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20 Abstract: The emergence and establishment of SARS-CoV-2 variants of interest (VOI) and 

21 variants of concern (VOC) highlight the importance of genomic surveillance.  We propose a 

22 statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially 

23 relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from US 

24 COVID-19 cases (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID 

25 from January 19, 2020 to March 15, 2021. Alignment against the reference Spike protein 

26 sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a 

27 substitution compared to the reference strain. Next, generalized additive models were applied to 

28 model VRV temporal dynamics, to identify VRVs with significant and substantial dynamics 

29 (false discovery rate q-value <0.01; maximum VRV proportion > 10% on at least one day).  

30 Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal 

31 patterns and identify VRV-haplotypes. Finally, homology modelling was performed to gain 

32 insight into potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of 

33 which have not previously been observed in a VOI/VOC, and 35 of which have emerged recently 

34 and are durably present. Our analysis identifies 17 VRVs ~91 days earlier than their first 

35 corresponding VOI/VOC publication.  Unsupervised learning revealed eight VRV-haplotypes of 

36 4 VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234).  Structural modeling 

37 supported potential functional impact of the D1118H and L452R mutations. The SLS approach 

38 equally monitors all Spike residues over time, independently of existing phylogenic 

39 classifications, and is complementary to existing genomic surveillance methods.  
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41 Main Text:

42 INTRODUCTION

43 Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen 

44 responsible for the global Covid-19 pandemic, is an RNA virus and thus prone to replication 

45 errors (1). Replication errors that yield nonsynonymous amino acid (AA) substitutions, or 

46 nucleotide insertions or deletions that cause a frame shift and alter the subsequent coding 

47 sequence, can lead to a variety of outcomes. If the resulting mutations have detrimental effects 

48 on fitness, or if they have neutral effects on fitness and undergo stochastic extinction, variants 

49 harboring these mutations fail to become established in the population.  However, mutations that 

50 confer a fitness advantage can rapidly become dominant in a population.  For SARS-CoV-2, 

51 there are three classes of variant: Variant of Interest (VOI), Variant of Concern (VOC), and  

52 Variant of High Consequence (VOHC).  The CDC is currently monitoring and characterizing 8 

53 VOIs (B.1.526, B.1.526.1, B.1.525,  P.2, B.1.617, B.1.617.1, B.1.617.2, B.1.617.3) and 5 VOCs 

54 (B.1.1.7, P.1, B.1.351, B.1.427, B.1.429) in the United States (2). VOCs show specific attributes 

55 such as increased transmissibility (3-7), increased resistance to neutralization by antibodies 

56 elicited through natural infection (3, 8-10), and/or increased resistance to neutralization by 

57 vaccine-elicited antibodies (10-12), and have already influenced vaccine development, evidenced 

58 by the current planning of clinical trials to test variant-adapted vaccines (13).  While no VOHCs 

59 have yet been identified, it remains possible that such variants – i.e. variants that can effectively 

60 evade natural or vaccine-induced immunity – may yet emerge (14, 15). The identification of 

61 VOHCs could necessitate the introduction of more stringent public health guidelines and/or spur 

62 further treatment and vaccine development. 
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63 Genomic surveillance is critical for tracking the emergence and spread of new variants. 

64 Such surveillance can be accomplished via a variety of approaches, such as phylogenic analysis 

65 (3, 16). In this approach, new viral sequences are classified to existing lineages identified by 

66 PANGO (17), subsets of samples with the same branches are identified, and variant frequencies 

67 are counted to identify new variants. The NextStrain methodology (18) can model dynamic 

68 changes of variant proportions, while an alternative approach aligns sequence data to a matrix of 

69 binary indicators for the presence of variants, and systematically evaluates each mutant as a 

70 potential variant (19).  Leveraging the analytic approach of single nucleotide polymorphisms 

71 (SNPs), variants have been identified by assessing linkage-disequilibrium (20) or similar SNP-

72 based identification and analysis (21). However, with the exception of the NextStrain 

73 methodology (3), these methods do not directly take into account sequence collection time, nor 

74 explicitly incorporate highly granular geographic information.  Moreover, these methods take a 

75 holistic view of the viral genome. Thus, there is a need for complementary approaches for 

76 detecting and characterizing Spike mutations of potential public health importance that may be 

77 missed, or detected later, by existing genomic surveillance methods. 

78 To meet this need, we describe a statistical learning strategy (SLS) using generalized additive 

79 models, unsupervised learning techniques, and single nucleotide polymorphism (SNP) 

80 methodologies for identifying and spatiotemporally characterizing viral residue variants (VRVs), 

81 a term we use to describe AA positions in the Spike protein where a mutation is significantly 

82 present in a given geographic area. The SLS method generates pertinent statistics for 

83 reproducible scientific inference and facilitates visual representation of results for intuitive 

84 interpretation. Using publicly available SARS-CoV-2 sequences from US COVID-19 cases that 

85 were not assigned to a VOI or VOC lineage, we apply our method to identify and 
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86 spatiotemporally characterize, within individual US states/territories, VRVs in the Spike protein.  

87 We also apply standard homology modeling methods to highlight individual AA mutations with 

88 the potential to impact Spike protein structure and/or function.  

89 RESULTS 

90 Ab Initio Discovery of VRVs

91 We first applied the SLS method to identify VRVs separately in each state/territory (Fig. S1). 

92 The decision to compartmentalize VRV discovery by state/territory was partially based on the 

93 fact that domestic travel restrictions have varied over the course of the pandemic, with nearly 

94 half of all states having imposed some type of interstate travel restriction (22), leading to the 

95 hypothesis that VRVs may follow state/territory-specific temporal dynamics. The identified 

96 VRVs showed a range of dynamic patterns across the different states/territories (Fig. S2), 

97 exemplified by the five different trajectories taken by the V382, L452, T478, P681, and T732 

98 VRVs in California (Fig. 1A). The relative abundance of V382 started rising on day 250, 

99 exceeded 10% on day 259, and fell below 10% on day 275.  L452 emerged on day 310, exceeded 

100 10% on day 390, and exhibited a positive trajectory thereafter.  Three other VRVs (T478, P681, 

101 T732) had similar trajectories to L452.  
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103

104 Fig. 1. Viral Residue Variant (VRV) spatiotemporal patterns in the United States. (A) 

105 Locally averaged proportions over time of five VRVs (V382, L452, T478, P681 and 

106 T732), modeled using sequences from California. The horizontal gray dotted line denotes 
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107 the Pmax cutoff of 10%. V382 exceeded the Pmax cutoff of 10% on day 259, and 

108 dropped below the Pmax cutoff of 10% on day 275 (marked by the vertical gray lines).  

109 (B) Heatmap of the 267 identified geo-VRVs, with color designating the state/territory-

110 specific VRV proportion at the sampling time as designated on the left-hand vertical axis. 

111 Geo-VRVs with similar temporal dynamics are grouped into 10 clusters (TP1 through 

112 TP10), as designated by the color bar at the top of the heatmap. (C, D) Venn diagrams 

113 showing the relationships between AA-subs in VOIs, AA-subs in VOCs, and (C) VRVs 

114 or (D) pressing VRVs. AA-subs, amino acid positions that have been shown to harbor 

115 substitutions within US-circulating variants; VOCs, variants of concern; VOIs, variants 

116 of interest.  

117

118 We refer to the combination of a VRV and a state/territory in which it was identified as a “geo-

119 VRV”.  A total of 267 geo-VRVs, consisting of combinations of 90 VRVs identified among the 

120 52 state/territory classifications, were identified (Table S3). Fifty-eight VRVs were only 

121 observed in one state/territory, whereas 32 were observed in two or more (Table S4).

122 Unsupervised learning was next applied to organize the 267 geo-VRVs into 10 clusters 

123 (TP1 through TP10) (Fig. 1B, Table S3). The cluster most strikingly different from the others 

124 was “TP2”, which was composed of 47 geo-VRVs, each of which contained the D614 VRV at a 

125 maximum relative abundance of 100%, showing the early dominance of the D614 VRV in these 

126 states/territories.  Clusters TP3, and TP5 include geo-VRVs of potential concern, since they 

127 include VRVs that appear to have emerged within the last few months in their specific 

128 states/territories.  In contrast, most VRVs in the remaining clusters tended to expand and contract 

129 within relatively short times in a given state/territory, making such VRVs likely less important 
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130 from a public health perspective.  We termed these 35 VRVs that were uniquely identified in 

131 Clusters TP2, TP3, and TP5 “pressing VRVs”.

132 Comparison with AA Positions where Substitutions Have Been Identified Within US-

133 Circulating VOIs and VOCs 

134 We next compared the 90 VRVs and the 35 pressing VRVs with the 12 and 13 AA positions that 

135 have been shown to harbor substitutions (AA-subs) within US-circulating VOIs and VOCs, 

136 respectively (2). The 90 VRVs included 9 and 8 AA-subs in VOIs and VOCs, respectively; the 

137 35 pressing VRVs included 4 and 8 AA-subs in VOIs and VOCs, respectively (Fig. 1C), even 

138 though all VOI/VOC sequences were excluded from the current analysis.  Notably, 25 of the 

139 VRVs that have not been previously identified as an AA-sub in a VOI or VOC appear to have 

140 emerging trajectories, demonstrating the potential of the SLS method to identify novel Spike AA 

141 positions that may warrant further investigation/observation. 

142 Five VOI/VOC AA-subs (Y144, F888, V1176, H69, K417) were not identified as a 

143 VRV.   Fig. S3 shows the state/territory-specific relative abundances over time for 

144 states/territories where substitutions were identified at these 5 positions (albeit without meeting 

145 the statistical significance criteria for identification as a VRV). Our data suggest that, 

146 individually, these AA positions may be of less interest in US. 

147 Timely Detection of Emerging VRVs

148 Timely detection of potentially fast-emerging VRVs, and conversely, identification of VRVs 

149 likely not of concern, are both important for informing public health guidelines and for 

150 influencing research priorities. Given the importance of timely detection, we use the first time 

151 when a Pmax of a VRV exceeds 10% as the first reportable time. For each out of the set of AA-

152 subs within VOIs/VOCs that were also identified as VRVs, Table 1 compares within each 
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153 state/territory the time of detecting an emerging VRV as calculated by the SLS method vs. the 

154 first appearance of the AA-sub in the scientific literature. The SLS identified emerging VRVs in 

155 an average of 207 days, vs 299 days (average of reported values in literature).  E484, an AA-sub 

156 in the B.1.1.7, P.1, and B.1.351 variants, is an exception as it was not detectable in the US until 

157 day 370, when it was first detected as a VRV in Rhode Island.

158 VRV-Haplotypes

159 SARS-CoV-2 is a single-stranded (“haploid”) RNA virus. The presence of multiple VRVs found 

160 in a patient form a VRV-haplotype.  The accumulation of multiple VRVs on a single RNA strand 

161 could affect protein function more than a single VRV.  To identify VRV-haplotypes, we 

162 performed unsupervised learning of selected VRVs and cases through a two-way hierarchical 

163 cluster analysis state/territory-by-state/territory.  As shown in Fig. S4, some VRV-haplotypes are 

164 shared across states/territories, but most are not.  Fig. 2, for example, shows the results of the 

165 unsupervised case and VRV clustering for Washington state.  The heatmap shows that multiple 

166 VRVs tend to aggregate among subsets of cases, inspection of which can reveal VRV-haplotypes 

167 as follows: The case cluster “PG8”, which includes 14 cases, has VRVs from the “RG4” and 

168 “RG5” clusters, which include the VRVs (S13-W152-L452-V483-N501-D614-A684) (See Table 

169 S5).  
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170

171

172 Fig. 2. Heatmap showing the presence of 10 selected VRVs among 9147 cases in 

173 Washington state. Unsupervised learning was used to organize the 10 VRVs into 5 

174 residue groups (RG1 through RG5) and to organize the 9877 cases into 12 patient groups 

175 (PG1 through PG12).

176

177

178 Collectively, these four case clusters were combined to identify the VRV-haplotype W1 (Table 

179 2), found in 104 cases in Washington.  Similarly, the case cluster “PG4” (12 cases) had three 

180 VRVs (D614, Q677, T732) from the “RG3”, “RG4”, and “RG5” clusters.  In total, six VRV-

181 haplotypes (W1 through W6) were identified in Washington, while the “W6” cluster (7130 

182 cases) carried only a single VRV, D614 (Table 2).  Comparison across VRV-haplotypes 
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183 suggested that W6 evolved to W3, W4, and W5 via the acquisition of an additional mutation at 

184 T732, Q677, and D178, respectively. Similarly, both W3 and W4 could have evolved to W2 via 

185 the acquisition of an additional mutation at Q677 or T732, respectively.  

186 VRV-haplotype blocks are identified from unsupervised learning. Within each block, 

187 there can be multiple VRV-haplotypes that consist of polymorphic residues; individual VRVs 

188 may take either the reference residue or a substitution.  For example, VRV-haplotype W1 had 10 

189 haplotypes (Table 2), where the number after the hyphen indicates the number of substitutions.  

190 For example, the haplotype “ICRVNGA” has four substitutions, and was observed twenty times 

191 in Washington.  

192 Table 2 also displays the VRV-haplotypes observed in New York (N1 through N7).  The 

193 most frequent block, N2, has seven VRVs and 16 unique haplotypes. Block N1 only differs from 

194 Block N2 via the acquisition of the P681 VRV, and thus the two blocks are closely connected.  

195 Similarly, Block N4, which probably gave rise to Block N3, has 14 unique haplotypes, including 

196 “GSRGNH” (six substitutions), which was observed 455 times.  Lastly, N5 probably arose from 

197 N6 via N7, and has the “PGHI” haplotype (observed 367 times). We next used unsupervised 

198 learning to construct haplotypes in Washington and New York of the 35 pressing VRVs (Table 

199 S6).  

200 Naming VRV Haplotypes via PANGO Lineages

201 As all sequences corresponding to VOI/VOC were excluded, the strains with detected VRVs are 

202 not currently undergoing special monitoring or characterization.  We were thus interested in 

203 naming identified VRV-haplotypes and the PANGO lineages assigned by GISAID.  To this end, 

204 we selected VRV-haplotype blocks including 4 or more pressing VRV mutations, resulting in 8 

205 VRV-haplotype blocks.  Table 3 cross-tabulates these VRV-haplotypes by their assigned 
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206 lineages.  Of particular interest, viruses with the haplotype “KGHA” of T478-D614-P681-T732 

207 were observed 2132 times, and 2029 of them were assigned to the strain B.1.1.222.  It is natural 

208 to name the haplotype T478K-D614G-P681H-T732A as a B.1.1.222.  Another noteworthy strain 

209 is B.1.234, which corresponds to “SVGHF” and “SVGHS” of G142-E180-D614-Q677-S940 

210 with exceptionally high frequencies (353 and 262).  The remaining VRV-haplotypes mostly 

211 correspond to B.1.  Fourteen other strains were found in more than 10 occurrences and may also 

212 be of potential interest.

213 Impact of VRV Haplotypes on Viral Structure

214 The SLS method includes homology modeling of Spike mutations, to predict possible 

215 consequences on Spike structure/function and to guide laboratory research. Inspection of the 

216 temporal dynamics of the VRV-haplotypes may be useful for identifying VRVs of interest. We 

217 performed homology modeling on two potentially interesting VRV-haplotypes, W1 (N501-

218 A570-D614-P681-T716-S982-D1118, from the UK variant cluster B.1.1.7) and W2 [S13-W152- 

219 L452-D614, from the US variant cluster (B.1.94; B.1.427; B.1.429)]. 

220 The D614G mutation observed in the W1 haplotype has been associated with increased 

221 infectivity/transmissibility (23-25). Cryo-electron microscopy structures have been reported 

222 recently (26, 27) that reveal the structural consequences of this mutation and provide a plausible 

223 mechanistic explanation for the increased infectivity of D614G-carrying variants. The D614 

224 VRV has predominated in all US cases for which sequence information is available in the TP2 

225 cluster (Fig. 1B, Table S2). The N501Y mutation (present in the B.1.1.7 variant) is located in the 

226 receptor-binding domain (RBD) and has been reported to enhance binding affinity to the 

227 angiotensin-converting enzyme-2 (10, 28). N501Y has also been shown to reduce susceptibility 
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228 to some nAbs, although the B.1.1.7 variant appears to remain susceptible to some extent to 

229 natural infection-acquired and vaccine-induced nAbs (10). 

230 Of the five remaining VRVs in the W1 haplotype, A570, T716, and S982 seem relatively 

231 benign in that mutations at these positions are already decreasing in certain states/territories (this 

232 trend is also true to some extent for N501Y). While this observation may simply reflect 

233 inadequate sequencing efforts in recent months, it may also indicate that mutations at these 

234 positions do not confer any fitness advantage to the virus.

235 The two remaining VRVs in the W1 haplotype, P681 and D1118, are more intriguing. 

236 Mutations at these two sites, particularly at P681, appear to persist in multiple states/territories. 

237 The P681H mutation occurs in the S1/S2 cleavage segment of the Spike protein, which is 

238 typically not resolved in cryo-electron microscopy or x-ray diffraction experiments. Thus, we 

239 cannot speculate on potential structural consequences of this mutation. However, the continued 

240 presence of this mutation in many states and its location in the Spike protein S1/S2 cleavage 

241 segment suggest that it may warrant further investigation. We are not aware of any reports that 

242 D1118H impacts transmissibility or morbidity, but the location of this mutation in the Spike 

243 protein trimer assembly (Fig. 3A, B) suggests it could impact trimer assembly 

244 structure/stability/dynamics.

245
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246

247

248

249

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.15.448495doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448495
http://creativecommons.org/licenses/by/4.0/


15

250 Fig. 3. Homology modeling of Spike mutations and haplotypic polymorphisms over time of 

251 the S13-W152-L452 VRV-haplotype. (A, B) Modeled structure of the Spike protein 

252 trimer with (A) D1118 or (B) H1118 (homology-modelled using PDB entry 7KRS as the 

253 template structure). Spike protein monomers are displayed in blue, salmon, and 

254 aquamarine; aspartic acid and histidine residues are rendered as CPK images. (C – F) 

255 Frequencies over time for seven commonly observed haplotypic polymorphisms of the 

256 S13-W152-L452 VRV-haplotype, out of its polymorphisms in the US. Only haplotypic 

257 polymorphisms with at least 50 observations are included. Nomenclature is as follows: 

258 The first three letters designate the amino acids present at positions 13, 152, and 452, 

259 respectively; the number after the hyphen designates the number of amino acids at these 

260 three positions that do not match their reference strain equivalents. Numbers of sequences 

261 harboring each S13-W152-L452 haplotypic polymorphism (across the entire USA) are 

262 shown in parentheses.  Frequencies of seven common S13-W152-L452 VRV-haplotypic 

263 polymorphisms (C) in the entire US; (D) in California, Oregon, and Washington 

264 combined; (E) in Arizona, Colorado, Nevada, New Mexico, and Tennessee combined; 

265 and (F) in Florida and Georgia combined. (G) Homology-modeled complex of the 

266 receptor-binding domain of the Spike protein (salmon), harboring the L452R mutation, 

267 bound to the angiotensin-converting enzyme 2 (ACE2) receptor (aquamarine). Within the 

268 R452 residue, nitrogen atoms are shown in blue and carbon atoms are shown in grey.

269

270

271 The US variants also carry the D614G mutation. The VRV-haplotype S13I-W152C-

272 L452R (ICR-3) appeared in Fall 2020 and is rapidly becoming dominant in states on the West 
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273 Coast, as well as appearing in selected Southwestern and Southeastern states (Fig. 3C-3F). The 

274 S13I and W152C mutations, which are situated in the N-terminal domain (NTD) of the Spike 

275 protein, have been implicated in escape from NTD-targeting monoclonal antibodies (29). The 

276 L452R mutation is situated in the RBD; homology modelling of the RBD-ACE2 complex shows 

277 that while R452 does not directly contact ACE2, the guanidinium side chain of R452 is surface-

278 exposed and thus could potentially impact nAb binding (Fig. 3G). The L452R mutation was 

279 recently shown to reduce binding affinity to some RBD-targeting monoclonal antibodies, as well 

280 as to reduce susceptibility to nAbs (29). Thus, structural modeling of mutations in the S13-

281 W152-L452 VRV-haplotype yields results consistent with the temporal dynamics of this VRV-

282 haplotype.

283 DISCUSSION 

284 The continuous evolution of SARS-CoV-2 has already impacted public health guidelines 

285 and research priorities, with the potential of even more clinically consequential variants still to 

286 emerge. Here we leveraged a public data resource and described a statistical learning strategy for 

287 analyzing large, complex SARS-CoV-2 sequence datasets while incorporating temporal and 

288 spatial information. We provide detailed information on the emergence and persistence (or 

289 disappearance) of specific mutations in US states/territories, helping identify mutations that may 

290 warrant further observation/investigation. Our approach can be applied to other pathogens for 

291 which sufficient genomic surveillance data are available, generating important, statistically 

292 rigorous, and visually interpretable information for the biomedical research community, 

293 clinicians and public health officials. Our approach can also provide insight on the evolution of 

294 mutants and linkage with known viral strains. 
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295 By applying the SLS method to 167,893 US sequences not classified as any VOI/VOC, 

296 we identified 77 novel individual VRVs, including 25 pressing VRVs that appear to have 

297 emerged in the US.  Among these pressing VRVs, the haplotype (T478-D614-P681-T732) links 

298 with the strain B.1.1.222 and (G142-E180-D614-Q677-S940) with the strain B.1.234, both of 

299 which do not correspond to any current VOI/VOC.  Also of note, if the SLS method is applied to 

300 all US sequences, all circulating VOI/VOC are identified (results not shown).

301 As part of the assessment of immune correlates of protection, many randomized, placebo-

302 controlled COVID-19 vaccine efficacy trials measure Spike protein sequences from symptomatic 

303 COVID-19 endpoint cases, and sometimes also from SARS-CoV-2 asymptomatic infections.  

304 Sieve analysis of these viral sequences can be conducted to assess whether and how vaccine 

305 efficacy depends on Spike protein sequence features, including differential vaccine efficacy 

306 across the levels of VRVs and of VRV-haplotypes (30). The graphical tools proposed here for 

307 spatiotemporal tracking of VRVs and VRV-haplotypes can be useful for sieve analysis, first by 

308 helping define and communicate the set of VRVs and VRV-haplotypes of study endpoint cases 

309 that have sufficient variability to be able to assess whether vaccine efficacy depends on the 

310 feature. For example, given that most vaccines use the Wuhan strain as the vaccine-insert, VRVs 

311 that meet our Pmax > 0.10 criterion would readily have the level of variability required for sieve 

312 analysis, whereas VRVs with Pmax < 0.02 would likely not. Secondly, including assignment to 

313 vaccine or placebo as a factor in the unsupervised clustering graphics applied to the vaccine 

314 efficacy trial sequence data sets may help communicate results of sieve analysis.  Third, many of 

315 the vaccine efficacy trials have been offering the vaccine to placebo recipients, such that the 

316 placebo arm is lost and long term follow-up occurs only in individuals originally vaccinated or 

317 newly (deferred) vaccinated (31). The graphical tools may be applied to track study participant 
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318 vaccine breakthrough virus VRVs and VRV haplotypes over time, and to similarly track VRVs 

319 and VRV haplotypes in GISAID data bases of unvaccinated persons matched by geography and 

320 time, and a comparison of these two tracking results may aid sieve analysis during the long term 

321 follow-up period of the vaccine efficacy trials.

322 Evidence is mounting that neutralizing antibodies acquired by natural infection (32, 33) 

323 or through vaccination (34, 35) are a correlate of protection against COVID-19. Therefore, it will 

324 be critical to assess whether and how VRVs and/or VRV-haplotypes in the infecting strains 

325 impact neutralizing antibody titers attained by natural infection (36), as well as whether and how 

326 they impact neutralization sensitivity to vaccine-induced neutralizing antibodies (12) and/or 

327 monoclonal antibodies (37).  One possibility is that the graphical tools used here could annotate 

328 VRVs and VRV-haplotypes according to impact on neutralization.  Moreover, a subset of sieve 

329 analyses is designed to restrict to VRVs and VRV-haplotypes that are known to impact 

330 neutralization response to the given vaccine under study, to improve power and to contribute to 

331 understanding neutralizing antibody-based correlates of protection. Applications of pinpointing 

332 VRVs or VRV-haplotypes that impact vaccine efficacy, and to quantify their impact, include 

333 informing models for predicting vaccine efficacy against circulating virus populations, and to aid 

334 optimization of vaccine strain selection.

335 A limitation of our approach is that it is constrained by intrinsic sampling limitations, 

336 since all sequences were collected and contributed by laboratories without consistent sampling 

337 protocols.  Hence, despite the large size of our dataset, the analyzed sequences were not 

338 nationally representative.  Further, it is important to interpret our results in terms of VRV 

339 proportions among reported sequence data, rather than incidences or prevalence of VRVs, in the 

340 absence of reliably estimated denominators.  To overcome this limitation, public health agencies 
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341 need to consider a uniformly developed surveillance protocol, to sequence COVID-19 cases 

342 from well-defined populations.

343 MATERIALS AND METHODS

344 Spike AA Sequences

345 Spike AA sequences (genome position: 21563-25384) from 189,727 COVID-19 cases in 

346 the US and selected US territories, along with their associated metadata, were retrieved from 

347 GISAID (38) (https://www.gisaid.org/) on March 23, 2021. Geographic origin (one of the 50 US 

348 states, Washington DC, Puerto Rico, or the Virgin Islands) was available for 189,284 of the 

349 sequences. For 443 of the cases, no US state/territory origin information was available.  To 

350 ensure adequate sample size, Spike sequences from North Dakota, South Dakota, and the Virgin 

351 Islands were combined with these 443 sequences, forming an “Other States” category (728 

352 sequences).  Among them, 21,391 sequences were classified as a VOI or VOC (Table S1). These 

353 sequences were excluded, leaving 167,893 sequences for the analysis (see Table S2 for monthly 

354 case numbers by state/territory).

355 Sequence Alignment and Transformation to VRV Indicators

356 Spike protein sequences were aligned to the Wuhan reference sequence (39) using 

357 MAFFT (40), yielding a complete “rectangular residue sequence matrix”. Sequences with at least 

358 one AA mutation (compared to the reference) were identified, enabling transformation of the 

359 residue sequence matrix to a matrix of binary VRV (mutant) indicators.  Monomorphic residues 

360 led to columns of zeros and were eliminated from further analysis.   We use VRV in this work to 

361 refer to a single AA position that harbors a substitution. We reserve the term “variant” in this 

362 work for identified VOIs and VOCs.
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363 Statistical Learning Strategy (SLS)

364 Modeling VRV Temporal Dynamics

365 To model non-linear temporal dynamics, a generalized additive model (GAM) was used 

366 to regress the VRV indicator over sample collection time through a non-parametric regression 

367 model. Further details are given in the Supplementary Materials.  

368 Visual Representation of Temporal Dynamics

369 Within-state/territory: Temporal dynamics of <8 VRVs within a given state/territory were 

370 visualized with a line plot.  For visualizing temporal dynamics of ≥ 8 VRVs within a given 

371 state/territory, unsupervised learning was applied, grouping VRVs with similar temporal 

372 patterns. Results were visualized with a heatmap.  

373 Spatially integrated: To visualize spatiotemporal VRV dynamics, all state-specific 

374 temporal dynamics were integrated and unsupervised learning (one-way hierarchical clustering 

375 with the Euclidean distance with weights in favor of recent temporal trajectories and the 

376 “ward.D2” agglomeration method) (41) was applied.

377 Missing Residue Imputation

378 Imputation of missing amino acid information is described in the Supplementary 

379 Material.  

380 VRV-Haplotypes

381 A viral strain harboring multiple VRVs is referred to as a “VRV-haplotype”.  To identify 

382 VRV-haplotypes, unsupervised learning was used to organize both cases and VRVs through a 

383 two-way hierarchical analysis (41). Further information is given in the Supplementary Material.  
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384 Homology Modeling of Selected Haplotype Mutants

385 After identifying specific Spike protein mutants of interest from VRVs and related VRV-

386 haplotypes, standard homology modeling methods were applied to generate 3D models. Further 

387 information is given in the Supplementary Material. 
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389 Supplementary Material

390 Materials and Methods

391 Fig. S1. For all Spike residues with sufficient variation, scatterplots of the maximum proportion 

392 (Pmax) of sequences from a given state/territory harboring a mutation at a given amino acid 

393 position vs. q-value. Points in red represent residues that meet both criteria for classification as a 

394 VRV. Points in black represent residues that do not.

395 Fig. S2. Temporal patterns of VRVs identified in each state/territory.

396 Fig. S3. Locally averaged proportions over time for substitutions at 3 AA-subs in a VOI (Y144, 

397 F888, V1176) and at 3 AA-subs in a VOC (H69, Y144, K417) that were not detected by the SLS 

398 method in states/territories where at least three sequences had a substitution at the designated AA 

399 position. AA-sub, amino acid that has been shown to harbor a substitution in a US-circulating 

400 VOI or VOC. VOI, variant of interest; VOC, variant of concern.

401 Fig. S4. Presence of VRVs among all cases in each state/territory. A gray cell means the VRV 

402 was not identified in the given case; a black cell means that it was. Both cases and VRVs were 

403 clustered by two-way hierarchical cluster analysis.

404 Table S1. Distribution of the 21,391 VOI/VOC sequences by specific variant and by 

405 state/territory. 

406 Table S2. Distribution of the 167,893 SARS-CoV-2 sequences by state/territory and by GISAID 

407 submission month, along with state/territory-specific distribution of the 21,391 VOI/VOC 

408 sequences that were excluded from the analysis.

409 Table S3. The 10 identified geo-VRV clusters (TP1 through TP10), based on temporal profiles.

410 Table S4. Frequencies of the 90 viral residue variants (VRVs) by state/territory, from an 

411 unsupervised learning from bi-clustering of all States and VRVs.
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412 Table S5. VRV-haplotypes identified within each state/territory, along with state/territory-

413 specific frequencies. The “positivity” column indicates the proportion of mutations in each 

414 haplotype block.

415 Table S6. Identified haplotypes of pressing VRVs in Washington and New York: frequencies, 

416 numbers of VRVs and haplotypic polymorphisms (frequency) in each state.

417
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650 Table 1. For 15 amino acid positions shown to harbor a substitution in a VOI or VOC, 
651 times estimated by the SLS method when the corresponding VRV had a locally averaged 
652 proportion exceeding 10% (and, if applicable, subsequently decreased below 10%) based 
653 on a state/territory-specific model. The top two rows show the first reported date in the 
654 literature of a VOI or VOC harboring a substitution at the designated site vs the date of 
655 VRV detection at the same amino acid position by the SLS method (across all 
656 states/territories). 

 L5 S13 V70 T95 W152 D253 L452 S477 E484 N501 A570 D614 Q677 P681 A701

Reporting Day* 301 301 301 301 301 87 301 331 87 362 362 362 362 362 362
Earliest SLS 
Detection Day 
Across All 
States 11 159 329 149 381 98 381 405 371 206 404 10 20 11 176

Alabama
63-
186 404- 63- 253-

Alaska 56-
305-
323 383-

Arizona 26-
357-
400 353-

Arkansas 56- 329-

California 398- 402- 390- 45- 374-

Colorado 286- 45- 286- 370-

Connecticut 314- 43- 191- 378-

DC 391- 47- 344-

Delaware 52- 384- 288-

Florida 33- 368- 389-

Georgia 41- 345- 407-

Hawaii
175-
190 46- 374-

174-
376

Idaho 53-

Illinois 24- 366- 380-

India 48- 370- 383-

Iowa 48-
273-
388

Kansas
260-
291 47- 385-

Kentucky 59-
389-
397

Louisiana 50- 307- 368-

Maine 404- 371- 51-

Maryland 407- 394- 390- 45- 230-

Massachusetts 206- 10- 346- 298-

Michigan
149-
177

264-
273 50- 361-

Minnesota
186-
294 46- 297- 387-

Mississippi
144-
215 42- 353- 392-

Missouri 47-
364-
384

Montana 68-

Nebraska 46- 387-
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Nevada 392- 396- 393- 37- 391- 394-

New Hampshire 374- 41-
349-
390 364-

New Jersey 402- 44- 276-

New Mexico 50- 291- 387-
233-
252

New York 11-13 386- 414- 11- 11-

North Carolina 44- 382-

North Dakota 57-
328-
363

Ohio 405- 20- 20- 391-

Oklahoma 54- 306-

Oregon 397- 398- 45-

Pennsylvania 44- 394- 317-

Puerto Rico
185-
252 49- 347-

Rhode Island 405-
371-
384 356- 40-

358-
398 379-

South Carolina 46- 405-
368-
389

Tennessee
50-
141 50- 318-

Texas 23- 360- 378-

Utah
159-
173

98-
190 44- 358-

Virginia
329-
331 397- 47- 384- 359-

176-
185

Washington 406- 411- 403- 410- 50- 373-

Wisconsin 409-
265-
271 12-

299-
407 411-

Wyoming 381- 381- 381- 51- 392-

Other States         393- 404- 404- 34-  368-
375-
381

657

658

659 “Reporting Day” was set to the 15th day in each month in which the relevant publication appeared. 

660 “SLS Detection Day” was set to the day at which the locally averaged proportion of the specific VRV exceeded 10% based 
661 on temporality models fitted in each states/territory. If the locally averaged proportion of the VRV later declined below 
662 10%, the second day is shown after a hyphen. 

663 All numbers in the table express the number of days post-January 19, 2021. 
664 VOI, variant of interest; VOC, variant of concern.
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666

667 Table 2.  VRV-haplotypes identified in Washington and in New York: state-specific 
668 frequencies of cases, number of VRVs per VRV-haplotype, and haplotypic polymorphisms 
669 (state-specific frequencies). Unimputable residues are denoted with an “X”. 

670

ID VRV-haplotype Freq L  Haplotypic polymorphisms (frequency)
Washington

W1 S13-W152-L452-V483-
N501-D614-A684 104 4

ICRVNGA-4(20)/IWRVNGA-3(4)/SCRVNGA-3(5)/SLLVNGA-
2(5)/ SRLVNGA-2(4)/SWLVTGA-2(4)/SWLVYDA-
1(1)/SWLVYGA-2(5)/ SWQVNGA-2(2)/SWRVNGA-2(54)

W2 D614-Q677-T732 12 3  GHS-3(11)/XXX-3(1)
W3 D614-T732 128 2 GA-2(126)/GI-2(2)
W4 D614-Q677 208 2  DH-1(9)/GH-2(110)/GP-2(89)
W5 D178-D614 74 2  GG-2(70)/NG-2(4)
W6 D614 7130 1  G-1(7125)/N-1(5)
New York

N1
L5-L54-E132-Y453-
T478-E484-D614-P681-
T732

172 9 LLEYKEGHA-4(168)/LLEYKEGHT-3(4)

N2 L5-L54-E132-Y453-
T478-E484-D614-T732 651 8  

FLEYREGT-3(4)/FLEYTEDT-1(11)/FLEYTEGA-
3(3)/FLEYTEGS-3(1)/ FLEYTEGT-2(266)/FLEYTKGA-
4(1)/FLEYTKGT-3(44)/LLEYKEGT-2(3)/ LLEYTAGT-
2(1)/LLEYTEGA-2(51)/LLEYTEGI-2(2)/LLEYTEGS-2(24)/ 
LLEYTKGS-3(2)/LLEYTKGT-2(171)/LLEYTQGT-
2(8)/LLQYTEGT-2(59)

N3 D80-F157-L452-D614-
P681-T859-D950 132 7 DFLGHID-3(108)/DFLGPID-2(18)/DFLGPNH-3(4)/DSLGPNH-

4(2)

N4 D80-F157-L452-D614-
T859-D950 637 6  

DFQGND-3(4)/DFRGID-3(15)/DFRGNH-4(1)/DFRGTD-2(120)/ 
DFRNTD-2(2)/DSRGNH-5(3)/DSRGTD-3(2)/GFRGND-4(1)/   
GFRGNH-5(1)/ GSLGNH-5(9)/GSRGND-5(10)/GSRGNH-
6(455)/ GSRGNY-6(1)/ GSRGTD-4(13)

N5 S494-D614-P681-T716 514 4 PGHI-4(367)/PGHT-3(55)/PGPT-2(52)/SGHI-3(19)/SGHT-2(8)/ 
SGPI-2(13)

N6 D614-P681 1161 2  GH-2(1124)/GL-2(4)/GR-2(32)/GS-2(1)
N7 D614 10822 1  D-0(1)/G-1(10821)

671  
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672 Table 3.  VRV-haplotypes. Cross-tabulation of individual VRV-haplotypes with GISAID-
673 assigned lineages in all 167,893 sequences, excluding lineages with fewer than 10 occurrences.  
674 “Freq”, corresponding haplotype frequencies; “Unknown”, sequences not assigned to any 
675 lineage.

Hap-Load Freq

U
nk

no
w

n

A
.2

.4

B
.1

B
.1

.1

B
.1

.1
.1

B
.1

.1
.1

71

B
.1

.1
.2

22

B
.1

.1
.2

9

B
.1

.1
.3

04

B
.1

.1
.3

17

B
.1

.1
52

B
.1

.1
65

B
.1

.1
66

B
.1

.2

B
.1

.2
15

B
.1

.2
34

B
.1

.2
56

B
.1

.3
24

B
.1

.3
50

B
.1

.3
54

B
.1

.3
60

B
.1

.3
99

B
.1

.9
4

1) D80-F157-L452-D614-T859-D950
DSRGNH-5 63 58 5
GSLGNH-5 9 9
GSRGND-5 21 19 1
GSRGNH-6 539 522 1 2 3 5

2) D80-S155-F157-L452-T859-D950
DRSRNH-5 39 39
GRSRND-5 3 3
GRSRNH-6 30 30
GSSRNH-5 509 492 1 2 3 5
3) G142-E180-D614-Q677-S940
SEGHF-4 3 1 1 1
SVGHF-5 353 353
SVGHS-4 273 2 1 262 8
4) S155-F157-L452-T859-D950
RSRND-4 3 3
RSRNH-5 69 69
SSRNH-4 533 511 1 7 3 5
5) S13-W152-L452-D614
ICLG-3 43 1 36 3
ICRG-4 795 51 557 1 4 10 14 10 34 2 72
IWRG-3 120 1 77 7 2 28
SCRG-3 30 4 16 4
6) S494-D614-P681-T716
PGHI-4 521 467 1 1 1 20 3
PGHT-3 194 100 8 3 31 2 3 29 1
RGHI-4 3 3
SGHI-3 38 19 3 1 4

7) T478-D614-P681-T732
KGHA-4 2132 11 17 2 14 2029 18 1 12 2
KGHS-4 6
KGHT-3 159 4 57 3 67 8 1
KGPA-3 5 1 3 1
TGHA-3 85 13 63 2 1 2 2
8) F157-L452-D614-T859
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FQGN-3 22 22
FRGI-3 15 14 1
FRGN-3 5 5
SLGN-3 11 10 1
SRGN-4 625 601 1 7 3 6
SRGT-3 37 33
676
677 Green shading: > 100 occurrences. Light green shading: >10 occurrences.
678

679

680
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