adjacency matrix 𝐴̃ = 𝐷−
1

2𝐴𝐷−
1

2 . The spatial embedding 𝑍𝑔  and reconstructed 380 

adjacency matrix 𝐴′ are generated as: 381 

𝐴′ = 𝜎(𝑍𝑔 ⋅ 𝑍𝑔
𝑇), with 𝑍𝑔 = 𝐺𝐶𝑁 (𝐴, 𝑍𝑔). 382 

The objective function of the VGAE is to minimize the cross-entropy (CE) loss between input 383 

adjacency matrix 𝐴  and reconstructed adjacency matrix 𝐴′ , and simultaneously, 384 

minimize Kullback-Leibler (KL) divergence between 𝑔(𝑍𝑔|𝐴, 𝑍𝑓) and Gaussian prior 𝑝(𝑍𝑔) =385 

 ∏ 𝒩(𝑧𝑖|0, 𝐼)𝑖 . 386 

Batch effect correction for spatial transcriptomics 387 

The spatial relationship only exists within single spatial omics, and the cells from different 388 

omics have no direct spatial relation. Let the 𝐴𝑘 and 𝑍𝑓
𝑘 denotes the adjacency matrix and deep 389 

gene representation of spatial omics 𝑘, we could create a block-diagonal adjacency matrix 390 

𝐴𝑘  and concatenate the deep gene representation in the cell dimension, as: 391 

𝐴 = [
𝐴1 ⋯ 0 
⋮ ⋱ ⋮

 0 ⋯ 𝐴𝐾

],  𝑍𝑓 = [

𝑍𝑓
1

⋮
𝑍𝑓

𝐾
], 392 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
17 

where 𝐾 is the number of spatial omics. Based on this, we could feed different spatial omics 393 

(of potentially different size) as multiple graph instances in the form of one block-diagonal 394 

adjacency matrix to the SEDR. 395 

For removing batch effects and enhancing the compactness of its latent representation, SEDR 396 

employs an unsupervised deep embedded clustering (DEC) method26 to iteratively group the 397 

cells into different clusters. To initialize the cluster centers, we employ the KMeans of scikit-398 

learn on the learned latent representations. The number of clusters is pre-defined as a hyper-399 

parameter. With the initialization, the DEC improves the clustering using an unsupervised 400 

iterative method with two steps. In the first step, a soft assignment 𝑞𝑖𝑗  between the cluster 401 

center 𝜇𝑗 and latent point 𝑧𝑖 is calculated by Student’s t-distribution, as: 402 

𝑞𝑖𝑗 =  
(1+||𝑧𝑖−𝜇𝑗||

2
)

−1

∑ (1+||𝑧𝑖−𝜇𝑗′||
2

)
−1

𝑗′

 . 403 

In the second step, we iteratively refine the clusters by learning from their high confidence 404 

assignments with the help of an auxiliary target distribution 𝑃 based on 𝑞𝑖𝑗, as: 405 

𝑝𝑖𝑗 =  
𝑞𝑖𝑗

2 / ∑ 𝑞𝑖𝑗𝑖

∑ (𝑞𝑖𝑗′
2 / ∑ 𝑞𝑖𝑗′𝑖 )𝑗′

 . 406 

Based on the soft assignment 𝑞𝑖𝑗 and auxiliary target distribution 𝑝𝑖𝑗, an objective function is 407 

defined using the KL divergence: 408 

𝐾𝐿(𝑃||𝑄) =  ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖  . 409 

The SEDR parameters and cluster centers are then simultaneously optimized by using 410 

stochastic gradient descent (SGD) with momentum.  411 

 412 

Seurat. 413 

Raw mRNA counts were preprocessed to remove low quality genes and sctransformed to 414 

remove technical artifacts and normalize the data50. We then ran Principal Component 415 
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Analyses (PCA) to extract the top 30 Principal Components (PCs) and use them to calculate 416 

the shared nearest neighbors (SNN). Then the Louvain clustering algorithm was used to 417 

identify clusters with the SNN networks. We tried clustering at different resolutions to obtain 418 

the same number of clusters as the number of ground truth layers. 419 

SpaGCN, stLearn, BayesSpace, Giotto. 420 

We ran these methods with recommended pipelines and defualt parameters and set each 421 

method to generate the same number of clusters as the number of ground truth layers. stLearn-422 

derived low dimensional embedding was used to for downstream UMAP visualization and 423 

harmony batch correction.   424 

Evaluation metric for clustering.  425 

For datasets with cell-type labels (e.g., DLPFC), we employed the adjusted rand index (ARI) 426 

to compare the performance of different clustering algorithms. The index calculates the 427 

similarity between the clustering labels predicted by algorithm and reference cluster labels as: 428 

𝐴𝑅𝐼 =  
𝑅𝐼 − 𝐸[𝑅𝐼]

max(𝑅𝐼) − 𝐸[𝑅𝐼]
 , 429 

where the unadjusted rand index (RI) is defined as: 𝑅𝐼 = (𝑎 + 𝑏)/𝐶𝑛
2, with 𝑎 as the number of 430 

pairs correctly labeled in the same sets, 𝑏 as the number of pairs correctly labeled as not in 431 

the same data set, and 𝐶𝑛
2 as the total number of possible pairs. 𝐸[𝑅𝐼] is the expected 𝑅𝐼 of 432 

random labeling. A higher ARI score indicates better performance. 433 

Monocle3. 434 

On DLPFC #151673 slice and breast cancer data, we ran Monocle3 using both Seurat and 435 

SEDR outputs. For Seurat, we ran the standard pipeline to get UMAP and used UMAP as input 436 

for Monocle3. For SEDR, we first extracted SEDR low dimensional embedding and then used 437 

uwot package to calculate UMAP. We then ran Monocle3 on both UMAP using recommended 438 

parameters and set white matter (WM) as the start point to generate pseudotime. We then 439 

used Moran_I test for detecting significant genes that showed correlation with pseudotime. 440 
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Leiden clustering, PAGA trajectory, and UMAP for comparison. 441 

The Leiden clustering, partition-based graph abstraction (PAGA), and uniform manifold 442 

approximation and projection (UMAP) of the gene representation and spatial 443 

embeddings/principal components (PCs) derived from the SEDR and Seurat were performed 444 

using Scanpy (v.1.5.0) package. Briefly, all embeddings or first 30 PCs were directly used to 445 

compute a neighborhood graph of observations using n_neighbors of 15, UMAP method to 446 

compute the connectivities, and Euclidean method to compute the distance. In order to obtain 447 

the same amount of unique Leiden clusters obtained using the SEDR, grid-searching on the 448 

Leiden clustering resolution between 0.2 and 2.5 with interval of 0.05/0.01 were performed. 449 

Subsequently, the PAGA was performed to quantify the connectivity of Leiden clusters. Lastly, 450 

the cluster positions suggested by PAGA were used to initialize the UMAP manifold learning 451 

for visualization. 452 

Harmony. 453 

Harmony was used to correct batch effect on low dimensional embeddings. For SEDR, we 454 

used latent space embeddings as input. For raw data and stLearn, we used the PCA 455 

embeddings as input. We treated different samples as different batches and set all other 456 

parameters with default value. For each method, the uncorrected embeddings and batch 457 

corrected Harmony embeddings were used to do UMAP analysis. 458 

Prediction of cell type composition of 10x Visium spatial spot. 459 

We downloaded a published scRNA-seq dataset of human breast cancer36 as reference, and 460 

ran Seurat to find transfer anchors between the reference and our Visium spatial data. Cell 461 

types in the reference are then assigned to the spatial spots by label transferring. We removed 462 

cell types that have probability equal to 0 for all spots.  463 

Differential Expression Genes (DEGs)  and pathway analyses. 464 

We use Seurat to identify DEGs. Genes with adjusted p-value < 0.05 is used as the input for 465 

QIANGEN Ingenuity Pathway Analysis (IPA). For IPA result, the pathway with positive or 466 
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negative z-score are plotted.  467 

Raw data processing of Stereo-seq data. 468 

Fastq files were generated using MGI DNBSEQ-Tx sequencer. Coordinate identity (CID) and 469 

unique molecular identifier (UMI) are contained in the forward reads (CID: 1-25bp, UMI: 26-470 

35bp) while the reverse reads consist of the cDNA sequences. CID sequences on the forward 471 

reads were first mapped to the designed coordinates of the in situ captured chip, allowing 1 472 

base mismatch to correct for sequencing and PCR errors. Reads with UMI containing either N 473 

bases or more than 2 bases with quality score lower than 10 were filtered out. CID and UMI 474 

associated with each read were appended to each read header. Retained reads were then 475 

aligned to the reference genome (mm10) using STAR51 and mapped reads with MAPQ 10 476 

were counted and annotated to their corresponding genes using an in-house script (available 477 

at https://github.com/BGIResearch/handleBam). UMI with the same CID and the same gene 478 

locus were collapsed, allowing 1 mismatch to correct for sequencing and PCR errors. Finally, 479 

this information was used to generate a CID-containing expression profile matrix. 480 

Local inverse Simpson’s index (LISI). 481 

We first used Seurat and SEDR to generate cell clusters for the stereo-seq data, then used R 482 

“lisi” package to calculate LISI with coordinates as X and clustering results of Seurat and SEDR 483 

as meta data.  484 

 485 

Data availability. 486 

(1) The LIBD human dorsolateral prefrontal cortex (DLPFC) Data 487 

(http://spatial.libd.org/spatialLIBD/);  488 

  489 

Software availability. 490 

SEDR is written by Python using the PyTorch library. An open-source implementation of SEDR 491 
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is released on https://github.com/HzFu/SEDR 492 

  493 

 494 

 495 

496 
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Figure legend:  636 

Figure 1. Overview of SEDR. SEDR learns a low-dimensional latent representation of gene 637 

expression embedded with spatial information via jointly training a deep autoencoder and a 638 

variational graph autoencoder. The low dimensional embedding produced by SEDR can be 639 

used for downstream visualization, cell clustering, trajectory inference and batch effect 640 

correction.  641 

Figure 2. Quantitative assessment of SEDR on human dorsolateral prefrontal cortex 642 

(DLPFC) dataset. A) Ground-truth segmentation of cortical layers; clustering results of Seurat, 643 

Giotto, stLearn, SpaGCN, BayesSpace and SEDR on DLPFC slice #151673; Adjusted rand 644 

index (ARI) of various cluster sets on 12 DLPFC slices. B) UMAP visualization and Monocle 645 

trajectory generated using Seurat-derived PCA embedding (top) and SEDR embedding 646 

(bottom); Monocle pseudotimes were visualized on UMAP plot and spatial co-ordinates. C) 647 

PAGA graph generated using Seurat-derived PCA embedding and SEDR embedding; SEDR 648 

showed a higher percentage of weights of correct PAGA edges compared to Seurat.  649 
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Figure 3. Batch effect present in DLPFC datasets and assessment of SEDR’s 650 

performance on batch correction. A) The slices #151507, #151672 and #151673 showed 651 

substantial inter-slice variations before batch effect correction. UMAP plots colored by ground-652 

truth cortical layers (left), slices (right), split by slices and colored by layers (bottom). B) 653 

Harmony alone was unable to remove the batch effects present. C) SEDR alone substantially 654 

reduced batch effects. D) SEDR combined with Harmony effectively corrected for batch 655 

effects. E) stLearn combined with Harmony was unable to correct for batch effects.   656 

Figure 4. Application of SEDR on 10x Visium spatial transcriptomics data of human 657 

breast cancer. A) Manual pathology labeling based on the H&E staining; clustering results of 658 

SEDR, Seurat, stLearn, SpaGCN and BayesSpace. B) Seurat3 ‘anchor’-based integration 659 

workflow was used to perform probabilistic transfer of annotations from a reference scRNA-660 

seq data of human breast cancer to the spatial data and output, for each spot, a probabilistic 661 

classification for each of the scRNA-seq derived classes. The probabilities of tumor associated 662 

macrophage (TAM) and cycling epithelial (C.Epi) were visualized. C) Trajectory analysis 663 

results using PAGA (Top) and Monocle3 (Bottom). PAGA graph predicted the inter-relatedness 664 

between the manually annotated DCIS/LCIS and IDC regions. Edge width, a measure of 665 

connectivity strength, indicates the likelihood of an actual connection being present. Monocle3 666 

inferred pseudotimes of spots in SEDR cluster 3, 7 and 11 using Seurat-derived PCA 667 

embedding (termed “rna_pseudotime”) and SEDR embedding (termed “SEDR_pseudotime”). 668 

D) Heatmap of genes whose expression changed along Monocle-derived pseudotime. E) 669 

Pathways enriched by genes differentially expressed between SEDR cluster 3 and 7. Red bars 670 

represent pathways up-regulated in cluster 3.  671 

Figure 5. Application of SEDR on Stereo-seq spatial transcriptomics data of mouse 672 

olfactory bulb tissue section. A) Laminar organization of DAPI stained mouse olfactory bulb.  673 

B) Unsupervised clustering of the spatial voxels analyzed by Seurat and SEDR. C) Four 674 

clusters with the highest number of voxels were selected and visualized. D) Quantitative 675 

comparison of Seurat and SEDR clusters using local inverse Simpson’s index (LISI).  676 
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Supplementary: 677 

Figure 1. Complete deconvolution result for breast cancer sample.  678 

Figure 2. Differential expression genes and enriched pathways. A) Position of 679 

DCIS_LCIS_3 and other DCIS_LCIS regions. B) Top DEGs between DCIS_LCIS_3 and other 680 

DCIS_LCIS regions. C) Enriched pathways of DEGS for DCIS_LCIS_3 vs other DCIS_LCIS 681 

regions. D) Percentage of TAM for cluster 3 and cluster 7 of SEDR clustering result. E) 682 

Representative DEGs between cluster 3 and cluster 7.  683 
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