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Abstract 

Substrate-based probes utilize known substrate specificity parameters to create a probe that 

can be activated by a target enzyme. In developing probes for heparanase, an endo-ß-glucuronidase, we 

previously reported that small, inactive substrate-based probes could be electronically tuned by 

incorporating electron-withdrawing atoms on the aromatic aglycone fluorophore, ortho- to the cleaved 

glycosidic bond. However, the installation of electron-withdrawing groups directly onto established 

fluorophores or other reporters complicates the synthesis of new heparanase probes. In this work we 

report a new design strategy to expand the toolkit of heparanase imaging probes, in which the 

installation of an electronically tuned benzyl alcohol linker restored the activity of a previously inactive 

heparanase probe using 4-methylumbelliferone as the fluorescent reporter, suggesting such a linker can 

provide a scaffold for facile development of activatable heparanase probes bearing a variety of imaging 

moieties. 

Maintext 

Heparanase (HPSE) is an endo-β-glucuronidase that cleaves glycosidic bonds of heparan sulfate (HS) of 

heparan sulfate proteoglycans (HSPG) localized in the extracellular matrix and basement membrane.
1
 As 

HS plays critical roles in maintenance of integrity of the ECM and modulation of the activity of diverse, 

cytokines, chemokines and growth factors, the degradation of HS mediated by heparanase affected a 

variety of biological processes.
2-4

 Under normal physiological conditions, high-level heparanase can be 

detected in the placenta and blood-borne cells such as platelets, neutrophils, mast cells, and 

lymphocytes.
3
 Recently, the data revealed that heparanase is overexpressed in tumor tissues

1, 5-7
 and the 

enzymatic activity is correlated with tumor metastasis, angiogenesis and post-surgical survival.
8
 Besides, 
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the role of this enzyme is also associated with inflammatory disorders
3, 9

 and autoimmune diabetes.
10-11

 

Thus, it is unsurprising that heparanase has been regarded as a promising pharmacological target for 

treatment of multiple diseases.
3-4, 12-14

 

Recently, we reported the first structurally defined ultrasensitive fluorogenic probe HADP (1) for 

detecting heparanase activity with high selectivity and sensitivity, which we used in a high-throughput 

screen for novel heparanase inhibitors.
15

 In our initial probe design, use of the fluorogenic reporter 4-

methylumbelliferone (4-MU) did not facilitate turnover of the probe by HPSE, consistent with the 

exclusively endo-glycosidic selectivity of HPSE enzymatic activity. However, by incorporating two 

electron-withdrawing fluorine atoms on the methylumbelliferone reporter, ortho to the phenolic oxygen, 

our HADP probe successfully elicited exo-glycosidic activity from HPSE.
15

 Following this study, we 

developed a second fluorogenic probe for imaging heparanase activity in living cells (J.L., Z.W., and L.C., 

unpublished results), which also required two ortho-position fluorine atoms installed on the reporter, to 

elicit HPSE activity. Encouraged by these advances, we attempted to develop a near-infrared (NIR) probe 

for monitoring heparanase in vivo by extending the conjugation system of fluorophore, but the synthesis 

failed due to incompatibility of the NIR fluorophore with the chemical manipulation of the disaccharide 

recognition unit. Thus, we considered adding a self-immolative linker between the recognition unit and 

fluorescent reporter unit (Fig. 1). Typically, a self-immolative linker is based on a 4-hydroxybenzyl 

alcohol moiety to bridge the recognition unit and fluorophore.
16-17

 Once the recognition unit reacts with 

the corresponding analyte, the phenol of the middle linker is uncaged, which triggers simultaneous 

elimination of a molecule of para quinone methide to release the latent reporter unit. This strategy has 

been extensively employed in the design of prodrugs, drug delivery, sensors, and molecular amplifiers. 

This self-immolative linker can efficiently reduce steric limitations and increase stability. Our previous 

Fig. 1. (A) Design of HPSE probes bearing self-immolative linkers. This will serve as a scaffold for probes 

of many imaging modalities. (B) Probes 1 and 2 designed in this work, using differently tuned linkers. 
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work showed that o,o-difluorination of the fluorophore aglycone elicited heparanase activity while a 

non-fluorinated analog did not. This was due to the resultant weakening of the glycosidic bond and 

lowering of the transition state energy for enzymatic turnover by heparanase.
15

 Based on these results, 

we deigned two molecules bearing a 4-hydroxybenzyl alcohol linker substituted with either two or four 

fluorine atoms to facilitate enzymatic cleavage by heparanase. A simple coumarin as fluorescent 

reporter to examine whether the linker can be disassembled upon incubation with heparanase. Our 

results show that a tetrafluorobenzaldehyde (4-F) linker facilitates heparanase turnover, possibly 

providing a universal scaffold for small molecule heparanase probes. 

We embarked on the synthesis for compounds 1 and 2 (Scheme 1) from disaccharide bromide 3 

with 4-hydroxybenzaldehyde derivatives bearing 2 or 4 fluorine atoms by Koenigs-Knorr glycosylation to 

afford compounds 6 and 7, respectively. The aldehyde group was subsequently reduced to the primary 

Scheme 1. Synthetic scheme for probes 1 and 2. Reagents and conditions: a) Ag2O, MeCN (dry), r.t., OVN, 77% 

(6) or 54% (7); b) NaBH4, DCM/MeOH (1/5), r.t., 20 min, 49% (8) or 64% (9); c) PPh3, CBr4, DCM (dry), r.t., 1 h, 

46% (10) or 72% (11); d) 4-MU, K2CO3, DMF, r.t., 16 h, 81% (12) or 47% (13); e) NaOMe, MeOH, r.t., 2 h, quant. 

(HPLC); f) Pd/C, H2, EtOAc, rt, 18 h, 75% (HPLC); g) NaOH (pH 12), H2O, rt, 4 h, quant. (HPLC); h) Py·SO3, NaOH 

(pH 10), H2O, rt, 6 h, 50% (HPLC). 
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alcohol, followed by an Appel reaction to convert the alcohols to benzyl bromides 10 and 11. The alkyl 

bromides were substituted with 4-methylumbelliferone in the presence of potassium carbonate to 

incorporate the fluorescent reporter, establishing the skeleton of the desired molecules (compounds 12 

and 13). Subsequent deprotection steps included Zemplén O-deacylation, catalytic hydrogenation of the 

azido group to the respective amine, and saponification of the glucuronic acid methyl ester. Finally, 

glucosamine N-sulfation afforded compounds 1 and 2.  

To confirm that the linkers work, we investigated the enzymatic response of compounds 1 and 2 

to heparanase in NaOAc buffer (pH 5.0) by measuring fluorescence turn-on from the (putatively) release 

methylumbelliferone reporter. For compound 1 with two fluorine atoms, negligible fluorescence was 

observed after incubation for 24 hours, indicating this linker could not be cleaved by heparanase. 

Furthermore, the reaction 

solution of this compound with 

heparanase was injected to 

HPLC. it shows that 

predominant peak remained, 

and the retention time was 

consistent with that of the 

compound 1. In contrast, 

compound 2 displayed a 

dramatic fluorescence 

enhancement after incubation for 3 hours in NaOAc buffer, at pH 5.0 (Fig. 2A). When the assay was 

terminated by increasing the pH to 10, the turn-on ratio can be further boosted even with a diluted 

mixture (Fig. 2B). This cleavage is further confirmed by HPLC trace, giving a new peak in alignment with 

the corresponding free 4-methylumbelliferone in a complete conversion (Fig. 3). 

Fig. 2. Fluorescence emission of 1 and 2 upon incubation with HPSE after 

24 h. (B) Fluorescence of 2 after 24 h incubation, adjusted to pH 10. 
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The successful response of 2 to HPSE suggests that the electronically tuned 4-F linker can 

facilitate turnover of probes using non-activated reporters, such as 7-MU. The 4-F scaffold thus opens 

up potential for the use of traditional reports in detecting HPSE activity, including commercially available 

fluorophores, chelates for magnetic or radioactive contrast, or smart imaging scaffolds, such as 

bioluminescence and in situ self-assembly moieties. The inclusion of 4-F avoids the requirement of 

functionalizing each of these reporters with EWGs such as the difluorination of our previously reported 

probe HADP, likely providing convenient and facile synthetic access to a library of novel HPSE imaging 

probes. We are currently synthesizing novel probes using the 4-F scaffold to expand this theory. 
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