1	
2	Title: Tracking SARS-CoV-2 Spike Protein Mutations in the United States
3	(2020/01 – 2021/03) Using a Statistical Learning Strategy
4	
5	Authors: Lue Ping Zhao ^{1*} , Terry P. Lybrand ^{2,3} , Peter B. Gilbert ⁴ , Thomas R. Hawn ^{5,6} , Joshua
6	T. Schiffer ^{4,5} , Leonidas Stamatatos ^{4,6} , Thomas H. Payne ⁵ , Lindsay N. Carpp ⁴ , Daniel E.
7	Geraghty ⁷ and Keith R. Jerome ⁴
8	Affiliations:
9	¹ Public Health Sciences Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA.
10	² Quintepa Computing LLC; Nashville, TN, USA.
11	³ Department of Chemistry; Department of Pharmacology, Vanderbilt University; Nashville, TN,
12	USA.
13	⁴ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle,
14	WA, USA.
15	⁵ Department of Medicine, University of Washington School of Medicine; Seattle, WA, USA.
16	⁶ Department of Global Health, University of Washington; Seattle, WA, USA.
17	⁷ Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle; WA, USA.
18	*Corresponding author. Email: lzhao@fredhutch.org.

Abstract: The emergence and establishment of SARS-CoV-2 variants of interest (VOI) and 20 21 variants of concern (VOC) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially 22 relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from US 23 COVID-19 cases (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID 24 from January 19, 2020 to March 15, 2021. Alignment against the reference Spike protein 25 sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a 26 substitution compared to the reference strain. Next, generalized additive models were applied to 27 model VRV temporal dynamics, to identify VRVs with significant and substantial dynamics 28 29 (false discovery rate q-value <0.01; maximum VRV proportion > 10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal 30 patterns and identify VRV-haplotypes. Finally, homology modelling was performed to gain 31 32 insight into potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which have not previously been observed in a VOI/VOC, and 35 of which have emerged recently 33 and are durably present. Our analysis identifies 17 VRVs ~91 days earlier than their first 34 corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of 35 36 4 VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling 37 supported potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic 38 classifications, and is complementary to existing genomic surveillance methods. 39

41 Main Text:

42 INTRODUCTION

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen 43 44 responsible for the global Covid-19 pandemic, is an RNA virus and thus prone to replication errors (1). Replication errors that yield nonsynonymous amino acid (AA) substitutions, or 45 nucleotide insertions or deletions that cause a frame shift and alter the subsequent coding 46 47 sequence, can lead to a variety of outcomes. If the resulting mutations have detrimental effects on fitness, or if they have neutral effects on fitness and undergo stochastic extinction, variants 48 harboring these mutations fail to become established in the population. However, mutations that 49 confer a fitness advantage can rapidly become dominant in a population. For SARS-CoV-2, 50 51 there are three classes of variant: Variant of Interest (VOI), Variant of Concern (VOC), and Variant of High Consequence (VOHC). The CDC is currently monitoring and characterizing 8 52 VOIs (B.1.526, B.1.526.1, B.1.525, P.2, B.1.617, B.1.617.1, B.1.617.2, B.1.617.3) and 5 VOCs 53 (B.1.1.7, P.1, B.1.351, B.1.427, B.1.429) in the United States (2). VOCs show specific attributes 54 55 such as increased transmissibility (3-7), increased resistance to neutralization by antibodies elicited through natural infection (3, 8-10), and/or increased resistance to neutralization by 56 vaccine-elicited antibodies (10-12), and have already influenced vaccine development, evidenced 57 58 by the current planning of clinical trials to test variant-adapted vaccines (13). While no VOHCs have yet been identified, it remains possible that such variants -i.e. variants that can effectively 59 evade natural or vaccine-induced immunity – may yet emerge (14, 15). The identification of 60 VOHCs could necessitate the introduction of more stringent public health guidelines and/or spur 61 further treatment and vaccine development. 62

Genomic surveillance is critical for tracking the emergence and spread of new variants. 63 Such surveillance can be accomplished via a variety of approaches, such as phylogenic analysis 64 (3, 16). In this approach, new viral sequences are classified to existing lineages identified by 65 PANGO (17), subsets of samples with the same branches are identified, and variant frequencies 66 are counted to identify new variants. The NextStrain methodology (18) can model dynamic 67 68 changes of variant proportions, while an alternative approach aligns sequence data to a matrix of binary indicators for the presence of variants, and systematically evaluates each mutant as a 69 potential variant (19). Leveraging the analytic approach of single nucleotide polymorphisms 70 71 (SNPs), variants have been identified by assessing linkage-disequilibrium (20) or similar SNPbased identification and analysis (21). However, with the exception of the NextStrain 72 methodology (3), these methods do not directly take into account sequence collection time, nor 73 74 explicitly incorporate highly granular geographic information. Moreover, these methods take a holistic view of the viral genome. Thus, there is a need for complementary approaches for 75 detecting and characterizing Spike mutations of potential public health importance that may be 76 missed, or detected later, by existing genomic surveillance methods. 77 To meet this need, we describe a statistical learning strategy (SLS) using generalized additive 78 models, unsupervised learning techniques, and single nucleotide polymorphism (SNP) 79 80 methodologies for identifying and spatiotemporally characterizing viral residue variants (VRVs), a term we use to describe AA positions in the Spike protein where a mutation is significantly 81 82 present in a given geographic area. The SLS method generates pertinent statistics for 83 reproducible scientific inference and facilitates visual representation of results for intuitive interpretation. Using publicly available SARS-CoV-2 sequences from US COVID-19 cases that 84 85 were not assigned to a VOI or VOC lineage, we apply our method to identify and

spatiotemporally characterize, within individual US states/territories, VRVs in the Spike protein.
We also apply standard homology modeling methods to highlight individual AA mutations with

the potential to impact Spike protein structure and/or function.

89 **RESULTS**

90 Ab Initio Discovery of VRVs

91 We first applied the SLS method to identify VRVs separately in each state/territory (Fig. S1).

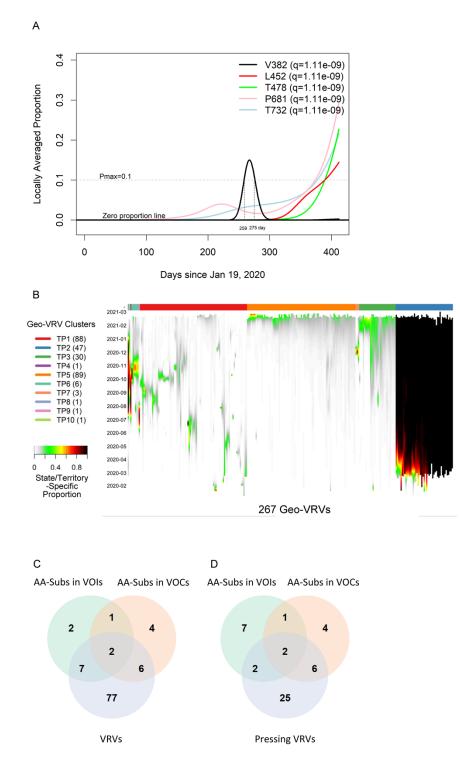
92 The decision to compartmentalize VRV discovery by state/territory was partially based on the

93 fact that domestic travel restrictions have varied over the course of the pandemic, with nearly

half of all states having imposed some type of interstate travel restriction (22), leading to the

95 hypothesis that VRVs may follow state/territory-specific temporal dynamics. The identified

96 VRVs showed a range of dynamic patterns across the different states/territories (Fig. S2),


exemplified by the five different trajectories taken by the V382, L452, T478, P681, and T732

98 VRVs in California (Fig. 1A). The relative abundance of V382 started rising on day 250,

exceeded 10% on day 259, and fell below 10% on day 275. L452 emerged on day 310, exceeded

100 10% on day 390, and exhibited a positive trajectory thereafter. Three other VRVs (T478, P681,

101 T732) had similar trajectories to L452.

103

104 Fig. 1. Viral Residue Variant (VRV) spatiotemporal patterns in the United States. (A)

Locally averaged proportions over time of five VRVs (V382, L452, T478, P681 and

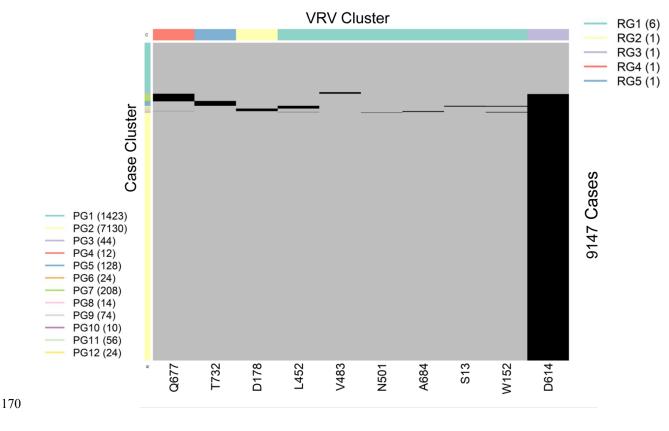
106 T732), modeled using sequences from California. The horizontal gray dotted line denotes

107	the Pmax cutoff of 10%. V382 exceeded the Pmax cutoff of 10% on day 259, and
108	dropped below the Pmax cutoff of 10% on day 275 (marked by the vertical gray lines).
109	(B) Heatmap of the 267 identified geo-VRVs, with color designating the state/territory-
110	specific VRV proportion at the sampling time as designated on the left-hand vertical axis.
111	Geo-VRVs with similar temporal dynamics are grouped into 10 clusters (TP1 through
112	TP10), as designated by the color bar at the top of the heatmap. (C, D) Venn diagrams
113	showing the relationships between AA-subs in VOIs, AA-subs in VOCs, and (C) VRVs
114	or (\mathbf{D}) pressing VRVs. AA-subs, amino acid positions that have been shown to harbor
115	substitutions within US-circulating variants; VOCs, variants of concern; VOIs, variants
116	of interest.
117	
118	We refer to the combination of a VRV and a state/territory in which it was identified as a "geo-
119	VRV". A total of 267 geo-VRVs, consisting of combinations of 90 VRVs identified among the
120	52 state/territory classifications, were identified (Table S3). Fifty-eight VRVs were only
121	observed in one state/territory, whereas 32 were observed in two or more (Table S4).
122	Unsupervised learning was next applied to organize the 267 geo-VRVs into 10 clusters
123	(TP1 through TP10) (Fig. 1B, Table S3). The cluster most strikingly different from the others
124	was "TP2", which was composed of 47 geo-VRVs, each of which contained the D614 VRV at a
125	maximum relative abundance of 100%, showing the early dominance of the D614 VRV in these
126	states/territories. Clusters TP3, and TP5 include geo-VRVs of potential concern, since they
127	include VRVs that appear to have emerged within the last few months in their specific
128	states/territories. In contrast, most VRVs in the remaining clusters tended to expand and contract
129	within relatively short times in a given state/territory, making such VRVs likely less important

- 130 from a public health perspective. We termed these 35 VRVs that were uniquely identified in
- 131 Clusters TP2, TP3, and TP5 "pressing VRVs".

132 Comparison with AA Positions where Substitutions Have Been Identified Within US-

133 Circulating VOIs and VOCs

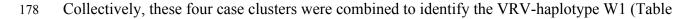

- We next compared the 90 VRVs and the 35 pressing VRVs with the 12 and 13 AA positions that
- have been shown to harbor substitutions (AA-subs) within US-circulating VOIs and VOCs,
- respectively (2). The 90 VRVs included 9 and 8 AA-subs in VOIs and VOCs, respectively; the
- 137 35 pressing VRVs included 4 and 8 AA-subs in VOIs and VOCs, respectively (Fig. 1C), even
- though all VOI/VOC sequences were excluded from the current analysis. Notably, 25 of the
- 139 VRVs that have not been previously identified as an AA-sub in a VOI or VOC appear to have
- 140 emerging trajectories, demonstrating the potential of the SLS method to identify novel Spike AA
- 141 positions that may warrant further investigation/observation.
- 142 Five VOI/VOC AA-subs (Y144, F888, V1176, H69, K417) were not identified as a
- 143 VRV. Fig. S3 shows the state/territory-specific relative abundances over time for
- states/territories where substitutions were identified at these 5 positions (albeit without meeting
- 145 the statistical significance criteria for identification as a VRV). Our data suggest that,
- 146 individually, these AA positions may be of less interest in US.

147 Timely Detection of Emerging VRVs

- 148 Timely detection of potentially fast-emerging VRVs, and conversely, identification of VRVs
- 149 likely not of concern, are both important for informing public health guidelines and for
- influencing research priorities. Given the importance of timely detection, we use the first time
- 151 when a Pmax of a VRV exceeds 10% as the first reportable time. For each out of the set of AA-
- subs within VOIs/VOCs that were also identified as VRVs, Table 1 compares within each

state/territory the time of detecting an emerging VRV as calculated by the SLS method vs. the 153 first appearance of the AA-sub in the scientific literature. The SLS identified emerging VRVs in 154 an average of 207 days, vs 299 days (average of reported values in literature). E484, an AA-sub 155 in the B.1.1.7, P.1, and B.1.351 variants, is an exception as it was not detectable in the US until 156 day 370, when it was first detected as a VRV in Rhode Island. 157 158 **VRV-Haplotypes** SARS-CoV-2 is a single-stranded ("haploid") RNA virus. The presence of multiple VRVs found 159 in a patient form a VRV-haplotype. The accumulation of multiple VRVs on a single RNA strand 160 161 could affect protein function more than a single VRV. To identify VRV-haplotypes, we performed unsupervised learning of selected VRVs and cases through a two-way hierarchical 162 cluster analysis state/territory-by-state/territory. As shown in Fig. S4, some VRV-haplotypes are 163 shared across states/territories, but most are not. Fig. 2, for example, shows the results of the 164 unsupervised case and VRV clustering for Washington state. The heatmap shows that multiple 165 VRVs tend to aggregate among subsets of cases, inspection of which can reveal VRV-haplotypes 166 as follows: The case cluster "PG8", which includes 14 cases, has VRVs from the "RG4" and 167 "RG5" clusters, which include the VRVs (S13-W152-L452-V483-N501-D614-A684) (See Table 168

169 S5).



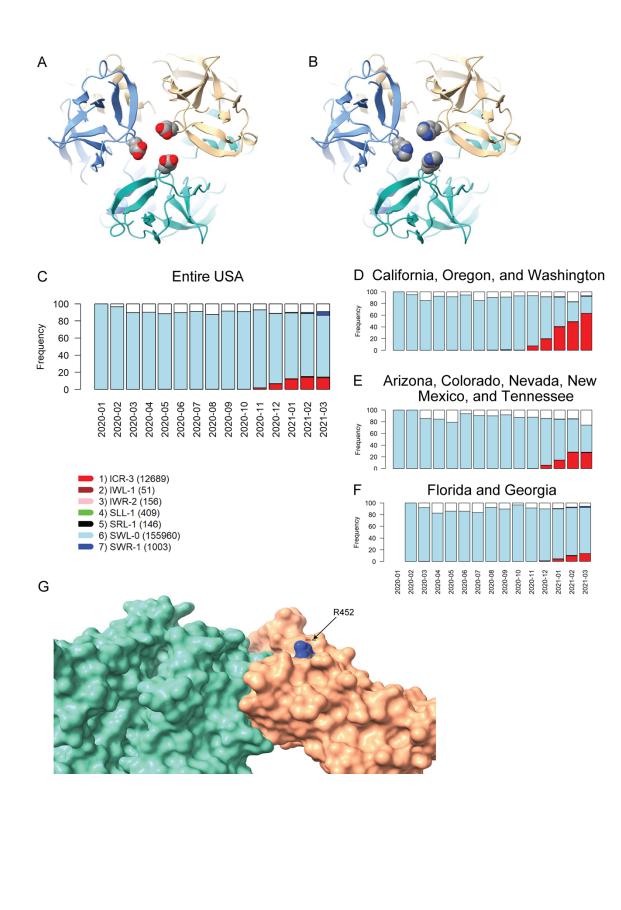
171

172 Fig. 2. Heatmap showing the presence of 10 selected VRVs among 9147 cases in

Washington state. Unsupervised learning was used to organize the 10 VRVs into 5
residue groups (RG1 through RG5) and to organize the 9877 cases into 12 patient groups
(PG1 through PG12).

- 176
- 177

- 179 2), found in 104 cases in Washington. Similarly, the case cluster "PG4" (12 cases) had three
- 180 VRVs (D614, Q677, T732) from the "RG3", "RG4", and "RG5" clusters. In total, six VRV-
- haplotypes (W1 through W6) were identified in Washington, while the "W6" cluster (7130
- 182 cases) carried only a single VRV, D614 (Table 2). Comparison across VRV-haplotypes


183	suggested that W6 evolved to W3, W4, and W5 via the acquisition of an additional mutation at
184	T732, Q677, and D178, respectively. Similarly, both W3 and W4 could have evolved to W2 via
185	the acquisition of an additional mutation at Q677 or T732, respectively.
186	VRV-haplotype blocks are identified from unsupervised learning. Within each block,
187	there can be multiple VRV-haplotypes that consist of polymorphic residues; individual VRVs
188	may take either the reference residue or a substitution. For example, VRV-haplotype W1 had 10
189	haplotypes (Table 2), where the number after the hyphen indicates the number of substitutions.
190	For example, the haplotype "ICRVNGA" has four substitutions, and was observed twenty times
191	in Washington.
192	Table 2 also displays the VRV-haplotypes observed in New York (N1 through N7). The
193	most frequent block, N2, has seven VRVs and 16 unique haplotypes. Block N1 only differs from
194	Block N2 via the acquisition of the P681 VRV, and thus the two blocks are closely connected.
195	Similarly, Block N4, which probably gave rise to Block N3, has 14 unique haplotypes, including
196	"GSRGNH" (six substitutions), which was observed 455 times. Lastly, N5 probably arose from
197	N6 via N7, and has the "PGHI" haplotype (observed 367 times). We next used unsupervised
198	learning to construct haplotypes in Washington and New York of the 35 pressing VRVs (Table
199	S6).
200	Naming VRV Haplotypes via PANGO Lineages

As all sequences corresponding to VOI/VOC were excluded, the strains with detected VRVs are not currently undergoing special monitoring or characterization. We were thus interested in naming identified VRV-haplotypes and the PANGO lineages assigned by GISAID. To this end, we selected VRV-haplotype blocks including 4 or more pressing VRV mutations, resulting in 8 VRV-haplotype blocks. Table 3 cross-tabulates these VRV-haplotypes by their assigned

11

206	lineages. Of particular interest, viruses with the haplotype "KGHA" of T478-D614-P681-T732
207	were observed 2132 times, and 2029 of them were assigned to the strain B.1.1.222. It is natural
208	to name the haplotype T478K-D614G-P681H-T732A as a B.1.1.222. Another noteworthy strain
209	is B.1.234, which corresponds to "SVGHF" and "SVGHS" of G142-E180-D614-Q677-S940
210	with exceptionally high frequencies (353 and 262). The remaining VRV-haplotypes mostly
211	correspond to B.1. Fourteen other strains were found in more than 10 occurrences and may also
212	be of potential interest.
213	Impact of VRV Haplotypes on Viral Structure
214	The SLS method includes homology modeling of Spike mutations, to predict possible
215	consequences on Spike structure/function and to guide laboratory research. Inspection of the
216	temporal dynamics of the VRV-haplotypes may be useful for identifying VRVs of interest. We
217	performed homology modeling on two potentially interesting VRV-haplotypes, W1 (N501-
218	A570-D614-P681-T716-S982-D1118, from the UK variant cluster B.1.1.7) and W2 [S13-W152-
219	L452-D614, from the US variant cluster (B.1.94; B.1.427; B.1.429)].
220	The D614G mutation observed in the W1 haplotype has been associated with increased
221	infectivity/transmissibility (23-25). Cryo-electron microscopy structures have been reported
222	recently $(26, 27)$ that reveal the structural consequences of this mutation and provide a plausible
223	mechanistic explanation for the increased infectivity of D614G-carrying variants. The D614
224	VRV has predominated in all US cases for which sequence information is available in the TP2
225	cluster (Fig. 1B, Table S2). The N501Y mutation (present in the B.1.1.7 variant) is located in the
226	receptor-binding domain (RBD) and has been reported to enhance binding affinity to the
227	angiotensin-converting enzyme-2 (10, 28). N501Y has also been shown to reduce susceptibility

to some nAbs, although the B.1.1.7 variant appears to remain susceptible to some extent to 228 natural infection-acquired and vaccine-induced nAbs (10). 229 Of the five remaining VRVs in the W1 haplotype, A570, T716, and S982 seem relatively 230 benign in that mutations at these positions are already decreasing in certain states/territories (this 231 trend is also true to some extent for N501Y). While this observation may simply reflect 232 233 inadequate sequencing efforts in recent months, it may also indicate that mutations at these positions do not confer any fitness advantage to the virus. 234 The two remaining VRVs in the W1 haplotype, P681 and D1118, are more intriguing. 235 Mutations at these two sites, particularly at P681, appear to persist in multiple states/territories. 236 The P681H mutation occurs in the S1/S2 cleavage segment of the Spike protein, which is 237 typically not resolved in cryo-electron microscopy or x-ray diffraction experiments. Thus, we 238 cannot speculate on potential structural consequences of this mutation. However, the continued 239 presence of this mutation in many states and its location in the Spike protein S1/S2 cleavage 240 241 segment suggest that it may warrant further investigation. We are not aware of any reports that D1118H impacts transmissibility or morbidity, but the location of this mutation in the Spike 242 protein trimer assembly (Fig. 3A, B) suggests it could impact trimer assembly 243 244 structure/stability/dynamics. 245

250	Fig. 3. Homology modeling of Spike mutations and haplotypic polymorphisms over time of
251	the S13-W152-L452 VRV-haplotype. (A, B) Modeled structure of the Spike protein
252	trimer with (A) D1118 or (B) H1118 (homology-modelled using PDB entry 7KRS as the
253	template structure). Spike protein monomers are displayed in blue, salmon, and
254	aquamarine; aspartic acid and histidine residues are rendered as CPK images. $(C - F)$
255	Frequencies over time for seven commonly observed haplotypic polymorphisms of the
256	S13-W152-L452 VRV-haplotype, out of its polymorphisms in the US. Only haplotypic
257	polymorphisms with at least 50 observations are included. Nomenclature is as follows:
258	The first three letters designate the amino acids present at positions 13, 152, and 452,
259	respectively; the number after the hyphen designates the number of amino acids at these
260	three positions that do not match their reference strain equivalents. Numbers of sequences
261	harboring each S13-W152-L452 haplotypic polymorphism (across the entire USA) are
262	shown in parentheses. Frequencies of seven common S13-W152-L452 VRV-haplotypic
263	polymorphisms (C) in the entire US; (D) in California, Oregon, and Washington
264	combined; (E) in Arizona, Colorado, Nevada, New Mexico, and Tennessee combined;
265	and (F) in Florida and Georgia combined. (G) Homology-modeled complex of the
266	receptor-binding domain of the Spike protein (salmon), harboring the L452R mutation,
267	bound to the angiotensin-converting enzyme 2 (ACE2) receptor (aquamarine). Within the
268	R452 residue, nitrogen atoms are shown in blue and carbon atoms are shown in grey.
269	
270	
271	The US variants also carry the D614G mutation. The VRV-haplotype S13I-W152C-

272 L452R (ICR-3) appeared in Fall 2020 and is rapidly becoming dominant in states on the West

Coast, as well as appearing in selected Southwestern and Southeastern states (Fig. 3C-3F). The 273 S13I and W152C mutations, which are situated in the N-terminal domain (NTD) of the Spike 274 protein, have been implicated in escape from NTD-targeting monoclonal antibodies (29). The 275 L452R mutation is situated in the RBD; homology modelling of the RBD-ACE2 complex shows 276 that while R452 does not directly contact ACE2, the guanidinium side chain of R452 is surface-277 278 exposed and thus could potentially impact nAb binding (Fig. 3G). The L452R mutation was recently shown to reduce binding affinity to some RBD-targeting monoclonal antibodies, as well 279 as to reduce susceptibility to nAbs (29). Thus, structural modeling of mutations in the S13-280 281 W152-L452 VRV-haplotype yields results consistent with the temporal dynamics of this VRVhaplotype. 282

283 **DISCUSSION**

The continuous evolution of SARS-CoV-2 has already impacted public health guidelines 284 and research priorities, with the potential of even more clinically consequential variants still to 285 286 emerge. Here we leveraged a public data resource and described a statistical learning strategy for analyzing large, complex SARS-CoV-2 sequence datasets while incorporating temporal and 287 288 spatial information. We provide detailed information on the emergence and persistence (or 289 disappearance) of specific mutations in US states/territories, helping identify mutations that may warrant further observation/investigation. Our approach can be applied to other pathogens for 290 which sufficient genomic surveillance data are available, generating important, statistically 291 292 rigorous, and visually interpretable information for the biomedical research community, clinicians and public health officials. Our approach can also provide insight on the evolution of 293 mutants and linkage with known viral strains. 294

295	By applying the SLS method to 167,893 US sequences not classified as any VOI/VOC,
296	we identified 77 novel individual VRVs, including 25 pressing VRVs that appear to have
297	emerged in the US. Among these pressing VRVs, the haplotype (T478-D614-P681-T732) links
298	with the strain B.1.1.222 and (G142-E180-D614-Q677-S940) with the strain B.1.234, both of
299	which do not correspond to any current VOI/VOC. Also of note, if the SLS method is applied to
300	all US sequences, all circulating VOI/VOC are identified (results not shown).

As part of the assessment of immune correlates of protection, many randomized, placebo-301 controlled COVID-19 vaccine efficacy trials measure Spike protein sequences from symptomatic 302 COVID-19 endpoint cases, and sometimes also from SARS-CoV-2 asymptomatic infections. 303 304 Sieve analysis of these viral sequences can be conducted to assess whether and how vaccine efficacy depends on Spike protein sequence features, including differential vaccine efficacy 305 across the levels of VRVs and of VRV-haplotypes (30). The graphical tools proposed here for 306 spatiotemporal tracking of VRVs and VRV-haplotypes can be useful for sieve analysis, first by 307 308 helping define and communicate the set of VRVs and VRV-haplotypes of study endpoint cases that have sufficient variability to be able to assess whether vaccine efficacy depends on the 309 feature. For example, given that most vaccines use the Wuhan strain as the vaccine-insert, VRVs 310 311 that meet our Pmax > 0.10 criterion would readily have the level of variability required for sieve 312 analysis, whereas VRVs with Pmax < 0.02 would likely not. Secondly, including assignment to 313 vaccine or placebo as a factor in the unsupervised clustering graphics applied to the vaccine efficacy trial sequence data sets may help communicate results of sieve analysis. Third, many of 314 315 the vaccine efficacy trials have been offering the vaccine to placebo recipients, such that the 316 placebo arm is lost and long term follow-up occurs only in individuals originally vaccinated or newly (deferred) vaccinated (31). The graphical tools may be applied to track study participant 317

vaccine breakthrough virus VRVs and VRV haplotypes over time, and to similarly track VRVs
 and VRV haplotypes in GISAID data bases of unvaccinated persons matched by geography and
 time, and a comparison of these two tracking results may aid sieve analysis during the long term
 follow-up period of the vaccine efficacy trials.

Evidence is mounting that neutralizing antibodies acquired by natural infection (32, 33)322 or through vaccination (34, 35) are a correlate of protection against COVID-19. Therefore, it will 323 324 be critical to assess whether and how VRVs and/or VRV-haplotypes in the infecting strains impact neutralizing antibody titers attained by natural infection (36), as well as whether and how 325 they impact neutralization sensitivity to vaccine-induced neutralizing antibodies (12) and/or 326 327 monoclonal antibodies (37). One possibility is that the graphical tools used here could annotate VRVs and VRV-haplotypes according to impact on neutralization. Moreover, a subset of sieve 328 329 analyses is designed to restrict to VRVs and VRV-haplotypes that are known to impact 330 neutralization response to the given vaccine under study, to improve power and to contribute to understanding neutralizing antibody-based correlates of protection. Applications of pinpointing 331 VRVs or VRV-haplotypes that impact vaccine efficacy, and to quantify their impact, include 332 informing models for predicting vaccine efficacy against circulating virus populations, and to aid 333 optimization of vaccine strain selection. 334

A limitation of our approach is that it is constrained by intrinsic sampling limitations, since all sequences were collected and contributed by laboratories without consistent sampling protocols. Hence, despite the large size of our dataset, the analyzed sequences were not nationally representative. Further, it is important to interpret our results in terms of VRV proportions among reported sequence data, rather than incidences or prevalence of VRVs, in the absence of reliably estimated denominators. To overcome this limitation, public health agencies

18

need to consider a uniformly developed surveillance protocol, to sequence COVID-19 cases
 from well-defined populations.

343 MATERIALS AND METHODS

344 Spike AA Sequences

Spike AA sequences (genome position: 21563-25384) from 189,727 COVID-19 cases in 345 the US and selected US territories, along with their associated metadata, were retrieved from 346 347 GISAID (38) (https://www.gisaid.org/) on March 23, 2021. Geographic origin (one of the 50 US 348 states, Washington DC, Puerto Rico, or the Virgin Islands) was available for 189,284 of the sequences. For 443 of the cases, no US state/territory origin information was available. To 349 ensure adequate sample size, Spike sequences from North Dakota, South Dakota, and the Virgin 350 351 Islands were combined with these 443 sequences, forming an "Other States" category (728 sequences). Among them, 21,391 sequences were classified as a VOI or VOC (Table S1). These 352 sequences were excluded, leaving 167,893 sequences for the analysis (see Table S2 for monthly 353 case numbers by state/territory). 354

355 Sequence Alignment and Transformation to VRV Indicators

Spike protein sequences were aligned to the Wuhan reference sequence (*39*) using MAFFT (*40*), yielding a complete "rectangular residue sequence matrix". Sequences with at least one AA mutation (compared to the reference) were identified, enabling transformation of the residue sequence matrix to a matrix of binary VRV (mutant) indicators. Monomorphic residues led to columns of zeros and were eliminated from further analysis. We use VRV in this work to refer to a single AA position that harbors a substitution. We reserve the term "variant" in this work for identified VOIs and VOCs.

363 Statistical Learning Strategy (SLS)

364 Modeling VRV Temporal Dynamics

To model non-linear temporal dynamics, a generalized additive model (GAM) was used to regress the VRV indicator over sample collection time through a non-parametric regression model. Further details are given in the Supplementary Materials.

368 Visual Representation of Temporal Dynamics

369 Within-state/territory: Temporal dynamics of <8 VRVs within a given state/territory were

visualized with a line plot. For visualizing temporal dynamics of ≥ 8 VRVs within a given

371 state/territory, unsupervised learning was applied, grouping VRVs with similar temporal

patterns. Results were visualized with a heatmap.

373 Spatially integrated: To visualize spatiotemporal VRV dynamics, all state-specific

temporal dynamics were integrated and unsupervised learning (one-way hierarchical clustering

375 with the Euclidean distance with weights in favor of recent temporal trajectories and the

376 "ward.D2" agglomeration method) (41) was applied.

377 Missing Residue Imputation

378 Imputation of missing amino acid information is described in the Supplementary379 Material.

380 VRV-Haplotypes

A viral strain harboring multiple VRVs is referred to as a "VRV-haplotype". To identify VRV-haplotypes, unsupervised learning was used to organize both cases and VRVs through a two-way hierarchical analysis (*41*). Further information is given in the Supplementary Material.

384 Homology Modeling of Selected Haplotype Mutants

- 385 After identifying specific Spike protein mutants of interest from VRVs and related VRV-
- haplotypes, standard homology modeling methods were applied to generate 3D models. Further
- information is given in the Supplementary Material.

389 Supplementary Material

- 390 Materials and Methods
- 391 Fig. S1. For all Spike residues with sufficient variation, scatterplots of the maximum proportion
- 392 (Pmax) of sequences from a given state/territory harboring a mutation at a given amino acid
- 393 position vs. q-value. Points in red represent residues that meet both criteria for classification as a
- 394 VRV. Points in black represent residues that do not.
- Fig. S2. Temporal patterns of VRVs identified in each state/territory.
- Fig. S3. Locally averaged proportions over time for substitutions at 3 AA-subs in a VOI (Y144,
- F888, V1176) and at 3 AA-subs in a VOC (H69, Y144, K417) that were not detected by the SLS
- 398 method in states/territories where at least three sequences had a substitution at the designated AA
- 399 position. AA-sub, amino acid that has been shown to harbor a substitution in a US-circulating
- 400 VOI or VOC. VOI, variant of interest; VOC, variant of concern.
- 401 Fig. S4. Presence of VRVs among all cases in each state/territory. A gray cell means the VRV
- 402 was not identified in the given case; a black cell means that it was. Both cases and VRVs were
- 403 clustered by two-way hierarchical cluster analysis.
- Table S1. Distribution of the 21,391 VOI/VOC sequences by specific variant and by
 state/territory.
- Table S2. Distribution of the 167,893 SARS-CoV-2 sequences by state/territory and by GISAID
- 407 submission month, along with state/territory-specific distribution of the 21,391 VOI/VOC
- 408 sequences that were excluded from the analysis.
- Table S3. The 10 identified geo-VRV clusters (TP1 through TP10), based on temporal profiles.
- 410 Table S4. Frequencies of the 90 viral residue variants (VRVs) by state/territory, from an
- 411 unsupervised learning from bi-clustering of all States and VRVs.

412	Table	e S5. VRV-haplotypes identified within each state/territory, along with state/territory-	
413	specific frequencies. The "positivity" column indicates the proportion of mutations in each		
414	haplotype block.		
415	Table	e S6. Identified haplotypes of pressing VRVs in Washington and New York: frequencies,	
416	numbers of VRVs and haplotypic polymorphisms (frequency) in each state.		
417			
418	Refe	rences and Notes	
419	1.	S. Duffy, Why are RNA virus mutation rates so damn high? PLoS Biol 16, e3000003	
420		(2018).	
421	2.	US Centers for Disease Control and Prevention, SARS-CoV-2 Variant Classifications	
422		and Definitions. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-	
423		surveillance/variant-info.html Last updated 27 Apr, 2021. Access date 27 Apr, 2021.	
424	3.	X. Deng, M. A. Garcia-Knight, M. M. Khalid, V. Servellita, C. Wang, M. K. Morris, A.	
425		Sotomayor-Gonzalez, D. R. Glasner, K. R. Reyes, A. S. Gliwa, N. P. Reddy, C. Sanchez	
426		San Martin, S. Federman, J. Cheng, J. Balcerek, J. Taylor, J. A. Streithorst, S. Miller, G.	
427		R. Kumar, B. Sreekumar, P. Y. Chen, U. Schulze-Gahmen, T. Y. Taha, J. Hayashi, C. R.	
428		Simoneau, S. McMahon, P. V. Lidsky, Y. Xiao, P. Hemarajata, N. M. Green, A.	
429		Espinosa, C. Kath, M. Haw, J. Bell, J. K. Hacker, C. Hanson, D. A. Wadford, C. Anaya,	
430		D. Ferguson, L. F. Lareau, P. A. Frankino, H. Shivram, S. K. Wyman, M. Ott, R. Andino,	
431		C. Y. Chiu, Transmission, infectivity, and antibody neutralization of an emerging SARS-	
432		CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv, (2021).	
433	4.	H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D.	
434		Doolabh, S. Pillay, E. J. San, N. Msomi, K. Mlisana, A. von Gottberg, S. Walaza, M.	

435		Allam, A. Ismail, T. Mohale, A. J. Glass, S. Engelbrecht, G. Van Zyl, W. Preiser, F.
436		Petruccione, A. Sigal, D. Hardie, G. Marais, M. Hsiao, S. Korsman, MA. Davies, L.
437		Tyers, I. Mudau, D. York, C. Maslo, D. Goedhals, S. Abrahams, O. Laguda-Akingba, A.
438		Alisoltani-Dehkordi, A. Godzik, C. K. Wibmer, B. T. Sewell, J. Lourenço, L. C. J.
439		Alcantara, S. L. K. Pond, S. Weaver, D. Martin, R. J. Lessells, J. N. Bhiman, C.
440		Williamson, T. de Oliveira, Emergence and rapid spread of a new severe acute
441		respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike
442		mutations in South Africa. https://doi.org/10.1101/2020.12.21.20248640 medRxiv,
443		2020.2012.2021.20248640 (2020).
444	5.	C. M. Voloch, R. da Silva Francisco, Jr., L. G. P. de Almeida, C. C. Cardoso, O. J.
445		Brustolini, A. L. Gerber, A. P. C. Guimaraes, D. Mariani, R. M. da Costa, O. C. Ferreira,
446		Jr., L. W. A. C. C. Covid19-Ufrj Workgroup, T. S. Frauches, C. M. B. de Mello, I. C.
447		Leitao, R. M. Galliez, D. S. Faffe, T. Castineiras, A. Tanuri, A. T. R. de Vasconcelos,
448		Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. J
449		Virol, (2021).
450	6.	E. Volz, S. Mishra, M. Chand, J. C. Barrett, R. Johnson, L. Geidelberg, W. R. Hinsley, D.
451		J. Laydon, G. Dabrera, Á. O'Toole, R. Amato, M. Ragonnet-Cronin, I. Harrison, B.
452		Jackson, C. V. Ariani, O. Boyd, N. J. Loman, J. T. McCrone, S. Gonçalves, D. Jorgensen,
453		R. Myers, V. Hill, D. K. Jackson, K. Gaythorpe, N. Groves, J. Sillitoe, D. P.
454		Kwiatkowski, S. Flaxman, O. Ratmann, S. Bhatt, S. Hopkins, A. Gandy, A. Rambaut, N.
455		M. Ferguson, Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from
456		linking epidemiological and genetic data. 2020.12.30.20249034; doi:

457		https://doi.org/10.1101/2020.12.30.20249034 medRxiv, 2020.2012.2030.20249034
458		(2021).
459	7.	E. Volz, S. Mishra, M. Chand, J. C. Barrett, R. Johnson, L. Geidelberg, W. R. Hinsley, D.
460		J. Laydon, G. Dabrera, A. O'Toole, R. Amato, M. Ragonnet-Cronin, I. Harrison, B.
461		Jackson, C. V. Ariani, O. Boyd, N. J. Loman, J. T. McCrone, S. Goncalves, D. Jorgensen,
462		R. Myers, V. Hill, D. K. Jackson, K. Gaythorpe, N. Groves, J. Sillitoe, D. P.
463		Kwiatkowski, CG. U. consortium, S. Flaxman, O. Ratmann, S. Bhatt, S. Hopkins, A.
464		Gandy, A. Rambaut, N. M. Ferguson, Assessing transmissibility of SARS-CoV-2 lineage
465		B.1.1.7 in England. Nature, (2021).
466	8.	P. Wang, M. S. Nair, L. Liu, S. Iketani, Y. Luo, Y. Guo, M. Wang, J. Yu, B. Zhang, P. D.
467		Kwong, B. S. Graham, J. R. Mascola, J. Y. Chang, M. T. Yin, M. Sobieszczyk, C. A.
468		Kyratsous, L. Shapiro, Z. Sheng, Y. Huang, D. D. Ho, Antibody Resistance of SARS-
469		CoV-2 Variants B.1.351 and B.1.1.7. https://doi.org/10.1101/2021.01.25.428137 Access
470		date 7 Mar, 2021. bioRxiv, 2021.2001.2025.428137 (2021).
471	9.	D. A. Collier, A. De Marco, I. A. T. M. Ferreira, B. Meng, R. Datir, A. C. Walls, S. A.
472		Kemp S, J. Bassi, D. Pinto, C. S. Fregni, S. Bianchi, M. A. Tortorici, J. Bowen, K. Culap,
473		S. Jaconi, E. Cameroni, G. Snell, M. S. Pizzuto, A. F. Pellanda, C. Garzoni, A. Riva, A.
474		Elmer, N. Kingston, B. Graves, L. E. McCoy, K. G. Smith, J. R. Bradley, J. James
475		Thaventhiran, L. Lourdes Ceron-Gutierrez, G. Barcenas-Morales, H. W. Virgin, A.
476		Lanzavecchia, L. Piccoli, R. Doffinger, M. Wills, D. Veesler, D. Corti, R. K. Gupta,
477		SARS-CoV-2 B.1.1.7 escape from mRNA vaccine-elicited neutralizing antibodies.
478		2021.01.19.21249840; doi: https://doi.org/10.1101/2021.01.19.21249840 medRxiv,
479		2021.2001.2019.21249840 (2021).

480	10.	P. Supasa, D. Zhou, W. Dejnirattisai, C. Liu, A. J. Mentzer, H. M. Ginn, Y. Zhao, H. M.
481		E. Duyvesteyn, R. Nutalai, A. Tuekprakhon, B. Wang, G. C. Paesen, J. Slon-Campos, C.
482		Lopez-Camacho, B. Hallis, N. Coombes, K. R. Bewley, S. Charlton, T. S. Walter, E.
483		Barnes, S. J. Dunachie, D. Skelly, S. F. Lumley, N. Baker, I. Shaik, H. E. Humphries, K.
484		Godwin, N. Gent, A. Sienkiewicz, C. Dold, R. Levin, T. Dong, A. J. Pollard, J. C.
485		Knight, P. Klenerman, D. Crook, T. Lambe, E. Clutterbuck, S. Bibi, A. Flaxman, M.
486		Bittaye, S. Belij-Rammerstorfer, S. Gilbert, D. R. Hall, M. A. Williams, N. G. Paterson,
487		W. James, M. W. Carroll, E. E. Fry, J. Mongkolsapaya, J. Ren, D. I. Stuart, G. R.
488		Screaton, Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and
489		vaccine sera. Cell 184, 2201-2211 e2207 (2021).
490	11.	S. A. Madhi, V. Baillie, C. L. Cutland, M. Voysey, A. L. Koen, L. Fairlie, S. D.
491		Padayachee, K. Dheda, S. L. Barnabas, Q. E. Bhorat, C. Briner, G. Kwatra, K. Ahmed, P.
492		Aley, S. Bhikha, J. N. Bhiman, A. E. Bhorat, J. du Plessis, A. Esmail, M. Groenewald, E.
493		Horne, S. H. Hwa, A. Jose, T. Lambe, M. Laubscher, M. Malahleha, M. Masenya, M.
494		Masilela, S. McKenzie, K. Molapo, A. Moultrie, S. Oelofse, F. Patel, S. Pillay, S. Rhead,
495		H. Rodel, L. Rossouw, C. Taoushanis, H. Tegally, A. Thombrayil, S. van Eck, C. K.
496		Wibmer, N. M. Durham, E. J. Kelly, T. L. Villafana, S. Gilbert, A. J. Pollard, T. de
497		Oliveira, P. L. Moore, A. Sigal, A. Izu, NS. G. WV. C. Group, Efficacy of the
498		ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med,
499		(2021).
500	12.	W. F. Garcia-Beltran, E. C. Lam, K. St Denis, A. D. Nitido, Z. H. Garcia, B. M. Hauser,
501		J. Feldman, M. N. Pavlovic, D. J. Gregory, M. C. Poznansky, A. Sigal, A. G. Schmidt, A.

502		J. Iafrate, V. Naranbhai, A. B. Balazs, Multiple SARS-CoV-2 variants escape
503		neutralization by vaccine-induced humoral immunity. Cell, (2021).
504	13.	R. Rubin, COVID-19 Vaccines vs Variants-Determining How Much Immunity Is
505		Enough. Jama-J Am Med Assoc, (2021).
506	14.	D. A. Kennedy, A. F. Read, Monitor for COVID-19 vaccine resistance evolution during
507		clinical trials. PLoS Biol 18, e3001000 (2020).
508	15.	D. M. Altmann, R. J. Boyton, R. Beale, Immunity to SARS-CoV-2 variants of concern.
509		<i>Science</i> 371 , 1103-1104 (2021).
510	16.	D. P. Maison, L. L. Ching, C. M. Shikuma, V. R. Nerurkar, Genetic Characteristics and
511		Phylogeny of 969-bp S Gene Sequence of SARS-CoV-2 from Hawaii Reveals the
512		Worldwide Emerging P681H Mutation. bioRxiv, (2021).
513	17.	A. Rambaut, E. C. Holmes, A. O'Toole, V. Hill, J. T. McCrone, C. Ruis, L. du Plessis, O.
514		G. Pybus, A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic
515		epidemiology. Nat Microbiol 5, 1403-1407 (2020).
516	18.	J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter, C. Callender, P. Sagulenko,
517		T. Bedford, R. A. Neher, Nextstrain: real-time tracking of pathogen evolution.
518		Bioinformatics 34, 4121-4123 (2018).

- 519 19. T. Koyama, D. Platt, L. Parida, Variant analysis of SARS-CoV-2 genomes. *Bull World*520 *Health Organ* 98, 495-504 (2020).
- 521 20. E. C. Rouchka, J. H. Chariker, D. Chung, Variant analysis of 1,040 SARS-CoV-2
 522 genomes. *PLoS One* 15, e0241535 (2020).
- 523 21. K. M. Bindayna, S. Crinion, Variant analysis of SARS-CoV-2 genomes in the Middle
 524 East. *Microb Pathog* 153, 104741 (2021).

525	22.	D. M. Studdert, M. A. Hall, M. M. Mello, Partitioning the Curve - Interstate Travel
526		Restrictions During the Covid-19 Pandemic. N Engl J Med 383, e83 (2020).
527	23.	P. Arora, S. Pohlmann, M. Hoffmann, Mutation D614G increases SARS-CoV-2
528		transmission. Signal Transduct Target Ther 6, 101 (2021).
529	24.	B. Korber, W. M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, N.
530		Hengartner, E. E. Giorgi, T. Bhattacharya, B. Foley, K. M. Hastie, M. D. Parker, D. G.
531		Partridge, C. M. Evans, T. M. Freeman, T. I. de Silva, C. McDanal, L. G. Perez, H. L.
532		Tang, A. Moon-Walker, S. P. Whelan, C. C. LaBranche, E. O. Saphire, D. C. Montefiori,
533		S. CG. Grp, Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases
534		Infectivity of the COVID-19 Virus. Cell 182, 812-+ (2020).
535	25.	L. Z. Zhang, C. B. Jackson, H. H. Mou, A. Ojha, H. Y. Peng, B. D. Quinlan, E. S.
536		Rangarajan, A. D. Pan, A. Vanderheiden, M. S. Suthar, W. H. Li, T. Izard, C. Rader, M.
537		Farzan, H. Choe, SARS-CoV-2 spike-protein D614G mutation increases virion spike
538		density and infectivity. Nature Communications 11, (2020).
539	26.	Z. Ke, J. Oton, K. Qu, M. Cortese, V. Zila, L. McKeane, T. Nakane, J. Zivanov, C. J.
540		Neufeldt, B. Cerikan, J. M. Lu, J. Peukes, X. Xiong, H. G. Krausslich, S. H. W. Scheres,
541		R. Bartenschlager, J. A. G. Briggs, Structures and distributions of SARS-CoV-2 spike
542		proteins on intact virions. Nature 588, 498-502 (2020).
543	27.	J. Zhang, Y. Cai, T. Xiao, J. Lu, H. Peng, S. M. Sterling, R. M. Walsh, Jr., S. Rits-
544		Volloch, H. Zhu, A. N. Woosley, W. Yang, P. Sliz, B. Chen, Structural impact on SARS-
545		CoV-2 spike protein by D614G substitution. Science, (2021).

547 Liang, L. Reynoso, G. P. Downey, S. K. Frankel, J. Kappler, P. Marrack, G. Zhan	g, The
basis of a more contagious 501Y.V1 variant of SARS-CoV-2. <i>Cell Res</i> , (2021).	
549 29. M. McCallum, J. Bassi, A. Marco, A. Chen, A. C. Walls, J. D. Iulio, M. A. Tortor	ici, M.
J. Navarro, C. Silacci-Fregni, C. Saliba, M. Agostini, D. Pinto, K. Culap, S. Bianc	hi, S.
Jaconi, E. Cameroni, J. E. Bowen, S. W. Tilles, M. S. Pizzuto, S. B. Guastalla, G.	Bona,
A. F. Pellanda, C. Garzoni, W. C. Van Voorhis, L. E. Rosen, G. Snell, A. Telenti,	H. W.
553 Virgin, L. Piccoli, D. Corti, D. Veesler, SARS-CoV-2 immune evasion by variant	
554 B.1.427/B.1.429. <i>bioRxiv</i> , (2021).	
555 30. M. Rolland, P. B. Gilbert, Sieve analysis to understand how SARS-CoV-2 diversit	ty can
impact vaccine protection. <i>PLoS Pathogens (in press)</i> , (2021).	
557 31. D. Follmann, J. Fintzi, M. P. Fay, H. E. Janes, L. R. Baden, H. M. El Sahly, T. R.	
558 Fleming, D. V. Mehrotra, L. N. Carpp, M. Juraska, D. Benkeser, D. Donnell, Y. F	ong, S.
559 Han, I. Hirsch, Y. Huang, Y. Huang, O. Hyrien, A. Luedtke, M. Carone, M. Nasor	n, A.
560 Vandebosch, H. Zhou, I. Cho, E. Gabriel, J. G. Kublin, M. S. Cohen, L. Corey, P.	B.
561 Gilbert, K. M. Neuzil, A Deferred-Vaccination Design to Assess Durability of CO	WID-
56219 Vaccine Effect After the Placebo Group Is Vaccinated. Ann Intern Med, (2021)).
563 32. A. Addetia, K. H. D. Crawford, A. Dingens, H. Zhu, P. Roychoudhury, M. L. Hua	ing, K.
564R. Jerome, J. D. Bloom, A. L. Greninger, Neutralizing Antibodies Correlate with	
565Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a	a High
566 Attack Rate. <i>J Clin Microbiol</i> 58 , (2020).	
33. A. G. Letizia, Y. Ge, S. Vangeti, C. Goforth, D. L. Weir, N. A. Kuzmina, C. A. Ba	alinsky,
568 H. W. Chen, D. Ewing, A. Soares-Schanoski, M. C. George, W. D. Graham, F. Jo	nes, P.

569		Bharaj, R. A. Lizewski, S. E. Lizewski, J. Marayag, N. Marjanovic, C. M. Miller, S.
570		Mofsowitz, V. D. Nair, E. Nunez, D. M. Parent, C. K. Porter, E. Santa Ana, M. Schilling,
571		D. Stadlbauer, V. A. Sugiharto, M. Termini, P. Sun, R. P. Tracy, F. Krammer, A.
572		Bukreyev, I. Ramos, S. C. Sealfon, SARS-CoV-2 seropositivity and subsequent infection
573		risk in healthy young adults: a prospective cohort study. Lancet Respir Med, (2021).
574	34.	K. A. Earle, D. M. Ambrosino, A. Fiore-Gartland, D. Goldblatt, P. B. Gilbert, G. R.
575		Siber, P. Dull, S. A. Plotkin, Evidence for antibody as a protective correlate for COVID-
576		19 vaccines. https://doi.org/10.1101/2021.03.17.20200246 Posted 20 Mar, 2021. Access
577		date 28 Apr, 2021. medRxiv, 2021.2003.2017.20200246 (2021).
578	35.	K. McMahan, J. Yu, N. B. Mercado, C. Loos, L. H. Tostanoski, A. Chandrashekar, J.
579		Liu, L. Peter, C. Atyeo, A. Zhu, E. A. Bondzie, G. Dagotto, M. S. Gebre, C. Jacob-Dolan,
580		Z. Li, F. Nampanya, S. Patel, L. Pessaint, A. Van Ry, K. Blade, J. Yalley-Ogunro, M.
581		Cabus, R. Brown, A. Cook, E. Teow, H. Andersen, M. G. Lewis, D. A. Lauffenburger, G.
582		Alter, D. H. Barouch, Correlates of protection against SARS-CoV-2 in rhesus macaques.
583		<i>Nature</i> 590 , 630-634 (2021).
584	36.	D. Zhou, W. Dejnirattisai, P. Supasa, C. Liu, A. J. Mentzer, H. M. Ginn, Y. Zhao, H. M.
585		E. Duyvesteyn, A. Tuekprakhon, R. Nutalai, B. Wang, G. C. Paesen, C. Lopez-Camacho,
586		J. Slon-Campos, B. Hallis, N. Coombes, K. Bewley, S. Charlton, T. S. Walter, D. Skelly,
587		S. F. Lumley, C. Dold, R. Levin, T. Dong, A. J. Pollard, J. C. Knight, D. Crook, T.
588		Lambe, E. Clutterbuck, S. Bibi, A. Flaxman, M. Bittaye, S. Belij-Rammerstorfer, S.
589		Gilbert, W. James, M. W. Carroll, P. Klenerman, E. Barnes, S. J. Dunachie, E. E. Fry, J.
590		Mongkolsapaya, J. Ren, D. I. Stuart, G. R. Screaton, Evidence of escape of SARS-CoV-2

591		variant B.1.351 from natural and vaccine-induced sera. Cell 184, 2348-2361 e2346
592		(2021).
593	37.	R. E. Chen, X. Zhang, J. B. Case, E. S. Winkler, Y. Liu, L. A. VanBlargan, J. Liu, J. M.
594		Errico, X. Xie, N. Suryadevara, P. Gilchuk, S. J. Zost, S. Tahan, L. Droit, J. S. Turner,
595		W. Kim, A. J. Schmitz, M. Thapa, D. Wang, A. C. M. Boon, R. M. Presti, J. A.
596		O'Halloran, A. H. J. Kim, P. Deepak, D. Pinto, D. H. Fremont, J. E. Crowe, Jr., D. Corti,
597		H. W. Virgin, A. H. Ellebedy, P. Y. Shi, M. S. Diamond, Resistance of SARS-CoV-2
598		variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat
599		<i>Med</i> 27 , 717-726 (2021).
600	38.	Y. L. Shu, J. McCauley, GISAID: Global initiative on sharing all influenza data - from
601		vision to reality. <i>Eurosurveillance</i> 22, 2-4 (2017).
602	39.	C. Wang, Z. Liu, Z. Chen, X. Huang, M. Xu, T. He, Z. Zhang, The establishment of
603		reference sequence for SARS-CoV-2 and variation analysis. J Med Virol 92, 667-674
604		(2020).
605	40.	T. Nakamura, K. D. Yamada, K. Tomii, K. Katoh, Parallelization of MAFFT for large-
606		scale multiple sequence alignments. Bioinformatics 34, 2490-2492 (2018).
607	41.	F. Murtagh, P. Legendre, Ward's Hierarchical Agglomerative Clustering Method: Which
608		Algorithms Implement Ward's Criterion? J Classif 31, 274-295 (2014).
609	42.	T. J. Hastie, Generalized additive models. New York: Chapman and Hall, 1990.
610		(Chapman and Hall, New York, 1990).
611	43.	J. D. Storey, J. E. Taylor, D. Siegmund, Strong control, conservative point estimation and
612		simultaneous conservative consistency of false discovery rates: a unified approach. JR
613		Stat Soc B 66, 187-205 (2004).

614	44.	S. N. Wood, N. Pya, B. Safken, Smoothing Parameter and Model Selection for General
615		Smooth Models. J Am Stat Assoc 111, 1548-1563 (2016).
616	45.	P. Scheet, M. Stephens, A fast and flexible statistical model for large-scale population
617		genotype data: applications to inferring missing genotypes and haplotypic phase. Am J
618		Hum Genet 78, 629-644 (2006).
619	46.	T. D. Goddard, C. C. Huang, E. C. Meng, E. F. Pettersen, G. S. Couch, J. H. Morris, T. E.
620		Ferrin, UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
621		Protein Sci 27, 14-25 (2018).
622	47.	M. V. Shapovalov, R. L. Dunbrack, Jr., A smoothed backbone-dependent rotamer library
623		for proteins derived from adaptive kernel density estimates and regressions. Structure 19,
624		844-858 (2011).
625	48.	J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, X.
626		Wang, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2
627		receptor. Nature 581, 215-220 (2020).
628		
629	Ackn	owledgments:
630	Fund	ing:
631	This s	tudy was supported by the National Institutes of Health/National Institute of Allergy and
632		Infectious Diseases (<u>https://www.niaid.nih.gov/</u>) through award UM1 AI068635 to PBG.
633		The funders had no role in study design, data collection and analysis, decision to publish,
634		or preparation of the manuscript.
635	Autho	or contributions:
636		Conceptualization: LPZ, TL, PBG, TRH, JTS, LS, THP, DEG, KRJ

637	Methodology: LPZ
638	Investigation: LPZ, TRH, JTS, LS, THP, DEG, KRJ
639	Visualization: LPZ
640	Funding acquisition: LPZ, PBG
641	Formal analysis: LPZ, TL
642	Data curation: JTS
643	Supervision: LPZ, PBG
644	Writing – original draft: LPZ, TL, PBG, JTS, LNC
645	Writing – review & editing: LPZ, PBG, TRH, JTS, LS, THP, LNC, DEG, KRJ
646	Competing interests: The authors declare that they have no competing interests.
647	Data and materials availability: All sequence data analyzed here are publicly available at
648	GSIAD (<u>https://www.gisaid.org/</u>).

Table 1. For 15 amino acid positions shown to harbor a substitution in a VOI or VOC,

- 651 times estimated by the SLS method when the corresponding VRV had a locally averaged
- 652 proportion exceeding 10% (and, if applicable, subsequently decreased below 10%) based
- on a state/territory-specific model. The top two rows show the first reported date in the
- 654 literature of a VOI or VOC harboring a substitution at the designated site vs the date of
- 655 VRV detection at the same amino acid position by the SLS method (across all
- 656 states/territories).

	L5	S13	V70	Т95	W152	D253	L452	S477	E484	N501	A570	D614	Q677	P681	A701
Reporting Day* Earliest SLS Detection Day	301	301	301	301	301	87	301	331	87	362	362	362	362	362	362
Across All States	11	159	329	149	381	98	381	405	371	206	404	10	20	11	176
Alabama	63- 186								404-			63-	253- 305-		
Alaska												56-	323 357-	383-	
Arizona												26-	400	353-	
Arkansas												56-	329-		
California		398-			402-		390-					45-		374-	
Colorado	286-											45-	286-	370-	
Connecticut										314-		43-	191-	378-	
DC									391-			47-		344-	
Delaware												52-	384-	288-	
Florida												33-	368-	389-	
Georgia	175-											41-	345-	407- 174-	
Hawaii	190											46-	374-	376	
Idaho												53-			
Illinois												24-	366-	380-	
India												48-	370- 273-	383-	
Iowa						260-						48-	388		
Kansas						260- 291						47-		385-	
Kentucky												59-	389- 397		
Louisiana												50-	307-	368-	
Maine									404-	371-		51-			
Maryland					407-		394-		390-			45-		230-	
Massachusetts				1.40						206-		10-	346-	298-	
Michigan				149- 177						264- 273		50-	361-		
Minnesota	186- 294											46-	297-	387-	
Mississippi	144- 215											42-	353-	392-	
Missouri												47-		364- 384	
Montana												68-			
Nebraska												46-		387-	

Nevada		392-		396-		393-					37-	391-	394-	
New Hampshire									374-		41-	349- 390	364-	
New Jersey						402-					44-		276-	••••
New Mexico											50-	291-	387-	233- 252
New York	11-13					386-		414-			11-		11-	
North Carolina											44-		382-	
North Dakota											57-	328- 363		
Ohio						405-					20-	20-	391-	
Oklahoma											54-	306-		
Oregon		397-				398-					45-			
Pennsylvania											44-	394-	317-	
Puerto Rico					185- 252						49-		347-	
Rhode Island							405-	371- 384	356-		40-	358- 398	379-	
South Carolina											46-	405-	368- 389	
Tennessee	50- 141										50-	318-		
Texas											23-	360-	378-	
Utah		159- 173	329-		98- 190						44-		358-	176-
Virginia			329-					397-			47-	384-	359-	185
Washington		406-		411-		403-			410- 265-		50-	373- 299-		
Wisconsin						409-			203		12-	407	411-	
Wyoming		381-		381-		381-					51-		392-	
Other States								393-	404-	404-	34-		368-	375- 381

657

658

659 "Reporting Day" was set to the 15th day in each month in which the relevant publication appeared.

660 "SLS Detection Day" was set to the day at which the locally averaged proportion of the specific VRV exceeded 10% based

on temporality models fitted in each states/territory. If the locally averaged proportion of the VRV later declined below

662 10%, the second day is shown after a hyphen.

All numbers in the table express the number of days post-January 19, 2021.

664 VOI, variant of interest; VOC, variant of concern.

666

667 Table 2. VRV-haplotypes identified in Washington and in New York: state-specific

668 frequencies of cases, number of VRVs per VRV-haplotype, and haplotypic polymorphisms

669 (state-specific frequencies). Unimputable residues are denoted with an "X".

670

ID	VRV-haplotype	Freq	L	Haplotypic polymorphisms (frequency)
Wa	shington			
W1	S13-W152-L452-V483- N501-D614-A684	104	4	ICRVNGA-4(20)/IWRVNGA-3(4)/SCRVNGA-3(5)/SLLVNGA- 2(5)/ SRLVNGA-2(4)/SWLVTGA-2(4)/SWLVYDA- 1(1)/SWLVYGA-2(5)/ SWQVNGA-2(2)/SWRVNGA-2(54)
W2	D614-Q677-T732	12	3	GHS-3(11)/XXX-3(1)
W3	D614-T732	128	2	GA-2(126)/GI-2(2)
W4	D614-Q677	208	2	DH-1(9)/GH-2(110)/GP-2(89)
W5	D178-D614	74	2	GG-2(70)/NG-2(4)
W6	D614	7130	1	G-1(7125)/N-1(5)
	v York L5-L54-E132-Y453- T478-E484-D614-P681- T732	172	9	LLEYKEGHA-4(168)/LLEYKEGHT-3(4)
N2	L5-L54-E132-Y453- T478-E484-D614-T732	651	8	FLEYREGT-3(4)/FLEYTEDT-1(11)/FLEYTEGA- 3(3)/FLEYTEGS-3(1)/ FLEYTEGT-2(266)/FLEYTKGA- 4(1)/FLEYTKGT-3(44)/LLEYKEGT-2(3)/ LLEYTAGT- 2(1)/LLEYTEGA-2(51)/LLEYTEGI-2(2)/LLEYTEGS-2(24)/ LLEYTKGS-3(2)/LLEYTKGT-2(171)/LLEYTQGT- 2(8)/LLQYTEGT-2(59)
N3	D80-F157-L452-D614- P681-T859-D950	132	7	DFLGHID-3(108)/DFLGPID-2(18)/DFLGPNH-3(4)/DSLGPNH-4(2)
N4	D80-F157-L452-D614- T859-D950	637	6	DFQGND-3(4)/DFRGID-3(15)/DFRGNH-4(1)/DFRGTD-2(120)/ DFRNTD-2(2)/DSRGNH-5(3)/DSRGTD-3(2)/GFRGND-4(1)/ GFRGNH-5(1)/ GSLGNH-5(9)/GSRGND-5(10)/GSRGNH- 6(455)/ GSRGNY-6(1)/ GSRGTD-4(13)
N5	S494-D614-P681-T716	514	4	PGHI-4(367)/PGHT-3(55)/PGPT-2(52)/SGHI-3(19)/SGHT-2(8)/ SGPI-2(13)
N6	D614-P681	1161	2	GH-2(1124)/GL-2(4)/GR-2(32)/GS-2(1)
N7	D614	10822	1	D-0(1)/G-1(10821)

671

672 Table 3. VRV-haplotypes. Cross-tabulation of individual VRV-haplotypes with GISAID-

assigned lineages in all 167,893 sequences, excluding lineages with fewer than 10 occurrences.

⁶⁷⁴ "Freq", corresponding haplotype frequencies; "Unknown", sequences not assigned to any

675 lineage.

Hap-Load	Freq	Unknown	A.2.4	B.1	B.1.1	B.1.1.1	B.1.1.171	B.1.1.222	B.1.1.29	B.1.1.304	B.1.1.317	B.1.152	B.1.165	B.1.166	B.1.2	B.1.215	B.1.234	B.1.256	B.1.324	B.1.350	B.1.354	B.1.360	B.1.399	B.1.94
						B	B.1	B.1	B.	B.1	B.1	ß	B	ä	-	B.	B.	ä	ä	ß	ä	ß	B	B
1) D80-F157-L452-D614-T859-D950																								
DSRGNH-5	63			58								5												
GSLGNH-5	9			9																				
GSRGND-5	21			19																			1	
GSRGNH-6				522					1			2		3									5	
2) D80-S15		-L452	2-T8:		950																			
DRSRNH-5	39			39																				
GRSRND-5	3			3																				
GRSRNH-6	30			30																				
GSSRNH-5	509			492					1			2		3									5	
3) G142-E1		4-Q6	77-S	940																				
SEGHF-4	3														1		1			1				
SVGHF-5	353																353							
SVGHS-4	273	2		1													262			8				
4) S155-F15		2-T85	59-D9																					
RSRND-4	3			3																				
RSRNH-5	69			69																				
SSRNH-4	533			511					1			7		3									5	
5) S13-W1			14																					
ICLG-3	43	1		36											3									
ICRG-4	795	51		557									1	4	10			14				34	2	72
IWRG-3	120	1		77											7						2			28
SCRG-3	30	4		16											4									
6) S494-D6		31-T7	16																					
PGHI-4	521			467	1									1	1	20				3				
PGHT-3	194			100	8			3					31		2	3			29				1	
RGHI-4	3															3								
SGHI-3	38			19	3			1							4									
7) T478-D6			32				_																	
KGHA-4	2132	11		17	2		14	2029	18	1	12				2									
KGHS-4	6																							
KGHT-3	159			4	57		3		67	8												1		
KGPA-3	5			1				3	1															
TGHA-3	85			13				63	2	1	2				2									
8) F157-L4	52-D61	4-T8	59																					

FQGN-3	22		22						
FRGI-3	15	14 1							
FRGN-3	5	5							
SLGN-3	11	10					1		
SRGN-4	625	601		1	7	3			6
SRGT-3	37	33							
(- (

676

677 Green shading: >100 occurrences. Light green shading: >10 occurrences.678

679

680